Review 2

Problem 1. (1) Prove that a group of order 4 is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ or $\mathbb{Z} / 4 \mathbb{Z}$.
(2) Find an extension of \mathbb{Q} with Galois group $\mathbb{Z} / 4 \mathbb{Z}$.
(3) What is the Galois group of $X^{8}-1$ over \mathbb{Q} ?
(4) What is the Galois group of $X^{4}-25$ over \mathbb{Q} ?
(5) What is the Galois group of $X^{4}+4$ over \mathbb{Q} ?

Problem 2. Find an extension E / F with Galois group $\mathbb{Z} / 8 \mathbb{Z}$.

Problem 3. Let $n \geq 1$. We want to show that there is a Galois extension of \mathbb{Q} with Galois group $\mathbb{Z} / n \mathbb{Z}$.
(1) Let p be a prime number. Show that there is a Galois extension of \mathbb{Q} with Galois group $\mathbb{Z} /(p-1) \mathbb{Z}$.
(2) Suppose that $p \equiv 1 \bmod n$. Show that there is a Galois extension of \mathbb{Q} with Galois group $\mathbb{Z} / n \mathbb{Z}$.
(3) By Dirichlet's theorem, given $a, b \geq 1$ with $\operatorname{gcd}(a, b)=1$, there are infinitely many primes of the form $a+m b$ where $m \geq 1$. Conclude the problem.

Problem 4. Find a Galois extension of \mathbb{Q} of Galois group $\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

Problem 5. Let $n \in \mathbb{N}, n \geq 3$. Let R_{n} be the set of $n^{\text {th }}$ roots of 1 in \mathbb{C} represented in the complex plane as a regular n-gone. Let D_{n} be the group of isometries of \mathbb{C} stabilizing R_{n}. This is the $n^{\text {th }}$ dihedral group.
(1) Find a normal subgroup of D_{n} with order n.
(2) Show that $\left|D_{n}\right|=2 n$ and that $D_{n} \cong \mathbb{Z} / n \mathbb{Z} \rtimes \mathbb{Z} / 2 \mathbb{Z}$.
(3) What is the center of D_{n} ?

Problem 6. Let $P=X^{4}-2 \in \mathbb{Q}[X]$. Let K be the subfield of \mathbb{C} generated over \mathbb{Q} by the complex roots of P and G the Galois group of P over \mathbb{Q}. Let $x:=2^{1 / 4}$.
(1) Show that $L:=\mathbb{Q}[x]$ is not a Galois extension of Q.
(2) Is G a commutative group?
(3) Compute $[L: \mathbb{Q}]$.
(4) Show that $G=\mathbb{Q}[x, i]$ and $[K: \mathbb{Q}]=8$.
(5) Let C be the set of roots of P in \mathbb{C}. Draw C in the complex plane. Show that the action of G on C preserves the distances that is to say, for $c, c^{\prime} \in C$ we have $\left|g(c)-g\left(c^{\prime}\right)\right|=\left|c-c^{\prime}\right|$.
(6) Show that $G \cong D_{4}$.
(7) Show that there is a unique element r in G such that $r(x)=i x$ and $r(i)=i$. What is the order of r in G ?
(8) Show that there is a unique element s in G such that $s(x)=x$ and $s(i)=-i$. What is the order of s in G ?
(9) Show that $s r s^{-1}=r^{-1}$.
(10) Show that s and r generate G (Use Problem 2).
(11) What can you say about $x+i$?

Remark. Let G be a group of order 8. By splitting into cases depending on the maximum order of an element in G, one can show that G is isomorphic to one of the following groups :

$$
\mathbb{Z} / 8 \mathbb{Z},,(\mathbb{Z} / 2 \mathbb{Z})^{3}, \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}, D_{4}, \mathbb{H}_{8}
$$

where $\mathbb{H}_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ is the group of quaternions given by

$$
\begin{array}{ll}
i^{2}=j^{2}=k^{2}=-1, & i j=-j i=k \\
j k=-k j=i, & k i=-i k=j
\end{array}
$$

One can show that \mathbb{H}_{8} cannot be written as a semi direct product of 2 of its strict subgroups. One can show that $\mathbb{Q}(\sqrt{(2+\sqrt{2})(3+\sqrt{6})}) / \mathbb{Q}$ is Galois with Galois group \mathbb{H}_{8}. Therefore any group of order 8 can be realized as the Galois group of an extension of \mathbb{Q}.

