Algebraicity

Problem 1. Let $\alpha = \sqrt[3]{7}$. We consider the map $f_{\alpha} : \mathbb{Q}[X] \longrightarrow \mathbb{C}$ $P \longmapsto P(\alpha)$

- (1) Show that f_{α} is a morphism of \mathbb{Q} -algebras.
- (2) Show that it is not injective and describe its kernel.
- (3) Show that its image is a finite dimensional \mathbb{Q} -subalgebra of \mathbb{C} .
- (4) Find $U, V \in \mathbb{Q}[X]$ such that $XU + (X^3 7)V = 1$.
- (5) What can you say about the element α in the ring $\text{Im}(f_{\alpha})$?

2

.

More generally, to $\alpha \in \mathbb{C}$ we attach the morphism of \mathbb{Q} -algebras

$$f_{\alpha}: \mathbb{Q}[X] \longrightarrow \mathbb{C}$$
$$P \longmapsto P(\alpha)$$

and denote by $\mathbb{Q}[\alpha]$ its image. By definition, we have

$$\mathbb{Q}[\alpha] = \{ P(\alpha), P \in \mathbb{Q}[X] \}.$$

Definition. Let $\alpha \in \mathbb{C}$, we say that α is algebraic over \mathbb{Q} if f_{α} is not injective, in which case :

- we denote by Π_{α} the unique unitary generator of ker (f_{α}) . It is the minimal polynomial of α .
- the degree of α (over \mathbb{Q}) is by definition the degree of Π_{α}

Problem 2. Let $\alpha \in \mathbb{C}$ be algebraic over \mathbb{Q} . Show that $\Pi_{\alpha} \in \mathbb{Q}[X]$ is the unique unitary irreducible polynomial in ker (f_{α}) .

Prove the following theorem

Theorem. Let $\alpha \in \mathbb{C}$. The following are equivalent :

- (1) α is algebraic over \mathbb{Q} .
- (2) The \mathbb{Q} -algebra $\mathbb{Q}[\alpha]$ is finite dimensional over \mathbb{Q} .
- (3) The \mathbb{Q} -algebra $\mathbb{Q}[\alpha]$ is a field.

and give a method, in the case when α is algebraic over \mathbb{Q} , to find the inverse in $\mathbb{Q}[\alpha]$ of a nonzero element.

5

•