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Abstract

We study reflected diffusion on uniform domains where the underlying space
admits a symmetric diffusion that satisfies sub-Gaussian heat kernel estimates.
A celebrated theorem of Jones (Acta Math. 1981) states that uniform domains
in Euclidean space are extension domains for Sobolev spaces. In this work, we
obtain a similar extension property for metric spaces equipped with a Dirich-
let form whose heat kernel satisfies a sub-Gaussian estimate. We introduce a
scale-invariant version of this extension property and apply it to show that the
reflected diffusion process on such a uniform domain inherits various properties
from the ambient space, such as Harnack inequalities, cutoff energy inequality,
and sub-Gaussian heat kernel bounds. In particular, our work extends Neumann
heat kernel estimates of Gyrya and Saloff-Coste (Astérisque 2011) beyond the
Gaussian space-time scaling. Furthermore, our estimates on the extension opera-
tor imply that the energy measure of the boundary of a uniform domain is always
zero. This property of the energy measure is a broad generalization of Hino’s
result (PTRF 2013) that proves the vanishing of the energy measure on the outer
square boundary of the standard Sierpiński carpet equipped with the self-similar
Dirichlet form.

Keywords: Reflected diffusion, sub-Gaussian heat kernel estimate, extension problem,
uniform domains, Whitney cover, Dirichlet form.

MSC Classification: 31C25 , 31E05 , 35K08 , 60J46 , 60J60

The author is partially supported by NSERC and the Canada research chairs program.

1



1 Introduction

The goal of this work is obtaining heat kernel (transition probability) estimates for
reflected diffusion on ‘nice domains’ when the underlying space admits a symmetric
diffusion process with sub-Gaussian heat kernel estimates. We wish to understand if
the corresponding reflected diffusion on these domains also satisfy similar heat kernel
estimates as the underlying space. A more general guiding question is the following:
what properties are inherited by a domain from the ambient space?

Gaussian estimates of the heat kernel for symmetric diffusion have been known to
hold in a broad range of settings including manifolds with non-negative Ricci curvature
[LY], uniformly elliptic operators [Aro, Sal92], weighted manifolds [GrS, Theorem 7.1],
Lie groups of polynomial growth [VSC, Chapter IV] and many other examples [Sal10,
Section 3.3]. This Gaussian heat kernel estimate is congruous with the usual space-
time scaling property that the expected exit time from a ball of radius r grows like r2.
Sub-Gaussian estimate on the heat kernel allows for a richer possibility of space-time
scaling where the expected exit time from a ball of radius r grows like Ψ(r), where
Ψ : (0,∞) → (0,∞) is a function that governs the space-time scaling. Sub-Gaussian
heat kernel estimates were first established by Barlow and Perkins for the Brownian
motion on Sierpiński gasket [BP] and was later shown to hold in various fractals by
several authors [FHK, BB96, BH, Kum, Lin]. We refer to Barlow’s monograph for an
introduction to diffusion on fractals [Bar98].

The ‘nice domains’ we consider in this work are uniform domains. Uniform domains
were introduced independently by Martio and Sarvas [MS] and Jones [Jon81]. This
class includes Lipschitz domains, and more generally non-tangentially accesible (NTA)
domains. Uniform domains are relevant in various contexts such as extension prop-
erty [Jon81, HeK], Gromov hyperbolicity [BHK], boundary Harnack principle [Aik],
geometric function theory [MS, GH, Geh], and heat kernel estimates [GyS, CKKW].
Uniform domains are abundant. Every bounded domain can be approximated by a
uniform domain on a large class of metric spaces [Raj, Theorem 1.1].

A novel feature of the work is to use extension problem to obtain heat kernel
estimates for reflected diffusion on a domain. Given a space of functions F(U) in a
domain U with U ⊂ X and a space of functions F(X) in the underlying space X,
the extension problem asks if every function in F(U) can be extended to a function
belonging to F(X). Often there are additional requirements on the extension such as
linearity and boundedness. We refer the reader to Stein’s book [Ste, Chapter VI] for
a nice introduction to extension problem of functions in Sobolev space on Lipschitz
domains in Rn. In our work, the relevant function spaces will be domain of Dirichlet
forms. Our function spaces can be thought of as an abstraction of the W 1,2 Sobolev
space (function and its first order distributional derivatives are in L2). While heat
kernel estimates and extension problems have been extensively studied, using the
extension property to obtain heat kernel estimates is new, at least to the author’s
knowledge.

To explain the relationship between reflected diffusion and the extension prob-
lem, we recall the constructions of reflected Brownian motion on Euclidean domains.
The different constructions using stochastic differential equation (SDE) and Dirichlet
forms have their origins in the works of Skorokhod [S] and Fukushima [F] respectively.
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These approaches were studied by various authors [LS, Che, Tan]. We refer to the
introduction of [Che] for a nice overview of these two approaches and a more complete
list of references. For a smooth domain U in Rn, the SDE approach involves solving
the stochastic differential equation

Y (t) = Y (0) +B(t) +

ˆ t

0

n⃗(Y (s)) dLs,

where B(t) is the standard Brownian motion on Rn, Ls is the ‘boundary local time’
of the process Y (s) and n⃗(x) is the inward pointing unit normal vector at x ∈ ∂U .
Heuristically, the last term is responsible for ‘pushing the diffusion Y (t) back into the
domain’ when it hits the boundary so that it stays in U .

Given a smooth domain U , the Dirichlet form approach involves the bilinear form

EU (f, f) :=
1

2

ˆ
U

|∇f|2(x) dx,

for all f ∈ W 1,2(U), where ∇f denotes the distributional gradient of f and W 1,2(U)
denotes the subspace of functions in L2(U) whose distributional first order partial
derivatives are also in L2(U). Using the theory of Dirichlet forms, Fukushima [F]
constructs a Markov process with continuous sample paths in some abstract closure
of U (called the Martin-Kuramochi compactification).

If U is a smooth domain (or more generally, a uniform domain) this abstract closure
can be identified with U . As pointed out in [BCR, p.5], if U is a W 1,2-Sobolev extension
domain (that is, there is a bounded linear operator E : W 1,2(U) → W 1,2(Rn)), then
the Dirichlet form approach yields a Markov process with continuous paths in U .
These two approaches lead to the same process on smooth domains. The Dirichlet
form approach has the advantage that it also works when the domain is not smooth
and more importantly when the ambient space is not smooth.

Gyrya and Saloff-Coste show that for any symmetric diffusion satisfying Gaussian
heat kernel bounds, the reflected diffusion on any uniform domain (or more generally,
inner uniform domains) also satisfies Gaussian heat kernel estimates [GyS, Theorem
3.10]. A natural question is whether a similar result is true for more general space-time
scaling given by sub-Gaussian heat kernel bounds. By a celebrated theorem of Jones
[Jon81, Theorem 1], there is a bounded linear extension map E : W 1,2(U) →W 1,2(Rn)
for any uniform domain (Jones’ theorem is valid for a more general Sobolev space
W k,p). Since W 1,2(U) is the domain of the Dirichlet form for the reflected diffusion
on U , one could ask if this is a general phenomenon for any reflected diffusion on a
uniform domain where the diffusion on the ambient space satisfies sub-Gaussian heat
kernel estimate. Our main result answers these questions. As mentioned earlier, we use
the extension result to obtain heat kernel bounds. Stated informally, our main results
are:

(i) For any symmetric diffusion satisfying sub-Gaussian heat kernel bounds, the cor-
responding reflected diffusion on any uniform domain also satisfies sub-Gaussian
heat kernel estimates with the same space-time scaling (Theorem 2.8).
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(ii) In the same setting as (i), there is a bounded linear extension map from the
domain of the Dirichlet form for the reflected diffusion on a uniform domain to
the domain of the Dirichlet form for the diffusion on the ambient space. This
extension map is bounded at all locations and scales (Theorem 2.7).

(iii) In the same setting as (i), the energy measure of any function in the domain of
the Dirichlet form on the boundary of any uniform domain is identically zero
(Theorem 2.9).

As mentioned above the results (i) and (ii) above can be viewed as analogues of [GyS,
Theorem 3.10] and [Jon81, Theorem 1] respectively. For a specific uniform domain on
the Sierpiński carpet, the result (iii) was obtained by Hino [Hin13, Proposition 4.15].

Since the domain of the Dirichlet form for reflected diffusion is the Sobolev space
W 1,2(U), it suggests that the extension problem for the Sobolev space W 1,2 could be
relevant for studying reflected diffusion. To explain this connection to the extension
problem, we recall that sub-Gaussian heat kernel estimate for symmetric diffusion can
be characterized by the volume doubling property and functional inequalities such
as the Poincaré inequality and cutoff Sobolev inequality. This characterization goes
back to the works of Grigor’yan[Gri] and Saloff-Coste[Sal92] in the Gaussian case
and Barlow and Bass in the sub-Gaussian case [BB04] with many other important
contributions [Stu, BBK, AB, GHL15] (see Theorem 4.4).

While the proof of Poincaré inequality for the reflected diffusion follows the same
line of reasoning as [GyS], the proof of the cutoff Sobolev inequality for the Dirichlet
form corresponding to the reflected diffusion requires new ideas. Indeed, the charac-
terization of Gaussian heat kernel estimate does not require cut-off Sobolev inequality.
We use the extension property to obtain cutoff Sobolev inequality for the Dirichlet
form corresponding to the reflected diffusion using the similar property in the larger
ambient space (Proposition 6.3). In other words, we obtain a functional inequality in
a domain using the corresponding inequality in the ambient space using the extension
property. Since the cut-off Sobolev has a local and scale-invariant nature, we need to
show certain scale-invariant estimates on the extension operator (cf. (2.11), (2.12) in
Theorem 2.7). These scale-invariant bounds on the extension operator seem to be new
and we believe is of independent interest. By scale-invariant bounds, we mean that
the L2 norm and energy measure of the extended function on all balls B(x, r) cen-
tered in the domain U can be bounded by the corresponding quantities for comparable
balls B(x,Kr) ∩ U contained in the domain. The constants involved in these bounds
are uniform in the location x and scale r. Although our motivation behind obtaining
the extension property is to prove heat kernel estimates, there are several works over
a long period of time on the extension property for its intrinsic interest and other
applications; cf. [Whi, Cal61, Ste, GV, HeK, Shv, Rog, HKT] and their references.

The cut-off Sobolev inequality obtained using scale-invariant bounds on the exten-
sion operator along Poincaré inequality for the reflected diffusion generalizes the result
of Gyrya and Saloff-Coste to sub-Gaussian heat kernel on uniform domains (Theorem
2.8). However, drawback of this work compared to [GyS] is that we cannot handle
inner uniform domains because the extension property can fail on such domains. It
would therefore be desirable to develop an intrinsic approach to the proof of cutoff
Sobolev inequality that does not rely on the extension property.
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Our construction of the extension operator is based on Whitney covers of the
domain U and V = (U)c. The use Whitney cover to extend functions has a long history.
Constructing differentiable extensions was the original motivation behind Whitney’s
construction of his eponymous cubes [Whi]. This was later adapted by Calderon and
Stein [Cal61, Ste] to construct extension of Sobolev functions on Lipschitz domains,
and by Jones [Jon81] on locally uniform domains. Björn and Shanmugalingam use it
to extend Newton-Sobolev functions on uniform domains in metric spaces satisfying
doubling property and Poincaré inequality [BS].

While our construction of the extension operator is similar to earlier works of Jones
[Jon81] and Björn-Shanmugalingam [BS], we need a new approach to prove that the
extension operator is bounded. This is because the previous approaches to the Sobolev
extension problem in [Ste, Jon81, BS] relied on point-wise upper bounds on gradient
(or upper gradient) of the extension to control the Sobolev norm. However in the
setting of Dirichlet forms such point-wise estimates on gradient are not meaningful
in general since the energy measure can be singular with respect to the symmetric
measure [BST, Hin05, KM20, Kus89].

To explain the difficulty that arises due to the singularity of energy measure, we
recall the definition of energy measure. Given a Dirichlet form (E ,F) on L2(X,m),
the energy measure of a function f ∈ F ∩ L∞(X,m) is defined as the unique Borel
measure Γ(f, f) on X such that

ˆ
X

g dΓ(f, f) = E(f, fg) − 1

2
E(f2, g) for all g ∈ F ∩ Cc(X).

For the Brownian motion on Rn, we have E(f, f) := 1
2

´
Rn |∇f|2(x)m(dx), where

m is the Lebesgue (symmetric) measure for all f ∈ W 1,2(Rn). By a simple cal-
culation using product rule, the energy measure of any f ∈ W 1,2(Rn) is given by
Γ(f, f)(A) = 1

2

´
A
|∇f|2(x)m(dx) for any Borel set A. In this case Γ(f, f) is absolutely

continuous with respect to the symmetric measure but this need not be true in general
as mentioned above.

Since our approach is new even in the Euclidean setting, we explain it on Rn.
Since we cannot rely on a point-wise estimate on gradient, we need to estimate´
Rn |∇f|2(x) dx without using point-wise estimates on |∇f|, where f ∈W 1,2(Rn). Our

approach is based on a result of Korevaar and Schoen1 [KoSc, Theorem 1.6.2], which
implies that for any f ∈W 1,2(Rn), the Dirichlet energy

´
Rn |∇f|2(x)dx is comparable

to

lim sup
r↓0

ˆ
Rn

1

rn+2

ˆ
{y:|y−x|<r}

|f(x) − f(y)|2 dy dx.

To estimate the above integral, we introduce a Poincaré type inequality for the
extension operator that is new even on Rn (Proposition 5.8(a)). There is a suitable
generalization of [KoSc, Theorem 1.6.2] in our framework as shown in Theorem 4.6
building upon earlier works [Jons, GHL03, KuSt]. Since we need to obtain scale invari-
ant boundedness of the extension operator (see (2.11), (2.12) in Theorem 2.7), we need

1A related expression for Sobolev norm was obtained earlier by Calderón [Cal72] using the sharp maximal
function [HKT, Proposition 3].
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to obtain estimates for energy measures that do not rely on point-wise estimates on
the gradient (see Theorem 4.6(c) and (5.23) in Proposition 5.8(e)).

Our estimates on the extension operator imply that the energy measure of any
function in the domain of the Dirichlet form vanishes identically on the boundary of
any uniform domain (Theorem 2.9). This property is trivial in the Gaussian space-
time scaling case because the energy measure is absolutely continuous with respect
to the symmetric measure [KM20, Theorem 2.13] (see also [ABCRST, Lemma 2.11]).
It is easy to see that the symmetric measure vanishes on the boundary of any uni-
form domain, since it is doubling. On the other hand, if the space-time scaling is not
Gaussian the energy measure is typically singular with respect to the symmetric mea-
sure [KM20, Theorem 2.13(b)]. Hino shows that the energy measure of any function
in the domain of the Dirichlet form is always zero on the outer square boundary of
the Sierpiński carpet using a fairly intricate analysis that relies on the self-similarity
of the Dirichlet form and symmetries of the carpet [Hin13, Section 5 and Proposition
4.15]. Our proof is different and is based on more general principles such as the above-
mentioned Poincaré inequality on the extension operator (Proposition 5.8(a)). The
vanishing of the energy measure on the boundary of any uniform domain is obtained
as a general consequence of sub-Gaussian heat kernel estimates and thereby we obtain
a new proof of [Hin13, Proposition 4.15]. Understanding energy measures has appli-
cations to computing martingale dimension [Hin13] and the attainment problem for
conformal walk dimension [KM23, §6]. Energy measures are not well-understood in
general [KM23, Problems 7.5 amd 7.6], [KM20, Conjecture 2.15].
Notation. Throughout this paper, we use the following notation and conventions.
(i) The symbols ⊂ and ⊃ for set inclusion allow the case of the equality.
(ii) The cardinality (the number of elements) of a set A is denoted by #A.
(iii) We set ∞−1 := 0. We write a ∨ b := max{a, b}, a ∧ b := min{a, b}.
(iv) Let X be a non-empty set. We define 1A = 1X

A ∈ RX for A ⊂ X by

1A(x) := 1X
A (x) :=

{
1 if x ∈ A,

0 if x /∈ A.

(v) We use the notation A ≲ B for quantities A and B to indicate the existence of
an implicit constant C ≥ 1 depending on some inessential parameters such that
A ≤ CB. We write A ≍ B, if A ≲ B and B ≲ A.

(vi) Let X be a topological space. We set C(X) := {f | f : X → R, f is continuous}
and Cc(X) := {f ∈ C(X) | X \ f−1(0) has compact closure in X}.

(vii) In a metric space (X, d), B(x, r) is the open ball centered at x ∈ X of radius
r > 0. For a subset A ⊂ X, we use the notation BA(x, r) := A ∩ B(x, r) for
x ∈ X, r > 0.

(viii) Given a ball B := BU (x, r) (respectively B := B(x, r)) and K > 0, by KB we
denote the ball BU (x,Kr) (resp. B(x,Kr)).We denote the radius of B by r(B).

(ix) For a set A ⊂ X, we write A,A◦, ∂A = A\A◦ to denote its closure, interior and
boundary respectively.

(x) For a measure m and f ∈ L1(m), we denote by suppm(f) the support of the
measure A 7→

´
A
f dm.
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2 Framework and Main results

In order to state the main results, we recall the definitions of doubling measure,
uniform domains, Dirichlet form, energy measure and sub-Gaussian heat kernel
estimates.

2.1 Doubling metric space and doubling measures

Throughout this paper, we consider a metric space (X, d) in which B(x, r) :=
Bd(x, r) := {y ∈ X | d(x, y) < r} is relatively compact (i.e., has compact closure) for
any (x, r) ∈ X × (0,∞), and a Radon measure m on X with full support, i.e., a Borel
measure m on X which is finite on any compact subset of X and strictly positive on
any non-empty open subset of X. Such a triple (X, d,m) is referred to as a metric
measure space. We set diam(A) := supx,y∈A d(x, y) for A ⊂ X (sup ∅ := 0).

In much of this work, we will be in the setting for a doubling metric space equipped
with a doubling measure.
Definition 2.1. A metric d on X is said to be a doubling metric (or equivalently,
(X, d) is a doubling metric space), if there exists N ∈ N such that every ball B(x,R)
can be covered by N balls of radii R/2 for all x ∈ X,R > 0.

Next, we recall the closely related notion of doubling measures on subsets of X.
Definition 2.2. Let (X, d) be a metric space and let V ⊂ X. We say that a Borel
measure m is doubling on V if m(V ) ̸= 0 and there exists D0 ≥ 1 such that

m(B(x, 2r) ∩ V ) ≤ D0m(B(x, r) ∩ V ), for all x ∈ V and all r > 0.

We say that a non-zero Borel measure m on X is doubling, if m is doubling on X.
The basic relationship between these notions is that if there is a (non-zero) doubing

measure on a metric space (X, d), then (X, d) is a doubling metric space. Conversely,
every complete doubling metric space admits a doubling measure [Hei, Chapter 13].

2.2 Uniform domains

We recall the definition of a length uniform domain and uniform domain. There are
different definitions of uniform domains in the literature [Mar, Väi]. We note that our
definition of length uniform domain is what is usually called a uniform domain.

Let U ⊂ X be an open set. A curve in U is a continuous function γ : [a, b] → U
such that γ(0) = x, γ(b) = y. We sometimes identify γ with it its image γ([a, b]), so
that γ ⊂ U . The length of a curve γ : [a, b] → X is

ℓ(γ) := sup

{
n−1∑
i=0

d(γ(ti), γ(ti+1)) : a ≤ t0 < t1 . . . < tn ≤ b

}
.

