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Abstract

We characterize Gaussian estimates for transition probability of a discrete time
Markov chain in terms of geometric properties of the underlying state space. In
particular, we show that the following are equivalent:

(1) Two sided Gaussian bounds on heat kernel
(2) A scale invariant Parabolic Harnack inequality
(3) Volume doubling property and a scale invariant Poincaré inequality.

The underlying state space is a metric measure space, a setting that includes both
manifolds and graphs as special cases. An important feature of our work is that
our techniques are robust to small perturbations of the underlying space and the
Markov kernel. In particular, we show the stability of the above properties under
quasi-isometries. We discuss various applications and examples.
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CHAPTER 1

Introduction

The goal of this work is to characterize Gaussian estimates for Markov chains
and parabolic Harnack inequality for a corresponding discrete time version of heat
equation by two geometric properties on the state space

1. Large scale volume doubling property
2. Poincaré inequality.

A precise statement of this characterization is given in Theorem 1.4. The Gauss-
ian estimates mentioned are upper and lower bounds for the iterated transition
probability kernel. The parabolic Harnack inequality is a regularity estimate for
non-negative solutions of the discrete time heat equation given by u(k + 1, x) =
[Pu(k, ·)](x), where P is the Markov operator corresponding to the given Markov
chain.

The hardest and most useful implication in the characterization is that the con-
junction of the volume doubling property and Poincaré inequality implies the two
sided Gaussian estimates and parabolic Harnack inequality. The volume doubling
property and Poincaré inequality are concrete properties the validity of which can
be verified given the geometric data on the space. Also, an important consequence
of this characterization is the stability of Gaussian estimates and parabolic Harnack
inequality under quasi-isometric transformation of the underlying space.

An analogous characterization is well-known for diffusions on Riemannian man-
ifolds [32, 69](or more generally local Dirichlet spaces [76]) and for discrete time
Markov chains on graphs [27]. We extend the characterization of Gaussian esti-
mates for Markov chain to a large family of state spaces that includes both graphs
and Riemannian manifolds. Various applications of Gaussian estimates and Har-
nack inequalities are discussed.

Another motivation comes from the work of Hebisch and Saloff-Coste [44] on
random walks on groups. By the main results of [44], we know that many natu-
ral translation-invariant Markov chains on groups (discrete and continuous groups)
of polynomial volume growth satisfy two-sided Gaussian estimates. However the
arguments in [44] for proving Gaussian lower bounds are specific to the case of
translation-invariant Markov chains as the authors of [44] note “We want to em-
phasize that a number of key points of the argument presented below are specific to
the case of translation invariant Markov chains”. To this end they conjecture “We
have no doubt that, if G has polynomial volume growth a corresponding Gaussian
lower bound holds for (non transition-invariant) Markov chains as well. However,
we have not been able to prove this result. We hope to come back to this question
in the future.” [44, Remark 2]. Our work validates their conjecture.
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2 1. INTRODUCTION

A remarkable feature of our work is that the arguments we develop are robust
under small perturbations of the Markov kernel and the geometry of the under-
lying state space. In particular, we show that parabolic Harnack inequality and
Gaussian estimates for heat kernel for symmetric Markov chains is stable under
quasi-isometric change of the state space and small changes in the Markov kernel.
We do not rely on symmetries of the space (like group structure or transitivity) or
on algebraic properties of the kernel (like translation invariance). As a consequence,
the main results are new even when the state space is Rn.

Heat kernel estimates and Harnack inequalities have been subjects of extensive
research for more than fifty years. To place our results in a historical context, we
will describe precisely the characterization of Gaussian estimates of heat kernel and
parabolic Harnack inequality in the context of diffusions over manifolds developed
in [32, 69]. We will also mention several related works, applications and other
historical remarks.

1.1. Diffusions on Riemannian manifolds

For the purpose of the introduction, we describe our results in the restricted
setting of weighted Riemannian manifolds. Let (M, g) be a complete Riemannian
manifold equipped with the Riemannian measure ν(dy). A weighted Riemann-
ian manifold (M, g, µ) is a Riemannian manifold (M, g) equipped with a mea-
sure µ(dy) = σ(y)ν(dy), where 0 < σ ∈ C∞(M) is the weight, and the associ-
ated weighted Laplacian is given by ∆ = −σ−1 div (σ grad)1. We might some-
times consider a Riemannian manifold (M, g) as a weighted Riemannian mani-
fold equipped with Riemannian measure and Laplace-Beltrami operator. We de-
note the balls centered at x and radius r by B(x, r) := {y : d(x, y) ≤ r} and
the volume of the balls by V (x, r) := µ (B(x, r)). We denote the open balls by
B(x, r)◦ := {y : d(x, y) < r}

The heat kernel of the weighted Riemannian manifold (M, g, µ) is the fun-
damental solution of a parabolic partial differential equation, the heat diffusion
equation

(1.1)

(
∂

∂t
+ ∆

)
u = 0.

That is heat kernel is a function (t, x, y) 7→ p(t, x, y) defined on (0,∞) ×M ×M
such that for each y ∈ M , (t, x) 7→ p(t, x, y) is a solution of (1.1) and for any
φ ∈ C∞c (M), u(t, x) =

∫
M
p(t, x, y)φ(y)µ(dy) tends to φ(x) as t tends to 0. In

other words, the heat kernel allows us to solve the Cauchy initial value problem
for (1.1). Equivalently, we may view p(t, x, y)µ(dy) as the distribution at time t of
a stochastic process (Xt)t>0 started at x (the diffusion driven by ∆ on M). These
two viewpoints are related by the formula

(1.2) u(t, x) =

∫
M

p(t, x, y)µ(dy) = Ex(u0(Xt))

where u is the solution of Cauchy initial value problem for (1.1) with initial value
condition u0.

1The negative sign is to ensure that ∆ has non-negative spectrum. Note that ∆ depends on
the Riemannian metric g and the weight σ.
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The most classical example of heat kernel is the Gauss-Weierstrass kernel on

Rn equipped with the Lebesgue measure, the Laplacian ∆ = −
∑n
i=1

∂2

∂x2
i

and the

heat kernel is given by

p(t, x, y) =

(
1

4πt

)n/2
exp

(
−d(x, y)2

4t

)
, t > 0, x, y ∈ Rn.

