Review problems

Problem 1. (1) Let $K = \mathbb{Q}[\sqrt{2}]$.

- (a) Recall the definition of the norm $N: K \to \mathbb{Q}$ and justify why it has values in \mathbb{Q} .
- (b) Show that if $x \in K$ is a square in K, then N(x) is a square in \mathbb{Q} . Is $4 + 2\sqrt{2}$ a square in K?
- (2) Let $L = \mathbb{Q}[\sqrt{4 + 2\sqrt{2}}].$
 - (a) Compute $[L:\mathbb{Q}]$. What is the minimal polynomial of $\sqrt{4+2\sqrt{2}}$ over K? Over \mathbb{Q} ?
 - (b) Show that L/\mathbb{Q} is Galois. What is the cardinality of its Galois group G.
 - (c) Show that there is a unique $g \in G$ such that $g(\sqrt{4+2\sqrt{2}}) = \sqrt{4-2\sqrt{2}}$. What is the order of g?
 - (d) What are the subfields of L?

Problem 2. (On cyclic extensions) Let k be a perfect field, $n \ge 2$. We suppose that the set

$$\mu_n(k) = \{ x \in k, \ x^n = 1 \}$$

has cardinality n. In particular, it implies that the characteristic of k does not divide n.

- (1) Show that $\mu_n(k)$ is a cyclic group of cardinality *n*. How many generators does it have?
- (2) Let $a \in k$ and K the stem field of $P := X^n a$. It is generated over k by an element α such that $\alpha^n = a$. Show that K is also the splitting field of P.

Let G be the Galois group of K/k. We define the map

$$\kappa: G \to \mu_n(k), \ g \mapsto g(\alpha)/\alpha.$$

It is a morphism of groups.

- (3) Show that κ is injective and |G| divides n.
- (4) Show that P is irreducible over k if and only if [K : k] = n if and only if κ is surjective if and only if G is a cyclic group of order n.
- (5) Suppose that P is not irreducible and let |G| = d where d divides n strictly. Show that $\alpha^d \in k$.
- (6) Show that P is irreducible over k if and only if $\ll \alpha^d \in k$ for $d|n \gg$ implies $\ll d = n \gg$. (Introduce a generator of $\mu_n(k)$ and $g \in G$ such that $\kappa(g) = \zeta$).
- (7) Show that P is irreducible over k if and only if the only divisor δ of n such that $X^{\delta} a$ has a root in k is 1 (that is to say a is not a δ -power in k except for $\delta = 1$).

Problem 3. Let $n \ge 1$ and ℓ a prime number. We say that $m \in \mathbb{Z}$ is not a ℓ -power in a subring A of \mathbb{C} if the equation $x^{\ell} - m$ has no solution $x \in A$. We suppose that n is not a ℓ -power in \mathbb{Z} .

Let $\zeta := e^{2i\pi/\ell}$ and K the splitting field of $P = X^{\ell} - n$ over \mathbb{Q} .

- (1) Show that $K = \mathbb{Q}(\zeta, \sqrt[\ell]{n})$.
- (2) Let $x, y \in \mathbb{Q}$ such that $x^{\ell-1} = y^{\ell}$. Show that x is a ℓ -power in \mathbb{Q} . If $x \in \mathbb{Z}$, show that x is a ℓ -power in \mathbb{Z} .
- (3) Suppose that n is a ℓ -power in $\mathbb{Q}[\zeta]$. Compute $N_{\mathbb{Q}(\zeta)/\mathbb{Q}}(n)$ in two different ways and find a contradiction.
- (4) Show that P is irreducible over $\mathbb{Q}[\zeta]$. (Use the result of Problem 2)
- (5) Let G be the Galois group of K over \mathbb{Q} . Show that we have an exact sequence of groups

$$0 \to \mathbb{Z}/\ell\mathbb{Z} \to G \to (\mathbb{Z}/\ell\mathbb{Z})^{\times} \to 0.$$

Problem 4. Let $n \ge 1$ and $G = \mathbb{Z}/n\mathbb{Z}$. Let K/\mathbb{Q} a Galois extension with Galois group G and $x \in K$ generating K/\mathbb{Q} . Le P be the minimal polynomial of x over \mathbb{Q} .