Define

δU (x) := dist(x,X \ U) = inf{d(x, y) : y ∈ X \ U}, for all x ∈ U. (2.1)
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Definition 2.3. Let A ≥ 1. A connected, non-empty, proper open set U ⊊ X is said
to be a length A-uniform domain if for every pair of points x, y ∈ U , there exists
a curve γ in U from x to y such that its length ℓ(γ) ≤ Ad(x, y) and for all z ∈ γ,

δU (z) ≥ A−1 min (ℓ(γx,z), ℓ(γz,y)) ,

where γx,z, γz,y are subcurves of γ from x and z and from z to y respectively. Such a
curve γ is called a length A-uniform curve.

A connected, non-empty, proper open set U ⊊ X is said to be a A-uniform
domain if for every pair of points x, y ∈ U , there exists a curve γ in U from x to y
such that its diameter diam(γ) ≤ Ad(x, y) and for all z ∈ γ,

δU (z) ≥ A−1 min (d(x, z), d(y, z)) .

Such a curve γ is called a A-uniform curve.
Since every length A-uniform curve is A-uniform curve, every length uniform

domain is a uniform domain. The converse fails in general because a snowflake2 trans-
form of the metric makes it impossible for non-trivial rectifiable curves to exist, but on
the other hand, the property of being a uniform domain is preserved under such trans-
formation. In the Euclidean space (with the Euclidean distance) these two definitions
coincide due to an argument of Marito and Sarvas [MS, Lemma 2.7]. More generally,
these two notions of uniform domains coincide in any complete length space satisfying
the metric doubling property. This can been seen by following the argument in [GyS,
Proposition 3.3], and [MS, Lemma 2.7]. Our reason to choose this particular defini-
tion of uniform domains is that the property of being a uniform domain is preserved
under a quasisymmetric change of metric. Since quasisymmetric changes of metric has
recently played an important role in the understanding of heat kernel estimates and
Harnack inequalities, we choose the weaker definition [Kig12, BM, KM23].

We discuss a few examples of uniform domains.
(i) In R2, there is a rich family of uniform domains that arise from quasiconformal

mappings. By [GH, Theorem 3.4.5] every quasidisk is a uniform domain. In par-
ticular, von Koch snowflake domain and its variants are uniform domains [GH,
Theorem 7.5.2].

(ii) Half-spaces, balls and cubes in the Heisenberg group equipped with the Carnot
metric are uniform domains [GyS, p. 132].

(iii) The complement of the outer square boundary and the domain formed by remov-
ing the bottom line of the Sierpiński carpet are uniform domains [Lie, Proposition
4.4] [CQ, Proposition 2.4].

(iv) A large family of uniform domains is due to a construction of T. Rajala [Raj]. We
say that a metric space (X, d) is quasiconvex if there exists Cq ∈ (1,∞) such that
for any x, y ∈ X, there is a curve γ connecting x, y such that ℓ(γ) ≤ Cqd(x, y).
For any quasiconvex, doubling metric space (X, d), for any bounded domain
Ω ⊂ X and for any ϵ > 0, there exist uniform domains Ωi and Ωo such that

2replacing the metric d with dα for some α ∈ (0, 1)
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Ωi ⊂ Ω ⊂ Ωo and

Ωo ⊂ [Ω]ϵ, Ωc
i ⊂ [Ωc]ϵ, where [A]ϵ denotes the ϵ-neighborhood of A.

Informally, every bounded domain can be ϵ-approximated by uniform domains
from outside and inside for any ϵ > 0.

2.3 Metric measure Dirichlet space and energy measure

Let (E ,F) be a symmetric Dirichlet form on L2(X,m); that is, F is a dense linear
subspace of L2(X,m), and E : F × F → R is a non-negative definite symmetric
bilinear form which is closed (F is a Hilbert space under the inner product E1 :=
E + ⟨·, ·⟩L2(X,m)) and Markovian (f+ ∧ 1 ∈ F and E(f+ ∧ 1, f+ ∧ 1) ≤ E(f, f) for any
f ∈ F). Recall that (E ,F) is called regular if F∩Cc(X) is dense both in (F , E1) and in
(Cc(X), ∥ · ∥sup), and that (E ,F) is called strongly local if E(f, g) = 0 for any f, g ∈ F
with suppm[f ], suppm[g] compact and suppm[f−a1X ]∩suppm[g] = ∅ for some a ∈ R.
Here Cc(X) denotes the space of R-valued continuous functions on X with compact
support, and for a Borel measurable function f : X → [−∞,∞] or an m-equivalence
class f of such functions, suppm[f ] denotes the support of the measure |f | dm, i.e.,
the smallest closed subset F of X with

´
X\F |f | dm = 0, which exists since X has a

countable open base for its topology; note that suppm[f ] coincides with the closure of
X \ f−1(0) in X if f is continuous. The pair (X, d,m, E ,F) of a metric measure space
(X, d,m) and a strongly local, regular symmetric Dirichlet form (E ,F) on L2(X,m)
is termed a metric measure Dirichlet space, or an MMD space in abbreviation. By
Fukushima’s theorem about regular Dirichlet forms, the MMD space corresponds to
a symmetric Markov processes on X with continuous sample paths [FOT, Theorem
7.2.1 and 7.2.2]. We refer to [FOT, CF] for details of the theory of symmetric Dirichlet
forms.

We recall the definition of energy measure. Note that fg ∈ F for any f, g ∈
F ∩ L∞(X,m) by [FOT, Theorem 1.4.2-(ii)] and that {(−n) ∨ (f ∧ n)}∞n=1 ⊂ F and
limn→∞(−n) ∨ (f ∧ n) = f in norm in (F , E1) by [FOT, Theorem 1.4.2-(iii)].
Definition 2.4. Let (X, d,m, E ,F) be an MMD space. The energy measure Γ(f, f)
of f ∈ F associated with (X, d,m, E ,F) is defined, first for f ∈ F ∩ L∞(X,m) as the
unique ([0,∞]-valued) Borel measure on X such that

ˆ
X

g dΓ(f, f) = E(f, fg) − 1

2
E(f2, g) for all g ∈ F ∩ Cc(X), (2.2)

and then by Γ(f, f)(A) := limn→∞ Γ
(
(−n)∨ (f ∧n), (−n)∨ (f ∧n)

)
(A) for each Borel

subset A of X for general f ∈ F .
Associated with a Dirichlet form is a strongly continuous contraction semi-

group (Pt)t>0; that is, a family of symmetric bounded linear operators Pt :
L2(X,m) → L2(X,m) such that

Pt+sf = Pt(Psf), ∥Ptf∥2 ≤ ∥f∥2 , lim
t↓0

∥Ptf − f∥2 = 0,
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for all t, s > 0, f ∈ L2(X,m). In this case, we can express (E ,F) in terms of the
semigroup as

F = {f ∈ L2(X,m) : lim
t↓0

1

t
⟨f − Ptf, f⟩ <∞}, E(f, f) = lim

t↓0

1

t
⟨f − Ptf, f⟩, (2.3)

for all f ∈ F , where ⟨·, ·⟩ denotes the inner product in L2(X,m) [FOT, Theorem 1.3.1
and Lemmas 1.3.3 and 1.3.4]. It is known that Pt restricted to L2(X,m) ∩ L∞(X,m)
extends to a linear contraction on L∞(X,m) [CF, pp. 5 and 6]. If Pt1 = 1 (m a.e.) for
all t > 0, we say that the corresponding Dirichlet form (E ,F) is conservative.
Definition 2.5 (Local Dirichlet space and its energy measure). For an open set
U ⊂ X of an MMD space (X, d,m, E ,F), we define the local Dirichlet space Floc(U) as

Floc(U) :=

{
f

∣∣∣∣∣ f is an m-equivalence class of R-valued Borel measurable functions
on U such that f1V = f#1V m-a.e. for some f# ∈ F for each
relatively compact open subset V of U

}
(2.4)

and the energy measure ΓU (f, f) of f ∈ Floc(U) associated with (X, d,m, E ,F) is
defined as the unique Borel measure on U such that ΓU (f, f)(A) = Γ(f#, f#)(A) for
any relatively compact Borel subset A of U and any V, f# as in (2.4) with A ⊂ V ;
note that Γ(f#, f#)(A) is independent of a particular choice of such V, f#. We define

F(U) := {f ∈ Floc(U) :

ˆ
U

f2 dm+

ˆ
U

ΓU (f, f) <∞}, (2.5)

and the bilinear form (EU ,F(U)) as

EU (f, f) =

ˆ
U

ΓU (f, f), for all f ∈ F(U). (2.6)

The form (EU ,F(U)) need not be a regular Dirichlet form on L2(U,m) in general.
A sufficient condition for (EU ,F(U)) to be a regular Dirichlet form on L2(U,m) is
given in Lemma 4.2. If (EU ,F(U)) is a regular Dirichlet form on L2(U,m), then this
is the Dirichlet form corresponding to the reflected diffusion on U .

2.4 Sub-Gaussian heat kernel estimates

Let Ψ : (0,∞) → (0,∞) be a continuous increasing bijection of (0,∞) onto itself, such
that for all 0 < r ≤ R,

C−1

(
R

r

)β1

≤ Ψ(R)

Ψ(r)
≤ C

(
R

r

)β2

, (2.7)

for some constants 1 < β1 < β2 and C > 1. If necessary, we extend Ψ by setting
Ψ(∞) = ∞. Such a function Ψ is said to be a scale function. For Ψ satisfying (2.7),
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we define

Φ(s) = sup
r>0

(
s

r
− 1

Ψ(r)

)
. (2.8)

Definition 2.6 (HKE(Ψ)). Let (X, d,m, E ,F) be an MMD space, and let {Pt}t>0

denote its associated Markov semigroup. A family {pt}t>0 of non-negative Borel mea-
surable functions on X × X is called the heat kernel of (X, d,m, E ,F), if pt is the
integral kernel of the operator Pt for any t > 0, that is, for any t > 0 and for any
f ∈ L2(X,m),

Ptf(x) =

ˆ
X

pt(x, y)f(y) dm(y) for m-almost all x ∈ X.

We say that (X, d,m, E ,F) satisfies the heat kernel estimates HKE(Ψ), if there
exist C1, c1, c2, c3, δ ∈ (0,∞) and a heat kernel {pt}t>0 such that for any t > 0,

pt(x, y) ≤ C1

m
(
B(x,Ψ−1(t))

) exp

(
−c1tΦ

(
c2
d(x, y)

t

))
for m-a.e. x, y ∈ X,

(2.9)

pt(x, y) ≥ c3

m
(
B(x,Ψ−1(t))

) for m-a.e. x, y ∈ X with d(x, y) ≤ δΨ−1(t), (2.10)

where Φ is as defined in (2.8).

2.5 Main results

We are now ready to state the main results. The setting is an MMD space that
satisfies sub-Gaussian heat kernel bounds. Our first result is the existence of a bounded
extension operator. This operator is bounded globally (see (2.13), (2.14)) and also
satisfies good scale-invariant bounds (see (2.11), (2.12))
Theorem 2.7 (Extension property). Let (X, d,m, E ,F) be an MMD space that satis-
fies the heat kernel estimate HKE(Ψ) for some scale function Ψ and let m be a doubling
measure. Let U be a uniform domain U and let (EU ,F(U)) denote the bi-linear form
in Definition 2.5. There is a linear operator E : F(U) → F such that the restriction
of E(f) to U is f for all f ∈ F (that is, E is an extension operator). Furthermore,
there exist C,K ∈ (1,∞), c ∈ (0, 1) such that for all x ∈ U , and f ∈ F(U), we have

Γ(E(f), E(f))(B(x, r)) ≤ CΓU (f, f)(BU (x,Kr)), for all 0 < r < cdiam(U);

(2.11)ˆ
B(x,r)

|E(f)|2 dm ≤ C

ˆ
BU (x,Kr)

f2 dm for all r > 0; (2.12)

E(E(f), E(f)) ≤ C

(
EU (f, f) +

1

Ψ(diam(U))

ˆ
U

f2 dm

)
; (2.13)

ˆ
X

|Ef|2 dm ≤ C

ˆ
U

f2 dm. (2.14)
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Here Γ,ΓU denote the energy measures of (E ,F) and (EU ,F(U)) respectively.
In (2.13) above, we interpret 1

Ψ(∞) = 0 in case diam(U) = ∞.

Our second main result is that the reflected diffusion on any uniform domain
satisfies a sub-Gaussian heat kernel estimate and that the Dirichlet form approach
defines a symmetric Markov process on U .
Theorem 2.8 (Heat kernel estimate for reflected diffusion). Let (X, d,m, E ,F) be an
MMD space that satisfies the heat kernel estimate HKE(Ψ) for some scale function
Ψ and let m be a doubling measure. Then for any uniform domain U , the bi-linear
form (EU ,F(U)) is a strongly-local regular Dirichlet form on L2(U,m). Moreover,
the corresponding MMD space (U, d,m, EU ,F(U)) satisfies the heat kernel estimate
HKE(Ψ).

Finally, we show that the energy measure of any function vanishes on the boundary
of any uniform domain.
Theorem 2.9 (Energy measure of the boundary). Let (X, d,m, E ,F) be an MMD
space that satisfies the heat kernel estimate HKE(Ψ) for some scale function Ψ and let
m be a doubling measure. Then for any uniform domain U and any f ∈ F , we have

Γ(f, f)(∂U) = 0,

where Γ(f, f) denotes the corresponding energy measure.
We briefly mention a probabilistic consequence of the above property of the energy

measure. Let µ be a smooth measure whose quasi-support is ∂U . In [KM23+], Theorem
2.9 is used to show that the trace process corresponding to µ on ∂U is a pure jump
process by [CF, Theorems 5.2.2, 5.2.15, and Corollary 5.6.1]. Hence Theorem 2.9 is a
starting point to study jump process on ∂U that is a trace of reflected diffusion on
U . We obtain heat kernel estimates for the trace (jump) process on the boundary of
reflected diffusion on uniform domains in [KM23+].

2.6 Outline of the work

The rest of the paper is organized as follows. In §3, we recall some useful facts about
geometry of Whitney covers, uniform domains and Whitney cover of a uniform domain.
The main result in §3 is Proposition 3.12 which provides a ‘reflection map’ that maps
Whitney cover of V = (U)c to Whitney cover of U at all scales less than diameter of
U . This reflection of Whitney balls is used to define the extension map from F(U) to
F in §5.2 for any uniform domain U . In §4, we recall the simple result that extension
property implies the regularity of the Dirichlet form corresponding to reflected diffu-
sion on the closure of the domain (Lemma 4.2). We recall the characterization of heat
kernel estimates using functional inequalities in Theorem 4.4. In this setting, there is
a Koreevar-Schoen type estimate for the Dirichlet energy that is shown in Theorem
4.6. After these somewhat lengthy preparations, we define the extension map using
the reflection map of Whitney balls in §5. We obtain a Poincaré inequality on the
local Dirichlet space corresponding the uniform domain in §5.1. The boundedness of
the extension map in L2 is fairly easy to establish (Lemma 5.6). The heart of the work
is §5.3 where bounds on energy of the extended function is obtained. A Poincaré-type
inequality for the extended function (Proposition 5.8(a)) along with Theorem 4.6 is
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used to obtain bounds on the energy (and energy measure) of the extended function.
These bounds on energy measure in Proposition 5.8 along with Lemma 5.6 implies
extension property of uniform domain with scale-invariant bounds stated in Theorem
2.7. Using the estimates of energy measure for the extended function obtained in
Proposition 5.8, we complete the proof of Theorem 2.9 in §5.4. Finally in §6, we intro-
duce a simpler version of cutoff Sobolev inequality (Definition 6.1) and show that is
equivalent to earlier version. We obtain the simplified version of cutoff Sobolev inequal-
ity using the bounds on extension operator in Theorem 2.7 and the cutoff Sobolev
inequality in the ambient space in Proposition 6.3. This along with Poincaré inequality
(Theorem 5.3) and the characterization of sub-Gaussian heat kernel bounds (Theorem
4.4) is used to conclude the proof of Theorem 2.8. The key ingredients are outlined in
Figure 2.6.

Fig. 1 Outline of the work

3 Whitney covering and uniform domains

We recall geometric properties of Whitney cover, uniform domains, and Whitney cov-
ers on a uniform domain. Finally, we introduce a reflection map similar to that of
Jones’ reflection of Whitney cubes in Rn (Proposition 3.12).

3.1 Whitney covering

We recall the notion of a ϵ-Whitney cover from [GyS, Definition 3.16].
Definition 3.1. Let ϵ ∈ (0, 1/2) and U ⊊ X. We say a collection of balls R :=
{BU (xi, ri) : xi ∈ U, ri > 0, i ∈ I} is an ϵ-Whitney cover if it satisfies the following
properties:
(i) The collection of sets {BU (xi, ri), i ∈ I} are pairwise disjoint.
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(ii) The radii ri satisfy

ri =
ϵ

1 + ϵ
δU (xi), for all i ∈ I.

(iii)
⋃

i∈I BU (xi,Kϵri) = U , where Kϵ = 2(1 + ϵ) ∈ (2, 3).
Note that since Kϵ < 3 by (iii), we have⋃

i∈I

BU (xi, 3ri) = U.

The existence of such a Whitney cover follows from Zorn’s lemma as we recall
below. We also record a few elementary geometric properties of the Whitney cover for
future use.
Proposition 3.2. Let U ⊊ X be a non-empty open set and ϵ ∈ (0, 1/2).
(a) There exists an ϵ-Whitney cover R = {BU (xi, ri) : xi ∈ U, ri > 0, i ∈ I} of U such

that the following properties hold.
(b) (distance to boundary) For any BU (xi, ri) ∈ R and for any y ∈ BU (xi, 3ri), we

have
1 − 2ϵ

1 + ϵ
δU (xi) < δU (y) <

1 + 4ϵ

1 + ϵ
δU (xi) (3.1)

(c) (radius comparison) For any λ > 1, ϵ ∈ (1, 1/2) such that (λ − 1)ϵ < 1, for any
ϵ-Whitney cover R = {BU (xi, ri) : xi ∈ U, ri > 0, i ∈ I} of U , and for any i, j ∈ I
such that BU (xi, λri) ∩BU (xj , λrj) ̸= ∅, we have

1 − (λ− 1)ϵ

1 + (λ+ 1)ϵ
rj ≤ ri ≤

1 + (λ+ 1)ϵ

1 − (λ− 1)ϵ
rj . (3.2)

In particular, if i, j ∈ I, i ̸= j, BU (xi, λri) ∩BU (xj , λrj) ̸= ∅ implies

ri ∨ rj ≤ d(xi, xj) ≤ λ

(
1 +

1 + (λ+ 1)ϵ

1 − (λ− 1)ϵ

)
(ri ∧ rj). (3.3)

(d) (bounded overlap) Let (X, d) be a doubling metric space and let ϵ-Whitney cover
R = {BU (xi, ri) : xi ∈ U, ri > 0, i ∈ I} of U ⊊ X. Then there exists a constant
C ∈ [1,∞) such that ∑

i∈I

1BU (xi,ri/ϵ) ≤ C.

(e) Let (X, d) is a doubling metric space and ϵ ∈ (0, 1/5). Then for any ϵ-Whitney
cover R of U there exists N ∈ N such that

#{BU (xi, ri) ∈ R : BU (xi, 6ri) ∩BU (x, 6r) ̸= ∅} ≤ N for all BU (x, r) ∈ R.