We will present a well-known geometric characterization of those weighted Rie-
mannian manifolds on which the heat kernel satisfies two-sided Gaussian bounds,
that is having the property that there exists positive reals c1, c2, C1, C2 such that

c1

V (x,
√
t)

exp

(
−d(x, y)2

c2t

)
≤ p(t, x, y) ≤ c1

V (x,
√
t)

exp

(
−d(x, y)2

c2t

)
for all t > 0 and for all x, y ∈M .

Next, we describe Harnack inequalities for (M, g, µ) equipped with the weighted
Laplacian ∆. We say that (M, g, µ) satisfies elliptic Harnack inequality if there
exists C > 0 such that any non-negative harmonic function u in a ball B(x, r) (that
is u satisfies ∆u ≡ 0 in B(x, r)◦) satisfies the inequality

(1.3) sup
B(x,r/2)

u ≤ C inf
B(x,r/2)

u.

The constant C ∈ (0,∞) is independent x, r and u. An important consequence

of the elliptic Harnack inequality in Rn for the Laplacian ∆ = −
∑n
i=1

∂2

∂x2
i

is that

global positive harmonic functions must be constant (Liouville property).
J. Moser [61] proved elliptic Harnack inequality (1.3) for divergence form op-

erators of the type

(1.4) L = −
n∑

i,j=1

∂

∂xi
ai,j

∂

∂xj

where ai,j are bounded measurable real functions on Rn satisfying ai,j = aj,i and
the uniform ellipticity condition:

∀x ∈ Rn, ∀ξ ∈ Rn, λ ‖ξ‖2 ≤
∑
i,j

ai,j(x)ξiξj ≤ Λ ‖ξ‖2

for two constants 0 < λ ≤ Λ < ∞. This elliptic Harnack inequality implies the
crucial Hölder continuity for solutions2 of the associated elliptic equation Lu ≡ 0,
a result proved earlier by E. de Giorgi [24] and J. Nash [64] (See also [60]).

An important motivation behind the Hölder continuity of solutions obtained
by de Giorgi, Nash and Moser [24, 64, 60] was to solve one of the famous Hilbert
problems. Hilbert’s nineteenth problem asks whether the minimizers of Dirichlet
integrals

E(u) =

∫
Ω

F (∇u(x)) dx

are always smooth, if F is smooth and strictly convex, where Ω ⊂ Rn is bounded. E.
de Giorgi and J. Nash independently answered Hilbert’s question in the affirmative.
We refer the interested reader to [49, Theorem 14.4.1] for a detailed exposition of
the smoothness of the minimizers of Dirichlet integrals using Hölder regularity
estimates of de Giorgi and Nash.

2by solutions we mean weak solutions.
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It is a long standing open problem to characterize (in geometric terms) those
weighted manifolds that satisfy elliptic Harnack inequality. A related open question
is to determine whether or not elliptic Harnack inequality is preserved under quasi-
isometries. However several examples of Riemannian manifolds that satisfy elliptic
Harnack inequality are known. For instance, Cheng and Yau [16] proved that there
exists a constant depending only n = dim(M) such that for any positive solution
u of ∆u = 0 in B(x, r)◦ on a Riemannian manifold (M, g) with Ricci curvature
bounded from below by −K for some K ≥ 0 satisfies

(1.5) |∇ ln(u)| ≤ C(r−1 +K) in B(x, r/2).

When K = 0, integrating the gradient estimate along minimal paths we immedi-
ately obtain the elliptic Harnack inequality (1.3) for Riemannian manifolds with
non-negative Ricci curvature.

We now describe the parabolic version of (1.3). For any x ∈ M , s ∈ R, r > 0,
let Q = Q(x, s, r) be the cylinder

Q(x, s, r) = (s− r2, s)×B(x, r)◦.

Let Q+ and Q− be respectively the upper and lower sub-cylinders

Q+ = (s− (1/4)r2, s)×B(x, r/2)◦, Q− = (s− (3/4)r2, s− (1/2)r2)×B(x, r/2)◦.

We say that (M, g, µ) satisfies parabolic Harnack inequality if there exists a constant
C such that for all x ∈M , s ∈ R, r > 0 and for all positive solutions of

(
∂
∂t −∆

)
u =

0 in Q = Q(x, s, r), we have

(1.6) sup
Q−

u ≤ C inf
Q+

u.

The constants 1/4, 3/4, 1/2 appearing in the definition of Q+, Q− are essentially
arbitrary choices. The main difference between elliptic and parabolic Harnack in-
equalities is that the cylinders Q+ and Q− are disjoint in (1.6) whereas in the
elliptic case (1.3) the infimum and supremum are taken over the same ball.

J. Moser attributes the first parabolic Harnack inequality to Hadamard and
Pini for operators with constant coefficients on Rn. In [62], J. Moser proved the
parabolic Harnack inequality for uniformly elliptic operators in divergence form as
given by (1.4). As in the elliptic case, the parabolic Harnack inequality (1.6) implies
Hölder continuity of the corresponding solutions. This Hölder continuity was first
obtained by J. Nash [64] in the parabolic setting and Moser’s parabolic Harnack
inequality gives an alternative proof of Hölder continuity. For a proof of Harnack
inequality using the ideas of Nash, we refer the reader to the work of Fabes and
Stroock [31]

The gradient estimates (1.5) of Cheng and Yau was generalized to the parabolic
case by P. Li and S.T. Yau in [58]. The parabolic gradient estimates in [58] im-
plies that complete Riemannian manifolds with non-negative Ricci curvature satisfy
parabolic Harnack inequality (1.6).

In contrast to elliptic Harnack inequality, there is a satisfactory description of
weighted Riemannian manifolds that satisfy the parabolic Harnack inequality as
described below.

Theorem 1.1. ([32, 69]) Let (M, g, µ) be a weighted, non-compact, complete
Riemannian manifold equipped with the weighted Laplacian ∆ and let p(t, x, y) de-
note the corresponding heat kernel. The following three properties are equivalent:
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(a) The parabolic Harnack inequality: there exists a constant CH > 0 such that,
for any ball B = B(x, r), x ∈M , r > 0 and for any smooth positive solution u
of
(
∂
∂t + ∆

)
u = 0 in the cylinder (s− r2, s)×B(x, r)◦, we have

sup
Q−

u ≤ CH inf
Q+

u

with

Q+ = (s− (1/4)r2, s)×B(x, r/2)◦, Q− = (s− (3/4)r2, s− (1/2)r2)×B(x, r/2)◦.

