PROBLEM 1. [5 Pts] Find the general solution of the system of equations. Write

your answer in parametric form.
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PROBLEM 2. [9 Pts| For each matrix below, determine whether its columns span R3.
Give reasons for your answers.
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PROBLEM 3. [12] Determine which of the following sets of vectors are linearly inde-

pendent. Give reasons for your answers.
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PROBLEM 4. A company manufactures two products. For each unit of product #1,
the company spends $4 on materials, $8 on labor, $1 on packaging, and $5 on over-
" head expenses. For each unit of product #2, the company spends $6 on materials,
$10 on labor, $2 on packaging, and $5 on overhead. The company wants to know how
much of each product to make in order to use exactly all of its budgeted resources
of $600 for materials, $1100 for labor, $175 for packaging, and $600 for overhead.
a.[4] Set up (but do not solve) a vector equation that describes this problem.
Include a statement about what the variables in the equation represent.
b.[2]Write an equivalent matriz equation for this problem. (Do not solve it.)
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PROBLEM 5. The following 3 equations define 3 lines in the plane with coordinates

z1,Z2 (the exact location of the third line depends on the constant h):

zy+1
2

a.[3] Set up (but do not solve) a matriz equation for finding a point (z1,z2) that
lies on all three lines. _

b.[3] Find a value of h such that the three lines have a common point.

c.[2] Find this common point. ’

2(.’1)1 + 4) = 3z, = Z9, 3x1 +4x9 = h.
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PROBLEM 6. [5] Find the matrix of the linear transformation 7 : R? — R? that
rotates points counterclockwise 90° and then reflects the result in the vertical zo-
axis.




PROBLEM 7. [10] Mark each statement either True or False. You do not have to
justify your answer.
a.In some cases, it is possible for five vectors in R® to be linearly independent.
b.If a matrix A is m x n and if the equation Ax = b has a solution for every b,
then the columns of A must be linearly independent in R™.
cIf Ais a 5 x 5 matrix such that Ax = b has a solution for every b, then the
columns of A span RS.
d.If a system of linear equations has two different solutions, then.it has infinitely
many solutions. ‘
e.If vi and v; span a plane in R® and if v3 is in that plane, then {vi,v2,v3} is
a linearly dependent set.