Proof. (a) Let Ω denote the partially ordered (by inclusion) set consisting of collection
of balls {BU (xi, ri) : xi ∈ U, ri > 0, i ∈ I} that satisfies the conditions (i) and (ii)
in Definition 3.1. If C is a chain, then it easy to see that

⋃
A∈C A ∈ Ω. So by Zorn’s
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lemma, there exists a maximal element R = {BU (xi, ri) : xi ∈ U, ri > 0, i ∈ I} ∈
Ω.

Clearly, R satisfies properties (i) and (ii) in Definition 3.1. Next, we show that
Definition 3.1(iii) also holds. Suppose to the contrary that (iii) does not hold, then
there exists y /∈ U \

⋃
i∈I BU (xi,Kϵri) and hence

d(xi, y) ≥ Kϵri =
Kϵϵ

1 + ϵ
δU (xi) for all i ∈ I. (3.4)

Since R is maximal, there exists j ∈ I such that B(xj , rj)∩B(y, ϵδU (y)/(1+ϵ)) ̸=
∅. Therefore by the triangle inequality and Definition 3.1(ii), we have

d(xj , y) <
ϵ

1 + ϵ
(δU (xj) + δU (y)) . (3.5)

By (3.5),

δU (y) ≤ d(y, xj) + δU (xj) <
ϵ

1 + ϵ
(δU (xj) + δU (y)) + δU (xj)

and hence
δU (y) < (1 + 2ϵ)δU (xj). (3.6)

Combining (3.4) and (3.5), Kϵϵ
1+ϵδU (xj) ≤ d(xj , y) < ϵ

1+ϵ (δU (xj) + δU (y)) which
implies

(Kϵ − 1)δU (xj) < δU (y) < (1 + 2ϵ)δU (xj). (3.7)

This yields the desired contradiction since Kϵ = 2(1 + ϵ).
(b) Since y ∈ BU (xi, 3ri), we have

δU (y) < δU (xi) + 3ri = δU (xi)

(
1 +

3ϵ

1 + ϵ

)
which implies the upper bound on δU (y). For the lower bound, we use

δU (xi) < δU (y) + 3ri = δU (y) +
3ϵ

1 + ϵ
δU (xi), δU (y) >

1 − 2ϵ

1 + ϵ
δU (xi).

(c) If B(xi, λri) ∩B(xj , λrj) ̸= ∅, then by the triangle inequality

δU (xj) ≤ δU (xi) + d(xi, xj) < δU (xi) + λ
ϵ

1 + ϵ
(δU (xi) + δU (xj))

and hence (1− (λ− 1)ϵ)δU (xj) < (1 + (λ+ 1)ϵ)δU (xj). This is equivalent to (3.2).
The lower bound on d(xi, xj) follows from B(xi, ri)∩B(xj , rj) = ∅ while the upper
bound follows from B(xi, λri) ∩B(xj , λrj) ̸= ∅, the triangle inequality and (3.2).

(d) Suppose that y ∈ BU (xi, ri/ϵ) for some i ∈ I. By the triangle inequality,

δU (xi) ≤ d(xi, y) + δU (y) <
ri
ϵ

+ δU (y) ≤ 1

1 + ϵ
δU (xi) + δU (y).
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Similarly,

δU (y) < δU (xi) +
ri
ϵ

= δU (xi)
2 + ϵ

1 + ϵ
Therefore

ϵ

2 + ϵ
δU (y) < ri < δU (y) whenever y ∈ BU (xi, ri/ϵ), i ∈ I. (3.8)

Therefore the set Ay := {xi : i ∈ I, y ∈ B(xi, ri/ϵ)} is contained in BU (y, δU (y)/ϵ)
and any two distinct points in Ay is separated by a distance of at least ϵδU (y)/(2+
ϵ). The desired conclusion follows from the metric doubling property.

(e) This is an easy consequence of (d) and the metric doubling property.

3.2 Basic properties of uniform domains

An important property of uniform domains is that is satisfies a corkscrew condition
whose definition we recall below.
Definition 3.3. Let V ⊂ X. We say that V satisfies the corkscrew condition if there
exists ϵ > 0 such that for all x ∈ V and 0 < r ≤ diam(V ), the set B(x, r)∩V contains
a ball of with radius ϵr.

Every uniform domains satisfies the corkscrew condition as we recall now. The
same argument presented in [BS, Lemma 4.2] for length uniform domains also shows
that every A-uniform domain (with our weaker definition of uniform domains) also
satisfies the corkscrew condition.
Lemma 3.4. [BS, Lemma 4.2] Let U ⊊ X be an A-uniform domain. For any x ∈
U, r > 0 such that U \ B(x, r) ̸= ∅ (in particular, if r < diam(U, d)/2), there exists a
ball B(y, r/(3A)) ⊂ U ∩B(x, r) with radius r/(3A).

The doubling property of a measure m is preserved under restriction to uniform
domains. This is the content of the following lemma.
Lemma 3.5. [BS, Theorem 2.8] Let m be a doubling measure on X and let U ⊊ X
be a non-empty uniform domain. Then

m(∂U) = 0

and m is doubling on U and doubling on U .

Proof. By the corkscrew condition (Lemma 3.4) and [BS, Theorem 2.8] we have that
m is doubling on U and on U .

To see that m(∂U) = 0, note that by the corkscrew condition and the doubling
property on U we have

lim sup
r↓0

 
B(x,r)

1∂U (y)m(dy) ≤ 1 − lim inf
r↓0

m(U ∩B(x, r))

m(B(x, r))
< 1,

for all x ∈ ∂U . By the Lebesgue differentiation theorem [Hei, Theorem 1.8], we
conclude that m(∂U) = 0.
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We recall some well known properties of doubling measures on a metric space
(X, d).
Lemma 3.6. Let m be a doubling measure on V where V ⊂ X with doubling constant
D0 as given in Definition 2.2. Then

m(V ∩B(x, s)) ≤ D2
0

(
d(x, y) + s

r

)α

m(V ∩B(y, r)), for all x ∈ V, 0 < r < s <∞,

(3.9)
where α = log2D0. If m(V ) > 0, then the metric space (V, d) satisfies the metric
doubling; that is there exists N ∈ N such that every ball BV (x, r) for x ∈ V, r > 0 can
be covered by at most N balls of radii r/2.

3.3 Whitney cover on a uniform domain

Let U ⊂ X be a A-uniform domain for some A ≥ 1 and let R be an ϵ-Whitney cover
of U for some ϵ ∈ (0, 1/2). For any ball BU (x, r), we define

R(BU (x, r)) = {BU (xi, ri) ∈ R : BU (xi, 3ri) ∩BU (x, r) ̸= ∅} . (3.10)

We think of R(BU (x, r)) as the Whitney balls near BU (x, r). In the following lemma
we show some basic properties of R(BU (x, r)).
Lemma 3.7. Let U ⊊ X be a A-uniform domain for some A ≥ 1. Suppose that
R = {BU (xi, ri) : i ∈ I} be an ϵ-Whitney cover of U for some ϵ ∈ (0, 1/14). Let
BU (x, r) be a ball such that x ∈ U, δU (x) ≤ r < diam(U)/2. Then

BU (x, r) ⊂
⋃

BU (xi,ri)∈R(BU (x,r))

BU (xi, 3ri) ⊂ BU (x, 2r), (3.11)

and there exists a ball BU (x0, r0) ∈ R(BU (x, r)) such that

ϵ

3A(4 + ϵ)
r ≤ r0 ≤ 2ϵ

1 − 2ϵ
r. (3.12)

Proof. The inclusion BU (x, r) ⊂
⋃

BU (xi,ri)∈R(BU (x,r))BU (xi, 3ri) follows from Defini-

tion 3.1(iii) and (3.10).
Since r ≥ δU (x) for any y ∈ BU (x, r), we have

δU (y) ≤ δU (x) + d(x, y) < 2r for any y ∈ BU (x, r). (3.13)

For any B(xi, ri) ∈ R(BU (x, r)) there exists yi ∈ B(xi, 3ri) ∩ BU (x, r) and hence by
Proposition 3.2(b), we have

δU (xi) < (1 + ϵ)δU (yi)/(1 − 2ϵ).
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Combining this with (3.13), we obtain

ri =
ϵ

1 + ϵ
δU (xi) <

ϵ

1 − 2ϵ
δU (yi) <

2ϵ

1 − 2ϵ
r.

Therefore for any z ∈ BU (xi, 3ri) with BU (xi, ri) ∈ R(BU (x, r)), we have (using
ϵ < 1/14)

d(z, x) ≤ d(x, yi) + d(yi, xi) + 3ri < d(x, yi) + 6ri <

(
1 +

12ϵ

1 − 2ϵ

)
r < 2r,

where yi ∈ B(xi, 3ri) ∩BU (x, r) is as above. This completes the proof of (3.11).
By Lemma 3.4, there exists B(y, r/3A) ⊂ BU (x, r). By (3.11), there exists a ball

BU (x0, r0) ∈ R(BU (x, r)) be such that y ∈ BU (x0, 3r0). Therefore

r

3A
≤ δU (y) < 3r0 + δU (x0) =

(
3 +

1 + ϵ

ϵ

)
r0,

which is equivalent the lower bound of r0 in (3.12). Since δU (y) ≤ δU (x)+d(x, y) < 2r,
we have

1 + ϵ

ϵ
r0 = δU (x0) ≤ 3r0 + δU (y) < 3r0 + 2r,

which is equivalent to the upper bound in (3.12).

We recall the notion of a central ball in a Whitney cover (cf. [GyS, Definition 3.21]).
Definition 3.8. [GyS, Lemma 3.23] Let U ⊊ X be a A-uniform domain for some A ≥
1, and let R = {BU (xi, ri) : i ∈ I} be an ϵ-Whitney cover of U for some ϵ ∈ (0, 1/14).
Let BU (x, r) such that x ∈ U, δU (x) ≤ r < diam(U)/2, and let B0 = BU (x0, r0) ∈
R(BU (x, r)) be any ball that satisfies (3.12) in Lemma 3.7. Then we say that B0 is a
central ball in R(BU (x, r)).

The following is an analogue of [GyS, Lemma 3.23].
Lemma 3.9. Suppose that R = {BU (xi, ri) : i ∈ I} be an ϵ-Whitney cover of U for
some ϵ ∈ (0, 1/14) and let BU (x, r), x ∈ U, δU (x) ≤ r < diam(U)/2. Let B0 =
BU (x0, r0) ∈ R(BU (x, r)) be a central ball. For any D = BU (xD, rD) ∈ R(BU (x, r)),
let γ be a A-uniform curve from x0 to xD.
(a) Then there exists a finite collection of distinct balls S(D) = {BD

0 , B
D
1 , . . . , B

D
l } of

length l = l(D) such that B0 = BD
0 , B

D
l = D, and

BD
j ∈ R, 3BD

j ∩ 3BD
j−1 ̸= ∅, 3BD

j ∩ γ ̸= ∅, for all j = 1, . . . , l. (3.14)

Here 3BD
j denotes the ball BU (xDj , 3r

D
j ), where BD

j = BU (xDj , r
D
j ).

(b) For all j = 0, 1, . . . , l, let BD
j = BU (xDj , r

D
j ) be the balls as given in (a). Then for

all j = 0, 1, . . . , l,

rDj ≤ (A(4ϵ+ 1) + 1 − 2ϵ)ϵ

(1 − 2ϵ)2
r, BU (xDj , r

D
j ) ⊂ BU (x,C0r), (3.15)
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and
d(xDj , x

D
l ) ≤ C1r

D
j , D ⊂ BU (xDj , (2C1 + 1)rDj ) (3.16)

where C0, C1 depends only on A and ϵ.

Proof. (a) By Definition 3.1(iii), the balls {BU (y, 3s) : BU (y, s) ∈ R} cover γ.
Let the A-uniform curve γ be parameterized as γ : [a, b] → U . We choose finite

subcover {BU (yi, 3si) : BU (yi, si) ∈ R, 1 ≤ i ≤ N} of γ that contains B0 and D.
We pick BD

0 = B0 and choose BD
j inductively as follows. Suppose we have choose

BD
0 , . . . , B

D
j−1 for some j ∈ N. If BD

j−1 = D, then we set l = j − 1. If BD
j−1 ̸= D

and 3BD
j−1 ∩ 3D ̸= ∅, then we set BD

j = D. If BD
j−1 ̸= D and 3BD

j−1 ∩ 3D = ∅,

then we set s = sup{t ∈ [a, b] : γ(t) ∈ 3BD
j−1} and pick some 1 ≤ i ≤ N such that

γ(s) ∈ BU (yi, 3si) and set BD
j = BU (yi, si). Evidently, this construction satisfies

the desired properties in (3.14)
(b) Note that since BU (xD, 3rD) ∩BU (x, r) ̸= ∅ and r ≥ δU (x), we have

1 + ϵ

ϵ
rD = δU (xD) < 3rD + δU (x) + r < 3rD + 2r,

which implies

rD ≤ 2ϵ

1 − 2ϵ
r, and d(xD, x) < 3rD + r <

4ϵ+ 1

1 − 2ϵ
r.

Since γ is a A-uniform curve between x and xD, we have

γ ⊂ BU (x,Ad(x, xD)) ⊂ BU (x,
A(4ϵ+ 1)

1 − 2ϵ
r).

Since 3BD
j ∩ γ ̸= ∅, we have

d(xDj , x) < 3rDj +
A(4ϵ+ 1)

1 − 2ϵ
r, (3.17)

and hence

1 + ϵ

ϵ
rDj = δU (xDj ) ≤ δU (x) + d(xDj , x) ≤ r + 3rDj +

A(4ϵ+ 1)

1 − 2ϵ
r.

This implies

rDj ≤ (A(4ϵ+ 1) + 1 − 2ϵ)ϵ

(1 − 2ϵ)2
r, BU (xDj , r

D
j ) ⊂ BU (x, d(x, xDj ) + rDj ) ⊂ BU (x,C0r),

where

C0 =
A(1 + 4ϵ)

1 − 2ϵ
+

4(A(4ϵ+ 1) + 1 − 2ϵ)ϵ

(1 − 2ϵ)2

by (3.17) and the upper bound on rDj above. This completes the proof of (3.15).
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For the proof of (3.16), we first show that the second inclusion follows from the
first inequality. Note that

1 + ϵ

ϵ
rDl = δU (xDl ) ≤ d(xDl , x

D
j ) + δU (xDj ) ≤

(
C1 +

1 + ϵ

ϵ

)
rDj .

Therefore rDl < (C1 + 1)rDj and hence

BD
l = BU (xDl , r

D
l ) ⊂ BU (xDj , r

D
l + d(xDl , x

D
j )) ⊂ BU (xDj , (C1 + 1)rDj + C1r

D
j )).

By (a), there exists zj ∈ BU (xDj , 3r
D
j )∩γ. By (3.11), (3.17) and (3.15), we have

d(xDj , x
D
l )

(3.11)
< d(xDj , x) + 2r

(3.17)
< 2r + 3rDj +

A(4ϵ+ 1)

(1 − 2ϵ)
r

(3.15)
< r

(
2 +

3(A(4ϵ+ 1) + 1 − 2ϵ)ϵ

(1 − 2ϵ)2
+
A(4ϵ+ 1)

(1 − 2ϵ)

)
. (3.18)

We consider two cases whether or not zj ∈ BU (xD0 , 3r
D
0 ). If

zj ∈ BU (xD0 , 3r
D
0 ) ∩BU (xDj , 3r

D
j ) ∩ γ,

then by Proposition 3.2(c) we obtain

rDj
(3.2)

≥ 1 − 2ϵ

1 + 4ϵ
rD0

(3.12)

≥ (1 − 2ϵ)ϵ

3A(4 + ϵ)(1 + 4ϵ)
r. (3.19)

Combining (3.18) and (3.19), we obtain (3.16) in this case.
If zj /∈ BU (xD0 , 3r

D
0 ), by Proposition 3.2(b) and the weak A-uniformity of γ, we

have

1 + 4ϵ

ϵ
rDj =

1 + 4ϵ

1 + ϵ
δU (xDj )

(3.1)
> δU (zj) ≥

1

A
min(d(xD0 , zj), d(xDl , zj))

≥ 1

A
min(3rD0 , d(xDl , zj)) (since zj /∈ BU (xD0 , 3r

D
0 ))

≥ 1

A
min(3rD0 , d(xDl , x

D
j ) − 3rDj ) (3.20)

(since zj ∈ BU (xDj , 3r
D
j )).

We divide this case into two subcases depending on whether or not 3rD0 ≤
d(xDl , x

D
j ) − 3rDj . If 3rD0 ≤ d(xDl , x

D
j ) − 3rDj , we have

rDj
(3.20)

≥ 3ϵ

A(1 + 4ϵ)
r0

(3.12)

≥ ϵ2

A2(4 + ϵ)(1 + 4ϵ)
r. (3.21)

In this subcase, we obtain the desired conclusion by (3.21) and (3.18).
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Finally, if 3rD0 > d(xDl , x
D
j ) − 3rDj , we have

d(xDl , x
D
j )

(3.20)

≤
(
A(1 + 4ϵ)

ϵ
+ 3

)
rDj (3.22)

which concludes the proof of (3.16), as it follows from (3.22) along with (3.21)
and (3.19).

For any ball BU (x, r) with r ≥ δU (x), define

R1(BU (x, r)) :=
⋃

D∈R(BU (x,r))

S(D) = {B ∈ R : B ∈ S(D) and D ∈ R(BU (x, r))},

(3.23)
where S(D) is given in Lemma 3.9.
Remark 3.10. We note that the assumption that B0 = BU (x0, r0) ∈ R(BU (x, r)) is
central can be replaced with the condition that r0 ≥ c0r for some c0 > 0. In the case,
the constants in the conclusion will also depend on c0 and the proof can be modified
by replacing the use of (3.12) with the estimate r0 ≥ c0r.

3.4 Reflection of Whitney balls à la Jones

Let U ⊊ X be a non-empty A-uniform domain and let R be an ϵ-Whitney cover of
U , where ϵ ∈ (0, 1/14). Let V := (U c)◦ denote the interior of U c. We record a simple
topological fact.
Lemma 3.11. Let U be a non-empty open set and let V = (U c)◦. Then ∂V ⊆ ∂U .

Proof. Note that V ⊂ U c (since U c is closed and contains V ) and V c = ((U c)◦)
c

=

(U c)
c

= U (since (A◦)c = Ac). Therefore

∂V = V ∩ V c ⊆ U c ∩ U = ∂U.

If V ̸= ∅, let S be a ϵ-Whitney cover of V . Let

S̃ =

{
BV (y, s) ∈ S : s <

ϵ

6A(1 + ϵ)
diam(U)

}
. (3.24)

In particular S̃ = S, if diam(U) = ∞. Next, we define a ‘reflection’ map Q : S̃ →
R that maps a ball from S̃ to a ball in the Whitney cover R that is similar to
a construction of Jones [Jon80, Jon81] motivated by quasiconformal reflection. The
following proposition is a modification of [Jon81, Lemmas 2.4, 2.5, 2.6, 2.7 and 2.8].
Proposition 3.12. Let (X, d) be a doubling metric space and let ϵ ∈ (0, 1/5). Let U
be a A-uniform domain with V = (U c)◦ ̸= ∅. Let R,S denote the ϵ-Whitney covers of

U, V respectively and let S̃ be as defined in (3.24). Then there exists a map Q : S̃ → R
such that the following properties hold:
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(a) For any B = BV (y, s) ∈ S̃, the ball Q(B) = BU (x, r) satisfies

1 + ϵ

1 + 4ϵ
s < r <

1 + ϵ

1 − 2ϵ
s, d(x, y) ≤

(
2 +

3A

2

)
1 + ϵ

ϵ
s. (3.25)

(b) There exists K ∈ N which depends only on ϵ, A and the doubling constant of (X, d)
such that the map Q is at most K to 1; that is

sup{#Q−1(B) : B ∈ R} ≤ K.

