Homework 1, review of rings, fields, polynomials

Problem 1 (Characteristic of a ring). Let $(A, +, \times)$ be a commutative ring.

- (1) Show that there is a unique morphism of rings $f_A : \mathbb{Z} \to A$.
- (2) Show that there is a unique $n \in \mathbb{N}$ such that $\ker(f_A) = n\mathbb{Z}$. This integer is called the characteristic of A and (sometimes) denoted by $\operatorname{char}(A)$.
- (3) Suppose that the cardinality of A is finite. Then show that the characteristic of A is not zero.
- (4) Suppose that A does not contain any zero divisor (that is to say : for any $a, b \in A, ab = 0_A$ implies $a = 0_A$ or $b = 0_A$). What can you say about its characteristic?
- (5) Give an example of a field with characteristic 0. Give an example of a field with prime characteristic.
- (6) Let p be a prime.
 - (a) Give an example of a ring with characteristic p which is not a field.
 - (b) Give an example of infinite field with characteristic p.
- (7) Let A and B be two commutative rings and suppose that there is a morphism of rings $\varphi : A \to B$. Show that if the characteristic of A is not zero, then the characteristic of B is not zero and it divides the characteristic of A.
- (8) Is there a morphism of rings $\mathbb{Z}/3\mathbb{Z} \to \mathbb{Z}$?

Problem 2. Let A and B be two (unitary, commutative) rings and $f \in \text{Hom}(A, B)$. Show that f induces a morphism of groups $A^{\times} \to B^{\times}$.

Problem 3 (Review of Chinese Lemma in \mathbb{Z} and Euler φ function). Given $a, b \in \mathbb{Z} - \{0\}$ we call greatest common divisor of a and b and denote by $a \wedge b$ or gcd(a, b) the largest integer which divides both a and b.

- (1) Show that gcd(a, b) is the unique positive generator of the ideal $a\mathbb{Z} + b\mathbb{Z}$. (We know that any ideal of \mathbb{Z} is principal, the proof relies on the Euclidean division in \mathbb{Z} .)
- (2) We say that a and b are coprime if gcd(a, b) = 1. Show that a and b are coprime if and only if there is $u, v \in \mathbb{Z}$ such that 1 = au + bv (this is known as Bézout theorem).
- (3) Let a and b such that gcd(a, b) = 1. Show carefully, using the previous question, that for any $k \in \mathbb{Z}$, we have : (a divides k) and (b divides k) implies (ab divides k).

(4) For $n \in \mathbb{N}$, $n \ge 1$, set

$$\varphi(n) = |\{k, 1 \le k \le n, gcd(n,k) = 1\}|.$$

Show that $(\mathbb{Z}/n\mathbb{Z})^{\times}$ has cardinality $\varphi(n)$.

- (5) Let a and b such that gcd(a, b) = 1.
 - (a) Show that there exists a well defined morphism of rings

 $\mathbb{Z}/ab\mathbb{Z} \to \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$

sending $k + ab\mathbb{Z}$ onto $(k + a\mathbb{Z}, k + b\mathbb{Z})$. Show that this morphism is an isomorphism (that is to say, it is bijective).

(b) Deduce from (a) that the groups $(\mathbb{Z}/ab\mathbb{Z})^{\times}$ and $(\mathbb{Z}/a\mathbb{Z})^{\times} \times (\mathbb{Z}/b\mathbb{Z})^{\times}$ are isomorphic, that is to say there is an isomorphism of groups

$$(\mathbb{Z}/ab\mathbb{Z})^{\times} \longrightarrow (\mathbb{Z}/a\mathbb{Z})^{\times} \times (\mathbb{Z}/b\mathbb{Z})^{\times}.$$

(c) Show that $\varphi(ab) = \varphi(a)\varphi(b)$.

- (6) Compute (without using the previous questions) the value of $\varphi(p^{\alpha})$ for p a prime number and $\alpha \ge 1$.
- (7) Compute (using the previous questions) the value of $\varphi(n)$ when $n \ge 1$ decomposes as $n = \prod_p p^{\alpha_p}$ where p ranges over a finite family of prime numbers and $\alpha_p \ge 1$.
- (8) Suppose that $n \in \mathbb{N}$ is such that $\varphi(n)$ is a power of 2. Show that n is of the form

$$n = 2^{\alpha} N$$

where $\alpha \ge 0$ and N is a product of distinct primes p such that p-1 is a power of 2. One can prove that such a prime is always a Fermat number.

(9) Is $\mathbb{Z}/9\mathbb{Z}$ isomorphic to $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ as a group? Justify.

Problem 4. Let A be a commutative ring and p be a prime number. Let

$$\phi: A \to A, \ x \mapsto x^p.$$

- (1) Show that, ϕ is not a morphism of rings in general (*i.e.* give an example of ring A for which ϕ is not a morphism).
- (2) Suppose that A has characteristic p. Show that ϕ is a morphism of rings and that the restriction of ϕ to A^{\times} induces a morphism of groups $A^{\times} \to A^{\times}$.
- (3) If $A = \mathbb{Z}/p\mathbb{Z}$, check that A is a field and give the kernel of ϕ . What is the image of ϕ ? What is ϕ ?
- (4) If $A = \mathbb{Z}/p^2\mathbb{Z}$, what is A^{\times} ? What are the ideals of A? What is the kernel of ϕ ?
- (5) If $A = \mathbb{Z}/p\mathbb{Z}[X]$, what is the kernel of ϕ ? The image of ϕ ?

Problem 5. (1) Show that $X^4 + 1$ and $X^6 + X^3 + 1$ are irreducible over \mathbb{Q} .

- (2) Show that a polynomial with degree 3 is not irreducible in \mathbb{R} .
- (3) Is $X^3 5X^2 + 1$ irreducible over \mathbb{Q} ?
- **Problem 6.** (1) Let $\alpha \in \{\sqrt{7}, e^{2i\pi/17}, \sqrt{2} + \sqrt[3]{5}\}$. Show that α is algebraic over \mathbb{Q} by finding (for each different α) of a polynomial P in $\mathbb{Q}[X]$ such that $P(\alpha) = 0$.
 - (2) Show that any complex number $z \in \mathbb{C}$ is algebraic over \mathbb{R} by giving a polynomial P in $\mathbb{R}[X]$ such that P(z) = 0.
- **Problem 7.** (1) Show that $X^3 2$ is irreducible over \mathbb{Q} . Is it irreducible over \mathbb{R} ?
 - (2) Show that $\sqrt[3]{2}$ cannot be written in the form $a + b\sqrt{c}$ with $a, b, c \in \mathbb{Q}$.
 - (3) Find $a, b, c \in \mathbb{Q}$ such that $\frac{1}{\sqrt[3]{4}-1} = a + b\sqrt[3]{2} + c\sqrt[3]{4}$. Can you justify for yourself why they exist, before even finding a, b and c?