(b) Two sided Gaussian estimates of the heat kernel: there exists positive reals
c1, c2, C1, C2 such that

c1

V (x,
√
t)

exp

(
−d(x, y)2

c2t

)
≤ p(t, x, y) ≤ c1

V (x,
√
t)

exp

(
−d(x, y)2

c2t

)
for all t > 0 and for all x, y ∈M .

(c) The conjunction of
• The volume doubling property: there exists CD > 0 such that for all x ∈M ,

for all r > 0 we have

V (x, 2r) ≤ CDV (x, r).

• The Poincaré inequality: there exists CP > 0,κ ≥ 1 such that for any ball
B = B(x, r), x ∈M , r > 0 and for all f ∈ C∞(M), we have

(1.7)

∫
B

|f − fB|2 dµ ≤ CP r2

∫
κB

|grad f|2 dµ,

where κB = B(x, κr) and fB = 1
µ(B)

∫
B
f dµ.

Example 1.2. We present examples of complete, non-compact, weighted Rie-
mannian manifolds satisfying parabolic Harnack inequality and Gaussian bounds
on the heat kernel. We refer the reader to [73, Section 3.3] for a more extensive
list of examples.

• Complete Riemannian manifolds with non-negative Ricci curvature. The
parabolic Harnack inequality was first obtained in this case by Li and
Yau using a gradient estimate [58]. The volume doubling property follows
from Bishop-Gromov inequality [15, Theorem III.4.5.] and the Poincaré
inequality follows from the work of P. Buser [14] (See [72, Theorem 5.6.5]
for a different proof).

• Convex domains and complement of convex domains in Euclidean space.
We refer the reader to the monograph [41] for this and other examples in
this spirit.

• Connected Lie groups with polynomial volume growth. By a theorem of
Y. Guiv’arch, we know that Lie groups with polynomial volume growth
satisfies volume doubling property. Moreover, Lie groups with polynomial
volume growth satisfy Poincaré inequality[72, Theorem 5.6.1]. Examples
include nilpotent Lie groups like Euclidean spaces and Heisenberg group.
See also [78, Theorem VIII.2.9]. Moreover volume doubling property and
Poincaré inequality holds for subelliptic ‘sum of squares’ operators sat-
isfying the Hörmander condition [78, Chapter V and VIII] under the
Carnot-Carathéodory metric. See also [72, Section 5.6.1].
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• The Euclidean space Rn, with n ≥ 2 and weight (1+|x|2)α/2, α ∈ (−∞,∞)
satisfies parabolic Harnack inequality if and only if α > −n. It satisfies
the elliptic Harnack inequality for all α ∈ R. These examples are from
[35].

• Any complete, weighted Riemannian manifold with bounded geometry
that is quasi-isometric to a complete, weighted Riemannian manifold sat-
isfying parabolic Harnack inequality. We say a weighted Riemannian
manifold (M, g, µ) with weight σ has bounded geometry if (a) There ex-
ists K ≥ 0 such that Ric ≥ −Kg (b) There exists C1 > 1 such that
σ(x)/σ(y) ∈ (C−1

1 , C1) for all x, y ∈ M with d(x, y) ≤ 1 (c) There exists
C2 > 1 such that C−1

2 ≤ V (x, 1) ≤ C2 for all x ∈ M . This illustrates
the stability of parabolic Harnack inequality and two-sided Gaussian es-
timates under quasi-isometry [22, 50].

The primary goal of our work is to extend Theorem 1.1 in the context of
discrete time Markov chains on a large class of spaces that include both weighted
Riemannian manifolds and graphs. As mentioned before the hardest and most
useful part of the Theorem 1.1 is (c) implies (a) and (b). The implication (c)
implies (a) was proved independently by Grigor’yan [32] and Saloff-Coste [69].
Both [32] and [69] observed that volume doubling is necessary to obtain (a). In
[69], Saloff-Coste proved that Poincaré inequality is also a necessary condition to
prove (a) using an argument due to Kusuoka and Stroock [55].

The proof of (c) implies (a) in [69] is an adaptation of Moser’s iteration method.
Moser’s iteration method relies on Poincaré inequality and a Sobolev inequality.
The main contribution of [69] is to obtain a Sobolev inequality using volume dou-
bling and Poincaré inequality (See also [72, Chapter 5], [70]). A. Grigor’yan [32]
carried out a different iteration argument that relied on an equivalent Faber-Krahn
inequality instead of a Sobolev inequality to prove (c) implies (a). Using the meth-
ods of [69], K.T. Sturm [76] generalized the above equivalence to diffusions on
strongly local Dirichlet spaces. More recently in [45], Hebsich and Saloff-Coste
developed an alternate approach to prove Gaussian bounds and parabolic Harnack
inequality using (a). This approach relies on an elliptic Hölder regularity estimate
and Gaussian upper bounds to prove parabolic Harnack inequality. We will use the
approach outlined in [45] in our work.

Aronson [3] was the first to use parabolic Harnack inequality to obtain Gaussian
bounds on the heat kernel in the context of divergence form uniformly elliptic
operators in Rn as given in (1.4). Although in Aronson’s work, the parabolic
Harnack inequality was used only to obtain Gaussian lower bounds, both Gaussian
upper and lower bounds can be easily obtained using parabolic Harnack inequality.
Conversely Nash’s approach aimed at deriving Harnack inequality from two-sided
Gaussian bounds on the heat kernel was further developed by Krylov and Safonov
[54] and by Fabes and Stroock [31].

1.2. Random walks on graphs

T. Delmotte extended Theorem 1.1 for discrete time Markov chains on graphs,
which we now describe. To precisely describe the result, we will introduce some
notions concerning symmetric Markov chains. Let (M,d, µ) be a metric measure
space by which we mean a metric space (M,d) equipped with a Borel measure
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µ. Recall that we denote closed ball by B(x, r) and their measure by V (x, r) =
µ(B(x, r)). We require V (x, r) ∈ (0,∞) for all x ∈M and for all r ∈ (0,∞).

Let (Xn)n∈N be a Markov chain with state space M and let P be the corre-
sponding Markov operator. Further, we assume that P has a kernel p1 : M×M → R
with respect to the measure µ, that is for each x ∈M , we have p1(x, ·) ∈ L1(M,µ)
satisfying

(1.8) Pf(x) = Exf(X1) =

∫
M

p1(x, y)f(y)µ(dy)

for all f ∈ L∞(M). Here Ex denotes that the Markov chain starts at X0 =
x. The equation (1.8) represents the basic relation between the Markov chain
(Xn)n∈N, corresponding Markov operator P and its kernel p1 with respect to µ.
We will assume that our Markov chain is stochastically complete that is P1 = 1 or
equivalently

∫
M
p1(x, y)µ(dy) = 1 for all x ∈M .