(c) If BV (yi, si) ∈ S̃, i = 1, 2 satisfy BV (y1, 6s1)∩BV (y2, 6s2) ̸= ∅, then BU (xi, ri) =
Q(BV (yi, si)), i = 1, 2 satisfy

(1 − 2ϵ)(1 − 5ϵ)

(1 + 4ϵ)(1 + 7ϵ)
r2 ≤ r1 ≤ (1 + 4ϵ)(1 + 7ϵ)

(1 − 2ϵ)(1 − 5ϵ)
r2. (3.26)

Furthermore, there is a chain of distinct balls {BU (zi, ti) ∈ R : 1 ≤ i ≤ N} such
that z1 = x1, t1 = r1, zN = x2, tN = r2, BU (zi, 3ti) ∩ BU (zi+1, 3ti+1) ̸= ∅ for all
i = 1, . . . , N − 1, and N satisfies the bound

N ≤ N0,

where N0 depends only on ϵ, A and the doubling constant of (X, d).

Proof. For any BV (y, s) ∈ S̃, choose z ∈ ∂V ⊂ ∂U (by Lemma 3.11) such that
1+ϵ
ϵ s = δV (y) = d(y, z). Choose points z1, z2 ∈ U such that

d(z, z2) ≥ 5As

2

1 + ϵ

ϵ
≥ 5

12
diam(U), and d(z, z1) ≤ (1 + ϵ)s

2ϵ
.

By considering a A-uniform curve γ in U from z1 to z2, we pick z3 ∈ γ to be the first
point along the curve from z1 to z3 such that δU (z3) = 1+ϵ

ϵ s. We claim that such a
point z3 exists and satisfies

d(z1, z3) ≤ A(1 + ϵ)

ϵ
s. (3.27)

To see this, note that if z4 is the first point along γ so that d(z1, z4) = A(1+ϵ)
ϵ s, then

δU (z4) ≥ A−1 min(d(z1, z4), d(z2, z1) − d(z1, z4)) =
1 + ϵ

ϵ
s.

Therefore d(z1, z3) ≤ d(z1, z4) ≤ A(1+ϵ)
ϵ s.

By Definition 3.1(iii), there exists BU (x, r) ∈ R such that z3 ∈ B(x, 3r). For each

BV (y, s) ∈ S̃, we set BU (x, r) ∈ R as Q(BV (y, s)). This defines a map Q : S̃ → R.
We will now verify that it satisfies the desired properties (a)-(c).
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(a) By Proposition 3.2(b), we have

1 + ϵ

1 + 4ϵ
s =

ϵ

1 + 4ϵ
δU (z3) < r <

ϵ

1 − 2ϵ
δU (z3) =

1 + ϵ

1 − 2ϵ
s. (3.28)

Furthermore, by the choice of z, z1, z3 and (3.27), we have

d(x, y) < d(y, z) + d(z, z1) + d(z1, z3) + d(z3, x)

≤ 1 + ϵ

ϵ
s+

A(1 + ϵ)

2ϵ
s+

A(1 + ϵ)

ϵ
s+ 3r

≤
(

2 +
3A

2

)
1 + ϵ

ϵ
s (by (3.28) and ϵ < 1/5). (3.29)

The property (a) follows form (3.28) and (3.29).

(b) Let BV (y1, s1), BV (y2, s2) be two distinct balls in S̃ such that Q(BV (y1, s1)) =
Q(BV (y2, s2)) = BU (x, r) ∈ R. Then

d(yi, x)
(3.29)

≤
(

2 +
3A

2

)
1 + ϵ

ϵ
si

(3.28)

≤
(

2 +
3A

2

)
1 + 4ϵ

ϵ
r, for i = 1, 2. (3.30)

Since BV (y1, s1) ∩BV (y2, s2) = ∅, we have

d(y1, y2) ≥ s1
(3.28)

≥ 1 − 2ϵ

1 + ϵ
r. (3.31)

By (3.30), (3.31) and [Hei, Exercise 10.17], there exists K ∈ N that depends only
on ϵ, A,K such that Q is at most K to 1.

(c) The estimate (3.26) is an immediate consequence of (3.28) and Proposition 3.2(c).
By triangle inequality d(x1, x2) ≤ d(x1, y1) + d(y1, y2) + d(x2, y2), d(y1, y2) ≤
6(s1 + s2) (since BV (y1, 6s1) ∩ BV (y2, 6s2) ̸= ∅), (3.29), and Proposition 3.2(c),
we obtain

d(x1, x2) <

[
6 +

(
2 +

3A

2

)
1 + ϵ

ϵ

]
(s1 + s2) ≤

[
6 +

(
2 +

3A

2

)
1 + ϵ

ϵ

]
2(1 + ϵ)

1 − 5ϵ
s1.

(3.32)
If Q(BV (y1, s1)) = Q(BV (y2, s2)), we choose the obvious chain with N = 1 ball.
Otherwise, we connect x1 and x2 with a A-uniform curve γ̃, whose diameter
diam(γ̃) satisfies the bound

r1 ≤ d(x1, x2) ≤ diam(γ̃) ≤ Ad(x1, x2)
(3.32)

≤
[
6 +

(
2 +

3A

2

)
1 + ϵ

ϵ

]
2A(1 + ϵ)

1 − 5ϵ
s1.

This along with (3.28) yields

1 + ϵ

1 + 4ϵ
s1 ≤ diam(γ̃) ≤

[
6 +

(
2 +

3A

2

)
1 + ϵ

ϵ

]
2A(1 + ϵ)

1 − 5ϵ
s1. (3.33)
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For any z ∈ γ̃, we claim that

δU (z) ≥ 1

A
(r1 ∧ r2). (3.34)

The proof of (3.34) is divided into two cases depending on whether or not z ∈
BU (x1, r1) ∪BU (x2, r2). If z ∈ BU (xi, ri) for some i = 1, 2, then

δU (z) > δU (xi) − ri =
1 + ϵ

ϵ
ri − ri = ϵ−1ri ≥ (r1 ∧ r2).

On the other hand, if z ∈ BU (x1, r1)c ∩ BU (x1, r1)c ∩ γ̃, then by the weak A-
uniformity of γ̃, we have

δU (z) ≥ 1

A
min(d(x1, z), d(x2, z)) ≥

1

A
(r1 ∧ r2)

which completes the proof of (3.34). By (3.32), (3.26), and (3.28), there exists C1

which depends only on ϵ, A such that

δU (z) ≤ C1(r1 ∧ r2). (3.35)

By the same argument as in Lemma 3.9(a), we construct a chain of distinct
balls {BU (zi, ti) ∈ R : 1 ≤ i ≤ N} such that

z1 = x1, t1 = r1, zN = x2, tN = r2, BU (zi, 3ti) ∩BU (zi+1, 3ti+1) ̸= ∅

for all i = 1, . . . , N − 1 and γ̃ ∩BU (zi, 3ti) ̸= ∅ for all i = 1, . . . , N . It remains to
obtain an upper bound on N that depends only on ϵ, A and the doubling constant
of (X, d). By Proposition 3.2(b), (3.34), and (3.35), we obtain

C1(1 + ϵ)

1 − 2ϵ
(r1∧r2)

(3.1),(3.35)
>

1 + ϵ

ϵ
ti = δU (zi)

(3.1),(3.34)
>

1 + ϵ

A(1 + 4ϵ)
(r1∧r2). (3.36)

By (3.33), (3.28), (3.26), (3.35), and (3.36), there exists C2 that depends only on
ϵ, A such that

d(x1, zi) ≤ diam(γ̃) + 3 max
1≤i≤N

ti ≤ C2(r1 ∧ r2), for all i = 1, . . . , N . (3.37)

Since the balls BU (zi, ti) ∈ R, 1 ≤ i ≤ N are pairwise disjoint, by (3.36) the points
{zi : 1 ≤ i ≤ N} have mutual distance of at least

ϵ

A(1 + 4ϵ)
(r1 ∧ r2).

Combining this with (3.37) and [Hei, Exercise 10.17], we obtain the desired bound
on N .
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We record a few more geometric properties of the Whitney covers R,S that will
be used. We define graphs GR, GS with vertices R,S respectively below.
Definition 3.13. Let GR denote the graph (undirected) whose vertex set is R and
such that BU (x1, r1), BU (x2, r2) ∈ R are connected by an edge if BU (x1, 3r1) ∩
BU (x2, 3r2) ̸= ∅ and BU (x1, r1) ̸= BU (x2, r2). In this case, we denote it by

BU (x1, r1)
R∼ BU (x2, r2).

Similarly, we define GS to be the graph whose vertex set is S and such that
BV (y1, s1), BV (y2, s2) ∈ S are connected by an edge if BV (y1, 6s1) ∩ BV (y2, 6r2) ̸= ∅
and BV (y1, s1) ̸= BV (y2, s2). In this case, we denote it by BV (y1, s1)

S∼ BV (y2, s2).
Let DR, DS denote the (combinatorial) graph distance defined on R,S induced by

the graphs GR, GS respectively.
For B ⊂ X, we define

S(B) = {BV (y, s) ∈ S : BV (y, 6s) ∩B ̸= ∅}, S̃(B) = S(B) ∩ S̃. (3.38)

This definition is a slight variation of (3.10) as the constant 3 is replaced by 6 in the
current definition.
Lemma 3.14. Let (X, d), U, V,R,S, Q : S̃ → R, ϵ ∈ (0, 1/5) be as given in
Proposition 3.12. Let GR, GS denote the graphs as given in Definition 3.13.
(a) For any ξ ∈ ∂U, r > 0 and BV (y, s) ∈ S(B(ξ, r)), we have

s <
ϵ

1 − 5ϵ
r. (3.39)

In particular, if r ≤ 1−5ϵ
6A(1+ϵ)diam(U) then BV (y, s) ∈ S̃.

Similarly, if ξ ∈ ∂U, r > 0 and BU (x0, r0) ∈ R(B(ξ, r)), we have

r0 <
ϵ

1 − 2ϵ
r. (3.40)

(b) GR, GS are bounded degree graphs.

(c) The map Q : S̃ → R is Lipschitz with respect to the distances DR, DS on R, S̃
respectively.

(d) There exists K0 ∈ (0,∞) depending only on A, ϵ such that for any ξ ∈ ∂U, r > 0

and for any B ∈ S̃(BV (ξ, r)), we have Q(B) ∈ R(BU (ξ,K0r)).
(e) For any L, there exists K such that for any B1 ∈ R(BU (ξ, r)), B2 ∈ R such that

DR(B1, B2) ≤ L, we have B2 ∈ R(BU (ξ,Kr)).

Proof. (a) Since

BV (y, 6s) ∩BV (ξ, r) ̸= ∅, 1 + ϵ

ϵ
s = δV (y) ≤ d(y, ξ) < 6s+ r,

we obtain (3.39). The second conclusion follows from (3.24) and (3.39). The
estimate (3.40) follows from the same argument as the proof of (3.39).

(b) Proposition 3.2(e) provides an uniform upper bound on the degree of the graphs.
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(c) This is just a restatement of Proposition 3.12(c).

(d) Let BV (y, s) ∈ S̃(B(ξ, r)), where ξ ∈ ∂U, r > 0. Let Q(BV (y, s)) = BU (xi, ri) ∈
R. Hence, we obtain

d(xi, y)
(3.25)

≤
(

2 +
3A

2

)
1 + ϵ

ϵ
s

(3.39)
<

(
2 +

3A

2

)
1 + ϵ

1 − 5ϵ
r.

This along with d(xi, ξ) < d(xi, y) + d(y, ξ) < d(xi, y) + 6s+ r < K0r where

K0 =

(
2 +

3A

2

)
1 + ϵ

1 − 5ϵ
+

6ϵ

1 − 5ϵ
+ 1.

In particular, Q(B) ∈ R(BU (ξ,K0r)).
(e) We note that for any BU (xi, ri) ∈ R(BU (ξ, r)) with ξ ∈ ∂U, r > 0, we have

ri <
ϵ

1 − 2ϵ
r, d(ξ, xi) < 3ri + r <

1 + ϵ

1 − 2ϵ
r.

This follows from the same argument as the proof of (3.39). Combining the above
estimate with Proposition 3.2(c) and triangle inequality, we obtain the desired
result.

4 Sub-Gaussian heat kernel estimates

In this section, we recall some background material on Dirichlet forms, extension
domains, and sub-Gaussian heat kernel estimates. We show that in a extension domain
the reflected Dirichlet form is regular.

4.1 Extension domain

Note that we always have the inclusion

F(U) ⊆ {f ∈ L2(U,m) : there exists f̃ ∈ F such that f = f̃ , m-a.e. on U}. (4.1)

A natural question is if the above inclusion is an equality. The following notion plays
a central role in this work.
Definition 4.1 (Extension domain). Let (X, d,m, E ,F) be an MMD space and let
U ⊂ X be open. We say that U is an extension domain for (X, d,m, E ,F), if there
is a bounded linear map E : F(U) → F such that E is an extension map; that is,
E(f) = f m-a.e. on U . Here the boundedness of E is with respect to the inner products
EU (·, ·) + ⟨·, ·⟩L2(U,m), E(·, ·) + ⟨·, ·⟩L2(X,m) on F(U) and F respectively.

Note that the inclusion (4.1) is an equality for any extension domain U . An
immediate consequence of the extension property is that the regular Dirichlet form
on L2(X,m) induces a regular Dirichlet form on L2(U,m). By the correspondence
between regular Dirichlet forms and symmetric Markov processes [FOT, Theorem
7.2.1 and 7.2.2], this corresponds to a m-symmetric diffusion process on (U,m) which
is called the reflected diffusion on U .
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Lemma 4.2. Let (X, d) be a complete metric space such that all bounded sets are
precompact. Let (E ,F) be strongly local regular Dirichlet form. If U is an extension
domain such that m(∂U) = 0, then (EU ,F(U)) defines a strongly local regular Dirichlet
form on U , where (EU ,F(U)) is the local Dirichlet space of Definition 2.5.

Proof. We equip F(U),F with the corresponding inner products EU (·, ·)+⟨·, ·⟩L2(U,m),
and E(·, ·) + ⟨·, ·⟩L2(X,m) respectively. Let E : F(U) → F be an extension operator as
given in Definition 4.1. If fn is a Cauchy sequence in F(U), then E(fn) is a Cauchy
sequence in F (since E is a bounded operator). Since F is complete, E(fn) converges
to a limit, say g ∈ F . The restriction of g to U yields the desired limit of fn in
F(U). Hence (EU ,F(U)) is a Dirichlet form on L2(U,m) (note that since m(∂U) = 0,
L2(U,m) can be identified with L2(U,m)).

The regularity of (EU ,F(U)) is an easy consequence of the regularity of (E ,F) and
the extension property. To this end, note that function f ∈ F(U) has an extension
E(f) ∈ F which is a limit of functions in Cc(X) ∩ F and hence by restricting this
sequence of functions to U , we obtain that Cc(U)∩F(U) is dense in F(U). Since any
function in Cc(U) can be extended to a function on Cc(X), by the same argument as
above, we obtain that any function on Cc(U) is a limit (with respect to the uniform
norm) of functions in Cc(U) ∩ F(U).

In general, we note that the Dirichlet form (EU ,F(U)) need not be regular on U . In
particular, Cc(U)∩F(U) need not be dense in F(U). This can be seen by considering
the slit domain U = R2 \ {(t, 0) : t ∈ (−∞, 0]} for the Brownian motion on R2.

4.2 Sub-Gaussian heat kernel estimates and its consequences

In this subsection, we recall some previous results concerning the heat kernel and its
sub-Gaussian estimates. We start with recall the definition of capacity. For disjoint
Borel sets B1, B2 such that B2 is closed and B1 ⋐ Bc

2 (by B1 ⋐ Bc
2, we mean that B1

is compact and B1 ⊂ Bc
2), we define F(B1, B2) as the set of function ϕ ∈ F such that

ϕ ≡ 1 in an open neighborhood of B1, and suppm(ϕ) ⊂ Bc
2. For such sets B1 and B2,

we define the capacity between them as

Cap(B1, B2) = inf {E(f, f) | f ∈ F(B1, B2)} .

The sub-Gaussian heat kernel estimates are known to be equivalent to properties
that are known to be stable under perturbations. To recall this characterization, we
recall the relevant properties.
Definition 4.3 (PI(Ψ), CS(Ψ), and cap(Ψ)). Let (X, d,m, E ,F) be an MMD space,
Ψ : [0,∞) → [0,∞) be a scale function, and let Γ(·, ·) denote the corresponding energy
measure.
(a) We say that (X, d,m, E ,F) satisfies the Poincaré inequality PI(Ψ), if there

exist constants CP , AP ≥ 1 such that for all (x, r) ∈ X × (0,∞) and all f ∈
Floc(B(x,AP r)),

ˆ
B(x,r)

(f − fB(x,r))
2 dm ≤ CP Ψ(r)

ˆ
B(x,AP r)

dΓ(f, f), PI(Ψ)
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where fB(x,r) := m(B(x, r))−1
´
B(x,r)

f dm.

(b) For open subsets U, V of X with U ⊂ V , we say that a function ϕ ∈ F is a
cutoff function for U ⊂ V if 0 ≤ ϕ ≤ 1, ϕ = 1 on a neighbourhood of U and
suppm[ϕ] ⊂ V . Then we say that (X, d,m, E ,F) satisfies the cutoff Sobolev
inequality CS(Ψ), if there exists CS > 0 such that the following holds: for all
x ∈ X and R, r > 0, there exists a cutoff function ϕ ∈ F for B(x,R) ⊂ B(x,R+r)
such that for all f ∈ F ,

ˆ
B(x,R+r)\B(x,R)

f̃2 dΓ(ϕ, ϕ)

≤ 1

8

ˆ
B(x,R+r)\B(x,R)

ϕ̃2 dΓ(f, f) +
CS

Ψ(r)

ˆ
B(x,R+r)\B(x,R)

f2 dm;

CS(Ψ)

where f̃ , ϕ̃ are the quasi-continuous versions3 of f, ϕ ∈ F so that ϕ̃ is uniquely
determined Γ(f, f)-a.e. for any f ∈ F ; see [FOT, Theorem 2.1.3, Lemmas 2.1.4
and 3.2.4].

(c) We say that an MMD space (X, d,m, E ,F) satisfies the capacity upper bound
cap(Ψ)≤ if there exist C1, A1, A2 > 1 such that for all R ∈ (0,diam(X, d)/A2),
x ∈ X, we have

Cap(B(x,R), B(x,A1R)c) ≤ C1
m(B(x,R))

Ψ(R)
. cap(Ψ)≤

The following theorem was first proved in the context of random walks on graphs
by Barlow and Bass [BB04]. It was later extended to MMD spaces by Barlow, Bass
and Kumagai [BBK]. Following a simplification of cutoff Sobolev inequality by Andres
and Barlow [AB], the following characterization was proved by Grigor’yan, Hu, and
Lau [GHL15] for unbounded MMD spaces. The same arguments also apply with minor
changes to the bounded setting as pointed out in [KM20, Remark 2.9] and [KM23,
Theorem 4.9].
Theorem 4.4. ([BB04, BBK, GHL15]) Let (X, d,m, E ,F) be an MMD space such
thatm is a doubling measure on (X, d) and let Ψ be a scale function. Then the following
are equivalent.
(a) (X, d,m, E ,F) satisfies HKE(Ψ).
(b) (X, d,m, E ,F) satisfies PI(Ψ) and CS(Ψ).

