Homework 3

I suggest that you work on Problems 1, 2, 3 and 5 for the homework, + Problem 7 of HW1.

Problem 1. Let K/k be an algebraic extension. We want to show that any element in Hom_k(K, K) in an element in Aut_k(K).

- (1) Prove the claim when K/k is finite.
- (2) Deduce the general case. Hint : For $x \in K$, consider the sub-k-algebra of K generated by the roots of Π_x in K.

Problem 2. Let K/k and Ω/k two fields extension. Suppose that K/k is algebraic and that Ω is algebraically closed.

- (1) Let E be the set of pairs (L, σ) where L is a subfield of K containing k (or rather the image of k in K) and $\sigma : L \to \Omega$ a k-embedding.
 - (a) Show that E is not empty.
 - (b) Describe on E a natural partial order.
 - (c) Show that every totally ordered subset of E has an upper bound. Apply Zorn's lemma and deduce that E has (at least) one maximal element (L_0, σ_0) .
 - (d) Show that $L_0 = K$. Otherwise, there is $x \in K L_0$. It is algebraic over L and consider $L[X]/\prod_{x,L}...$
 - (e) State the theorem that you just proved.
- (2) Show that two algebraic closures K_1 and K_2 of a field k_0 are isomorphic.
- (3) Let $x \in K$. Show that the set of k-conjugates of x in Ω is the set of all $\sigma(x)$ for $\sigma \in \operatorname{Hom}_k(K, \Omega)$.

Problem 3. Let $\overline{\mathbb{Q}} \subset \mathbb{C}$ be the subfield of the elements which are algebraic over \mathbb{Q} .

- (1) Recall why $\overline{\mathbb{Q}}$ is an algebraic closure for \mathbb{Q} .
- (2) Show that $\operatorname{Hom}_{\mathbb{Q}}(\overline{\mathbb{Q}}, \mathbb{C}) = \operatorname{Hom}_{\mathbb{Q}}(\overline{\mathbb{Q}}, \overline{\mathbb{Q}}) = \operatorname{Aut}_{\mathbb{Q}}(\overline{\mathbb{Q}}).$
- (3) Show that $\overline{\mathbb{Q}}$ is countable.
- (4) Show that if $\sigma \in \operatorname{Aut}_{\mathbb{Q}}(\overline{\mathbb{Q}})$ is continuous (for the topology induced by the usual topology of \mathbb{C}) then σ is either the identity of the complex conjugation.
- (5) Let $n \ge 1$ and ζ a n^{th} root of 1. Show that there is an element $\sigma \in \text{Aut}_{\mathbb{Q}}(\overline{\mathbb{Q}})$ such that $\sigma(\sqrt[n]{2}) = \zeta \sqrt[n]{2}$.
- (6) Show that $\operatorname{Aut}_{\mathbb{Q}}(\overline{\mathbb{Q}})$ is infinite.

Problem 4. Let k be a field and $P \in k[X]$.

- (1) Suppose that P irreducible. Let $k \subseteq L$ be an extension and suppose that L contains a root for P. Show that there is a k-morphism from the stem field of P into L.
- (2) Suppose that P is not constant. Show by induction on the degree n of P that there is an extension L/k with degree $\leq n!$ such that P splits in L.

Problem 5. We admit the following (deep) result :

Let k be a field and A a finitely generated k-algebra. If A is a field then it is finite dimensional over k.

Show that the maximal ideals of the polynomial algebra $\mathbb{C}[X_1, ..., X_n]$ are the ideals of the form

$$\langle X_1 - x_1, \ldots, X_n - x_n \rangle$$

for $(x_1, ..., x_n) \in \mathbb{C}^n$.

Problem 6 (Ruler and Compass Constructions). Armed with a straightedge, a compass and two points 0 and 1 marked on an otherwise blank plane, the game is to see which complex numbers (or points of \mathbb{R}^2) you can construct, and which complex numbers you cannot construct.

Definition. A point p is constructible if p = (0,0) or p = (1,0) or else p is an intersection point of a pair of lines, a line and a circle, or a pair of circles that you can draw with your straightedge and compass.

The Rules : With your straightedge and compass, you are allowed to :

- (i) Draw the line L(p,q) (with the straightedge) through any two points p and q that you have already constructed.
- (ii) Open the compass to span the distance |q p| between any two points p and q that you have already constructed, place the base at a third point ω (already constructed), and draw the circle $C(\omega; |q p|)$.
 - (1) Show that the set \mathcal{C} of all coordinates of the constructible points is a subfield of \mathbb{R} containing \mathbb{Q} .
 - (2) Show that for x > 0, if $x \in \mathcal{C}$, then $\sqrt{x} \in \mathcal{C}$.

Let k be a subfield of \mathbb{R} .

- (3) Show that a line $L \subset \mathbb{R}^2$ containing two distinct points in k^2 has an equation of the form $ax^2 + bx + c = 0$ with $a, b, c \in k$. We say that L is defined over k.
- (4) Show that a circle $C \subset \mathbb{R}^2$ with center in k^2 and containing a point in k^2 has an equation of the form $x^2 + y^2 + dx + ey + f = 0$ with $d, e, f \in k$. We say that C is defined over k.
- (5) Suppose that a point $(x, y) \in \mathbb{R}^2$ is contained in the intersection of - two distinct lines defined over k, or
 - two distinct circles defined over k, or
 - a line and a circle both defined over k.

Show that $[k(x):k] \leq 2$ and $[k(y):k] \leq 2$.

- (6) Let $(x, y) \in \mathbb{R}^2$.
 - (a) Show that the point (x, y) is constructible (see the definition above) if and only if x and y lie in C.
 - (b) Show that the point (x, y) is constructible if and only if there is a finite tower of subfields of \mathbb{R}

 $\mathbb{Q} = k_0 \subset k_1 \subset \cdots \subset k_N \subset \mathbb{R}$

with $N \ge 0$ such that $[k_{i+1} : k_i] = 2$ for any i < N such that $(x, y) \in k_N^2$.

- (7) Prove that any $x \in \mathcal{C}$ is algebraic (over \mathbb{Q}) of degree a power of 2.
- (8) Is the regular 7-gon constructible? Justify.