We further assume that the kernel p1 satisfies p1(x, ·) ∈ L∞(M,µ) for all x ∈M
and that p1 is symmetric

(1.9) p1(x, y) = p1(y, x)

for µ×µ-almost every (x, y) ∈M ×M . Under the symmetry assumption (1.9) and
the assumption p1(x, ·) ∈ L∞(M,µ) for all x ∈ M , we define the iterated Markov
kernel as for the Markov chain as

pk+1(x, y) :=

∫
M

pk(x, z)p1(y, z)µ(dz)

for all x, y ∈ M and for all k ∈ N∗. It is easy to check that pk(x, y)µ(dy) is
the distribution of Xk given that the random walk starts at X0 = x (See Lemma
4.2). The function (k, x, y) 7→ pk(x, y) is called the ‘heat kernel’ for the symmetric
Markov chain (Xn)n∈N driven by P on (M,d, µ).

Next, we introduce the Laplacian and heat equation for discrete time Markov
chains. The Laplace operator ∆P corresponding to the random walk driven by P
is

∆P = I − P.
The corresponding discrete time heat equation is

(1.10) ∂ku+ ∆Puk ≡ 0

for all k ∈ N, where ∂ku(·) = u(k + 1, ·) − u(k, ·) denotes the difference operator
and uk(·) = u(k, ·). Note that (1.10) can be rewritten as uk+1 = Puk. Therefore
the ‘solution’ to the heat equation (1.10) can be written as

u(k, x) = P ku0(x) =

∫
M

pk(x, y)u0(y)µ(dy) = Exu0(Xk)

for all x ∈M and for all k ∈ N∗ where u0 is the initial value. Note that the above
equation is analogous to its continuous time counterpart (1.2).

To describe the work of T. Delmotte, we consider a given graph as a metric
measure space (M,d, µ) where M is the vertex set of the graph, d is the graph
distance metric and µ is a measure on the set of vertices such that each vertex has
positive measure. In this context p1(x, y) = p1(y, x) for all x, y ∈ M is sometimes
called the conductance. We denote integer intervals by Ja, bK = {k ∈ Z : a ≤ k ≤ b}
for any a, b ∈ Z. The following theorem of T. Delmotte is the analogue of Theorem
1.1 for Markov chains on graphs.
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Theorem 1.3. ([27]) Let (M,d, µ) be an infinite graph equipped with a measure
µ on the set of vertices M . Consider a Markov chain on M with a symmetric kernel
pk with respect to µ. Further we assume that there exists α > 0 such that 3

(1.11) α
1B(x,1)(y)

V (x, 1)
≤ p1(x, y) ≤ α−1 1B(x,1)(y)

V (x, 1)

for all x, y ∈M . Then the following properties are equivalent:

(a) The parabolic Harnack inequality: there exists η ∈ (0, 1),CH > 1, RH > 0 such
that for all balls B(x, r), x ∈ M , r > RH and for all non-negative functions
u : N×M → R that satisfies ∂ku+ ∆uk ≡ 0 in J0, b4η2r2cK×B(x, r), we have

sup
Q	

u ≤ CH inf
Q⊕

u

where

Q	 = Jd(η2/2)r2e, bη2r2cK×B(x, (η/2)r),

Q⊕ = Jd2η2r2e, b4η2r2cK×B(x, (η/2)r)

(b) Two sided Gaussian bounds on the heat kernel: there exists C1, C2 > 0 such
that for all x, y ∈M and for all n ∈ N∗ satisfying n ≥ 2, we have

(1.12) pn(x, y) ≤ C1

V (x,
√
n)

exp

(
−d(x, y)2

C2n

)
Further there exists c1, c2, c3 > 0 such that for all x, y ∈M satisfying d(x, y) ≤
c3n and for all n ∈ N∗ satisfying n ≥ 2

(1.13) pn(x, y) ≥ c1
V (x,

√
n)

exp

(
−d(x, y)2

c2n

)
(c) The conjunction of

• The volume doubling property: there exists CD > 0 such that for all x ∈M ,
for all r > 0 we have

V (x, 2r) ≤ CDV (x, r)

• The Poincaré inequality: there exists CP > 0,κ ≥ 1 such that for any ball
B = B(x, r) that satisfies x ∈M , r > 1 and for all f ∈ L2(M,µ), we have∫

B

|f − fB|2 dµ ≤ CP r2

∫
κB

(
1

V (y, 1)

∫
B(y,1)

|f(z)− f(y)|2 µ(dz)

)
µ(dy),

where κB = B(x, κr), fB = 1
µ(B)

∫
B
f dµ.

Delmotte’s strategy to prove Theorem 1.3 is to use Moser’s iteration method
as developed in [69, 70] to prove a continuous time parabolic Harnack inequal-
ity. The next step is to prove estimates on the corresponding continuous time
kernel obtained using parabolic Harnack inequality. Then a comparison between
discrete and continuous time kernels provides Gaussian bounds on pk which in turn
yields parabolic Harnack inequality for the discrete time heat equation (1.10). The
comparison argument is tricky because the continuous time heat kernel has non-
Gaussian behavior as discovered by Pang [65] and E.B. Davies [23]. The discrete

3 The upper bound in (1.11) was not explicitly stated in [27]. However the upper bound
must hold due to the volume doubling property. Moreover the statement of Poincaré inequality

and parabolic Harnack inequality is slightly different but equivalent to the ones presented in [27].



1.3. MAIN RESULTS 9

nature of space and time causes numerous other difficulties during Moser iteration
that were overcome successfully by Delmotte.

1.3. Main results

Next, we state a version of our main result in a restricted setting. Recall that a
weighted Riemannian manifold (M, g, µ) is a Riemannian manifold (M, g) equipped
with a measure µ such that µ(dy) = σ(y)ν(dy), where ν is the Riemannian measure
and σ ∈ C∞(M) is the weight function.

