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Algebraic integers, ring of integers of a number field

Problem 1. Let A denote the set of roots in C of all monic polynomials of Z[X].
(1) Show that the following assertions are equivalent for z ∈ C :

(a) z ∈ A

(b) The subring Z[z] of C generated by z is finitely generated as a Z-module (or
equivalently as an abelian group).

(c) There is a subring B of C containing z which is finitely generated as a Z-module
(or equivalently as an abelian group).

(2) Show that A is a subring of C.
(3) Show that A is not noetherian that is to say there is a sequence of ideals (In)n6=1

such that In ( In+1.
(4) Let K be a number field that is to say a finite extension of Q and let AK := A∩K.

(a) What is AQ ?
(b) Let d ∈ Z − {0, 1} with no square factor (that is to say there is no prime p

such that p2 divides d). Let K := Q(
√
d).

(i) What are the Q-morphisms of fields K → C ?
(ii) Define the following maps :

K −→ R
T : z 7−→

∑
σ∈HomQ(K,C) σ(z)

N : z 7−→
∏
σ∈HomQ(K,C) σ(z).

Let z ∈ K. What is the determinant and the trace of the Q-linear map

K → K, x 7→ zx?

(iii) Find a condition involving N(z) and T (z) for z ∈ K to be an element
of AK .

(iv) Show that

AK =

{
Z[
√
d] if d ≡ 2 or 3 mod 4.

Z[1+
√
d

2 ] if d ≡ 1 mod 4.

Problem 2. Let A be a commutative unitary ring A with no zero divisor. An element
a ∈ A−A× is said
– irreducible if a = bc with b, c ∈ A implies a or b ∈ A×.
– prime if A/(p) is an integral domain (i.e. has no zero divisor).
We say that b ∈ A divides a if there is c ∈ A such that a = bc.

(1) Show that if A is an integral domain, then « a prime » implies « a irreducible ».
(2) Compare the prime elements and the irreducible elements in Z (respectively in k[X]

where k is a field).

(3) Let A := Z[i
√

5] be the subring of C generated by i
√

5.
(a) What are the invertible elements in A ?

(b) Let x = 3 and y = 2 + i
√

5. Show that x and y are not invertible. Show that
if z ∈ A divides both x and y then z is a unit in A.
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(c) Show that 9 ∈ (x) ∩ (y) and that (x) ∩ (y) is not a principal ideal (so in some
sense x and y don’t have a lcm).

(d) Let x = 9 and y = 3(2 + i
√

5). What are the divisors of x (resp. y) in A ? Do
x and y have a gcd ?

(e) Show that 3 is irreducible in A but not prime. This implies that A is not a
factorial ring.

Problem 3. Let p be an odd prime number.

(1) Let n ≥ 1 and d a divisor of n. How many subgroups of order d does Z/nZ contain ?
(2) How many subgroups of index 2 does (Z/pZ)× contain ?
(3) How many squares are there in (Z/pZ)× ?
(4) Let x ∈ Z not divisible by p. Show that x is a square mod p (i.e. x mod p is a

square in Z/pZ) if and only if

x(p−1)/2 = 1 mod p.

(5) Show that if p is a sum of two squares in Z then p is congruent to 1 mod 4.
(6) The converse is true but a bit more difficult. It can be proved by first checking that

the ring Z[i] is Euclidean (i.e. endowed with an Euclidean division), therefore it is
principal, and therefore factorial (compare with Problem 2, last question).

Problem 4. Proof that A = Z[i] is principal.
(1) Find the list of invertible elements in A (use the norm N : Q[i]→ Q).

(2) Let x ∈ C. Show that there is q ∈ A such that |q − x| ≤
√

2/2.
(3) Let I be an ideal of A. We are going to prove that I is principal. Let z0 ∈ I such

that N(z0) = min{N(z), z ∈ I− {0}}. We want to show that I = z0A.
(a) Why does z0 exist ?
(b) Let z ∈ I and let x := z/z0 ∈ Q[i]. We need to prove that x ∈ A.

(i) Show that there is q ∈ A such that N(x− q) < 1. Let r := x− q.
(ii) Compute N(z − z0q) and conclude.

(c) This proves that A is principal : it is an integral domain whose ideals are all
principal. Note that hidden in this proof is the fact that A is endowed with
an Euclidean division (a Euclidean ring is always principal).

Problem 5. Fermat’s theorem on sums of two squares. Let p be an odd prime number.
(1) We admit that a principal ring is factorial. Show that in a factorial ring, the prime

elements are exactly the irreducible elements.
(2) Let Σ = {a2 + b2, a, b ∈ N}.

(a) Show that Σ is stable by multiplication.
(b) Show that p ∈ Σ if and only if p is not irreducible in A = Z[i].
(c) Show that p ∈ Σ if and only if −1 is a square mod p if and only if p ≡ 1

mod 4. Note that the ring A/pA is isomorphic to Fp[X]/(X2 + 1).


