Problem 1 (Characteristic of a ring). Let $(A,+, \times)$ be a commutative ring.
(1) Show that there is a unique morphism of rings $f_{A}: \mathbb{Z} \rightarrow A$.
(2) Show that there is a unique $n \in \mathbb{N}$ such that $\operatorname{ker}\left(f_{A}\right)=n \mathbb{Z}$. This integer is called the characteristic of A and (sometimes) denoted by $\operatorname{char}(A)$.
(3) Suppose that the cardinality of A is finite. Then show that the characteristic of A is not zero.
(4) Suppose that A does not contain any zero divisor (that is to say: for any $a, b \in A, a b=0_{A}$ implies $a=0_{A}$ or $b=0_{A}$). What can you say about its characteristic?
(5) Give an example of a field with characteristic 0 . Give an example of a field with prime characteristic.
(6) Let p be a prime.
(a) Give an example of a ring with characteristic p which is not a field.
(b) Give an example of infinite field with characteristic p.
(7) Let A and B be two commutative rings and suppose that there is a morphism of rings $\varphi: A \rightarrow B$. Show that if the characteristic of A is not zero, then the characteristic of B is not zero and it divides the characteristic of A.
(8) Is there a morphism of rings $\mathbb{Z} / 3 \mathbb{Z} \rightarrow \mathbb{Z}$?

Problem 2. Let A and B be two (unitary, commutative) rings and $f \in \operatorname{Hom}(A, B)$. Show that f induces a morphism of groups $A^{\times} \rightarrow B^{\times}$.

Problem 3 (Review of Chinese Lemma in \mathbb{Z} and Euler φ function). Given $a, b \in \mathbb{Z}-\{0\}$ we call greatest common divisor of a and b and denote by $a \wedge b$ or $\operatorname{gcd}(a, b)$ the largest integer which divides both a and b.
(1) Show that $\operatorname{gcd}(a, b)$ is the unique positive generator of the ideal $a \mathbb{Z}+b \mathbb{Z}$. (We know that any ideal of \mathbb{Z} is principal, the proof relies on the Euclidean division in \mathbb{Z}.)
(2) We say that a and b are coprime if $\operatorname{gcd}(a, b)=1$. Show that a and b are coprime if and only if there is $u, v \in \mathbb{Z}$ such that $1=a u+b v$ (this is known as Bézout theorem).
(3) Let a and b such that $\operatorname{gcd}(a, b)=1$. Show carefully, using the previous question, that for any $k \in \mathbb{Z}$, we have : (a divides k) and (b divides k) implies ($a b$ divides k).
(4) For $n \in \mathbb{N}, n \geq 1$, set

$$
\varphi(n)=|\{k, 1 \leq k \leq n, \operatorname{gcd}(n, k)=1\}| .
$$

Show that $(\mathbb{Z} / n \mathbb{Z})^{\times}$has cardinality $\varphi(n)$.
(5) Let a and b such that $\operatorname{gcd}(a, b)=1$.
(a) Show that there exists a well defined morphism of rings

$$
\mathbb{Z} / a b \mathbb{Z} \rightarrow \mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / b \mathbb{Z}
$$

sending $k+a b \mathbb{Z}$ onto $(k+a \mathbb{Z}, k+b \mathbb{Z})$. Show that this morphism is an isomorphism (that is to say, it is bijective).
(b) Deduce from (a) that the groups $(\mathbb{Z} / a b \mathbb{Z})^{\times}$and $(\mathbb{Z} / a \mathbb{Z})^{\times} \times(\mathbb{Z} / b \mathbb{Z})^{\times}$are isomorphic, that is to say there is an isomorphism of groups

$$
(\mathbb{Z} / a b \mathbb{Z})^{\times} \longrightarrow(\mathbb{Z} / a \mathbb{Z})^{\times} \times(\mathbb{Z} / b \mathbb{Z})^{\times}
$$

(c) Show that $\varphi(a b)=\varphi(a) \varphi(b)$.
(6) Compute (without using the previous questions) the value of $\varphi\left(p^{\alpha}\right)$ for p a prime number and $\alpha \geq 1$.
(7) Compute (using the previous questions) the value of $\varphi(n)$ when $n \geq 1$ decomposes as $n=\prod_{p} p^{\alpha_{p}}$ where p ranges over a finite family of prime numbers and $\alpha_{p} \geq 1$.
(8) Suppose that $n \in \mathbb{N}$ is such that $\varphi(n)$ is a power of 2 . Show that n is of the form

$$
n=2^{\alpha} N
$$

where $\alpha \geq 0$ and N is a product of distinct primes p such that $p-1$ is a power of 2 . One can prove that such a prime is always a Fermat number.
(9) Is $\mathbb{Z} / 9 \mathbb{Z}$ isomorphic to $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$ as a group? Justify.

Problem 4. Let A be a commutative ring and p be a prime number. Let

$$
\phi: A \rightarrow A, x \mapsto x^{p}
$$

(1) Show that, ϕ is not a morphism of rings in general (i.e. give an example of ring A for which ϕ is not a morphism).
(2) Suppose that A has characteristic p. Show that ϕ is a morphism of rings and that the restriction of ϕ to A^{\times}induces a morphism of groups $A^{\times} \rightarrow A^{\times}$.
(3) If $A=\mathbb{Z} / p \mathbb{Z}$, check that A is a field and give the the kernel of ϕ. What is the image of ϕ ? What is ϕ ?
(4) If $A=\mathbb{Z} / p^{2} \mathbb{Z}$, what is A^{\times}? What are the ideals of A ? What is the kernel of ϕ ?
(5) If $A=\mathbb{Z} / p \mathbb{Z}[X]$, what is the kernel of ϕ ? The image of ϕ ?

Problem 5. (1) Show that $X^{4}+1$ and $X^{6}+X^{3}+1$ are irreducible over \mathbb{Q}.
(2) Show that a polynomial with degree 3 is not irreducible in \mathbb{R}.
(3) Is $X^{3}-5 X^{2}+1$ irreducible over \mathbb{Q} ?

Problem 6. (1) Let $\alpha \in\left\{\sqrt{7}, e^{2 i \pi / 17}, \sqrt{2}+\sqrt[3]{5}\right\}$. Show that α is algebraic over \mathbb{Q} by finding (for each different α) of a polynomial P in $\mathbb{Q}[X]$ such that $P(\alpha)=0$.
(2) Show that any complex number $z \in \mathbb{C}$ is algebraic over \mathbb{R} by giving a polynomial P in $\mathbb{R}[X]$ such that $P(z)=0$.

Problem 7. (1) Show that $X^{3}-2$ is irreducible over \mathbb{Q}. Is it irreducible over \mathbb{R} ?
(2) Show that $\sqrt[3]{2}$ cannot be written in the form $a+b \sqrt{c}$ with $a, b, c \in \mathbb{Q}$.
(3) Find $a, b, c \in \mathbb{Q}$ such that $\frac{1}{\sqrt[3]{4}-1}=a+b \sqrt[3]{2}+c \sqrt[3]{4}$. Can you justify for yourself why they exist, before even finding a, b and c ?