Theorem 1.4. Let (M, g, µ) be a complete non-compact, weighted Riemannian
manifold such that there exists K ≥ 0 such that Ric ≥ −Kg. Furthermore there
exists C1 ≥ 1 such that the weight function σ satisfies C−1

1 ≤ σ(x)/σ(y) ≤ C1 for all
x, y ∈M with d(x, y) ≤ 1. Consider a Markov chain on M with a symmetric kernel
pk with respect to µ. Further we assume that there exists C0 > 1, h > 0, h′ ≥ h
such that

(1.14) C−1
0

1B(x,h)(y)

V (x, h)
≤ p1(x, y) ≤ C0

1B(x,h′)(y)

V (x, h′)

for all x ∈ M and for µ-almost every y ∈ M . Then the following properties are
equivalent:

(a) The parabolic Harnack inequality: there exists η ∈ (0, 1),CH > 1, RH > 0 such
that for all balls B(x, r), x ∈ M , r > RH and for all non-negative functions
u : N×M → R that satisfies ∂ku+ ∆uk ≡ 0 in J0, b4η2r2cK×B(x, r), we have

sup
Q	

u ≤ CH inf
Q⊕

u

where

Q	 = Jd(η2/2)r2e, bη2r2cK×B(x, (η/2)r),

Q⊕ = Jd2η2r2e, b4η2r2cK×B(x, (η/2)r)

(b) Two sided Gaussian bounds on the heat kernel: there exists C1, C2 > 0 such
that for all x, y ∈M and for all n ∈ N∗ satisfying n ≥ 2, we have

(1.15) pn(x, y) ≤ C1

V (x,
√
n)

exp

(
−d(x, y)2

C2n

)
Further there exists c1, c2, c3 > 0 such that for all x, y ∈M satisfying d(x, y) ≤
c3n and for all n ∈ N∗ satisfying n ≥ 2

(1.16) pn(x, y) ≥ c1
V (x,

√
n)

exp

(
−d(x, y)2

c2n

)
(c) The conjunction of

• The volume doubling property: there exists CD > 0 such that for all x ∈M ,
for all r > 0 we have

V (x, 2r) ≤ CDV (x, r)

• The Poincaré inequality: there exists CP > 0,κ ≥ 1 such that for any ball
B = B(x, r), x ∈M , r > 1 and for all f ∈ L2(M,µ), we have

(1.17)

∫
B

|f − fB|2 dµ ≤ CP r2

∫
κB

(
1

V (y, 1)

∫
B(y,1)

|f(z)− f(y)|2 µ(dz)

)
µ(dy),
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where κB = B(x, κr), fB = 1
µ(B)

∫
B
f dµ.

The Poincaré inequalities presented in Theorem 1.1 and Theorem 1.4 are re-
lated. We will show that the Poincaré inequality (1.7) implies (1.17) (See Proposi-
tion 3.20). A partial converse of the previous statement hold as well.

Example 1.5. Consider a complete, non-compact Riemannian manifold (M, g)
with non-negative Ricci curvature whose unit balls have a uniform positive volume

lower bound. Define a Markov kernel p(x, y) =
1B(x,1)(y)

V (x,1) for all x, y ∈M . Although

p is a Markov kernel with respect to the Riemannian measure ν, p(x, y) 6= p(y, x)

in general. However q1(x, y) = p(x,y)
V (y,1) is a symmetric Markov kernel with respect to

µ(dx) = V (x, 1)ν(dx) where V denotes the volume with respect to ν. By the remark
preceding this example, (M, g, µ) satisfy the Poincaré inequalities (1.17) and (1.7).
Moreover (M, g, µ) satisfies volume doubling property. Hence the iterated kernel qn
satisfies two-sided Gaussian bounds and the corresponding Laplacian satisfies the
parabolic Harnack inequality. Similarly many other examples known in the diffusion
case can be extended to the discrete-Markov chain case due to Proposition 3.20.

The role of Theorem 1.4 is only to illustrate our main result without introducing
additional definitions. We provide an unified approach to study random walks on
both discrete and continuous spaces. We prove Theorem 1.4 as a corollary of a
general result that also gives an alternate proof of Theorem 1.3.

Given the previous works on characterization of parabolic Harnack inequality
and Gaussian bounds [32, 69, 76, 27, 45] our results should not be surprising.
However we encounter new difficulties that had to be resolved here and which
were not present in previous works. Recall that Moser’s iteration method for Har-
nack inequalities relies on repeated application of a Sobolev inequality[69, 76, 27].
Grigor’yan’s iteration method in [32] uses an equivalent Faber-Krahn inequality
that is equivalent to the Sobolev inequality [4].

The Sobolev inequalities in the previous settings are of the form

(1.18) ‖f‖2δ/(δ−2)
2 ≤ Cr2

Vµ(x, r)2/δ

(
E(f, f) + r−2 ‖f‖22

)
for all ‘nice’ functions f supported in B(x, r). However for discrete time Markov

chains, the Dirichlet form satisfies the inequality E(f, f) = 〈(I − P )f, f〉 ≤ 2 ‖f‖22.

This along with (1.18) implies that L2(B(x, r)) ⊆ L2δ/(δ−2)(B(x, r)) for all balls
B(x, r) which can happen only if the space is discrete. Hence for discrete time
Markov chains on Riemannian manifolds the Sobolev inequality (1.18) cannot pos-
sibly be true. We prove and rely on a weaker form of the Sobolev inequality (1.18)
which seems to be too weak to run Moser’s iteration directly to prove parabolic
Harnack inequality (See Theorem 5.1). Instead we use Moser’s iteration to prove a
version of the mean value inequality which in turn gives Gaussian upper bounds.
We adapt a method of [45] which uses elliptic Harnack inequality and Gaussian
upper bounds to prove Gaussian lower bounds (See Chapter 8). Another difficulty
that is new to our setting is explained in the beginning of Section 7.3.

In the context of diffusions on complete Riemannian manifolds the Sobolev in-
equality (1.18) is equivalent to the conjunction of volume doubling property and
Gaussian upper bounds on the heat kernel [72, Theorem 5.5.6]. In the previous
statement, we may replace Sobolev inequalities with a similar but equivalent set of
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functional inequalities called Faber-Krahn inequalities both in the context of diffu-
sions on Riemannian manifolds [33] and for random walks on graphs [19, Theorem
1.1]. We extend the above equivalences for random walks on a large class of metric
measure spaces (Theorem 7.18).

1.4. Guide for the monograph

This monograph is organized as follows. In Chapter 2, we present the setting of
quasi-geodesic spaces satisfying certain doubling hypotheses, study its basic prop-
erties and develop techniques that would let us compare discrete and continuous
spaces.

In Chapter 3, we introduce Poincaré inequalities and discuss various examples
and non-examples of spaces satisfying Poincaré inequality. We study how these
new Poincaré inequalities on metric measure spaces compare with the previously
studied Poincaré inequalities on graphs and Riemannian manifolds. Then we show
that Poincaré inequality is stable under quasi-isometric transformation of quasi-
geodesic spaces.

