Solvability by radicals

We admit the following theorem :
Theorem. Let $P \in \mathbb{Z}[X]$ a monic separable polynomial. Let p be a prime number and $\bar{P} \in \mathbb{F}_{p}[X]$ the reduction of P over \mathbb{F}_{p}. Suppose that \bar{P} is separable, then the Galois group of P over \mathbb{Q} contains a subgroup which is isomorphic to the Galois group of \bar{P} over \mathbb{F}_{p}.

We also admit that the symmetric group \mathfrak{S}_{5} can be generated by a transposition and a 5 -cycle.

Problem 1. Let $n \geq 1$.
(1) Recall the definition of the alternating group \mathfrak{A}_{n} of \mathfrak{S}_{n}. We recall that it is generated by the 3 -cycles in \mathfrak{S}_{n}.
(2) Suppose from now on that $n \geq 5$. Let $\gamma=(a, b, c)$ be a 3 -cycle in \mathfrak{S}_{n}. Let $d \neq e \in\{1, \ldots, n\}-\{a, b, c\}$ and $\sigma=(d, e)(b, c)$. Compute $\sigma \gamma \sigma^{-1}$.
(3) Show that $D\left(\mathfrak{A}_{n}\right)=\mathfrak{A}_{n}$ and that \mathfrak{S}_{n} is not solvable.

Problem 2. Let $P=X^{5}-5 X^{2}+1$ with Galois group G over \mathbb{Q}.
(1) Show that G injects in \mathfrak{S}_{5}.
(2) Show that P has no root in \mathbb{F}_{2} and \mathbb{F}_{4}, and that it is irreducible over \mathbb{F}_{2}.
(3) Show that P is irreducible over \mathbb{Q} and deduce that 5 divides $|G|$.
(4) What is the Galois group of the reduction of P over \mathbb{F}_{2} ? Deduce that G contains a 5 cycle.
(5) How many real roots does P have? Show that the complex conjugation is an element in G.
(6) Deduce from the two previous questions that $G \simeq \mathfrak{S}_{5}$ and that the equation $P(x)=0$ is not solvable by radicals.