The capacity upper bound cap(Ψ)≤ and the regularity of the Dirichlet form (E ,F)
implies the existence of a partition of unity on V with controlled energy by a standard
argument.
Lemma 4.5. Let (X, d,m, E ,F) be an MMD space that satisfies cap(Ψ)≤ and let m
be a doubling measure. There exists ϵ0 ∈ (0, 1/6), C1, c1 > 0 such that for any open set
V ⊊ X be open and for any ϵ-Whitney cover S of V where 0 < ϵ < ϵ0, there exists a
partition on unity {ψB : B ∈ S} of V such that the following properties hold:
(a) (partition of unity)

∑
B∈S ψB ≡ 1V and 0 ≤ ψB ≤ 1 for all B ∈ S.

3We refer the reader §5.5 for the definition of quasi-continuous functions with respect to a regular
symmetric Dirichlet form.
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(b) (controlled energy) For each B = BV (y, s) ∈ S, then ψB ∈ Cc(X) ∩ F such that
ψB ≥ c1 on BV (y, 3s), ψB ≡ 0 on BV (y, 6s)c and

E(ψB , ψB) ≤ C1
m(B(y, s))

Ψ(s)
. (4.2)

Proof sketch. The proof follows from the argument in [BBK, p. 504] or [Mur20, Proof
of Lemma 2.5] where the required bounded overlap property for that argument follows
from Proposition 3.2(d).

In Theorem 4.6, we estimate the Dirichlet energy and energy measure of a function
via a Besov energy type expression. The statement is inspired by a similar result due to
Grigor’yan, Hu and Lau [GHL03, Theorem 4.2] and its extension due to Kumagai and
Sturm [KuSt, Theorem 4.1] (see also [Jons, Theorem 1] for this result on the Sierpiński
gasket and [KoSc, Theorem 1.6.2] on the Euclidean space). One difference from these
works is that the earlier results contain some technical conditions [KuSt, (4.2)] and
[GHL03, (4.9)] that turn out to be unnecessary. Furthermore, another improvement
is that we obtain estimates on the energy measure along with estimates on energy.
We use the following notation in Theorem 4.6. Let δ > 0,K ⊂ X and denote by
Kδ := {y ∈ X : there exists z ∈ K such that d(y, z) < δ} the δ-neighborhood of K.
Part (b) of the lemma will provide a sufficient condition to verify if a given function
f ∈ L2(X,m) belongs to F . If the assumption of both part (a) and (b) hold then this
condition given by (4.3) is both necessary and sufficient.
Theorem 4.6. Let (X, d,m, E ,F) be an MMD space and let Ψ is a scale function.
(a) Let m satisfy the volume doubling property and (X, d,m, E ,F) satisfy the Poincaré

inequality PI(Ψ) then there exists C > 0 such that

sup
r∈(0,∞)

1

Ψ(r)

ˆ
X

 
B(x,r)

(f(x) − f(y))2m(dy)m(dx) ≤ CE(f, f),

for all f ∈ F .
(b) Let m satisfy the volume doubling property and (E ,F) be a conservative Dirichlet

form satisfy the heat kernel upper bound (2.9). If f ∈ L2(X,m) satisfies

lim sup
r→0

1

Ψ(r)

ˆ
X

 
B(x,r)

(f(x) − f(y))2m(dy)m(dx) <∞, (4.3)

then f ∈ F . There exists C > 0 depending only the constants in the volume
doubling property, (2.7) and (2.9) such that

E(f, f) ≤ C lim sup
r→0

1

Ψ(r)

ˆ
X

 
B(x,r)

(f(x) − f(y))2m(dy)m(dx), (4.4)

for all f ∈ F .
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(c) Let (X, d,m, E ,F) satisfy the assumptions in (b) above. Then there exists C > 0
such that

Γ(f, f)(K) ≤ C lim
δ↓0

lim sup
r→0

1

Ψ(r)

ˆ
Kδ

 
B(x,r)

(f(x) − f(y))2m(dy)m(dx), (4.5)

for all f ∈ F and for any compact set K ⊂ X.

Proof. We record some useful estimates concerning the function Φ defined in (2.8).
By [Mur20, Lemma 2.10], there exists C1 > 0 such that

C−1
1

(
S

s

)β2/(β2−1)

≤ Φ(S)

Φ(s)
≤ C1

(
S

s

)β1/(β1−1)

, for all 0 < s ≤ S. (4.6)

By [GT12, (6.14)], there exists c ∈ (0, 1) such that

Φ

(
c1

r

Ψ(r)

)
≤ 1

Ψ(r)
≤ Φ

(
2r

Ψ(r)

)
, for all r > 0. (4.7)

Combining (4.6) and (4.7), there exists C2 ∈ (1,∞) such that

C−1
2 ≤ tΦ

(
Ψ−1(t)

t

)
≤ C2, for all t > 0. (4.8)

(a) Let N ⊂ X be a r-net (that is, maximally r-separated subset). By the volume
doubling property, there exists C1 > 0 such that

1

m(B(x, r))
1{d(x,y)<r} ≤ C1

∑
n∈N

1

m(B(n, 2r))
1B(n,2r)(x)1B(n,2r)(y) (4.9)

for all x, y ∈ X. Therefore for any r > 0, we have

1

Ψ(r)

ˆ
X

1

m(B(x, r))

ˆ
B(x,r)

(f(x) − f(y))2m(dy)m(dx)

≤ C1

2Ψ(r)

∑
n∈N

ˆ
B(n,2r)

∣∣f(x) − fB(n,2r)

∣∣2m(dx) (by (4.9))

≤ C1CP Ψ(2r)

2Ψ(r)
sup
x∈X

∑
n∈N

1B(n,2AP r)(x)E(f, f) (by PI(Ψ)).

The desired conclusion follows from (2.7) and the bounded overlap of the family
of balls {B(n, 2AP r) : n ∈ N}.

(b) Let f ∈ L2(X,m). Since (E ,F) is conservative, we have by (2.3)

E(f, f) = lim
t→0

1

2t

ˆ
X

ˆ
X

(f(x) − f(y))2pt(x, y)m(dy)m(dx), (4.10)

30



where pt denotes the heat kernel. Following [GHL03, Proof of Theorem 4.2] , we
set

A(f, t, r) :=
1

2t

ˆ
X

ˆ
X\B(x,r)

(f(x) − f(y))2pt(x, y)m(dy)m(dx),

B(f, t, r) :=
1

2t

ˆ
X

ˆ
B(x,r)

(f(x) − f(y))2pt(x, y)m(dy)m(dx),

so that

E(f, f) = lim
t↓0

(A(f, t, r) +B(f, t, r)) for all f ∈ L2, r > 0. (4.11)

Define

W (f, r) :=
1

Ψ(r)

ˆ
X

1

m(B(x, r))

ˆ
B(x,r)

(f(x) − f(y))2m(dy)m(dx),

and W (f) := lim supr↓0W (f, r). First we claim that for any f ∈ L2(X,m), r > 0,
we have

lim sup
t↓0

A(f, t, r) = 0. (4.12)

To this end, we estimate A(f, t, r) as

A(f, t, r) =
1

2t

ˆ
X

ˆ
B(x,r)c

(f(x) − f(y))2pt(x, y)m(dy)m(dx)

≤ 1

2t

ˆ
X

ˆ
B(x,r)c

2(f(x)2 + f(y)2)pt(x, y)m(dy)m(dx)

≤ 2

t

ˆ
X

f(x)2
ˆ
B(x,r)c

pt(x, y)m(dy)m(dx) (by symmetry of pt).

(4.13)

By (2.9), for m-a.e. x ∈ X and for all 0 < t < 1 ∧ Ψ(r) ∧ r, we have

1

t

ˆ
B(x,r)c

pt(x, y)m(dy)

=

∞∑
k=0

1

t

ˆ
B(x,2k+1r)\B(x,2kr)

pt(x, y)m(dy)

≤ C1

t

∞∑
k=0

m(B(x, 2k+1r))

m(B(x,Ψ−1(t)))
exp

(
−c1tΦ

(
2kr

t

))
(by (2.9),(4.6))

≤ C2

∞∑
k=0

2kαrα

tβ
exp

(
−c2

2k(γ+1)rγ+1

tγ

)
(by (4.6), (3.9), (2.7)), (4.14)
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where C1, C2, α, β, γ > 0 and do not depend on x, r, t. Combining (4.13), (4.14)
and letting t ↓ 0, we obtain (4.12).

Without loss of generality, it suffices to consider the case W (f) <∞. Let ϵ > 0
be arbitrary, we choose r0 > 0 (depending on f and ϵ) such that

W (f, r0) − ϵ ≤W (f) ≤ sup
0<r≤r0

W (f, r) ≤W (f, r0) + ϵ. (4.15)

Similarly we follow [GHL03, Proof of Theorem 4.2] by considering dyadic annuli
as above and using (2.9), (4.8), (4.6), the doubling property of m to estimate

B(f, t, r0) =
1

2t

k0∑
k=0

ˆ
X

ˆ
B(x,2−kr0)\B(x,2−k−1r0)

(f(x) − f(y))2pt(x, y)m(dy)m(dx)

+
1

2t

ˆ
X

ˆ
B(x,2−k0−1r0)

(f(x) − f(y))2pt(x, y)m(dy)m(dx) (4.16)

by choosing k0 ∈ N be the largest integer such that 2−k0r0 > Ψ−1(t). The last term
above can estimated using (2.9), (4.8), (4.6) and the volume doubling property by

1

2t

ˆ
X

ˆ
B(x,2−k0−1r0)

(f(x)−f(y))2pt(x, y)m(dy)m(dx) ≲W (f,Ψ−1(t)) ≲W (f, r0)+ϵ.

(4.17)
For 0 ≤ k ≤ k0, we have (by using (2.9), (2.7), (4.8), (4.6), (3.9), (4.15))

1

2t

ˆ
X

ˆ
B(sx,2−kr0)\B(x,2−k−1r0)

(f(x) − f(y))2pt(x, y)m(dy)m(dx)

≲W (f, 2−kr0)
Ψ(2−kr0)m(B(x, 2−kr0))

Ψ(2−k0r0)m(B(x, 2−k0r0))
exp

(
−c1tΦ

(
2−kr0
t

))
≲W (f, 2−kr0)

Ψ(2−kr0)m(B(x, 2−kr0))

Ψ(2−k0r0)m(B(x, 2−k0r0))
exp

(
−c2tΦ

(
2−(k−k0)Ψ−1(t)

t

))
≲W (f, 2−kr0)2(k0−k)α exp

(
−c32(k0−k)γ

)
≲ 2(k0−k)α exp

(
−c32(k0−k)γ

)
(W (f, r0) + ϵ), (4.18)

where C3, α, γ, c3 depends only on the constants associated with (2.9), (2.7), (4.8),
(4.6), (3.9). Combining (4.16), (4.17) and (4.18), we obtain

B(f, t, r0) ≲ (W (f, r0)+ ϵ)

(
1 +

∞∑
l=0

2lα exp(−c32lγ)

)
≤ C3(W (f, r0)+ ϵ) (4.19)
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for any t ∈ (0,Ψ(r0)/2) (note that k0 → ∞ as t ↓ 0). Using (4.19), (4.15) and
letting ϵ ↓ 0, we obtain

lim sup
t↓0

B(f, t, r0) ≤ C3W (f).

This along with (4.11), (4.10) and (4.12) implies the desired conclusion.
(c) If suffices to consider the case f ∈ L2(X,m) ∩ L∞(X,m) ∩ F since any function

f ∈ F can be approximated by a sequence of bounded functions as given in
Definition 2.4. For any δ > 0 consider a function ϕ ∈ Cc(X) ∩ F such that ϕ ≡ 1
on K and ϕ ≡ 0 on Kc

δ (such a function exists by the regularity of the Dirichlet
form). We estimate the energy measure of K by

Γ(f, f)(K) ≤
ˆ
ϕdΓ(f, f) = E(ϕf, f) − 1

2
E(ϕ, f2)

(4.10)
= lim

t↓0

1

2t

(ˆ ˆ
(ϕ(x)f(x) − ϕ(y)f(y))(f(x) − f(y))pt(x, y)m(dy)m(dx)

− 1

2

ˆ ˆ
(ϕ(x) − ϕ(y))(f(x)2 − f(y)2)pt(x, y)m(dy)m(dx)

)

= lim
t↓0

1

4t

ˆ
X

ˆ
X

(ϕ(x) + ϕ(y))(f(x) − f(y))2pt(x, y)m(dy)m(dx)

= lim
t↓0

1

2t

ˆ
X

ˆ
X

ϕ(x)(f(x) − f(y))2pt(x, y)m(dy)m(dx) (by symmetry)

≤ lim
t↓0

1

2t

ˆ
Kδ

ˆ
X

(f(x) − f(y))2pt(x, y)m(dy)m(dx). (4.20)

The desired conclusion follows by breaking the inner integral over X in (4.20) into
B(x, r), B(x, r)c and then following the same argument as in (b).

5 The extension map and its scale-invariant
boundedness

In this section, we define the extension map using the reflection map and study its
scale-invariant and global boundedness properties.

5.1 Poincaré inequality on uniform domains

In this subsection, we show that uniform domains inherit Poincaré inequality (see
Theorem 5.3). The strategy of the proof is essentially the same as [GyS]. It is also
possible to adapt the slightly different approach presented in [BS, Theorem 4.4] based
on an argument of [HaK, Proof of Theorem 1] that uses weak-type estimates. Although
our approach is a straightforward adaptation of [GyS], we present the proof because
some of the estimates in the proof play an important role later in bounds for the
extension operator (see the proof of Proposition 5.8).
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We recall a lemma whose proof is an exercise in duality and maximal inequality.
The proof can be found in [Sal02, Lemma 5.3.12].
Lemma 5.1. ([Hei, Exercise 2.10], [GyS, Lemma 3.25]) Let m be a doubling measure
on (Y, d). Let {B(xi, ri) : i ∈ I} be a countable collection of balls and let ai ≥ 0 for
all i ∈ I. Let λ ≥ 1 and 1 < p < ∞. Then there exist C ≥ 1 depending only on the
doubling constant, λ, p such that

ˆ
Y

(∑
i∈I

ai1B(xi,λri)

)p

dm ≤ C

ˆ
Y

(∑
i∈I

ai1B(xi,ri)

)p

dm.

The following lemma controls the difference in the average of nearby balls using
the energy measure. It follows by an application of the Poincaré inequality.
Lemma 5.2. (Cf. [GyS, Lemma 3.22]) Let (X, d,m, E ,F) be an MMD space that
satisfies the Poincaré inequality PI(Ψ) and let m be a doubling measure on X.
Let U be a A-uniform domain for some A ≥ 1. Let ϵ ∈ (0, 1/4) be such that

AP

(
3 + 6 1+4ϵ

1−2ϵ

)
ϵ

1+ϵ < 1, where AP is the constant in PI(Ψ). Let R be an ϵ-Whitney

cover of U . Let BU (xi, ri), BU (xj , rj) ∈ R be such that BU (xi, 3ri) ∩BU (xj , 3rj) ̸= ∅.
Then ∣∣fBU (xi,3ri) − fBU (xj ,3rj)

∣∣2 ≤ C
Ψ(ri)

m(B(xi, ri))

ˆ
B(xi,APLri)

dΓ(f, f),

for all f ∈ Floc(B(xi, APLri)), where L =
(

3 + 6 1+4ϵ
1−2ϵ

)
≤ 27.

Proof. By Proposition 3.2(c), we have BU (xj , 3rj) ⊂ BU (xi, 3ri + 6rj) ⊂ BU (xi, Lri).
By the volume doubling property

m(BU (xi, 3ri)) ≍ m(BU (xj , 3rj)) ≍ m(BU (xi, Lri) ≍ m(B(xi, ri)).

Hence, we have

∣∣fBU (xi,3ri) − fBU (xj ,3rj)

∣∣2 ≤
 
BU (xj ,3rj)

 
BU (xi,3ri)

|f(z) − f(y)|2m(dy)m(dz)

≲
 
BU (xi,Lri)

 
BU (xi,Lri)

|f(z) − f(y)|2m(dy)m(dz)

≲
1

m(B(xi, ri))

ˆ
B(xi,Lri)

∣∣f − fB(xi,Lri)

∣∣2 dm
≲

Ψ(ri)

m(B(xi, ri))

ˆ
B(xi,APLri)

dΓ(f, f).

The following Poincaré inequality is the main result of this subsection.
Theorem 5.3. Let (X, d,m, E ,F) be an MMD space that satisfies the Poincaré
inequality PI(Ψ) and let m be a doubling measure on X. Let U be a A-uniform
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domain for some A ≥ 1. Then there exist constants CU , AU ≥ 1 such that for all
(x, r) ∈ X × (0,∞) and all f ∈ Floc(BU (x,AUr)),

ˆ
BU (x,r)

(f − fBU (x,r))
2 dm ≤ CUΨ(r)

ˆ
BU (x,AUr)

dΓ(f, f), PI(Ψ)

where fBU (x,r) := m(BU (x, r))−1
´
BU (x,r)

f dm.

