Algebraic integers, ring of integers of a number field

Problem 1. Let \mathcal{A} denote the set of roots in \mathbb{C} of all monic polynomials of $\mathbb{Z}[X]$.

- (1) Show that the following assertions are equivalent for $z \in \mathbb{C}$:
 - (a) $z \in \mathcal{A}$
 - (b) The subring $\mathbb{Z}[z]$ of \mathbb{C} generated by z is finitely generated as a \mathbb{Z} -module (or equivalently as an abelian group).
 - (c) There is a subring \mathcal{B} of \mathbb{C} containing z which is finitely generated as a \mathbb{Z} -module (or equivalently as an abelian group).
- (2) Show that \mathcal{A} is a subring of \mathbb{C} .
- (3) Show that \mathcal{A} is not noetherian that is to say there is a sequence of ideals $(\mathcal{I}_n)_{n\neq 1}$ such that $\mathcal{I}_n \subsetneq \mathcal{I}_{n+1}$.
- (4) Let K be a number field that is to say a finite extension of \mathbb{Q} and let $\mathcal{A}_K := \mathcal{A} \cap K$.
 - (a) What is $\mathcal{A}_{\mathbb{Q}}$?
 - (b) Let $d \in \mathbb{Z} \{0, 1\}$ with no square factor (that is to say there is no prime p such that p^2 divides d). Let $K := \mathbb{Q}(\sqrt{d})$.
 - (i) What are the \mathbb{Q} -morphisms of fields $K \to \mathbb{C}$?
 - (ii) Define the following maps :

$$\begin{array}{cccc}
K & \longrightarrow & \mathbb{R} \\
T : & z & \longmapsto & \sum_{\sigma \in \operatorname{Hom}_{\mathbb{Q}}(K,\mathbb{C})} \sigma(z) \\
N : & z & \longmapsto & \prod_{\sigma \in \operatorname{Hom}_{\mathbb{Q}}(K,\mathbb{C})} \sigma(z).
\end{array}$$

Let $z \in K$. What is the determinant and the trace of the Q-linear map

$$K \to K, x \mapsto zx?$$

- (iii) Find a condition involving N(z) and T(z) for $z \in K$ to be an element of \mathcal{A}_K .
- (iv) Show that

$$\mathcal{A}_K = \begin{cases} \mathbb{Z}[\sqrt{d}] & \text{if } d \equiv 2 \text{ or } 3 \mod 4. \\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & \text{if } d \equiv 1 \mod 4. \end{cases}$$

Problem 2. Let A be a commutative unitary ring A with no zero divisor. An element $a \in A - A^{\times}$ is said

- **irreducible** if a = bc with $b, c \in A$ implies a or $b \in A^{\times}$.

- **prime** if A/(p) is an integral domain (i.e. has no zero divisor).

We say that $b \in A$ divides a if there is $c \in A$ such that a = bc.

- (1) Show that if A is an integral domain, then a prime a prime a irreducible a.
- (2) Compare the prime elements and the irreducible elements in \mathbb{Z} (respectively in k[X] where k is a field).
- (3) Let $A := \mathbb{Z}[i\sqrt{5}]$ be the subring of \mathbb{C} generated by $i\sqrt{5}$.
 - (a) What are the invertible elements in A?
 - (b) Let x = 3 and $y = 2 + i\sqrt{5}$. Show that x and y are not invertible. Show that if $z \in A$ divides both x and y then z is a unit in A.

- (c) Show that $9 \in (x) \cap (y)$ and that $(x) \cap (y)$ is not a principal ideal (so in some sense x and y don't have a lcm).
- (d) Let x = 9 and $y = 3(2 + i\sqrt{5})$. What are the divisors of x (resp. y) in A? Do x and y have a gcd?
- (e) Show that 3 is irreducible in A but not prime. This implies that A is not a factorial ring.

Problem 3. Let p be an odd prime number.

- (1) Let $n \ge 1$ and d a divisor of n. How many subgroups of order d does $\mathbb{Z}/n\mathbb{Z}$ contain?
- (2) How many subgroups of index 2 does $(\mathbb{Z}/p\mathbb{Z})^{\times}$ contain?
- (3) How many squares are there in $(\mathbb{Z}/p\mathbb{Z})^{\times}$?
- (4) Let $x \in \mathbb{Z}$ not divisible by p. Show that x is a square mod p (i.e. $x \mod p$ is a square in $\mathbb{Z}/p\mathbb{Z}$) if and only if

$$x^{(p-1)/2} = 1 \mod p$$

- (5) Show that if p is a sum of two squares in \mathbb{Z} then p is congruent to 1 mod 4.
- (6) The converse is true but a bit more difficult. It can be proved by first checking that the ring Z[i] is Euclidean (i.e. endowed with an Euclidean division), therefore it is principal, and therefore factorial (compare with Problem 2, last question).

Problem 4. Proof that $A = \mathbb{Z}[i]$ is principal.

- (1) Find the list of invertible elements in A (use the norm $N : \mathbb{Q}[i] \to \mathbb{Q}$).
- (2) Let $x \in \mathbb{C}$. Show that there is $q \in A$ such that $|q x| \leq \sqrt{2}/2$.
- (3) Let \mathfrak{I} be an ideal of A. We are going to prove that \mathfrak{I} is principal. Let $z_0 \in \mathfrak{I}$ such that $N(z_0) = \min\{N(z), z \in \mathfrak{I} \{0\}\}$. We want to show that $\mathfrak{I} = z_0 A$.
 - (a) Why does z_0 exist?
 - (b) Let $z \in \mathcal{I}$ and let $x := z/z_0 \in \mathbb{Q}[i]$. We need to prove that $x \in A$.
 - (i) Show that there is $q \in A$ such that N(x-q) < 1. Let r := x q.
 - (ii) Compute $N(z z_0 q)$ and conclude.
 - (c) This proves that A is principal : it is an integral domain whose ideals are all principal. Note that hidden in this proof is the fact that A is endowed with an Euclidean division (a Euclidean ring is always principal).

Problem 5. Fermat's theorem on sums of two squares. Let p be an odd prime number.

- (1) We admit that a principal ring is factorial. Show that in a factorial ring, the prime elements are exactly the irreducible elements.
- (2) Let $\Sigma = \{a^2 + b^2, a, b \in \mathbb{N}\}.$
 - (a) Show that Σ is stable by multiplication.
 - (b) Show that $p \in \Sigma$ if and only if p is not irreducible in $A = \mathbb{Z}[i]$.
 - (c) Show that $p \in \Sigma$ if and only if -1 is a square mod p if and only if $p \equiv 1 \mod 4$. Note that the ring A/pA is isomorphic to $\mathbb{F}_p[X]/(X^2+1)$.