In Chapter 4, we introduce various hypotheses on the Markov chain, Dirich-
let forms and study their basic properties. In Chapter 5, we introduce and prove
a Sobolev inequality under the assumptions of large scale volume doubling and
Poincaré inequality. In Chapter 6, we use Sobolev inequality and Poincaré inequal-
ity to run the Moser iteration argument to prove elliptic Harnack inequality.

Chapter 7 is devoted to the proof of Gaussian upper bounds using Sobolev
inequality. In addition, we show that Sobolev inequality is equivalent to the con-
junction of Gaussian upper bounds on the heat kernel and large scale volume dou-
bling property. In Chapter 8 we prove Gaussian lower bounds using elliptic Har-
nack inequality and Gaussian upper bounds. This completes the proof that large
scale volume doubling property and Poincaré inequality implies two sided Gaussian
bound on the heat kernel.

In Chapter 9, we prove parabolic Harnack inequality using Gaussian bounds.
Moreover, we prove large scale volume doubling property and Poincaré inequality
using parabolic Harnack inequality, and thereby completing the proof of the char-
acterization parabolic Harnack inequality and Gaussian bounds. In Chapter 10, we
mention various applications of Gaussian estimates and Harnack inequalities. In
Appendix B, we collect various examples and supplement them with figures and
discussions.





CHAPTER 2

Metric Geometry

Let (M,d, µ) be a locally compact metric measure space where µ is a Radon
measure with full support. Let B(M) denote the Borel σ-algebra on (M,d). Let
B(x, r) := {y ∈ M : d(x, y) ≤ r} denote the closed ball in M for metric d with
center x and radius r > 0. Let V (x, r) := µ(B(x, r)) denote the volume of the closed
ball centered at x of radius r. Since M is a Radon measure with full support, we
have that V (x, r) is finite and positive for all x ∈ M and for all r > 0. In this
section, we introduce some assumptions on the metric d and measure µ and study
some consequences of those assumptions.

2.1. Quasi-geodesic spaces

The main assumption on the metric d of the metric measure space (M,d, µ)
is that of quasi-geodesicity. In Riemannian geometry, the distance between two
points of a manifold is defined as the infimum of lengths of curves joining them.
Such a relation between distance and length of curves is observed more generally
in length spaces.

Definition 2.1. Let (M,d) be a metric space. For x, y ∈M , a path from x to
y is a continuous map γ : [0, 1] → M such that γ(0) = x and γ(1) = y. We define
the length L(γ) ∈ [0,∞] of a path γ is the supremum

L(γ) = sup
P [0,1]

∑
i

d(γ(ti−1), γ(ti)).

taken over all partition 0 = t0 < t1 < . . . < tk = 1 of [0, 1].

The length of a path is a non-negative real number or +∞.

Definition 2.2. The inner metric or length metric associated with metric
space (M,d) is the function di : M ×M → [0,∞] defined by

di(x, y) = inf
γ
L(γ)

where the infimum is taken over all paths γ from x to y. (M,d) is called a length
space if di = d. A metric for which d = di is called an intrinsic metric.

Remark 2.3. All Riemannian manifolds equipped with Riemannian distance
are length spaces. Since infimum of an empty set is +∞, for points x, y in different
connected components of a metric space (M,d), we have di(x, y) = +∞. Hence
graphs with natural combinatorial metric are not length spaces because distinct
vertices belong to different connected components under the metric topology. See
[40, Chapter 1] or [13, Chapter 2] for a comprehensive introduction of length spaces.

13
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One of the goals of this work is to provide an unified approach to the study of
random walks in continuous spaces like Riemannian manifolds and discrete spaces
like graphs. In view of Remark 2.3, we would like to consider spaces more gen-
eral than length spaces to include disconnected metric spaces like graphs. Quasi-
geodesic spaces provides a natural setting to include both length spaces and graphs
as special cases. Quasi-geodesic spaces are equipped with a weak notion of geodesics
called chains. We recall the following definition of chain and various notions of
geodesicity as presented by Tessera in [77].

Definition 2.4. Consider a metric space (M,d) and b > 0. For x, y ∈ M , a
b-chain between from x to y, is a sequence γ : x = x0, x2, . . . , xm = y in M such
that for every 0 ≤ i < m, d(xi, xi+1) ≤ b. We define the length l(γ) of a b-chain
γ : x0, x1, . . . , xm by setting

l(γ) =

m−1∑
i=0

d(xi, xi+1).

Define a new distance function db : M ×M → [0,∞] as

(2.1) db(x, y) = inf
γ
l(γ)

where γ runs over every b-chain from x to y. We say a metric space (M,d) is

• b-geodesic if d(x, y) = db(x, y) for all x, y ∈M .
• quasi-b-geodesic if there exists C > 0 such that db(x, y) ≤ Cd(x, y) for all
x, y ∈M .

• quasi-geodesic if there exists b > 0 such that (M,d) is quasi-b-geodesic.

Remark 2.5. We collect some simple consequences of the definitions.

• Any b-geodesic space is quasi-b-geodesic. Moreover b-quasi-geodesic space
is b1-quasi-geodesic for all b1 ≥ b.

• Any length space is b-geodesic for all b > 0.
• Graphs with natural combinatorial metric are b-geodesic if and only if
b ≥ 1. If b < 1, then db(x, y) = +∞ for distinct vertices x and y.

The following lemma guarantees that quasi-geodesic spaces are endowed with
sufficiently short chains at many length scales.

Lemma 2.6 (Chain lemma). Let (M,d) be a quasi-b-geodesic space for some
b > 0. Then there exists C1 ≥ 1 such that for all b1 ≥ b and for all x, y ∈M , there

exists a b1-chain x = x0, x1, . . . , xm = y with m ≤
⌈
C1d(x,y)

b1

⌉
.

Proof. Since (M,d) is quasi-b-geodesic, there exists C > 0 such that for all

x, y ∈M , there exists a b-chain x = y0, y1, . . . , yn = y satisfying
∑n−1
i=0 d(yi, yi+1) ≤

Cd(x, y). We define a smaller b1-chain x0, x1, . . . , xm where xk = yik . We choose
i0 = 0 and define ik successively by

ik = max{1 ≤ j ≤ n : d(yik−1
, yj) ≤ b1}

for k ≥ 1. Define m = min{j : yij = y}. By the definition of ik we have that

d(xi, xi+1) + d(xi+1, xi+2) ≥ d(xi, xi+2) > b1
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for all i = 0, 1, . . . ,m− 2. Therefore we have

m−1∑
i=0

d(xi, xi+1) >
b1
2

(m− 1).

