Homework 2

Problem 1. Let k be a field and A a k-algebra. A morphism of k-algebras $A \rightarrow A$ is called an endomorphism of A. If furthermore it is bijective, then it is called an automorphism of A. The set of all automorphisms of A is denoted by $\operatorname{Aut}_{k}(A)$.
(1) Check that there is an operation \star for which the set $\left(\operatorname{Aut}_{k}(A), \star\right)$ is a group. What is the neutral element?
(2) Show that for $T \in k[X]$, the map

$$
\begin{aligned}
\theta_{T}: k[X] & \longrightarrow k[X] \\
P & \longmapsto P(T(X))
\end{aligned}
$$

is a endomorphism of the k-algebra $k[X]$. For which T is θ_{T} the neutral element of $\left(\operatorname{Aut}_{k}(k[X]), \star\right)$?
(3) Give a condition on T for θ_{T} to be an automorphism.
(4) Show that if we define on $k^{\times} \times k$ the operation

$$
(a, b) \times\left(a^{\prime}, b^{\prime}\right):=\left(a a^{\prime}, a b^{\prime}+b\right)
$$

then $\left(k^{\times} \times k, \times\right)$ is a group. Is it commutative?
(5) Show that the group $\left(\operatorname{Aut}_{k}(k[X]), \star\right)$ is isomorphic to $\left(k^{\times} \times k, \times\right)$.

Problem 2. Describe a system of representatives of the quotient $\mathbb{Q}[X] / \mathfrak{I}$ where \mathfrak{I} is the ideal of $\mathbb{Q}[X]$ generated by

$$
X^{4}+X^{3}+X^{2}-2 X-6 \text { and } 3 X^{7}-6 X^{5}-X^{2}+2
$$

Is $\mathbb{Q}[X] / \mathfrak{I}$ a field ? Justify.

Problem 3. (1) Given A and B two rings (respectively two k-algebras, where k is a field), recall what is the natural structure of ring (respectively of k algebra) on the cartesian product $A \times B$.
(2) Find a natural morphism of rings

$$
\mathbb{R}[X] /\left\langle X^{2}-3 X+2\right\rangle \longmapsto \mathbb{R} \times \mathbb{R}
$$

which is an isomorphism of \mathbb{R}-algebras.
(3) Is the ring $\mathbb{R} \times \mathbb{R}$ a field ? Justify.
(4) Remark to ponder : this isomorphism could have been obtained as an application of the Chinese Remainder Theorem over $\mathbb{R}[X]$.

Problem 4 (Quadratic extensions). Let k be a field with characteristic different from 2 and K / k be a quadratic extension that it to say : k is a subfield of K and $[K: k]=2$.
(1) Show that there is $x \in K-k$ such that $x^{2} \in k^{\times}$and $K=k(x)$. Hint : check that there is a basis of K as a k-vector space of the form $\{1, z\}$. Express z^{2} using 1 and z and find $x \ldots$
(2) Check that any other element $y \in K-k$ satisfying $y^{2} \in k^{\times}$can be written $y=\lambda x$ for $\lambda \in k$.
(3) Let $\mathbb{Q} \subset k \subset \mathbb{C}$ and suppose that k / \mathbb{Q} is quadratic. Show that $k=\mathbb{Q}[\sqrt{n}]$ or $k=\mathbb{Q}[i \sqrt{n}]$ where $n \in \mathbb{N}-\{0,1\}$ has no square factor (that is to say n is a product of distinct prime numbers).

Problem 5. Let $\alpha=\sqrt{3}+\sqrt{5}$. Denote by $\mathbb{Q}[\alpha]$ the sub- \mathbb{Q}-algebra of \mathbb{R} generated by α.
(1) Let $\mathbb{Q}[\sqrt{3}, \sqrt{5}]$ be the sub- \mathbb{Q}-algebra of \mathbb{R} generated by $\sqrt{3}$ and $\sqrt{5}$. Show that $\mathbb{Q}[\alpha]=\mathbb{Q}[\sqrt{3}, \sqrt{5}]$.
(2) Prove that $\alpha=\sqrt{3}+\sqrt{5}$ is algebraic (over \mathbb{Q}), give its minimal polynomial Π and its degree.
(3) Give an expression of $\frac{1}{1+\alpha}$ as a linear combination of $1, \alpha, \alpha^{2}$ and α^{3} with rational coefficients.
(You can proceed by first finding the greatest common divisor of Π and $B=$ $X+1$ and two polynomials U and W in $\mathbb{Q}[X]$ such that $U \Pi+B V=1$. There is also a more elementary method to solve this question.)
(4) What are the subfields of $\mathbb{Q}[\alpha]$? You may use the result of Problem 4 (3).

Problem 6. We admit the following result known as Eisenstein Criterion. Let $f \in \mathbb{Q}[X]$ a unitary polynomial with degree $m \geq 1$

$$
f=X^{m}+a_{m-1} X^{n-1}+\cdots+a_{1} X+a_{0} .
$$

Suppose that
(i) $a_{0}, \ldots, a_{m-1} \in \mathbb{Z}$,
(ii) there is a prime number p that divides a_{0}, \ldots, a_{m-1} and
(iii) p^{2} does not divide a_{0}.

Then f is irreducible over \mathbb{Q}.
Let p be a prime number. Consider $\Phi_{p}=X^{p-1}+X^{p-2}+\cdots+X+1$.
(1) Apply the criterion to $\Phi_{p}(X+1)$ and show that Φ_{p} is irreducible over \mathbb{Q}.
(2) What is the degree d of $x_{p}:=e^{2 i \pi / p}$ over \mathbb{Q} ?
(3) Let $a_{p}:=\cos (2 \pi / p)$.
(a) Show that $\mathbb{Q}\left[a_{p}\right]$ is a subfield of $\mathbb{Q}\left[x_{p}\right]$.
(b) Show that x_{p} is algebraic with degree 2 over $\mathbb{Q}\left[a_{p}\right]$.
(c) What is the degree of $\cos (2 \pi / p)$ over \mathbb{Q} ?

