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Homework 2

Problem 1. Let k be a field and A a k-algebra. A morphism of k-algebras A→ A
is called an endomorphism of A. If furthermore it is bijective, then it is called an
automorphism of A. The set of all automorphisms of A is denoted by Autk(A).

(1) Check that there is an operation ? for which the set (Autk(A), ?) is a group.
What is the neutral element ?

(2) Show that for T ∈ k[X], the map
θT : k[X] −→ k[X]

P 7−→ P (T (X))

is a endomorphism of the k-algebra k[X]. For which T is θT the neutral
element of (Autk(k[X]), ?) ?

(3) Give a condition on T for θT to be an automorphism.
(4) Show that if we define on k× × k the operation

(a, b)× (a′, b′) := (aa′, ab′ + b)

then (k× × k,×) is a group. Is it commutative ?
(5) Show that the group (Autk(k[X]), ?) is isomorphic to (k× × k,×).

Problem 2. Describe a system of representatives of the quotient Q[X]/I where I
is the ideal of Q[X] generated by

X4 +X3 +X2 − 2X − 6 and 3X7 − 6X5 −X2 + 2.
Is Q[X]/I a field ? Justify.

Problem 3. (1) Given A and B two rings (respectively two k-algebras, where
k is a field), recall what is the natural structure of ring (respectively of k-
algebra) on the cartesian product A×B.

(2) Find a natural morphism of rings

R[X]/〈X2 − 3X + 2〉 7−→ R× R
which is an isomorphism of R-algebras.

(3) Is the ring R× R a field ? Justify.
(4) Remark to ponder : this isomorphism could have been obtained as an appli-

cation of the Chinese Remainder Theorem over R[X].

Problem 4 (Quadratic extensions). Let k be a field with characteristic different
from 2 and K/k be a quadratic extension that it to say : k is a subfield of K and
[K : k] = 2.
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(1) Show that there is x ∈ K − k such that x2 ∈ k× and K = k(x).
Hint : check that there is a basis of K as a k-vector space of the form {1, z}.
Express z2 using 1 and z and find x...

(2) Check that any other element y ∈ K − k satisfying y2 ∈ k× can be written
y = λx for λ ∈ k.

(3) Let Q ⊂ k ⊂ C and suppose that k/Q is quadratic. Show that k = Q[
√
n]

or k = Q[i
√
n] where n ∈ N−{0, 1} has no square factor (that is to say n is

a product of distinct prime numbers).

Problem 5. Let α =
√

3 +
√

5. Denote by Q[α] the sub-Q-algebra of R generated
by α.

(1) Let Q[
√

3,
√

5] be the sub-Q-algebra of R generated by
√

3 and
√

5. Show
that Q[α] = Q[

√
3,
√

5].

(2) Prove that α =
√

3 +
√

5 is algebraic (over Q), give its minimal polynomial
Π and its degree.

(3) Give an expression of
1

1 + α
as a linear combination of 1, α, α2 and α3 with

rational coefficients.
(You can proceed by first finding the greatest common divisor of Π and B =
X+1 and two polynomials U and W in Q[X] such that UΠ+BV = 1. There
is also a more elementary method to solve this question.)

(4) What are the subfields of Q[α] ? You may use the result of Problem 4 (3).

Problem 6. We admit the following result known as Eisenstein Criterion.
Let f ∈ Q[X] a unitary polynomial with degree m ≥ 1

f = Xm + am−1X
n−1 + · · ·+ a1X + a0.

Suppose that
(i) a0, . . . , am−1 ∈ Z,
(ii) there is a prime number p that divides a0, . . . , am−1 and
(iii) p2 does not divide a0.
Then f is irreducible over Q.
—————————————————————————————————————
Let p be a prime number. Consider Φp = Xp−1 +Xp−2 + · · ·+X + 1.

(1) Apply the criterion to Φp(X + 1) and show that Φp is irreducible over Q.
(2) What is the degree d of xp := e2iπ/p over Q ?
(3) Let ap := cos(2π/p).

(a) Show that Q[ap] is a subfield of Q[xp].
(b) Show that xp is algebraic with degree 2 over Q[ap].
(c) What is the degree of cos(2π/p) over Q ?