By triangle inequality, we have
∑m−1
i=0 d(xi, xi+1) ≤

∑n−1
i=0 d(yi, yi+1) ≤ Cd(x, y).

Therefore

m ≤ 1 +
2C

b1
d(x, y).

Hence the choice C1 = 2C + 1 satisfies the desired conclusion. �

2.2. Doubling hypothesis

The main assumption that we recall below on the Radon measure µ is the
doubling property. For a metric measure space (M,d, µ), we denote volume of balls
by V (x, r) = µ(B(x, r)).

Definition 2.7. We define the following doubling hypothesis:

(V D)loc We say a space (M,d, µ) satisfies the local volume doubling property
(V D)loc, if for all r > 0, there exists Cr such that

(V D)loc V (x, 2r) ≤ CrV (x, r)

for all x ∈M .
(V D)∞ We say a space (M,d, µ) satisfies the large scale doubling property (V D)∞,

if there exists positive reals Cr0 , r0 such that

(V D)∞ V (x, 2r) ≤ Cr0V (x, r)

for all x ∈M and r ≥ r0.
(V D) We say a space (M,d, µ) satisfies the global volume doubling property

(V D), if there exists a constant CD > 0 such that

(V D) V (x, 2r) ≤ CDV (x, r)

for all x ∈M and r > 0.

Remark 2.8. The property (V D) implies (V D)∞ and (V D)loc. The property
(V D)loc is a condition local in r but uniform in x ∈ M while (V D)∞ and (V D)
are uniform in both x and r. The property (V D)loc is a very weak property of
bounded geometry introduced in [22]. Since Cr depends on r, the local volume
doubling property does impose too much constraint on volume growth as r → ∞.
However, we will see in Lemma 2.11 that large scale doubling can be used to control
volume of large balls.

Example 2.9. We describe some examples satisfying the above hypothesis on
volume growth. Every connected graph with bounded degree and equipped with the
counting measure satisfies (V D)loc. By Bishop-Gromov inequality [15, Theorem
III.4.5.], Riemannian manifolds with Ricci curvature bounded from below satisfy
(V D)loc and Riemannian manifolds with non-negative Ricci curvature satisfy (V D).

We collect some basic properties of spaces satisfying the above doubling hy-
pothesis (V D)loc and (V D)∞.
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Lemma 2.10. ([22, Lemma 2.1]) If (M,d, µ) satisfies (V D)loc, then for all
r1, r2 > 0, there exists Cr1,r2 such that

(2.2) V (x, r2) ≤ Cr1,r2V (x, r1)

for all x ∈M . In particular, for all x, y ∈M , such that d(x, y) ≤ R, we have

V (x, r) ≤ Cr,R+rV (y, r)

Proof. Let k be the smallest integer such that 2kr1 ≥ r2. By repeated appli-
cation of (V D)loc, the choice

Cr1,r2 =

k−1∏
i=0

C2ir1

satisfies, (2.2) where the constant C2ir1 is from (V D)loc. The second part follows
from B(x, r) ⊆ B(y,R+ r) and (2.2). �

The large scale doubling property (V D)∞ along with (V D)loc implies a poly-
nomial volume growth upper bound.

Lemma 2.11. Let (M,d, µ) be a metric measure space satisfying (V D)loc and
(V D)∞. Then for all b > 0, there exists Cb > 0 such that

(2.3) V (x, 2r) ≤ CbV (x, r)

for all x ∈M and r ≥ b. Moreover this Cb satisfies

(2.4)
V (x, r)

V (x, s)
≤ Cb

(r
s

)δ
for all x ∈M , for all b ≤ s < r and for all δ ≥ log2 Cb. Furthermore

(2.5)
V (x, r)

V (y, s)
≤ C2

b

(r
s

)δ
holds for all b ≤ s ≤ r, for all x ∈M , for all y ∈ B(x, r) and for all δ ≥ log2 Cb .

Proof. Let r0, Cr0 be constants from (V D)∞. There is nothing to prove if
r0 ≤ b. Assume r0 > b and let r be such that b ≤ r < r0. Then by Lemma 2.10
and (V D)∞

V (x, 2r) ≤ V (x, 2r0) ≤ Cr0V (x, r0) ≤ Cr0Cb,r0V (x, b) ≤ Cr0Cb,r0V (x, r).

The case r ≥ r0 follows from (V D)∞ which concludes the proof of (2.3).
Let b ≤ s < r , k = log2(r/s) and δ ≥ log2 CD. Then from (2.3), we get (2.4),

V (x, r)

V (x, s)
≤ V (x, 2dkes)

V (x, s)
≤ Ck+1

b ≤ Cb
(r
s

)δ
.

To obtain (2.5) from (2.4), note that

V (x, r)

V (y, s)
≤ V (y, 2r)

V (y, s)
≤ Cb

V (y, r)

V (y, s)
≤ C2

b

(r
s

)δ
.

�
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The equation (2.4) implies a polynomial upper bound on the volume growth. In
quasi-geodesic spaces, we can reverse the inequality (2.4) and obtain a polynomial
lower bound for all radii small enough compared to the diameter. The property
stated in following lemma is often called the reverse volume doubling property.
It was known for graphs and Riemannian manifolds and our proof follows similar
ideas.

Lemma 2.12. Let (M,d, µ) be a quasi-b-geodesic space with the measure µ sat-
isfying (V D)loc and (V D)∞. Then there exists c, γ > 0 such that

(2.6)
V (x, r)

V (x, s)
≥ c

(r
s

)γ
for all x ∈ M and for all b ≤ s ≤ r ≤ diam(M), where diam(M) = sup{d(x, y) :
x, y ∈M} denotes the diameter of (M,d, µ).

Proof. We first consider the case b ≤ s ≤ r ≤ diam(M)
5 . Let x ∈ M and let

z ∈ M be chosen such that d(x, z) ≥ (3/7) diam(M). Let x = x0, x1, . . . , xm = z
be a s-chain with minimal number of points m. Therefore there exists 3 ≤ k ≤ m
such that 2s < d(xk, x) ≤ 3s.
Since d(xk, s) > 2s, we have B(xk, s) ∩ B(x, s) = ∅. By Lemma 2.11, there exists
ε > 0 such that

V (x, 3s) ≤ V (xk, 6s) ≤ ε−1V (xk, s)

Therefore we obtain

(2.7) V (x, 4s) ≥ V (x, s) + V (xk, s) ≥ (1 + ε)V (x, s)

for all x ∈ M and b ≤ s ≤ diam(M)/5. Define k = log4(r/s) and γ = log4(1 + ε).
Then by (2.7)

V (x, r)

V (x, s)
≥ V (x, 4bkcs)

V (x, s)
≥ (1 + ε)k−1 = (1 + ε)−1

(r
s

)γ
for all x ∈M and b ≤ s < r ≤ diam(M)/5.

