Solvability by radicals

We admit the following theorem :

Theorem. Let $P \in \mathbb{Z}[X]$ a monic separable polynomial. Let p be a prime number and $\overline{P} \in \mathbb{F}_p[X]$ the reduction of P over \mathbb{F}_p . Suppose that \overline{P} is separable, then the Galois group of P over \mathbb{Q} contains a subgroup which is isomorphic to the Galois group of \overline{P} over \mathbb{F}_p .

We also admit that the symmetric group \mathfrak{S}_5 can be generated by a transposition and a 5-cycle.

Problem 1. Let $n \ge 1$.

- (1) Recall the definition of the alternating group \mathfrak{A}_n of \mathfrak{S}_n . We recall that it is generated by the 3-cycles in \mathfrak{S}_n .
- (2) Suppose from now on that $n \ge 5$. Let $\gamma = (a, b, c)$ be a 3-cycle in \mathfrak{S}_n . Let $d \ne e \in \{1, \ldots, n\} \{a, b, c\}$ and $\sigma = (d, e)(b, c)$. Compute $\sigma \gamma \sigma^{-1}$.
- (3) Show that $D(\mathfrak{A}_n) = \mathfrak{A}_n$ and that \mathfrak{S}_n is not solvable.

Problem 2. Let $P = X^5 - 5X^2 + 1$ with Galois group G over \mathbb{Q} .

- (1) Show that G injects in \mathfrak{S}_5 .
- (2) Show that P has no root in \mathbb{F}_2 and \mathbb{F}_4 , and that it is irreducible over \mathbb{F}_2 .
- (3) Show that P is irreducible over \mathbb{Q} and deduce that 5 divides |G|.
- (4) What is the Galois group of the reduction of P over \mathbb{F}_2 ? Deduce that G contains a 5 cycle.
- (5) How many real roots does P have? Show that the complex conjugation is an element in G.
- (6) Deduce from the two previous questions that $G \simeq \mathfrak{S}_5$ and that the equation P(x) = 0 is not solvable by radicals.