Proof. Case 1: x ∈ U, r ≥ δU (x). Let ϵ ∈ (0, 1/4) be small enough such that
27AP

ϵ
1+ϵ < 1 so that the assumption of Lemma 5.2 is satisfied. Let R be an ϵ-Whitney

cover of U . By Lemma 3.7 we can choose a central ball B0 = BU (x0, r0) such that r0
satisfies (3.12). By (3.11), we have

ˆ
BU (x,r)

∣∣f − fBU (x,r)

∣∣2 dm
≤
ˆ
BU (x,r)

∣∣f − fBU (x0,3r0)

∣∣2 dm
≤

∑
BU (xD,rD)∈R(BU (x,r))

ˆ
BU (xD,3rD)

2
∣∣f − fBU (x0,3r0)

∣∣2 dm (by (3.11))

≤
∑

BU (xD,rD)∈R(BU (x,r))

ˆ
BU (xD,3rD)

4
(∣∣f − fBU (xD,3rD)

∣∣2
+
∣∣fBU (x0,3r0) − fBU (xD,3rD)

∣∣2) dm. (5.1)

The first term above can be bounded using PI(Ψ) as

ˆ
BU (xD,3rD)

∣∣f − fBU (xD,3rD)

∣∣2 dm ≤ CP Ψ(3rD)

ˆ
BU (xD,3AP rD)

dΓ(f, f), (5.2)

where AP ≥ 1 be the constant as given in PI(Ψ). For the second term we use Lemma
3.9 as follows. By Lemma 3.9, for any D = BU (xD, rD) ∈ R(B(x, r)), there exists a
finite collection of distinct balls S(D) = {BD

j = B(xDj , r
D
j ) : 0 ≤ j ≤ l} such that

BD
0 = B,BD

l = D, where l = l(D) that satisfy the properties in Lemma 3.9(a) and
(b). By (3.16), there exists C2 > 1 that depends only on A, ϵ such that

D ⊂ BU (xDj , C2r
D
j ). (5.3)

We bound the second term in (5.1) using Lemma 5.2 as∣∣fBU (x0,3r0) − fBU (xD,3rD)

∣∣1D

(5.3)

≤
l(D)∑
j=1

∣∣∣fBU (xD
j−1,3r

D
j−1)

− fBU (xD
j ,3rDj )

∣∣∣1D1BU (xD
j ,C2rDj )
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≲
l(D)∑
j=1

(
Ψ(rDj )

m(BU (xDj , r
D
j ))

ˆ
B(xD

j ,APLrDj )

dΓ(f, f)

)1/2

1D1BU (xD
j ,C2rDj )

≲
∑

BU (xj ,rj)∈R1(BU (x,r))

aj1D1BU (xj ,C2rj), (5.4)

where aj :=
(

Ψ(rj)
m(BU (xj ,rj))

´
B(xj ,APLrj)

dΓ(f, f)
)1/2

. Note that

∑
BU (xD,rD)∈R(BU (x,r))

ˆ
BU (xD,3rD)

∣∣fBU (x0,3r0) − fBU (xD,3rD)

∣∣2 dm
=

∑
BU (xD,rD)∈R(BU (x,r))

m(BU (xD, 3rD))
∣∣fBU (x0,3r0) − fBU (xD,3rD)

∣∣2
(3.9)

≤ D2
0

∑
BU (xD,rD)∈R(BU (x,r))

m(BU (xD, rD))
∣∣fBU (x0,3r0) − fBU (xD,3rD)

∣∣2
≤ D2

0

ˆ ∑
BU (xD,rD)∈R(BU (x,r))

∣∣fBU (x0,3r0) − fBU (xD,3rD)

∣∣21BU (xD,rD) dm

(5.4)

≲
ˆ ∑

D∈R(BU (x,r))

 ∑
BU (xj ,rj)∈R1(BU (x,r))

aj1D1BU (xj ,C2rj)

2

dm

≲
ˆ  ∑

D∈R(BU (x,r))

1D

 ∑
BU (xj ,rj)∈R1(BU (x,r))

aj1BU (xj ,C2rj)

2

dm. (5.5)

Combining APL > ϵ−1, (3.15) and Proposition 3.2(d), there exist C,C ′ > 0 such that∑
BU (xj ,rj)∈R1(BU (x,r))

1BU (xj ,APLrj) ≤ C ′1BU (x,Cr) (5.6)

By Definition 3.1(a) the balls in R are disjoint and hence
∑

D∈R(BU (x,r)) 1D ≤ 1.

Therefore by (5.5) for any f ∈ Floc(BU (x,Cr))

∑
BU (xD,rD)∈R(BU (x,r))

ˆ
BU (xD,3rD)

∣∣fBU (x0,3r0) − fBU (xD,3rD)

∣∣2 dm
≲
ˆ  ∑

BU (xj ,rj)∈R1(BU (x,r))

aj1BU (xj ,C2rj)

2

dm

≲
ˆ  ∑

BU (xj ,rj)∈R1(BU (x,r))

aj1BU (xj ,rj)

2

dm (by Lemma 5.1)
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≲
∑

BU (xj ,rj)∈R1(BU (x,r))

Ψ(rj)

ˆ
B(xj ,APLrj)

dΓ(f, f)

(3.15)

≲ Ψ(r)
∑

BU (xj ,rj)∈R1(BU (x,r))

ˆ
B(xj ,APLrj)

dΓ(f, f)

≲ Ψ(r)

ˆ
BU (x,Cr)

dΓ(f, f) (by (5.6)). (5.7)

Combining the above estimate with (5.1), (5.2) and (5.6), we obtain the desired
Poincaré inequality in this case.
Case 2: x ∈ U,AP r ≤ δU (x). In this case we have the desired Poincaré inequality by
PI(Ψ) if we choose AU ≥ AP .
Case 3: x ∈ U,A−1

P δU (x) < r < δU (x). By considering the ball BU (x,AP r) and using
case 1, we obtain Poincaré inequality by choosing AU = APC.

Remark 5.4. As observed in Remark 3.10, the assumption that B0 = BU (x0, r0) ∈
R(BU (x, r)) is central can be replaced with the condition that r0 ≥ c0r for some c0 > 0
for the proof of (5.7). This follows from Remark 3.10 as Lemma 3.9 still holds in this
setting.

5.2 Extension map and its boundedness

In this section, we define the extension map EQ : L2(U) → L2(X) and obtain some of
its basic properties. We will often make the following assumptions.
Assumption 5.5. Let (X, d,m, E ,F) be an MMD space that satisfies the heat kernel
estimate HKE(Ψ) for some scale function Ψ and let m be a doubling measure. Hence
by Theorem 4.4, (X, d,m, E ,F) satisfies PI(Ψ) and CS(Ψ) (and hence also cap(Ψ)≤).
Let U be a uniform domain in (X, d). Let ϵ > 0 be such that

27AP ϵ < 1,

where AP ≥ 1 be a constant such that PI(Ψ) holds. Let R,S denote ϵ-Whitney covers

of U and V := (U c)◦ = (U)c respectively. Let Q : S̃ → R be as given in Proposition
3.12. Let {ψB : B ∈ S} be a partition of unity of V with controlled energy as given in
Lemma 4.5; that is,

E(ψB , ψB) ≲
m(B)

Ψ(r(B))
.

We define the extension map EQ : L2(U,m) → L2(X,m) as

EQ(f)(x) =

{
f(x) if x ∈ U ,∑

B∈S̃ ψB(x)
ffl
3Q(B)

f dm otherwise,
(5.8)

where 3Q(B) denotes the ball with the same center but three times the radius of that of
Q(B). In the case V = ∅, we interpret the above sum over an empty-set in (5.8) as 0.
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Recall from (3.38) the notation

S(B(ξ, r)) = {BV (y, s) ∈ S : BV (y, 6s) ∩B(ξ, r) ̸= ∅} , S̃(B(ξ, r)) = S(B(ξ, r))∩S̃
(5.9)

so that EQf ≡
∑

B∈S̃(B(ξ,r)) ψB(x)
ffl
3Q(B)

f dm on B(ξ, r) \U (since ψB is supported

on 6B).
At this point, it is not clear why EQ(f) defined in (5.8) belong to L2(X,m) when-

ever f ∈ L2(U,m). The following lemma shows that the extension operator enjoys a
scale invariant boundedness property with respect to L2 norm. By (5.10) below, EQ

can be viewed as a bounded operator from L2(B(ξ, A1r) ∩ U) to L2(B(ξ, r)) where
the bound is independent of r > 0 and ξ ∈ ∂U . This motivates our terminology scale
invariant boundedness.
Lemma 5.6. Let m be a doubling measure on (X, d) and let U be a uniform domain.
Let EQ be the extension map as defined in (5.8). The extension map EQ : L2(U,m) →
L2(X,m) is a bounded linear operator. There exists C1, A1 ∈ (1,∞) such that for any
f ∈ L2(U,m), ξ ∈ ∂U, r > 0, we have

ˆ
B(ξ,r)

|EQf|2 dm ≤ C1

ˆ
B(ξ,A1r)∩U

|f|2 dm. (5.10)

Proof. The linearity of EQ is evident from the definition. The boundedness of EQ

follows from (5.10) by letting r → ∞.
It remains to show (5.10). By Propositions 3.12(a,b) and 3.2(d), there exist

A1, C0 ∈ (1,∞) such that ∑
B∈S̃

13Q(B) ≤ C01BU (x,A1r). (5.11)

Since {3B : B ∈ S̃} is a cover of V , we have

ˆ
B(ξ,r)

|EQf|2 dm ≤
ˆ
U∩B(ξ,r)

|f|2 dm+

ˆ
V

∣∣∣∣∣∣
∑

B∈S̃(B(ξ,r))

ψB(·)
 
3Q(B)

f dm

∣∣∣∣∣∣
2

dm

≤
ˆ
U∩B(ξ,r)

|f|2 dm+

ˆ
V

∣∣∣∣∣∣
∑

B∈S̃(B(ξ,r))

16B(·)
 
3Q(B)

f dm

∣∣∣∣∣∣
2

dm.

(5.12)

For the second term we estimate using Proposition 3.2(d) and ϵ < 1/6 we obtain∑
BV (xi,ri)∈S̃(B(ξ,r))

1BV (xi,6ri) ≲ 1,
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the Cauchy-Schwarz inequality and volume doubling, to obtain

ˆ
V

∣∣∣∣∣∣
∑

B∈S̃(B(ξ,r))

1B

 
3Q(B)

f dm

∣∣∣∣∣∣
2

m(dx)

≲
ˆ
V

∑
B∈S̃(B(ξ,r))

16B

∣∣∣∣∣
 
3Q(B)

f dm

∣∣∣∣∣
2

m(dx)

≲
∑

B∈S̃(B(ξ,r))

m(Q(B))

∣∣∣∣∣
 
3Q(B)

f dm

∣∣∣∣∣
2

(by (3.25))

≲
∑

B∈S̃(B(ξ,r))

ˆ
3Q(B)

f2 dm (by Cauchy-Schwarz inequality)

≲
ˆ
U∩B(ξ,A1r)

f2 dm (by (5.11)). (5.13)

Combining (5.12) and (5.13), we obtain (5.10).

5.3 Energy bounds on the extension map

We recall an elementary lemma about bounded degree graphs that is used to obtain
energy bounds on the extended function. A unweighted version of this lemma is
contained in [Soa, Proof of Lemma 7.5].
Lemma 5.7. Let G = (VG, EG) be a bounded degree graph with deg(x) ≤ M for all
x ∈ VG. Let dG denote the graph distance on VG. Let C ≥ 1,m : VG → (0,∞) be such
that

C−1m(y) ≤ m(x) ≤ Cm(y) for all x, y ∈ VG with dG(x, y) = 1. (5.14)

Then for any L ≥ 1, f : VG → R, we have∑
x∈VG

∑
y∈VG,

dG(x,y)≤L

|f(x) − f(y)|2m(x) ≤ LCLM2(L+1)
∑
x∈V

∑
y∈VG,

dG(x,y)≤1

|f(x) − f(y)|2m(x).

(5.15)

Proof. For every ordered pair (x, y) ∈ VG × VG such that dG(x, y) ≤ L, we pick a
path γ(x, y) of vertices x = x0, . . . , xn = y such that n = dG(x, y) ≤ L. By the
Cauchy-Schwarz inequality and (5.14), we have

|f(x) − f(y)|2m(x) ≤ dG(x, y)

dG(x,y)−1∑
i=0

|f(xi) − f(xi+1)|2m(x) (5.16)
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≤ LCL

dG(x,y)−1∑
i=0

|f(xi) − f(xi+1)|2m(xi). (5.17)

For each edge (z1, z2) the term |f(zi) − f(zi+1)|2m(zi) arises from at most (1 + M +
M2+. . .+ML)2 ≤M2(L+1) (for allM ≥ 2) pairs (x, y) ∈ V×V such that dG(x, y) ≤ L.
By summing (5.16) over all such pairs (x, y) and using this observation, we obtain
(5.15).

Next, we would like to obtain an analogue of Lemma 5.6 with L2 norms replaced
by energy measures. The following proposition provides such a scale-invariant bound-
edness estimate for energy of the extension. In (5.18) below, we obtain Poincaré type
inequality where the variance is over a ball on X end the Dirichlet energy is over a
ball on U . This variant of Poincaré inequality is the key ingredient of this work and
plays an important role in estimating the energy of the extension EQ(f).
Proposition 5.8. Let (X, d,m, E ,F) be an MMD space that satisfies the heat kernel
estimate HKE(Ψ) for some scale function Ψ and let m be a doubling measure. Let U
be a uniform domain in (X, d) and let EQ be the extension map as defined in (5.8)
satisfying Assumption 5.5. Let V = (U c)◦. Then we have the following:
(a) There exist c0 ∈ (0, 1),K0, C1 ∈ (1,∞) such that for any ξ ∈ ∂U, r < c0diam(U),

such that

inf
α∈R

ˆ
B(ξ,r)

|EQf − α|2 dm ≤ C1Ψ(r)

ˆ
B(ξ,K0r)∩U

dΓU (f, f), for any f ∈ F(U).

(5.18)
(b) For any f ∈ L2(U), we have EQ(f) ∈ Floc(V ). There exits c1 ∈ (0, 1), C1, C2,K1 ∈

(1,∞) such that for all f ∈ F(U), ξ ∈ ∂U, 0 < r < c1diam(U), we have

Γ(EQ(f), EQ(f))(BV (ξ, r)) ≤ C1ΓU (f, f)(BU (ξ,K1r)), (5.19)

and

Γ(EQ(f), EQ(f))(V ) ≤ C2

(
EU (f, f) +

1

Ψ(diam(U))

ˆ
U

f2 dm

)
, (5.20)

where by convention that 1
Ψ(diam(U)) = 0 if diam(U) = ∞.

(c) There exists C3 ∈ (1,∞) such that for any f ∈ F(U), we have EQ(f) ∈ F and

E(EQ(f), EQ(f)) ≤ C3

(
EU (f, f) +

1

Ψ(diam(U))

ˆ
U

f2 dm

)
. (5.21)

(d) For all f ∈ F(U), we have

Γ(EQ(f), EQ(f))(∂U) = 0. (5.22)
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(e) There exists C4,K2 ∈ (1,∞), c2 ∈ (0, 1) all f ∈ F(U) such that for all x ∈ U, 0 <
r < c2diam(U, d),

Γ(EQ(f), EQ(f))(B(x, r)) ≤ C4ΓU (f, f)(BU (x,K3r)). (5.23)

Proof. (a) Let B0 = BU (x0, r0) ∈ R(BU (ξ, r)) be a central ball as given by Lemma
3.7. By (5.1), (5.2) and (5.6) in the proof of Theorem 5.3, we obtain

ˆ
B(ξ,r)∩U

∣∣EQf − fBU (x0,3r0)

∣∣2 dm =

ˆ
B(ξ,r)∩U

∣∣f − fBU (x0,3r0)

∣∣2 dm
≲ Ψ(r)

ˆ
B(ξ,Kr)∩U

dΓU (f, f). (5.24)

Let S̃(B(ξ, r)) be as defined in (5.9) so that

EQf(x) =
∑

B∈S̃(B(ξ,r))

ψB(x)

 
3Q(B)

f dm for all x ∈ B(ξ, r) \ U.

By (3.25), there exist K1 > 0 such that

{Q(B) : B ∈ S̃(B(ξ, r))} ⊂ R(B(ξ,K1r)), (5.25)

where R(B(x,K1r)) is as defined in (3.10). We estimate

ˆ
BV (ξ,r)

∣∣EQf − fBU (x0,3r0)

∣∣2 dm
≤
ˆ
BV (ξ,r)

∣∣∣∣∣∣
∑

B∈S̃(B(ξ,r))

(f3Q(B) − fBU (x0,3r0))ψB(·)

∣∣∣∣∣∣
2

dm

≲
ˆ
BV (ξ,r)

∑
B∈S̃(B(ξ,r))

(f3Q(B) − fBU (x0,3r0))
2ψB(·)2 dm

(by Proposition 3.2(d))

≲
∑

B∈S̃(B(ξ,r))

(f3Q(B) − fBU (x0,3r0))
2m(B)

(by doubling and ψB(·) ≤ 16B(·))

≲
∑

B∈S̃(B(ξ,r))

(f3Q(B) − fBU (x0,3r0))
2m(Q(B)) (by (3.9) and (3.25))

≲
∑

B∈R(BU (ξ,K1r))

(f3B − fBU (x0,3r0))
2m(B) (Proposition 3.12(b), (5.25))

≲ Ψ(r)Γ(f, f)(BU (ξ,K2r))
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The last line above follows from the same argument as (5.7) as explained in Remark
5.4 (recall that 27AP ϵ < 1 from Assumption 5.5).

(b) For any open set BV (y0, s0) ∈ S and f ∈ F(U), by Lemma 4.5(b) we obtain

EQ(f)(·) ≡
∑

BV (y,s)∈S̃(BV (y0,3s0))

f3Q(BV (y,s))ψBV (y,s)(·) on BV (y0, 3s0). (5.26)

By Lemma 3.14(b), there exist N1 ∈ N such that #S̃(BV (y0, 3s0)) ≤ N1 for all
BV (y0, s0) ∈ S. Therefore EQ(f) ∈ F(BV (y0, 3s0)) for all BV (y0, s0) ∈ S and
consequently by Definition 3.1(iii) we conclude EQ(f) ∈ Floc(V ).

By (5.26), strong locality, and Lemma 4.5(b), we have the estimate

Γ(EQ(f), EQ(f))(BV (y0, 3s0)) ≤ N1 inf
α∈R

∑
B∈S̃(BV (y0,3s0))

∣∣f3Q(B) − α
∣∣2E(ψB , ψB)

(4.2)

≲ inf
α∈R

∑
B∈S̃(BV (y0,3s0))

∣∣f3Q(B) − α
∣∣2 m(B)

Ψ(r(B))

≲ inf
α∈R

∑
B∈S̃(BV (y0,3s0))

∣∣f3Q(B) − α
∣∣2 m(Q(B))

Ψ(r(Q(B)))
,

(5.27)

where we use Proposition 3.12(a), (2.7) and (3.9) in the last line above.
By Lemma 3.14(a,e), we choose c0 ∈ (0, 1) such that for all ξ ∈ ∂U, 0 < r <

c0diam(U), B1 ∈ S(BV (ξ, r)), B2 ∈ S(B1), we have

B1 ∈ S̃, B2 ∈ S̃. (5.28)

Since {3B : B ∈ S} cover V , for all ξ ∈ ∂U, 0 < r < c0diam(U) we obtain

Γ(EQ(f), EQ(f))(BV (ξ, r))

≤
∑

B∈S(BV (ξ,r))

Γ(EQ(f), EQ(f))(3B)

(5.28)
=

∑
B∈S̃(BV (ξ,r))

Γ(EQ(f), EQ(f))(3B)

(5.27),(5.28)

≲
∑

B∈S̃(BV (ξ,r))

∑
B′:B′S∼B

∣∣f3Q(B′) − f3Q(B)

∣∣2 m(Q(B))

Ψ(r(Q(B)))
. (5.29)

By Lemma 3.14(c,d,e), there exist c1 ∈ (0, c0),K1, L1 ∈ (0,∞) such that for all
ξ ∈ ∂U, 0 < r < c1diam(U), B1 ∈ S(BV (ξ, r)), we have

B2 ∈ S̃(B1), Q(B1) ∈ R̃(BU (ξ,K1r)),
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DS(Q(B1), Q(B2)) ≤ L1, for all B2 ∈ S(B1);

B3 ∈ R̃(BU (ξ,K1r)) for all B3 ∈ R with DR(Q(B1), B3) ≤ L1. (5.30)

By Proposition 3.2(c) and (3.9), there exists C0 ≥ 1 such that for all B1, B2 ∈ R
satisfying DR(B1, B2) = 1, we have

C−1
0

m(B2)

Ψ(r(B2))
≤ m(B1)

Ψ(r(B1))
≤ C0

m(B2)

Ψ(r(B2))
. (5.31)

By (5.29) and (5.30), we estimate

Γ(EQ(f), EQ(f))(BV (ξ, r))

≲
∑

B1∈R(BU (ξ,K1r))

∑
B2∈R(BU (ξ,K1r))
DR(B1,B2)≤L1

|f3B1 − f3B2|
2 m(B1)

Ψ(r(B1))

≲
∑

B1∈R(BU (ξ,K1r))

∑
B2∈R(BU (ξ,K1r))

DR(B1,B2)=1

|f3B1
− f3B2

|2 m(B1)

Ψ(r(B1))

(by (5.31) and Lemma 5.7)

≲
∑

B1∈R(BU (ξ,K1r))

Γ(f, f)

(
AP

(
3 + 6

1 + 4ϵ

1 − 2ϵ

)
B1

)
(by Lemmas 5.2 and 3.14(b))

≲ Γ(f, f)

 ⋃
B1∈R(BU (ξ,K1r))

AP

(
3 + 6

1 + 4ϵ

1 − 2ϵ

)
B1


(by Proposition 3.2(d)). (5.32)

By (3.40), we obtain

⋃
B1∈R(BU (ξ,K1r))

AP

(
3 + 6

1 + 4ϵ

1 − 2ϵ

)
B1 ⊂ BU (ξ,Kr),

where

K = K1

(
1 +

ϵ

1 − 2ϵ

(
3 +AP

(
3 + 6

1 + 4ϵ

1 − 2ϵ

)))
.