- (1) Why does x exist?
- (2) How many subfields L such that [K : L] = 2 does K contain? Is L/K Galois? If yes what is its Galois group?
- (3) How many subfields L such that $[L : \mathbb{Q}] = 2$ does K contain? Is K/\mathbb{Q} Galois? If yes what is its Galois group?

Let $\sigma \in \operatorname{Aut}(\mathbb{C})$ be the complex conjugation.

- (4) Show that $\sigma(K) = K$.
- (5) Suppose that n is odd. Show that in the natural embedding $G \hookrightarrow \mathfrak{S}_n$, the group G injects in \mathfrak{A}_n .
- (6) Suppose that n is odd. Show that the restriction of σ to K is the identity.
- (7) Suppose that n = 4, that $K \not\subset \mathbb{R}$ and let L be the unique subfield of K of degree 2 over \mathbb{Q} . Let $L' = K^{\sigma}$ be the subfield of K of the elements fixed by σ . Show that L = L' and $L \subset \mathbb{R}$. Deduce that if $m \in \mathbb{Q}$ satisfies $\sqrt{m} \in K$ then $m \ge 0$.

Problem 5. Write the Galois group of $X^{16} - 1$ over \mathbb{Q} as a product of cyclic groups.

Problem 6. Let $a \in \mathbb{Z}$. We want to show that the quadratic extension $\mathbb{Q}(\sqrt{a})$ of \mathbb{Q} is contained in a cyclotomic extension of \mathbb{Q} .

- (1) Show that it is true if a = -1 and a = 2.
- (2) Let p be an odd prime number, $\zeta := e^{2i\pi/p}$ and $K = \mathbb{Q}(\zeta)$. We identify the Galois group of K with $(\mathbb{Z}/p\mathbb{Z})^{\times}$.
 - (a) Show that $\sum_{1 \le i < p} \zeta^i = -1$ and that $\mathcal{B} := \{\zeta^k\}_{1 \le k \le p-1}$ is a basis for the \mathbb{Q} -vector space K.
 - (b) Show that the subset H of the squares in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is a subgroup of index 2.

- (c) Let $x := \sum_{h \in H} h(\zeta)$. Show that x has degree 2 over \mathbb{Q} and give a formula for its unique \mathbb{Q} -conjugate x'.
- (d) Show that x + x' = -1 and $x^2 + x \in \mathbb{Q}$. We want to compute this element explicitly. Show that

$$x^{2} + x = \sum_{g \in H} g(\zeta) + \sum_{g,g' \in H} g(\zeta)g'(\zeta)$$

and that $g(\zeta) \in \mathcal{B}$. Under which condition do we have $g(\zeta)g'(\zeta) = 1$?

(i) Suppose that $-1 \in H$. Show that there is a family $(a_i)_{1 \leq i < p}$ of elements in \mathbb{Q} such that

$$x^{2} + x = \frac{p-1}{2} + \sum_{1 \le i < p} a_{i} \zeta^{i}$$

and $\sum_{1 \le i < p} a_i = (p-1)^2/4$. Using (2)(a) show that $x^2 + x = (p-1)/4$ and find the value of x. What is $\mathbb{Q}(x)$?

(ii) Suppose that $-1 \notin H$. Show that there is a family $(a_i)_{1 \leq i < p}$ of elements in \mathbb{Q} such that

$$x^2 + x = \sum_{1 \le i < p} a_i \zeta^i$$

and $\sum_{1 \le i < p} a_i = (p-1)(p+1)/4$. Using (2)(a) show that $x^2 + x = -(p+1)/4$ and find the value of x. What is $\mathbb{Q}(x)$?.

- (3) For $n, m \ge 1$ show that $\mathbb{Q}(e^{2i\pi/n}, e^{2i\pi/m}) \subset \mathbb{Q}(e^{\frac{2i\pi}{nm}})$.
- (4) Conclude.