## Algebraic integers, ring of integers of a number field

Problem 1. Let $\mathcal{A}$ denote the set of roots in $\mathbb{C}$ of all monic polynomials of $\mathbb{Z}[X]$.
(1) Show that the following assertions are equivalent for $z \in \mathbb{C}$ :
(a) $z \in \mathcal{A}$
(b) The subring $\mathbb{Z}[z]$ of $\mathbb{C}$ generated by $z$ is finitely generated as a $\mathbb{Z}$-module (or equivalently as an abelian group).
(c) There is a subring $\mathcal{B}$ of $\mathbb{C}$ containing $z$ which is finitely generated as a $\mathbb{Z}$-module (or equivalently as an abelian group).
(2) Show that $\mathcal{A}$ is a subring of $\mathbb{C}$.
(3) Show that $\mathcal{A}$ is not noetherian that is to say there is a sequence of ideals $\left(\mathcal{J}_{n}\right)_{n \neq 1}$ such that $\mathcal{J}_{n} \subsetneq \mathcal{J}_{n+1}$.
(4) Let $K$ be a number field that is to say a finite extension of $\mathbb{Q}$ and let $\mathcal{A}_{K}:=\mathcal{A} \cap K$.
(a) What is $\mathcal{A}_{\mathbb{Q}}$ ?
(b) Let $d \in \mathbb{Z}-\{0,1\}$ with no square factor (that is to say there is no prime $p$ such that $p^{2}$ divides $\left.d\right)$. Let $K:=\mathbb{Q}(\sqrt{d})$.
(i) What are the $\mathbb{Q}$-morphisms of fields $K \rightarrow \mathbb{C}$ ?
(ii) Define the following maps :

$$
\begin{array}{rccc}
K & \longrightarrow & \mathbb{R} \\
T: & z & \longmapsto & \sum_{\sigma \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})} \sigma(z) \\
N: & z & \longmapsto & \prod_{\sigma \in \operatorname{Hom}_{\mathbb{Q}}(K, \mathbb{C})} \sigma(z) .
\end{array}
$$

Let $z \in K$. What is the determinant and the trace of the $\mathbb{Q}$-linear map

$$
K \rightarrow K, x \mapsto z x ?
$$

(iii) Find a condition involving $N(z)$ and $T(z)$ for $z \in K$ to be an element of $\mathcal{A}_{K}$.
(iv) Show that

$$
\mathcal{A}_{K}= \begin{cases}\mathbb{Z}[\sqrt{d}] & \text { if } d \equiv 2 \text { or } 3 \quad \bmod 4 \\ \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] & \text { if } d \equiv 1 \quad \bmod 4\end{cases}
$$

Problem 2. Let $A$ be a commutative unitary ring $A$ with no zero divisor. An element $a \in A-A^{\times}$is said

- irreducible if $a=b c$ with $b, c \in A$ implies $a$ or $b \in A^{\times}$.
- prime if $A /(p)$ is an integral domain (i.e. has no zero divisor).

We say that $b \in A$ divides $a$ if there is $c \in A$ such that $a=b c$.
(1) Show that if $A$ is an integral domain, then « $a$ prime» implies « $a$ irreducible ».
(2) Compare the prime elements and the irreducible elements in $\mathbb{Z}$ (respectively in $k[X]$ where $k$ is a field).
(3) Let $A:=\mathbb{Z}[i \sqrt{5}]$ be the subring of $\mathbb{C}$ generated by $i \sqrt{5}$.
(a) What are the invertible elements in $A$ ?
(b) Let $x=3$ and $y=2+i \sqrt{5}$. Show that $x$ and $y$ are not invertible. Show that if $z \in A$ divides both $x$ and $y$ then $z$ is a unit in $A$.
(c) Show that $9 \in(x) \cap(y)$ and that $(x) \cap(y)$ is not a principal ideal (so in some sense $x$ and $y$ don't have a lcm).
(d) Let $x=9$ and $y=3(2+i \sqrt{5})$. What are the divisors of $x$ (resp. $y$ ) in $A$ ? Do $x$ and $y$ have a gcd?
(e) Show that 3 is irreducible in $A$ but not prime. This implies that $A$ is not a factorial ring.

Problem 3. Let $p$ be an odd prime number.
(1) Let $n \geq 1$ and $d$ a divisor of $n$. How many subgroups of order $d$ does $\mathbb{Z} / n \mathbb{Z}$ contain ?
(2) How many subgroups of index 2 does $(\mathbb{Z} / p \mathbb{Z})^{\times}$contain?
(3) How many squares are there in $(\mathbb{Z} / p \mathbb{Z})^{\times}$?
(4) Let $x \in \mathbb{Z}$ not divisible by $p$. Show that $x$ is a square $\bmod p($ i.e. $x \bmod p$ is a square in $\mathbb{Z} / p \mathbb{Z})$ if and only if

$$
x^{(p-1) / 2}=1 \quad \bmod p
$$

(5) Show that if $p$ is a sum of two squares in $\mathbb{Z}$ then $p$ is congruent to $1 \bmod 4$.
(6) The converse is true but a bit more difficult. It can be proved by first checking that the ring $\mathbb{Z}[i]$ is Euclidean (i.e. endowed with an Euclidean division), therefore it is principal, and therefore factorial (compare with Problem 2, last question).

Problem 4. Proof that $A=\mathbb{Z}[i]$ is principal.
(1) Find the list of invertible elements in $A$ (use the norm $N: \mathbb{Q}[i] \rightarrow \mathbb{Q}$ ).
(2) Let $x \in \mathbb{C}$. Show that there is $q \in A$ such that $|q-x| \leq \sqrt{2} / 2$.
(3) Let $\mathcal{J}$ be an ideal of $A$. We are going to prove that $\mathcal{J}$ is principal. Let $z_{0} \in \mathcal{J}$ such that $N\left(z_{0}\right)=\min \{N(z), z \in \mathcal{J}-\{0\}\}$. We want to show that $\mathcal{J}=z_{0} A$.
(a) Why does $z_{0}$ exist?
(b) Let $z \in \mathcal{J}$ and let $x:=z / z_{0} \in \mathbb{Q}[i]$. We need to prove that $x \in A$.
(i) Show that there is $q \in A$ such that $N(x-q)<1$. Let $r:=x-q$.
(ii) Compute $N\left(z-z_{0} q\right)$ and conclude.
(c) This proves that $A$ is principal : it is an integral domain whose ideals are all principal. Note that hidden in this proof is the fact that $A$ is endowed with an Euclidean division (a Euclidean ring is always principal).

Problem 5. Fermat's theorem on sums of two squares. Let $p$ be an odd prime number.
(1) We admit that a principal ring is factorial. Show that in a factorial ring, the prime elements are exactly the irreducible elements.
(2) Let $\Sigma=\left\{a^{2}+b^{2}, a, b \in \mathbb{N}\right\}$.
(a) Show that $\Sigma$ is stable by multiplication.
(b) Show that $p \in \Sigma$ if and only if $p$ is not irreducible in $A=\mathbb{Z}[i]$.
(c) Show that $p \in \Sigma$ if and only if -1 is a square $\bmod p$ if and only if $p \equiv 1$ $\bmod 4$. Note that the ring $A / p A$ is isomorphic to $\mathbb{F}_{p}[X] /\left(X^{2}+1\right)$.

