Midterm Exam

You don't need to solve all the questions to get an excellent grade. Write your answers carefully and clearly to get full credit, use a scratch paper.
Problem 1. (1) Consider the Galois group G of $\mathbb{Q}\left(e^{2 i \pi / 35}\right) / \mathbb{Q}$. How many subgroups of order 2 does G have? Is G cyclic? Justify.
(2) How many subfields of degree 12 over \mathbb{Q} does $\mathbb{Q}\left(e^{2 i \pi / 35}\right)$ contain? Justify.

Problem 2. Let $P=X^{5}+20 X+16 \in \mathbb{Z}[X]$.
(1) Let $\bar{P}=P \bmod 7 \in \mathbb{F}_{7}[X]$.
(a) Find the roots in \mathbb{F}_{7} of \bar{P}.
(b) Show that the Galois group of \bar{P} over \mathbb{F}_{7} contains a 3 -cycle.
(2) Let $\bar{P}=P \bmod 3 \in \mathbb{F}_{3}[X]$.
(a) Let $x \in \mathbb{F}_{9}$. Show that $x^{5}=x$ or $x^{5}=-x$.
(b) Show that \bar{P} has no root in \mathbb{F}_{9}.
(c) Show that $\bar{P} \in \mathbb{F}_{3}[X]$ is irreducible.

Problem 3. (1) Let k be a perfect field with characteristic different from 2. Let \bar{k} be an algebraic closure of k. For $P \in k[X]$ a separable polynomial with degree n, with roots $\left\{x_{1}, \ldots, x_{n}\right\}$ in \bar{k}, and Galois group G, we set

$$
\operatorname{disc}(P)=(-1)^{n(n-1) / 2} \prod_{i \neq j}\left(x_{i}-y_{j}\right) \text { and } \delta=\prod_{i<j}\left(x_{i}-x_{j}\right)
$$

We recall that $\delta^{2}=\operatorname{disc}(P)$. We also recall the following result : when G is seen as a subgroup of \mathfrak{S}_{n}, we have

$$
\sigma(\delta)=\epsilon(\sigma) \delta
$$

for any $\sigma \in G$ where $\epsilon: \mathfrak{S}_{n} \rightarrow\{ \pm 1\}$ denotes the signature.
(a) Show that $\operatorname{disc}(P)$ is a square in k if and only if G is contained in the alternate group \mathfrak{A}_{n}.
(b) We admit that $\operatorname{disc}(P)=(-1)^{n(n-1) / 2} \prod_{i=1}^{n} P^{\prime}\left(x_{i}\right)$. (It is not hard to prove).
(c) For q an odd prime number, we choose $P=X^{q}-1$. Let $q^{*}:=\operatorname{disc}\left(X^{q}-1\right)$.
(i) At which condition on k is P separable?
(ii) Show, using (1)(b) that

$$
q^{*}=(-1)^{q(q-1) / 2} q^{q} .
$$

(2) Let p and q be two distinct odd prime numbers. Let G be the Galois group of $X^{q}-1$ over \mathbb{Q}.
(a) We see G as a subgroup of \mathfrak{S}_{q}. Show that G is not contained in the alternate group \mathfrak{A}_{q}.
(b) Show that G is cyclic.

END OF THE EXAM

The following questions are not to be solved for the exam.

We identify G with the group $(\mathbb{Z} / q \mathbb{Z})^{*}$. We denote by 1 the unit element in G. Since q is odd, we have $-1 \not \equiv 1 \bmod q$ and we denote the element $-1 \bmod q$ of G simply by -1 .
(c) Show that the map

$$
\begin{aligned}
\Psi: G & \longrightarrow \pm 1\} \\
g & \longmapsto g^{(q-1) / 2}
\end{aligned}
$$

is a well defined surjective morphism of groups. For $g \in G$ we use the following notation :

$$
\left(\frac{g}{q}\right):=\Psi(g)
$$

(d) Show that the kernel H of Ψ is the unique subgroup of G of index 2 (that is to say such that $|G|=2|H|)$.
(e) Show that H is the image of the morphism of groups $G \rightarrow G, g \mapsto g^{2}$.
(f) What is the kernel of

$$
G \hookrightarrow \mathfrak{S}_{q} \xrightarrow{\epsilon}\{ \pm 1\} ?
$$

(g) Show that for any $g \in G$ seen as an element of \mathfrak{S}_{q} we have $\epsilon(g)=\left(\frac{g}{q}\right)$.
(h) Let $\zeta:=e^{2 i \pi / q}$. Show that there is a unique $f \in G$ such that $f(\zeta)=\zeta^{p}$.
(i) Why can p be seen as an element of G ? Check that

$$
\left(\frac{p}{q}\right)=1 \text { if and only if } p \text { is a square } \bmod q
$$

(j) Show that $f \in H$ if and only if p is a square $\bmod q$. Show that $\epsilon(f)=\left(\frac{p}{q}\right)$.
(k) Let $A=\mathbb{Z}[\zeta]$. We recall that there is \mathcal{P} a maximal ideal of A such that $\mathcal{P} \cap \mathbb{Z}=p \mathbb{Z}$.
(i) Recall why $K:=A / \mathcal{P}$ is a finite field of characteristic p.
(ii) We know that the decomposition subgroup $D:=\{g \in G, g(\mathcal{P})=\mathcal{P}\}$ of G is isomorphic to $\operatorname{Gal}\left(K / \mathbb{F}_{p}\right)$. Show that in this isomorphism, the element $f \in G$ corresponds to the Frobenius of K / \mathbb{F}_{p} (show first that $f \in D$).
(iii) Why is there an embedding of $\operatorname{Gal}\left(K / \mathbb{F}_{p}\right)$ in \mathfrak{S}_{q} which is compatible with the embedding of G in \mathfrak{S}_{q} via the isomorphism of the previous question?
Show that the Frobenius of K / \mathbb{F}_{p} is in \mathfrak{A}_{q} if and only if q^{*} is a square modulo p if and only if $\left((-1)^{(q-1) / 2} q\right)^{(p-1) / 2}=1$.
(iv) Prove the quadratic reciprocity law :

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{(p-1)(q-1) / 4}
$$

(3) Prove the result of Question (1)(b).

