Algebraicity

Problem 1. Let $\alpha=\sqrt[3]{7}$. We consider the map

$$
\begin{aligned}
f_{\alpha}: \mathbb{Q}[X] & \longrightarrow \mathbb{C} \\
P & \longmapsto P(\alpha)
\end{aligned}
$$

(1) Show that f_{α} is a morphism of \mathbb{Q}-algebras.
(2) Show that it is not injective and describe its kernel.
(3) Show that its image is a finite dimensional \mathbb{Q}-subalgebra of \mathbb{C}.
(4) Find $U, V \in \mathbb{Q}[X]$ such that $X U+\left(X^{3}-7\right) V=1$.
(5) What can you say about the element α in the ring $\operatorname{Im}\left(f_{\alpha}\right)$?

More generally, to $\alpha \in \mathbb{C}$ we attach the morphism of \mathbb{Q}-algebras

$$
\begin{aligned}
f_{\alpha}: \mathbb{Q}[X] & \longrightarrow \mathbb{C} \\
P & \longmapsto P(\alpha)
\end{aligned}
$$

and denote by $\mathbb{Q}[\alpha]$ its image. By definition, we have

$$
\mathbb{Q}[\alpha]=\{P(\alpha), P \in \mathbb{Q}[X]\} .
$$

Definition. Let $\alpha \in \mathbb{C}$, we say that α is algebraic over \mathbb{Q} if f_{α} is not injective, in which case:

- we denote by Π_{α} the unique unitary generator of $\operatorname{ker}\left(f_{\alpha}\right)$. It is the minimal polynomial of α.
- the degree of α (over \mathbb{Q}) is by definition the degree of Π_{α}

Problem 2. Let $\alpha \in \mathbb{C}$ be algebraic over \mathbb{Q}. Show that $\Pi_{\alpha} \in \mathbb{Q}[X]$ is the unique unitary irreducible polynomial in $\operatorname{ker}\left(f_{\alpha}\right)$.

Prove the following theorem
Theorem. Let $\alpha \in \mathbb{C}$. The following are equivalent :
(1) α is algebraic over \mathbb{Q}.
(2) The \mathbb{Q}-algebra $\mathbb{Q}[\alpha]$ is finite dimensional over \mathbb{Q}.
(3) The \mathbb{Q}-algebra $\mathbb{Q}[\alpha]$ is a field.
and give a method, in the case when α is algebraic over \mathbb{Q}, to find the inverse in $\mathbb{Q}[\alpha]$ of a nonzero element.

