Problem 1. (1) Let $K=\mathbb{Q}[\sqrt{2}]$.
(a) Recall the definition of the norm $N: K \rightarrow \mathbb{Q}$ and justify why it has values in \mathbb{Q}.
(b) Show that if $x \in K$ is a square in K, then $N(x)$ is a square in \mathbb{Q}. Is $4+2 \sqrt{2}$ a square in K ?
(2) Let $L=\mathbb{Q}[\sqrt{4+2 \sqrt{2}}]$.
(a) Compute $[L: \mathbb{Q}]$. What is the minimal polynomial of $\sqrt{4+2 \sqrt{2}}$ over K ? Over \mathbb{Q} ?
(b) Show that L / \mathbb{Q} is Galois. What is the cardinality of its Galois group G.
(c) Show that there is a unique $g \in G$ such that $g(\sqrt{4+2 \sqrt{2}})=\sqrt{4-2 \sqrt{2}}$. What is the order of g ?
(d) What are the subfields of L ?

Problem 2. (On cyclic extensions) Let k be a perfect field, $n \geq 2$. We suppose that the set

$$
\mu_{n}(k)=\left\{x \in k, x^{n}=1\right\}
$$

has cardinality n. In particular, it implies that the characteristic of k does not divide n.
(1) Show that $\mu_{n}(k)$ is a cyclic group of cardinality n. How many generators does it have?
(2) Let $a \in k$ and K the stem field of $P:=X^{n}-a$. It is generated over k by an element α such that $\alpha^{n}=a$. Show that K is also the splitting field of P.

Let G be the Galois group of K / k. We define the map

$$
\kappa: G \rightarrow \mu_{n}(k), g \mapsto g(\alpha) / \alpha .
$$

It is a morphism of groups.
(3) Show that κ is injective and $|G|$ divides n.
(4) Show that P is irreducible over k if and only if $[K: k]=n$ if and only if κ is surjective if and only if G is a cyclic group of order n.
(5) Suppose that P is not irreducible and let $|G|=d$ where d divides n strictly. Show that $\alpha^{d} \in k$.
(6) Show that P is irreducible over k if and only if $« \alpha^{d} \in k$ for $d \mid n »$ implies $<d=n »$. (Introduce a generator of $\mu_{n}(k)$ and $g \in G$ such that $\kappa(g)=\zeta$).
(7) Show that P is irreducible over k if and only if the only divisor δ of n such that $X^{\delta}-a$ has a root in k is 1 (that is to say a is not a δ-power in k except for $\delta=1$).

Problem 3. Let $n \geq 1$ and ℓ a prime number. We say that $m \in \mathbb{Z}$ is not a ℓ-power in a subring A of \mathbb{C} if the equation $x^{\ell}-m$ has no solution $x \in A$. We suppose that n is not a ℓ-power in \mathbb{Z}.
Let $\zeta:=e^{2 i \pi / \ell}$ and K the splitting field of $P=X^{\ell}-n$ over \mathbb{Q}.
(1) Show that $K=\mathbb{Q}(\zeta, \sqrt[\ell]{n})$.
(2) Let $x, y \in \mathbb{Q}$ such that $x^{\ell-1}=y^{\ell}$. Show that x is a ℓ-power in \mathbb{Q}. If $x \in \mathbb{Z}$, show that x is a ℓ-power in \mathbb{Z}.
(3) Suppose that n is a ℓ-power in $\mathbb{Q}[\zeta]$. Compute $N_{\mathbb{Q}(\zeta) / \mathbb{Q}}(n)$ in two different ways and find a contradiction.
(4) Show that P is irreducible over $\mathbb{Q}[\zeta]$. (Use the result of Problem 2)
(5) Let G be the Galois group of K over \mathbb{Q}. Show that we have an exact sequence of groups

$$
0 \rightarrow \mathbb{Z} / \ell \mathbb{Z} \rightarrow G \rightarrow(\mathbb{Z} / \ell \mathbb{Z})^{\times} \rightarrow 0
$$

Problem 4. Let $n \geq 1$ and $G=\mathbb{Z} / n \mathbb{Z}$. Let K / \mathbb{Q} a Galois extension with Galois group G and $x \in K$ generating K / \mathbb{Q}. Le P be the minimal polynomial of x over \mathbb{Q}.
(1) Why does x exist?
(2) How many subfields L such that $[K: L]=2$ does K contain? Is L / K Galois? If yes what is its Galois group?
(3) How many subfields L such that $[L: \mathbb{Q}]=2$ does K contain? Is K / \mathbb{Q} Galois? If yes what is its Galois group?

