

Math 221: Matrix Algebra Midterm 1 - May 23, 2012

Instructions: There are five questions and 100 points on this exam. You will need only a pen or pencil and eraser; nothing else is permitted. Unless otherwise indicated, write your final answers clearly in complete sentences; failure to do so will cost points. Point values indicated for each question are estimates and subject to change.
(1) (12 points) Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which is not one-to-one, and let A denote the standard matrix of T. Indicate whether the following are true or false by writing the complete word True or False (you will lose points for simply writing T or F).
(a) A is a square matrix. Tue
(b) The columns of A are linearly dependent.

(c) A has a pivot in every column. False
(d) T is not onto. True
(2) (16 points) For each of the following mappings, write linear if the mapping is a linear transformation, and otherwise write not linear. You do not need to justify your answers.
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by

$$
T\left(\binom{x}{y}\right)=\left(\begin{array}{c}
x+y \\
x^{2} \\
0
\end{array}\right) \text { hot lensar }
$$

(b) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by

$$
T\left(\binom{x}{y}\right)=\left(\begin{array}{c}
x+y \\
x+1 \\
0
\end{array}\right) \quad \text { not linear }
$$

(c) $T: \mathbb{R} \rightarrow \mathbb{R}^{3}$ defined by

$$
T(x)=\left(\begin{array}{c}
x \\
-2 x \\
0
\end{array}\right) \text { veneer }
$$

(d) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by $T(\mathbf{x})=\mathbf{0}$.

(3) (24 points) Suppose that a linear system has a coefficient matrix A whose reduced echelon form $R E F(A)$ is

$$
\operatorname{REF}(A)=\left(\begin{array}{rrrrr}
1 & -1 & 0 & -1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(a) Express the solution set for the homogeneous linear system $A \mathbf{x}=\mathbf{0}$ in parametric vector form.

$$
\begin{gathered}
x_{2} \text { and } x_{4} \text { are free vavialle } \\
x_{1}=x_{2}+x_{4} \quad x_{3}=x_{4} \quad x_{5}=0
\end{gathered}
$$

Th solution sill is

$$
\left\{x_{2}\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right): x_{3}, x_{4} \in \mathbb{R}\right\}
$$

(b) Suppose that $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}$, and \mathbf{a}_{5} are the columns of A, so that

$$
A=\left(\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5}
\end{array}\right)
$$

Express the zero vector $\mathbf{0} \in \mathbb{R}^{4}$ as a linear combination of the columns of A in which not all the coefficients are zero.
We can use part (a). Let $x_{2}=1 \quad x_{4}=0$ This gives we $x_{1}=1 \quad x_{3}=0$ So we get

$$
\vec{O}=1 \vec{a}_{1}+1 \vec{a}_{2}+O \vec{a}_{3}+O \vec{a}_{4}+O \vec{a}_{5}
$$

(c) Do the columns of A span \mathbb{R}^{4} ? Justify your answer.

The column of A do not span \mathbb{R}^{4}.
every now, the system
$A \vec{x}=\vec{b}$ is not consistent for all $\vec{b} \in \mathbb{R}^{4}$.
(4) (24 points) Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation such that

$$
T\left(\mathbf{e}_{1}-2 \mathbf{e}_{2}\right)=3 \mathbf{e}_{1}-\mathbf{e}_{3} \quad T\left(-\mathbf{e}_{1}+\mathbf{e}_{2}\right)=-2 \mathbf{e}_{2}
$$

Let A be the standard matrix of T.
(a) How many rows and columns does A have?
A has \qquad 3 \qquad columns.
(b) Find the matrix A. $T\left(\binom{1}{-2}\right)=\left(\begin{array}{c}3 \\ 0 \\ -1\end{array}\right) \quad T\left(\binom{-1}{1}\right)=\left(\begin{array}{c}0 \\ -2 \\ 0\end{array}\right)$

$$
\begin{aligned}
& \left(\begin{array}{cc|cc}
1 & -1 & 1 & 0 \\
-2 & 1 & 0 & 1
\end{array}\right) \xrightarrow[v \operatorname{dnc}]{\text { now }}\left(\begin{array}{cc|cc}
1 & -1 & 1 & 0 \\
0 & -1 & 2 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ll|ll}
1 & 0 & -1 & -1 \\
0 & 1 & -2 & -1
\end{array}\right) \\
& \text { Therefore } T\left(\binom{1}{0}\right)=T\left(-1\binom{1}{-2}-2\binom{-1}{1}\right)=\left(\begin{array}{cc}
-3+0 \\
0 & +4 \\
1+0
\end{array}\right)=\left(\begin{array}{c}
-3 \\
4 \\
1
\end{array}\right) \\
& \text { and } T\left(\binom{0}{1}\right)=T\left(-\binom{1}{-2}-\binom{-1}{1}\right)=\left(\begin{array}{c}
-3+0 \\
0 \\
1 \\
1
\end{array}+0\right)=\left(\begin{array}{c}
-3 \\
2 \\
1
\end{array}\right)
\end{aligned}
$$

$$
\begin{gathered}
\text { Thee } A=\left(\begin{array}{r}
-3 \\
4 \\
1 \\
\text { matrix of } T
\end{array}\right.
\end{gathered}
$$

(c) Is T one-to-one? Is T onto? You do not need to justify your answers. T is one-to-one as the columns of A
is the standard are linearly independent T is not onto as A does not have a pivot in every how.
(5) (24 points) In each part, determine whether the given set of vectors is linearly independent. State a reason for your conclusion.
(a) $\left\{\binom{0}{1}\right\}$ a st with one non-zero vedor is always linearly independent.
(b) $\left\{\left(\begin{array}{c}1 \\ 2 \\ -5\end{array}\right)\left(\begin{array}{c}-2 \\ -4 \\ 10\end{array}\right)\right\}$ a set of two vectors which an scala multiples of each other is always linearly dependent.
(c) $\left\{\left(\begin{array}{l}2 \\ 0 \\ 3\end{array}\right)\left(\begin{array}{c}4 \\ -1 \\ 6\end{array}\right)\left(\begin{array}{c}-2 \\ 0 \\ 2\end{array}\right)\right\}$ Mo vector in this set can be expressed as a linear combination of the other vectors. Therefore this set is linearly independent.

