Review 2

Problem 1. (1) Prove that a group of order 4 is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/4\mathbb{Z}$.

- (2) Find an extension of \mathbb{Q} with Galois group $\mathbb{Z}/4\mathbb{Z}$.
- (3) What is the Galois group of $X^8 1$ over \mathbb{Q} ?
- (4) What is the Galois group of $X^4 25$ over \mathbb{Q} ?
- (5) What is the Galois group of $X^4 + 4$ over \mathbb{Q} ?

Problem 2. Find an extension E/F with Galois group $\mathbb{Z}/8\mathbb{Z}$.

Problem 3. Let $n \ge 1$. We want to show that there is a Galois extension of \mathbb{Q} with Galois group $\mathbb{Z}/n\mathbb{Z}$.

- (1) Let p be a prime number. Show that there is a Galois extension of \mathbb{Q} with Galois group $\mathbb{Z}/(p-1)\mathbb{Z}$.
- (2) Suppose that $p \equiv 1 \mod n$. Show that there is a Galois extension of \mathbb{Q} with Galois group $\mathbb{Z}/n\mathbb{Z}$.
- (3) By Dirichlet's theorem, given $a, b \ge 1$ with gcd(a, b) = 1, there are infinitely many primes of the form a + mb where $m \ge 1$. Conclude the problem.

Problem 4. Find a Galois extension of \mathbb{Q} of Galois group $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Problem 5. Let $n \in \mathbb{N}, n \geq 3$. Let R_n be the set of n^{th} roots of 1 in \mathbb{C} represented in the complex plane as a regular *n*-gone. Let D_n be the group of isometries of \mathbb{C} stabilizing R_n . This is the n^{th} dihedral group.

- (1) Find a normal subgroup of D_n with order n.
- (2) Show that $|D_n| = 2n$ and that $D_n \cong \mathbb{Z}/n\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$.
- (3) What is the center of D_n ?

Problem 6. Let $P = X^4 - 2 \in \mathbb{Q}[X]$. Let K be the subfield of \mathbb{C} generated over \mathbb{Q} by the complex roots of P and G the Galois group of P over \mathbb{Q} . Let $x := 2^{1/4}$.

- (1) Show that $L := \mathbb{Q}[x]$ is not a Galois extension of Q.
- (2) Is G a commutative group?
- (3) Compute $[L:\mathbb{Q}]$.
- (4) Show that $G = \mathbb{Q}[x, i]$ and $[K : \mathbb{Q}] = 8$.
- (5) Let C be the set of roots of P in C. Draw C in the complex plane. Show that the action of G on C preserves the distances that is to say, for $c, c' \in C$ we have |g(c) g(c')| = |c c'|.
- (6) Show that $G \cong D_4$.
- (7) Show that there is a unique element r in G such that r(x) = ix and r(i) = i. What is the order of r in G?
- (8) Show that there is a unique element s in G such that s(x) = x and s(i) = -i. What is the order of s in G?
- (9) Show that $srs^{-1} = r^{-1}$.
- (10) Show that s and r generate G (Use Problem 2).

(11) What can you say about x + i?

Remark. Let G be a group of order 8. By splitting into cases depending on the maximum order of an element in G, one can show that G is isomorphic to one of the following groups :

$$\mathbb{Z}/8\mathbb{Z}, \ , (\mathbb{Z}/2\mathbb{Z})^3, \ \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}, \ D_4, \mathbb{H}_8$$

where $\mathbb{H}_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ is the group of quaternions given by

$$i^2 = j^2 = k^2 = -1,$$
 $ij = -ji = k,$
 $jk = -kj = i,$ $ki = -ik = j.$

One can show that \mathbb{H}_8 cannot be written as a semi direct product of 2 of its strict subgroups. One can show that $\mathbb{Q}(\sqrt{(2+\sqrt{2})(3+\sqrt{6})})/\mathbb{Q}$ is Galois with Galois group \mathbb{H}_8 . Therefore any group of order 8 can be realized as the Galois group of an extension of \mathbb{Q} .