Let $\sigma \in \operatorname{Aut}(\mathbb{C})$ be the complex conjugation.
(4) Show that $\sigma(K)=K$.
(5) Suppose that n is odd. Show that in the natural embedding $G \hookrightarrow \mathfrak{S}_{n}$, the group G injects in \mathfrak{A}_{n}.
(6) Suppose that n is odd. Show that the restriction of σ to K is the identity.
(7) Suppose that $n=4$, that $K \not \subset \mathbb{R}$ and let L be the unique subfield of K of degree 2 over \mathbb{Q}. Let $L^{\prime}=K^{\sigma}$ be the subfield of K of the elements fixed by σ. Show that $L=L^{\prime}$ and $L \subset \mathbb{R}$. Deduce that if $m \in \mathbb{Q}$ satisfies $\sqrt{m} \in K$ then $m \geq 0$.

Problem 5. Write the Galois group of $X^{16}-1$ over \mathbb{Q} as a product of cyclic groups.

Problem 6. Let $a \in \mathbb{Z}$. We want to show that the quadratic extension $\mathbb{Q}(\sqrt{a})$ of \mathbb{Q} is contained in a cyclotomic extension of \mathbb{Q}.
(1) Show that it is true if $a=-1$ and $a=2$.
(2) Let p be an odd prime number, $\zeta:=e^{2 i \pi / p}$ and $K=\mathbb{Q}(\zeta)$. We identify the Galois group of K with $(\mathbb{Z} / p \mathbb{Z})^{\times}$.
(a) Show that $\sum_{1 \leq i<p} \zeta^{i}=-1$ and that $\mathcal{B}:=\left\{\zeta^{k}\right\}_{1 \leq k \leq p-1}$ is a basis for the \mathbb{Q}-vector space K.
(b) Show that the subset H of the squares in $(\mathbb{Z} / p \mathbb{Z})^{\times}$is a subgroup of index 2 .
(c) Let $x:=\sum_{h \in H} h(\zeta)$. Show that x has degree 2 over \mathbb{Q} and give a formula for its unique \mathbb{Q}-conjugate x^{\prime}.
(d) Show that $x+x^{\prime}=-1$ and $x^{2}+x \in \mathbb{Q}$. We want to compute this element explicitly. Show that

$$
x^{2}+x=\sum_{g \in H} g(\zeta)+\sum_{g, g^{\prime} \in H} g(\zeta) g^{\prime}(\zeta)
$$

and that $g(\zeta) \in \mathcal{B}$. Under which condition do we have $g(\zeta) g^{\prime}(\zeta)=1$?
(i) Suppose that $-1 \in H$. Show that there is a family $\left(a_{i}\right)_{1 \leq i<p}$ of elements in \mathbb{Q} such that

$$
x^{2}+x=\frac{p-1}{2}+\sum_{1 \leq i<p} a_{i} \zeta^{i}
$$

and $\sum_{1 \leq i<p} a_{i}=(p-1)^{2} / 4$. Using (2)(a) show that $x^{2}+x=(p-1) / 4$ and find the value of x. What is $\mathbb{Q}(x)$?
(ii) Suppose that $-1 \notin H$. Show that there is a family $\left(a_{i}\right)_{1 \leq i<p}$ of elements in \mathbb{Q} such that

$$
x^{2}+x=\sum_{1 \leq i<p} a_{i} \zeta^{i}
$$

and $\sum_{1 \leq i<p} a_{i}=(p-1)(p+1) / 4$. Using (2)(a) show that $x^{2}+x=$ $-(p+1) / 4$ and find the value of x. What is $\mathbb{Q}(x)$?.
(3) For $n, m \geq 1$ show that $\mathbb{Q}\left(e^{2 i \pi / n}, e^{2 i \pi / m}\right) \subset \mathbb{Q}\left(e^{\frac{2 i \pi}{n m}}\right)$.
(4) Conclude.

