Homework 3

I suggest that you work on Problems 1, 2, 3 and 5 for the homework, + Problem 7 of HW1.

Problem 1. Let K / k be an algebraic extension. We want to show that any element in $\operatorname{Hom}_{k}(K, K)$ in an element in $\operatorname{Aut}_{k}(K)$.
(1) Prove the claim when K / k is finite.
(2) Deduce the general case. Hint : For $x \in K$, consider the sub-k-algebra of K generated by the roots of Π_{x} in K.

Problem 2. Let K / k and Ω / k two fields extension. Suppose that K / k is algebraic and that Ω is algebraically closed.
(1) Let E be the set of pairs (L, σ) where L is a subfield of K containing k (or rather the image of k in K) and $\sigma: L \rightarrow \Omega$ a k-embedding.
(a) Show that E is not empty.
(b) Describe on E a natural partial order.
(c) Show that every totally ordered subset of E has an upper bound. Apply Zorn's lemma and deduce that E has (at least) one maximal element $\left(L_{0}, \sigma_{0}\right)$.
(d) Show that $L_{0}=K$. Otherwise, there is $x \in K-L_{0}$. It is algebraic over L and consider $L[X] / \Pi_{x, L} \ldots$
(e) State the theorem that you just proved.
(2) Show that two algebraic closures K_{1} and K_{2} of a field k_{0} are isomorphic.
(3) Let $x \in K$. Show that the set of k-conjugates of x in Ω is the set of all $\sigma(x)$ for $\sigma \in \operatorname{Hom}_{k}(K, \Omega)$.

Problem 3. Let $\overline{\mathbb{Q}} \subset \mathbb{C}$ be the subfield of the elements which are algebraic over \mathbb{Q}.
(1) Recall why $\overline{\mathbb{Q}}$ is an algebraic closure for \mathbb{Q}.
(2) Show that $\operatorname{Hom}_{\mathbb{Q}}(\overline{\mathbb{Q}}, \mathbb{C})=\operatorname{Hom}_{\mathbb{Q}}(\overline{\mathbb{Q}}, \overline{\mathbb{Q}})=\operatorname{Aut}_{\mathbb{Q}}(\overline{\mathbb{Q}})$.
(3) Show that $\overline{\mathbb{Q}}$ is countable.
(4) Show that if $\sigma \in \operatorname{Aut}_{\mathbb{Q}}(\overline{\mathbb{Q}})$ is continuous (for the topology induced by the usual topology of \mathbb{C}) then σ is either the identity of the complex conjugation.
(5) Let $n \geq 1$ and ζ a $n^{\text {th }}$ root of 1 . Show that there is an element $\sigma \in \operatorname{Aut}_{\mathbb{Q}}(\overline{\mathbb{Q}})$ such that $\sigma(\sqrt[n]{2})=\zeta \sqrt[n]{2}$.
(6) Show that $\operatorname{Aut}_{\mathbb{Q}}(\overline{\mathbb{Q}})$ is infinite.

Problem 4. Let k be a field and $P \in k[X]$.
(1) Suppose that P irreducible. Let $k \subseteq L$ be an extension and suppose that L contains a root for P. Show that there is a k-morphism from the stem field of P into L.
(2) Suppose that P is not constant. Show by induction on the degree n of P that there is an extension L / k with degree $\leq n!$ such that P splits in L.
Problem 5. We admit the following (deep) result:
Let k be a field and A a finitely generated k-algebra. If A is a field then it is finite dimensional over k.
Show that the maximal ideals of the polynomial algebra $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ are the ideals of the form

$$
\left\langle X_{1}-x_{1}, \ldots, X_{n}-x_{n}\right\rangle
$$

for $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$.

Problem 6 (Ruler and Compass Constructions). Armed with a straightedge, a compass and two points 0 and 1 marked on an otherwise blank plane, the game is to see which complex numbers (or points of \mathbb{R}^{2}) you can construct, and which complex numbers you cannot construct.

Definition. A point p is constructible if $p=(0,0)$ or $p=(1,0)$ or else p is an intersection point of a pair of lines, a line and a circle, or a pair of circles that you can draw with your straightedge and compass.
The Rules : With your straightedge and compass, you are allowed to :
(i) Draw the line $L(p, q)$ (with the straightedge) through any two points p and q that you have already constructed.
(ii) Open the compass to span the distance $|q-p|$ between any two points p and q that you have already constructed, place the base at a third point ω (already constructed), and draw the circle $C(\omega ;|q-p|)$.
(1) Show that the set \mathcal{C} of all coordinates of the constructible points is a subfield of \mathbb{R} containing \mathbb{Q}.
(2) Show that for $x>0$, if $x \in \mathcal{C}$, then $\sqrt{x} \in \mathcal{C}$.

Let k be a subfield of \mathbb{R}.
(3) Show that a line $L \subset \mathbb{R}^{2}$ containing two distinct points in k^{2} has an equation of the form $a x^{2}+b x+c=0$ with $a, b, c \in k$. We say that L is defined over k.
(4) Show that a circle $C \subset \mathbb{R}^{2}$ with center in k^{2} and containing a point in k^{2} has an equation of the form $x^{2}+y^{2}+d x+e y+f=0$ with $d, e, f \in k$. We say that C is defined over k.
(5) Suppose that a point $(x, y) \in \mathbb{R}^{2}$ is contained in the intersection of

- two distinct lines defined over k, or
- two distinct circles defined over k, or
- a line and a circle both defined over k.

Show that $[k(x): k] \leq 2$ and $[k(y): k] \leq 2$.
(6) Let $(x, y) \in \mathbb{R}^{2}$.
(a) Show that the point (x, y) is constructible (see the definition above) if and only if x and y lie in \mathcal{C}.
(b) Show that the point (x, y) is constructible if and only if there is a finite tower of subfields of \mathbb{R}

$$
\mathbb{Q}=k_{0} \subset k_{1} \subset \cdots \subset k_{N} \subset \mathbb{R}
$$

with $N \geq 0$ such that $\left[k_{i+1}: k_{i}\right]=2$ for any $i<N$ such that $(x, y) \in k_{N}^{2}$.
(7) Prove that any $x \in \mathcal{C}$ is algebraic (over \mathbb{Q}) of degree a power of 2.
(8) Is the regular 7-gon constructible? Justify.

