Review

Problem 1. Let $x := 2^{1/3}$ and $K := \mathbb{Q}(x, j)$.

- (1) Show that $[K : \mathbb{Q}] = 6$.
- (2) Show that $|\operatorname{Aut}_{\mathbb{Q}}(K)| \leq 6$.
- (3) Compute $\operatorname{Aut}_{\mathbb{Q}(x)}(K)$ and $\operatorname{Aut}_{\mathbb{Q}(j)}(K)$ and prove that $|\operatorname{Aut}_{\mathbb{Q}}(K)| = 6$. (One can also prove this by first showing that K/\mathbb{Q} is Galois).
- (4) Let $R := \{x, jx, j^2x\}$. Show that any $\sigma \in \operatorname{Aut}_{\mathbb{Q}(x)}(K)$ induces a permutation of R and that $\operatorname{Aut}_{\mathbb{Q}(x)}(K) \simeq \mathfrak{S}_3$.

Problem 2. Let k be a perfect field and K/k a finite extension.

- (1) Recall the definition of a perfect field.
- (2) Recall what it means for the extension K/k to be a Galois extension and recall the definition of Gal(K/k).
- (3) Suppose that K/k is a Galois extension. Show that [K : k] = |Gal(K/k)| and that the set $K^{\text{Gal}(K/k)}$ of Gal(K/k)-fixed points in K is k.

Problem 3. Show that $\mathbb{Q}[\sqrt{2+\sqrt{2}}]$ is a Galois extension of \mathbb{Q} .

Problem 4. Let k be a field. Let \overline{k} denote an algebraic closure of k.

(1) Let $x \in \overline{k}$. Show that the set $\operatorname{conj}_k(x)$ of k-conjugates of x in \overline{x} is

$$\{\sigma(x), \sigma \in \operatorname{Aut}_k(k)\} = \{\sigma(x), \sigma \in \operatorname{Hom}_k(K, k)\}$$

where $k \subseteq K \subset \overline{k}$ is any extension containing x.

- (2) For $x, y \in \overline{k}$, show that $\operatorname{conj}_k(x+y) \subseteq \operatorname{conj}_k(x) + \operatorname{conj}_k(y)$ and give an example where this inclusion is not an equality.
- (3) Give and example where $\operatorname{conj}_k(x)$ is not contained in k[x].
- (4) Suppose that k is perfect. Show that the following are equivalent :
 - (a) $x \in k$;
 - (b) $\operatorname{conj}_k(x) = \{x\};$
 - (c) for any $\sigma \in \operatorname{Aut}_k(\bar{k})$ we have $\sigma(x) = x$.

Problem 5 (Artin's Lemma). Let K be a perfect field and G a finite subgroup of the group of automorphisms of the field K.

- (1) Show that $k := K^G$ is perfect and check that G is a subgroup of $\operatorname{Aut}_k(K)$.
- (2) Let $x \in G$ and Gx its orbit under the action of G.
 - (a) Show that $|Gx| \leq |G|$.
 - (b) Show that x is algebraic over k with degree $\leq |G|$.
- (3) Let $x \in K$ with maximal degree over k. Show that x is a primitive element for K and that $[K:k] \leq |G|$.

(4) Show that $G = \operatorname{Aut}_k(K)$, that [K : k] = |G| and that K/k is a Galois extension.

Problem 6. Let k be a field and $n \ge 1$.

- (1) Show that \mathfrak{S}_n can be considered as a group of automorphisms of the field $k(X_1, ..., X_n)$.
- (2) Let G be a group with n elements. Use Artin's lemma to find a Galois extension with Galois group G.