This along with (5.32) yields (5.19).
It remains to show (5.20). If diam(U) = ∞, then by letting r → ∞ in (5.19)

and using monotone convergence theorem, we obtain Γ(EQ(f), EQ(f))(V ) ≤
C1EU (f, f) for all f ∈ F(U).

Hence it suffices to consider the case diam(U) < ∞. Let c1 ∈ (0, 1),K1 ∈
(1,∞) be such that (5.19) holds. Let r0 := c1

4 diam(U) and N ⊂ X be a maximal

43



r0-separated subset of ∂U . Then

∂U ⊂ ∪n∈NB(n, r0), d(x, ∂U) ≥ r0 for all x ∈ X \ (∪n∈NB(n, 2r0)).
(5.33)

By (5.19) and the metric doubling property, we have∑
n∈N

Γ(EQ(f), EQ(f))(BV (n, 2r0)) ≲
∑
n∈N

Γ(f, f)(BU (n, 2K1r0)) ≲ EU (f, f)

(5.34)
for all f ∈ F(U). By (3.2), (3.24), and Lemma 4.5(b), for all BV (y, s) ∈ S

s ≥ 1 + 7ϵ

1 − 5ϵ

ϵ

6A(1 + ϵ)
diam(U) implies EQ(f) ≡ 0 on BV (y, 3s). (5.35)

By (3.1) and (5.33), for any BV (y, s) ∈ S such that

BV (y, 3s) ∩ (X \ (∪n∈NB(n, 2r0))) ̸= ∅,

we have
s =

ϵ

1 + ϵ
δV (y) >

ϵ

1 + 4ϵ
r0 =

c1ϵ

4(1 + 4ϵ)
diam(U). (5.36)

For any BV (y, s) ∈ S such that s > c1ϵ
4(1+4ϵ)diam(U), by the metric doubling

property, (5.27) we have

Γ(EQf,EQf)(BV (y, 3s))
(5.27)

≲
∑

B∈S̃(BV (y,s))

m(Q(B))

Ψ(Q(B))

∣∣f3Q(B)

∣∣2
≲

1

Ψ(diam(U))

ˆ
U

f2 dm (5.37)

for all f ∈ L2(U,m). Since the metric doubling property implies that there are
only a bounded number of balls BV (y, s) ∈ S such that

s >
c1ϵ

4(1 + 4ϵ)
diam(U) and s <

1 + 7ϵ

1 − 5ϵ

ϵ

6A(1 + ϵ)
diam(U).

Therefore by Definition 3.1(c), (5.34), (5.35), and (5.37), we obtain (5.20).
(c) Our approach to show that EQf ∈ F is to use the criterion (4.3) in Theorem 4.6.

To this end, we choose N1 ⊂ ∂U a maximal r-separated subset of ∂U and N ⊃ N1

such that N is a maximal r-separated subset of X (the existence of such N1, N
follows from Zorn’s lemma). Let CP , AP ≥ 0 be the constants associated with the
Poincaré inequality PI(Ψ). Define

N2 = {n ∈ N : B(n, 2Apr) ∩ ∂U = ∅}. (5.38)
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Since ∂U ⊂ ∪n∈N1B(n, r), X = ∪n∈NB(n, r), we have

X = (∪n∈N1B(n, 2(AP r + 1)r)) ∪ (∪n∈N2B(n, r)) . (5.39)

Therefore

1{d(x,y)<r}

≤
∑
n∈N1

1B(n,(2AP+3)r)(x)1B(n,(2AP+3)r)(y) +
∑
n∈N2

1B(n,2r)(x)1B(n,2r)(y).

(5.40)

By (3.9) and (5.40), we have

1{d(x,y)<r}

m(B(x, r))

≲
∑
n∈N1

1B(n,(2AP+3)r)(x)1B(n,(2AP+3)r)(y)

m(B(n, (2AP + 3)r))
+
∑
n∈N2

1B(n,2r)(x)1B(n,2r)(y)

m(B(n, 2r))
.

(5.41)

Let K0 ∈ (1,∞), c0 ∈ (0, 1) be such that (5.18) holds. Let f ∈ F(U) and define

W (EQ(f), r) :=
1

Ψ(r)

ˆ
X

 
B(x,r)

(EQ(f)(x) − EQ(f)(y))2m(dy)m(dx).

By (5.41), for all r > 0, f ∈ F(U),

W (EQ(f), r)

(5.41)

≲
1

Ψ(r)

∑
n∈N1

ˆ
B(n,(2AP+3)r)

∣∣EQ(f)(x) − (EQ(f))B(n,(2AP+3)r)

∣∣2m(dx)

+
∑
n∈N2

1

Ψ(r)

ˆ
B(n,2r)

∣∣EQ(f)(x) − (EQ(f))B(n,2r)

∣∣2m(dx). (5.42)

Since ∂V ⊂ ∂U , we have B(n, 2AP r) ⊂ U ∪ V for all n ∈ N2. Noting that EQ(f)
belongs to Floc(U ∪V ) and using the Poincaré inequality PI(Ψ) along with metric
doubling property we obtain for all r > 0, f ∈ F(U),

∑
n∈N2

1

Ψ(r)

ˆ
B(n,2r)

∣∣EQ(f)(x) − (EQ(f))B(n,2r)

∣∣2m(dx)

≲
∑
n∈N2

Ψ(2r)

Ψ(r)

ˆ
B(n,2AP r)

dΓ(EQ(f), EQ(f)) (by PI(Ψ))

≲ ΓU (f, f)(U) + Γ(EQ(f), EQ(f))(V ) (by (2.7) and metric doubling)
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≲ EU (f, f) +
1

Ψ(diam(U))

ˆ
U

f2 dm. (5.43)

For all 0 < r < c0
2AP+3diamU , by (5.18) we have

1

Ψ(r)

∑
n∈N1

ˆ
B(n,(2AP+3)r)

∣∣EQ(f)(x) − (EQ(f))B(n,(2AP+3)r)

∣∣2m(dx)

≲
Ψ((2AP + 3)r)

Ψ(r)

∑
n∈N1

ˆ
B(n,(2AP+3)K0r)∩U

dΓ(f, f)

≲ EU (f, f) (by (2.7) and metric doubling). (5.44)

Combining (5.42), (5.43) and (5.44), we obtain

lim sup
r↓0

W (EQ(f), r) ≲ EU (f, f) +
1

Ψ(diam(U))

ˆ
U

f2 dm, for all f ∈ F(U).

This along with Theorem 4.6(b) completes the proof of (5.21).
(d) Since X = U ∪V ∪∂U , by (5.19) it suffices to estimate Γ(EQ(f), EQ(f))(B(ξ, r)∩

∂U). We estimate Γ(EQ(f), EQ(f))(B(ξ, r)∩∂U) using Theorem 4.6(c). We choose
c0, c1 ∈ (0, 1),K0,K1 ∈ (1,∞) such that (5.18) and (5.19) hold.

Let δ > 0, r > 0. As in (c) above, we choose N1 ⊂ ∂U a maximal r-separated
subset of ∂U and N ⊃ N1 such that N is a maximal r-separated subset of X.
Let N2 be as given by (5.38). We denote by (∂U)δ = {y ∈ X : d(y, ∂U) < δ}, the
δ-neighborhood of ∂U . By (5.39), we have

1(∂U)δ(x)1{d(x,y)<r} ≤
∑
n∈N1

1B(n,(2AP+3)r)(x)1B(n,(2AP+3)r)(y)

+
∑

n∈N2,
n∈(∂U)δ+r

1B(n,2r)(x)1B(n,2r)(y). (5.45)

By (3.9) and (5.45), we obtain

1(∂U)δ(x)1{d(x,y)<r}

m(B(x, r))
≲
∑
n∈N1

1B(n,(2AP+3)r)(x)1B(n,(2AP+3)r)(y)

m(B(n, (2AP + 3)r))

+
∑

n∈N2,
n∈(∂U)δ+r

1B(n,2r)(x)1B(n,2r)(y)

m(B(n, 2r))
. (5.46)

By (5.46), for all r > 0, f ∈ F(U),

1

Ψ(r)

ˆ
(∂U)δ

 
B(x,r)

(EQ(f)(x) − EQ(f)(y))2m(dy)m(dx)
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(5.46)

≲
1

Ψ(r)

∑
n∈N1

ˆ
B(n,(2AP+3)r)

∣∣EQ(f)(x) − (EQ(f))B(n,(2AP+3)r)

∣∣2m(dx)

+
∑

n∈N2,
n∈(∂U)δ+r

1

Ψ(r)

ˆ
B(n,2r)

∣∣EQ(f)(x) − (EQ(f))B(n,2r)

∣∣2m(dx). (5.47)

Since ∂V ⊂ ∂U , we have B(n, 2AP r) ⊂ U ∪V for all n ∈ N2. Combining EQ(f) ∈
F with the Poincaré inequality PI(Ψ) and metric doubling property, for all r >
0, f ∈ F(U), we obtain

∑
n∈N2,

n∈(∂U)δ+r

1

Ψ(r)

ˆ
B(n,2r)

∣∣EQ(f)(x) − (EQ(f))B(n,2r)

∣∣2m(dx)

≲
∑

n∈N2,
n∈(∂U)δ+r

Ψ(2r)

Ψ(r)

ˆ
B(n,2AP r)

dΓ(EQ(f), EQ(f)) (by PI(Ψ))

≲ ΓU (f, f)(U ∩ (∂U)δ+(2AP+1)r) + Γ(EQ(f), EQ(f))(V ∩ (∂U)δ+(2AP+1)r)
(5.48)

(by (2.7) and metric doubling).

Since V ∩ (∂U)δ+(2AP+1)r ⊂ ∪n∈N1BV (n, δ + 2(AP + 1)r), for any δ, r > 0 such
that δ + 2(AP + 1)r < c1diam(U), we obtain

Γ(EQ(f), EQ(f))(V ∩ (∂U)δ+(2AP+1)r)

≤
∑
n∈N1

Γ(EQ(f), EQ(f))(BV (n, δ + 2(AP + 1)r))

≲
∑
n∈N1

ΓU (f, f)(BU (n,K1(δ + 2(AP + 1)r))) (by (5.19))

≲ ΓU (f, f)
(
U ∩ (∂U)K1(δ+2(AP+1)r)

)
(by metric doubling). (5.49)

For all 0 < r < c0
2AP+3diamU , by (5.18) we have

1

Ψ(r)

∑
n∈N1

ˆ
B(n,(2AP+3)r)

∣∣EQ(f)(x) − (EQ(f))B(n,(2AP+3)r)

∣∣2m(dx)

≲
Ψ((2AP + 3)r)

Ψ(r)

∑
n∈N1

ˆ
B(n,(2AP+3)K0r)∩U

dΓ(f, f)

≲ ΓU (f, f)(U ∩ (∂U)(2AP+3)K0r) (by (2.7) and metric doubling). (5.50)

Combining (5.47), (5.48), (5.49) and (5.44), we obtain

1

Ψ(r)

ˆ
(∂U)δ

1

m(B(x, r))

ˆ
B(x,r)

(EQ(f)(x) − EQ(f)(y))2m(dy)m(dx)
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≲ ΓU (f, f)
(
U ∩ (∂U)K1(δ+2(AP+1)r)

)
+ ΓU (f, f)(U ∩ (∂U)(2AP+3)K0r)

for all f ∈ F(U) and for all δ, r > 0 such that

r <
c0

2AP + 3
diam(U) and δ + 2(AP + 1)r < c1diam(U).

Therefore by dominated convergence theorem, for all 0 < δ < c1diam(U), f ∈
F(U), we have

lim sup
r↓0

1

Ψ(r)

ˆ
(∂U)δ

1

m(B(x, r))

ˆ
B(x,r)

(EQ(f)(x) − EQ(f)(y))2m(dy)m(dx)

≲ ΓU (f, f) (U ∩ (∂U)2K1δ) .

By letting δ ↓ 0 and using dominated convergence theorem, we have

lim
δ↓0

lim sup
r↓0

1

Ψ(r)

ˆ
(∂U)δ

 
B(x,r)

(EQ(f)(x) − EQ(f)(y))2m(dy)m(dx) = 0 (5.51)

for all f ∈ F(U). Therefore by Theorem 4.6(c) and (5.51), we have

Γ(EQ(f), EQ(f))(B(ξ, r) ∩ ∂U) = 0

for all f ∈ F(U), ξ ∈ ∂U, r > 0. Letting r → ∞, we obtain (5.22).
(e) Let c1 ∈ (0, 1), C1,K1 ∈ (1,∞) be chosen so that (5.19) holds. Let c2 = c1/2.

If x ∈ U, 0 < r < c2diam(U, d) satisfies δU (x) > r, (5.23) follows since
Γ(EQ(f), EQ(f))(B(x, r)) = Γ(f, f)(BU (x, r)) by strong locality.

It suffices to consider the case x ∈ U, 0 < r < c2diam(U, d) with δU (x) ≤ r. Let
ξ ∈ ∂U be such that d(x, ξ) = δU (x) ≤ r. Since B(x, r) ⊂ B(ξ, 2r), we obtain

Γ(EQ(f), EQ(f))(B(x, r)) ≤ Γ(EQ(f), EQ(f))(B(ξ, 2r))

≤ (C1 + 1)Γ(f, f)(BU (ξ, 2K1r)) ( (5.19) and (5.22))

≤ (C1 + 1)Γ(f, f)(BU (x, (2K1 + 1)r))

(since BU (ξ, 2K1r) ⊂ BU (x, (2K1 + 1)r).

This concludes the proof of (5.23).

Next, we complete the proof of Theorem 2.7.

Proof of Theorem 2.7. Let E denote the operator EQ in Proposition 5.8. The estimate
(2.11) follows from (5.23). The estimates (2.12) follows from Lemma 5.6 and the
same argument as the proof of (5.23). The estimate (2.14) follows from (2.12) by
letting r → ∞. The global bound on the energy (2.13) is a consequence of (5.20) and
(5.22).
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5.4 Energy measure on the boundary of a uniform domain

In this subsection, we prove Theorem 2.9. The following lemma shows that EQ

maps continuous function with compact support to a function that has a continuous
representative with compact support.
Lemma 5.9. In the setting of Assumption 5.5, for any f ∈ Cc(X), the function ẼQf
defined as

ẼQf(x) =

{
f(x) if x ∈ U ,∑

B∈S̃ ψB(x)
ffl
3Q(B)

f dm if x ∈ V = (U)c,

satisfies ẼQf = EQf m-almost everywhere and ẼQf ∈ Cc(X).

Proof. Since EQf ≡ ẼQf on (∂U)c and m(∂U) = 0 by Lemma 3.5, we obtain ẼQf =
EQf m-almost everywhere.

Next, we show that ẼQf has compact support. Let ξ ∈ ∂U . Then there exists R > 0
such that supp(f) ⊂ B(ξ,R). By (3.2), (3.25), Lemma 4.5, there exists K > 0 such

that supp(ẼQf) ⊂ B(ξ,KR). By the metric doubling property and completeness of

(X, d), every closed and bounded set is compact. Therefore ẼQf has compact support.

It remains to show that ẼQf ∈ Cc(X). Since ẼQf ≡ f on U , it suffices to show

that ẼQf
∣∣∣
Uc

∈ Cc(U
c). By Lemmas 3.14(b) and 4.5(b), for any BV (y, s) ∈ S, the sum

defining ẼQf is a finite sum of continuous functions on BV (y, 3s). Therefore ẼQf is
continuous on V = ∪BV (y,s)∈SBV (y, 3s).

It remains to show that ẼQf
∣∣∣
Uc

is continuous at all points in ∂U . To this end,

consider ξ ∈ ∂U . By (3.2) and (3.25), there exist s0 > 0,K0 > 0 such that

sup
y∈BV (ξ,s)

∣∣∣ẼQf(y) − ẼQf(ξ)
∣∣∣ ≤ sup

z∈BU (ξ,K0s)

|f(z) − f(ξ)|, for all ξ ∈ ∂U, s ∈ (0, s0).

The continuity of ẼQf
∣∣∣
Uc

follows from the above estimate and the continuity of f
∣∣
U

.

In order to prove Theorem 2.9, we recall some elementary facts about energy
measures. For any Borel set B ⊂ X and for any f, g ∈ F , by [Hin10, (2.1)]4 we have∣∣∣√Γ(f, f)(B) −

√
Γ(g, g)(B)

∣∣∣2 ≤ Γ(f − g, f − g)(B) ≤ E(f − g, f − g). (5.52)

4There is an additional factor of 2 in [Hin10, (2.1)] due to the slightly different definition of energy
measure there.
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For any f ∈ F , by [CF, Theorem 4.3.8]5

f̃∗(Γ(f, f)) ≪ λ,

where λ denotes the Lebesgue measure on R, f̃ is a quasi-continuous version of f , f̃∗µ
denotes the pushforward of the measure µ under the map f̃ . In particular,

Γ(f, f)(f̃−1
∗ ({0})) = 0, for any f ∈ F and for any quasi-continuous version f̃ of f .

(5.53)

Proof of Theorem 2.9. By (5.52) and the regularity of the Dirichlet form it suffices to

show that Γ(f, f)(∂U) = 0 for all f ∈ Cc(X)∩F . To this end, note that f−ẼQ(f) ≡ 0

on U and f − ẼQf ∈ Cc(X) ∩ F by Lemma 5.9. By the continuity of f − ẼQf and
(5.53), we have

Γ(f − ẼQf, f − ẼQf)(U) = 0, for all f ∈ Cc(X) ∩ F . (5.54)

Combining this with Proposition 5.8 and (5.52), we obtain

Γ(f, f)(∂U)
(5.22)

=

∣∣∣∣√Γ(f, f)(∂U) −
√

Γ(ẼQ(f), ẼQ(f))(∂U)

∣∣∣∣2
(5.52)

≤ Γ(f − ẼQ(f), f − ẼQ(f))(∂U)
(5.54)

= 0 for all f ∈ Cc(X) ∩ F .

5.5 Quasicontinuous extension of a quasicontinuous function

Recall from Lemma 5.9 that every continuous function in the domain of the reflected
diffusion admits a continuous extension to the domain of the ambient diffusion. We
will show a similar property for quasicontinuous functions.

