Galois group of the algebraic closure of a finite field

Let q be a power of a prime number and $\overline{\mathbb{F}}_q$ a fixed algebraic closure of \mathbb{F}_q .

- (1) For $n \geq 1$, recall the definition of the subfield \mathbb{F}_{q^n} of $\overline{\mathbb{F}}_q$.
- (2) Show that

$$\overline{\mathbb{F}}_q = igcup_{n\geq 1} \mathbb{F}_{q^n}$$

and that $\overline{\mathbb{F}}_q/\mathbb{F}_q$ is a Galois extension. Denote by G its Galois group. Let

$$F_q: \overline{\mathbb{F}}_q \longrightarrow \overline{\mathbb{F}}_q$$
$$x \longmapsto x^q$$

- (3) Show that $F_q \in G$.
- (4) Describe the subgroup of G generated by F_q .
- (5) For any $n \ge 1$, give a natural surjective morphism

$$\phi_n: G \longrightarrow \operatorname{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q)$$

such that

$$\bigcap_{n \ge 1} \ker(\phi_n)$$

is trivial.

(6) Denote by $\hat{\mathbb{Z}}$ the set of all sequences

$$(a_n)_{n\geq 1}\in\prod_{n\geq 1}\mathbb{Z}/n\mathbb{Z}$$

such that for any $m, n \geq 1$, the image of a_{mn} by the natural projection $\mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ is a_n . Show that $\hat{\mathbb{Z}}$ is a group for the addition (defined coordinate by coordinate) and that $\hat{\mathbb{Z}}$ and G are isomorphic.

- (7) Is G generated by F_q ?
- (8) Show that an orbit \mathcal{O} in $\overline{\mathbb{F}}_q$ under the action of G is finite. Show that for $x, x' \in \mathcal{O}$ we have $\mathbb{F}_q[x] = \mathbb{F}_q[x']$.
- (9) Show that there is a surjection from the set of *G*-orbits in $\overline{\mathbb{F}}_q$ to the set of finite extensions of \mathbb{F}_q contained in $\overline{\mathbb{F}}_q$. Is it a bijection?