Let (X, d,m, E ,F) be an MMD space and let U be a uniform domain satisfying
the assumptions of Theorem 2.7. We recall the notion of 1-capacity of a set. Given an
MMD space (X, d,m, E ,F) and a Borel set A, we define its 1-capacity as

Cap1(A) = inf
{
E(f, f) + ∥f∥22 : f ∈ F ∩ C(X), f ≡ 1 on a neighborhood of A

}
,

where ∥f∥2 denotes the L2(X,m) norm. Let (U, d,m, EU ,F(U)) denote the MMD

space for the corresponding reflected diffusion and let CapU
1 denote the 1-capacity

corresponding to the reflected Dirichlet space. We say that an increasing sequence of
closed subsets {Fk} of X is said to be nest for (X, d,m, E ,F) if limk→∞ Cap1(X\Fk) =
0. We say that a function u ∈ F is quasicontinuous with respect to (X, d,m, E ,F) if

5In [CF, Theorem 4.3.8] the authors did not mention that quasi-continuous version of f is needed to
define the pushforward measure. However, this is required because changing f on a set of m-measure zero

can affect the push-forward measure. Nevertheless, due to the smoothness of energy measures, if f̃ is any

quasi-continuous version of f the measure ν := f̃∗(Γ(f, f)) is well-defined; that is, ν is independent of the
choice of the quasi-continuous representative [FOT, Theorem 2.1.3, Lemmas 2.1.4 and 3.2.4].
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for any ϵ > 0, there exists an open subset G ⊂ X such that Cap1(G) < ϵ and the
restriction u

∣∣
X\G is finite and continuous on X \G.

We record a useful property of the extension map that allows us to compare
potential theoretic notions of the reflected Dirichlet space with that of the ambient
space.
Lemma 5.10. Let m be a doubling measure on (X, d) and let U be a uniform domain.
Let EQ be the extension map as defined in (5.8). The extension map EQ : L2(U,m) →
L2(X,m) is a bounded linear operator. Then there exist c1, c2 ∈ (0, 1) such that the
following holds. For any f ∈ L2(U,m), ξ ∈ ∂U, 0 < r < c1diam(U, d), such that
whenever f ≥ 1 m-almost everywhere on BU (ξ, r), we have

(EQ(f))(x) ≥ 1 for m-almost every x ∈ B(ξ, c2r).

Proof. By Proposition 3.12(a), there exist c1, c2 ∈ (0, 1) such that whenever B ∈ S

satisfies 6B ∩ B(ξ, c2r) ̸= ∅ for some ξ ∈ ∂U, 0 < r < c1diam(U, d), then B ∈ S̃ and
3Q(B) ⊂ BU (ξ, r). This along with Lemma 4.5(b) and (5.8) implies that (EQ(f))(x) ≥
1 for all x ∈ V ∩B(ξ, c2r). The desired conclusion follows form Lemma 3.5.

The following proposition compares basic potential theoretic notions of 1-capacity,
nest, and quasicontinuous functions between (X, d,m, E ,F) and (U, d,m, EU ,F(U)). It
can be viewed as analogues of [FOT, Theorem 4.4.3(ii)] and [CF, Theorem 3.3.8(i,iv)].
Proposition 5.11. Let (X, d,m, E ,F) be an MMD space that satisfies the heat kernel
estimate HKE(Ψ) for some scale function Ψ and let m be a doubling measure. Let U be
a uniform domain U and let (U, d,m, EU ,F(U)) denote the MMD space for reflected
diffusion given in Theorem 2.8. Then we have the following.
(i) There exists C ∈ (1,∞) such that

CapU
1 (A) ≤ Cap1(A) ≤ C CapU

1 (A) for any Borel set A ⊂ U. (5.55)

(ii) If {Fk} is a nest for the MMD space (X, d,m, E ,F), then {Fk ∩U} is a nest for
(U, d,m, EU ,F(U)).

(iii) A function is quasicontinuous with respect to (U, d,m, EU ,F(U)) if and only if
it is a restriction of a quasicontinuous function with respect to (X, d,m, E ,F).

Proof. (i) Since CapU
1 (A) ≤ Cap1(A) is trivial by restriction of f ∈ F such that

f ≥ 1 to U .
Let ϵ > 0 and EQ denote the extension operator defined in (5.8) and satisfying

the properties in Theorem 2.7. Since there exists an open set G ⊂ U with G ⊃ A
and f ∈ F(U) such that f ≥ 1 m-almost everywhere in G and EU (f, f) +´
U
f2 dm < CapU

1 (A) + ϵ. By (2.13), (2.14), there exists C ∈ (1,∞) depending
only on the constants involved in the assumptions such that

E1(EQ(f), EQ(f)) ≤ C

(
EU (f, f) +

ˆ
U

f2 dm

)
< C(CapU

1 (A) + ϵ). (5.56)
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By Lemma 5.10, we have that there exists an open set G̃ in X such that A ⊂
G ⊂ G̃ ⊂ X and EQ(f) ≥ 1 m-almost everywhere in G̃. Therefore by (5.56), we
have Cap1(A) < C(CapU

1 (A) + ϵ). Since ϵ > 0 is arbitrary, we obtain the desired
conclusion.

(ii) Since U \ (Fk ∩ U) ⊂ X \ Fk and {Fk} is a nest with respect to (X, d,m, E ,F),
we have

lim
k→∞

CapU
1

(
U \ (Fk ∩ U)

)
≤ lim

k→∞
C Cap1

(
U \ (Fk ∩ U)

)
= 0.

Therefore {Fk ∩U} is a nest for (U, d,m, EU ,F(U)). The if part is an immediate
consequence of (i). It suffices to show that every quasicontinuous function in
F(U) has a quasicontinuous extension in F . To this end, let f : U → R be
quasicontinuous for (U, d,m, EU ,F(U)) and let EQ(f) ∈ F denote the extension
map as mentioned in (i). By [FOT, Theorem 2.1.3], there exists a quasicontinuous

modification ẼQ(f) of EQ(f) with respect to the Dirichlet form (E ,F). Using

the if part, the restriction ẼQ(f)(x)
∣∣∣
U

is quasicontinuous with respect to the

Dirichlet form (EU ,F(U)). Hence by [FOT, Lemma 2.1.4], the set A = {x ∈
U : ẼQ(f)(x) ̸= f(x)} satisfies CapU

1 (A) = 0 and hence by (i) also satisfies
Cap1(A) = 0. Therefore the function

ÊQ(f)(x) =

{
f(x) if x ∈ U ,

ẼQ(f)(x) if x ∈ (U)c,

is a quasicontinuous extension of f .

6 Heat kernel estimates

6.1 A simpler cutoff Sobolev inequality

We introduce a simplified version of cutoff Sobolev inequality and show that this
simpler version is equivalent to CS(Ψ) in Definition 4.3(b).
Definition 6.1. We say that (X, d,m, E ,F) satisfies the simplified cutoff Sobolev
inequality CSS(Ψ), if there exist CS > 0, A1, A2, C1 > 1 such that the following holds:
for all x ∈ X and 0 < R < diam(X, d)/A2, there exists a cutoff function ϕ ∈ F for
B(x,R) ⊂ B(x,A1R) such that for all f ∈ F ,

ˆ
B(x,A1R)

f̃2 dΓ(ϕ, ϕ) ≤ C1

ˆ
B(x,A1R)

dΓ(f, f) +
C1

Ψ(R)

ˆ
B(x,A1R)

f2 dm; CSS(Ψ)

where f̃ is a quasi-continuous version of f ∈ F .
We note that CSS(Ψ) is different from CS(Ψ) in the following aspects:

(a) We only consider cutoff functions for B(x,R) ⊂ B(x,A1R) for 0 < R <
diam(X, d)/A2 in CSS(Ψ) instead of B(x,R) ⊂ B(x,R + r) for all 0 < r < R in
CS(Ψ).
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(b) The integrals on CSS(Ψ) are over the larger ball as opposed to annuli in CS(Ψ).
(c) The first term in the right side has coefficient C1 in CSS(Ψ) as opposed to 1

8 in
CS(Ψ).

It is immediate to see that CS(Ψ) implies CSS(Ψ). Next, we show the converse that
CSS(Ψ) implies CS(Ψ). The proof follows from similar self-improvement properties of
cutoff Sobolev inequality in [AB, Lemma 5.1] and [BM, Proposition 5.11].
Lemma 6.2. Let (X , d,m, E ,F) satisfy the volume doubling property and CSS(Ψ) for
some regular scale function Ψ. Then (X, d,m, E ,F) satisfies CS(Ψ).

Proof. By [AB, Lemma 5.1], it suffices to show that there exists C2 > 0 such that for
all x ∈ X, 0 < r < R, there exists a cutoff function ϕ ∈ F for B(x,R) ⊂ B(x,R + r)
such that for all f ∈ F

ˆ
B(x,R+r)\B(x,R)

f̃2 dΓ(ϕ, ϕ)

≤ C2

ˆ
B(x,R+r)\B(x,R)

dΓ(f, f) +
C2

Ψ(r)

ˆ
B(x,R+r)\B(x,R)

f2 dm, (6.1)

where f̃ is a quasi-continuous version of f .
Let x ∈ X, 0 < r < R be arbitrary. If B(x,R + r) = X we simply choose ϕ ≡ 1 as

the cutoff function. In this case, by strong locality we have Γ(ϕ, ϕ) ≡ 0.
It remains to consider the case B(x,R + r) ̸= X. In this case 2r < R + r ≤

diam(X, d) implies r < diam(X, d)/2. Let A1, A2, C1 > 1 denote the constants such
that CSS(Ψ) holds. Define

L := max(A2, 4(A1 + 1)). (6.2)

Let N = {zi : i ∈ I} denote a maximal r/L-separated subset of X. For each i ∈ I, let
Bi = B(zi, r/L), B∗

i = B(zi, A1r/L). Since r/L < diam(X, d)/A2, by CSS(Ψ), there
exists a cutoff function φi for Bi ⊂ B∗

i such that for all f ∈ F
ˆ
B∗

i

f̃2 dΓ(φi, φi) ≤ C1

ˆ
B∗

i

dΓ(f, f) +
C1

Ψ(r/L)

ˆ
B∗

i

f2 dm, (6.3)

where f̃ is a quasi-continuous version of f . Define J ⊂ I as

J := {i ∈ I : zi ∈ B(x,R+ r/2)}.

Since ∪i∈BiX, and N is a r/L-separated, we have B(x,R+ r/2− r/L) ⊂ ∪j∈JBj and
∪j∈JB

∗
j ⊂ B(x,R+ r/2 + rA1/L). Therefore the function

ϕ = max
j∈J

φj

satisfies (by [FOT, Theorem 1.4.2](i),(ii))

ϕ ∈ F , 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on B(x,R+ r/2 − r/L), supp(ϕ) ⊂ B(x,R+r/2+rA1/L).
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Note that by strong locality, we have

supp(Γ(ϕ, ϕ)) ⊂ B(x,R+ r/2 + rA1/L) \B(x,R+ r/2 − r/L).

Let ψ ∈ C(X)∩F be a cutoff function for B(x,R+r/2+rA1/L)\B(x,R+r/2−r/L) ⊂
B(x,R+ r/2 + r(A1 + 1)/L) \B(x,R+ r/2 − 2r/L). Let

V := B(x,R+ r/2 + r(A1 + 1)/L) \B(x,R+ r/2 − 2r/L).

For any quasi-continuous function f ∈ F ∩ L∞(m),

ˆ
B(x,R+r)\B(x,r)

f2 dΓ(ϕ, ϕ)

=

ˆ
B(x,R+r)\B(x,r)

(ψf)2 dΓ(ϕ, ϕ)

≤
∑
j∈J

ˆ
B(x,R+r)\B(x,r)

(ψf)2 dΓ(φj , φj) (by [BM, Lemma 5.10])

≤
∑
j∈J

ˆ
B∗

j

1V f
2 dΓ(φj , φj) (since supp(φj) ⊂ B∗

j , and ψ ≤ 1V ). (6.4)

Let J1 := {j ∈ J : d(x, zj) ≥ R+ r/2− (A1 + 2)r/L}. Since supp(Γ(φi, φi)) ⊂ B∗
i and

V ∩B∗
j = ∅ for all j ∈ J \ J1, we have

∑
j∈J

ˆ
B∗

j

1V f
2 dΓ(φj , φj) =

∑
j∈J1

ˆ
B∗

j

1V f
2 dΓ(φj , φj)

≤ C1

ˆ
X

∑
j∈J1

1B∗
j
dΓ(f, f) +

C1

Ψ(r/L)

ˆ
X

∑
j∈J1

1B∗
j
f2 dm.

(6.5)

By the metric doubling property and R+ r/2 − (A1 + 2)r/L ≤ d(x, zj) < R+ r/2 for
all j ∈ J1, we have

∑
j∈J1

1B∗
j
≲ 1B(x,R+r/2+A1r/L)\B(x,R+r/2−2(A1+1)r/L)

(6.2)

≲ 1B(x,R+r)\B(x,R). (6.6)

By (6.4), (6.5), (6.6) and (2.7), we obtain (6.1) for all f ∈ F ∩ L∞(m). By approxi-
mating any f ∈ F , with fn := (n∧ f)∨ (−n) ∈ F ∩L∞ and letting n→ ∞, we obtain
(6.1) for all f ∈ F .

6.2 Extension map and the cutoff Sobolev inequality

Proposition 6.3. Let (X, d,m, E ,F) be an MMD space satisfying the volume doubling
property and the heat kernel estimate HKE(Ψ), where Ψ is a scale function. Let U ⊂ X
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be a uniform domain. Then the MMD space (U, d,m, EU ,F(U)) corresponding to the
reflected process on U satisfies CSS(Ψ).

Proof. By Theorem 4.4, (X, d,m, E ,F) satisfies CS(Ψ). Therefore there exists C1 > 0
such that for all x ∈ X,R > 0, f ∈ F , there exists a cutoff function ϕ ∈ F for
B(x,R) ⊂ B(x, 2R)

ˆ
B(x,2R)\B(x,R)

f̃2 dΓ(ϕ, ϕ) ≤ 1

8

ˆ
B(x,2R)

dΓ(f, f) +
C1

Ψ(R)

ˆ
B(x,2R)

f2 dm, (6.7)

where f̃ is a quasi-continuous version of f .
By (6.7), we the desired estimate in CSS(Ψ) for (U, d,m, EU ,F(U)) for any choice

of A1 ≥ 2 provided x ∈ U,R > 0 satisfies δU (x) > 2R.
It suffices to consider the case x ∈ U,R ≤ δU (x) ≤ 2R. We choose ϕ such that

(6.7) holds. Let E : F(U) → F be an extension operator as given in Theorem 2.7. Let

x ∈ U, 0 < r ≲ diam(X, d) and f ∈ F(U). Let f̃ be a quasi-continuous modification
of f for the Dirichlet form (EU ,F(U)) on L2(U,m

∣∣
U

). By Proposition 5.11(iii), there

exists Ẽ(f) a quasi-continuous modification of the extension E(f) ∈ F with respect

to (E ,F) on L2(X,m) such that Ẽ(f)
∣∣∣
U

= f̃ . We estimate

ˆ
BU (x,2R)\BU (x,R)

f̃2 dΓ(ϕ, ϕ)

≤
ˆ
B(x,2R)\B(x,R)

∣∣∣Ẽ(f)
∣∣∣2 dΓ(ϕ, ϕ)

(6.7)

≲
ˆ
B(x,2R)

dΓ(E(f), E(f)) +
1

Ψ(R)

ˆ
B(x,2R)

|E(f)|2 dm

(2.11),(2.12)

≲
ˆ
BU (x,2KR)

dΓ(f, f) +
1

Ψ(R)

ˆ
BU (x,2KR)

f2 dm,

where K is as given in Theorem 2.7. Since ϕ is a cutoff function for B(x,R) ⊂ B(x, 2R)
it is a cutoff function for B(x,R) ⊂ B(x, 2KR) and by strong locality [CF, Theorem
4.3.8], we have Γ(ϕ, ϕ) ((B(x, 2R) \B(x,R))c) = 0 and hence

ˆ
BU (x,2KR)\BU (x,R)

f̃2 dΓ(ϕ, ϕ) =

ˆ
BU (x,2R)\BU (x,R)

f̃2 dΓ(ϕ, ϕ).

Combining the above two displays, we have CSS(Ψ) by choosing A1 = 2K.

Remark 6.4. In [Lie], the author studies killed diffusion (with Dirichlet boundary
condition instead of Neumann boundary condition considered in this work). In the
Dirichlet boundary condition setting, the proof of cutoff Sobolev inequality does not
require any extension operator, since every function in the domain can be extended as
zero outside the domain.

We have the ingredients to prove Theorem 2.8.
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Proof of Theorem 2.8. By Theorem 2.7 along with Lemma 4.2, we obtain that
(EU ,F(U)) is a regular Dirichlet form on L2(U,m). By Theorems 4.4, 5.3, Lemma 3.5,
and Proposition 6.3, the MMD space (U, d,m, EU ,F(U)) corresponding to reflected
diffusion satisfies the heat kernel estimate HKE(Ψ).

6.3 Concluding remarks.

One of the most important open problems concerning heat kernel estimates is the
resistance conjecture which states that the characterization of sub-Gaussian heat ker-
nel estimates in Theorem 4.4(b) can be replaced with the simpler conditions Poincaré
inequality PI(Ψ) and the capacity upper bound cap(Ψ)≤ [GHL14, Conjecture 4.15].
N. Kajino6 observed that if the resistance conjecture were true, then Theorem 2.8 will
have a simpler proof because it is easy to verify the capacity upper bound cap(Ψ)≤
on uniform domain (and inner uniform domains) using the corresponding property on
the ambient space. Although there is some partial progress on the resistance conjec-
ture, it remains open in general [Mur23+]. This connection to heat kernel estimate for
reflected diffusion is further motivation to solve resistance conjecture. Following the
work of Gyrya and Saloff-Coste [GyS], it is natural to conjecture that Theorem 2.8
should also be true for inner uniform domains (here the instrinc metric in U should be
used for heat kernel estimates in U). This would require developing a more instrinsic
approach that does not rely on any extension operator.

Next, we compare the role of Lipschitz functions in the fields of ‘analysis/diffusion
on fractals’ [Bar98, Kig01] and ‘analysis on metric spaces’ [Cheeg, Hei, HKST]. In the
latter setting, Lipschitz functions play a central role while in the former case Lipschitz
functions do not play much of a role. J. Heinonen [Hei, Chapter 6] writes “Lipschitz
functions are the smooth functions of metric spaces”. One justification for the above
quote is that the Sobolev spaces considered in the ‘analysis on metric spaces’ field have
a dense set of Lipschitz functions [HKST, Theorem 8.2.1], [Eri]. In fact, the proof of
extension property for Newton-Sobolev spaces in [BS] uses such a density of Lipschtiz
functions. On the other hand, our proof of Theorem 2.7 does not use any Lipschitz
functions.

In the setting of MMD spaces satisfying sub-Gaussian heat kernel bound HKE(Ψ),
it is known that if the space time scaling is Gaussian (that is, Ψ(r) = r2), then Lipschitz
functions are dense in the domain of the Dirichlet form [ABCRST, Lemma 2.11],
[KM20, Remark 2.11]. For general space-scaling, it is believed that Lipschitz functions
are not necessarily dense in the domain of the Dirichlet form in general. To explain this,
we recall an old conjecture of Barlow and Perkins [BP] concerning Brownian motion
on the Sierpiński gasket which is still open. In [BP, Section 9], the authors conjecture
that there are no non-constant α-Hölder functions in the domain of the generator7 for

the Brownian motion on Sierpinski gasket for any α > log(5/3)
log 2 = .736966..... One could

also make an analogous conjecture for the domain of the Dirichlet form. In particular,
we conjecture that there are no non-constant Lipschitz functions (with respect to the
Euclidean metric) in the domain of the Dirichlet form for the Brownian motion on
Sierpinski gasket.

6personal communication.
7the generator of the Brownian motion is a self-adjoint operator that is the analogous to the Laplacian.
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