The other cases follow from Lemma 2.10 and by choosing

c = min((1 + ε)−15−γ , Cdiam(M)/5,diam(M).

�

2.3. Quasi-isometry

One of the goals of this work is to develop arguments which are robust to small
perturbations in the geometry of the underlying space; for example addition of few
edges in a graph or small changes in the metric of a Riemannian manifold. We
study properties that depends mainly on the large scale geometry of the underlying
space. In this spirit, the concept of quasi-isometry was introduced by Kanai in [50]
and in the more restricted setting of groups by Gromov in [39]. Informally, two
metric spaces are quasi-isometric if they have the same large scale geometry. Here
is a precise definition:

Definition 2.13. A map φ : (M1, d1) → (M2, d2), between metric spaces is
called a quasi-isometry if the following conditions are satisfied:
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(i) There exists a ≥ 1 and b ≥ 0 such that

a−1d1(x1, x2)− b ≤ d2(φ(x1), φ(x2)) ≤ ad1(x1, x2) + b

for all x1, x2 ∈M1.
(ii) There exists ε > 0, such that for all y ∈M2 there exists x ∈M1 such that

d2(φ(x), y) < ε.

We say metric spaces (M1, d1) and (M2, d2) are quasi-isometric if there exists a
quasi-isometry φ : (M1, d1)→ (M2, d2).

Remark 2.14. Quasi-isometry is an equivalence relation among metric spaces.
Quasi-isometry is also called as rough-isometry or coarse quasi-isometry. Property
(i) of Definition 2.13 above is called roughly bi-Lipschitz and (ii) is called roughly
surjective.

We remark that a quasi-isometry is not necessarily a continuous map. More-
over, quasi-isometry is not necessarily injective and not necessarily surjective. How-
ever, we can construct a quasi-inverse φ− : (M2, d2)→ (M1, d1) as φ−(y) = x where
x ∈M1 is chosen so that d2(φ(x), y) < ε where ε is given by the above definition.

We now describe some well-known examples of quasi-isometry. The space Rd
with Euclidean metric and Zd with standard graph metric (same as L1 metric)
are quasi-isometric. Consider a finitely generated group Γ with a finite system of
generator A. For an element γ 6= 1, let |γ|A denote the smallest positive integer
k such that a product of k elements of A ∪ A−1, and put |1|A = 0. This |·|A is

called the word norm of Γ and defines a word metric dA(γ1, γ2) =
∣∣γ−1

1 γ2

∣∣
A

. In
other words, dA is the graph metric in the Cayley graph of Γ corresponding to the
symmetric generating set A ∪ A−1. Assume two finite generating sets A and B of
a group Γ which induces metric dA and dB respectively. Then (Γ, dA) and (Γ, dB)
are quasi-isometric (See [67, Proposition 1.15]). Therefore every finitely generated
group defines a unique word metric space up to quasi-isometry and we may often
view a finitely generated group up as a metric space without explicitly specifying
the generating set. A large class of examples of quasi-isometry is given by the
Švarc-Milnor theorem. We refer the reader to [67, Theorem 1.18] for a proof and
original references.

Theorem 2.15. (Švarc-Milnor theorem) Suppose that (M,d) is a length space
and Γ is a finitely generated group equipped with a word metric acting properly and
cocompactly by isometries on M . Then Γ is quasi-isometric to (M,d). The map
γ 7→ γ.x0 is a quasi-isometry for each fixed base point x0 ∈M .

Note that the quasi-isometry between Zd and Rd is a special case of Theorem
2.15. We will give a general construction of net which approximates a quasi-geodesic
space using a graph with combinatorial metric in next subsection.

The notion of quasi-isometry was extended to metric measure spaces by Couhlon
and Saloff-Coste in [22] which they called “isometry at infinity”. Let (Mi, di, µi),
i = 1, 2 be two metric measure spaces. Define

Vi(y, r) = µi ({z ∈Mi : di(y, z) ≤ r}) .

Definition 2.16. A map φ : (M1, d1, µ1)→ (M2, d2, µ2), between metric mea-
sure spaces is called a quasi-isometry if the following conditions are satisfied:

(i) φ : (M1, d1)→ (M2, d2) is a quasi-isometry between metric spaces;
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(ii) There exists a constant C > 0 such that

C−1V1(x, 1) ≤ V2(φ(x), 1) ≤ CV1(x, 1)

for all x ∈M1.

We say metric measure spaces (M1, d1, µ1) and (M2, d2, µ2) are quasi-isometric if
there exists a quasi-isometry φ : (M1, d1, µ1)→ (M2, d2, µ2).

Remark 2.17. Quasi-isometry is an equivalence relation for metric measure
spaces satisfying local volume doubling property (V D)loc. The notion of large scale
equivalence as defined in Definition 5.5 of [77] is more general. That is every quasi-
isometry is a large scale equivalence. However a map between quasi-geodesic metric
measure spaces satisfying (V D)loc is a quasi-isometry if and only if it is large scale
equivalence. See [77, Remark 5.7].

The arguments in this work implies that the long term behavior of natural
random walks depends mainly on the large scale geometry of the quasi-geodesic
space. Other important examples of properties invariant under quasi-isometries are
large scale doubling and Poincaré inequality. (See Proposition 2.20 and Proposition
3.16). We conclude this subsection by proving that the large scale doubling property
is preserved by quasi-isometries for metric measure spaces satisfying (V D)loc. It is
due to Couhlon and Saloff-Coste in [22]. We need the following definition:

Definition 2.18. Let (M,d) be a metric space with X ⊆ M and let R > 0.
Then a subset Y of X is R-separated if d(y1, y2) > R whenever y1 and y2 are
distinct points of Y , and a R-separated subset Y of X is called maximal if it is
maximal among all R-separated subsets of X with respect to the partial order of
inclusion.

The existence of maximal R-separated subsets follows from Zorn’s lemma.
The following lemma compares volume of balls between quasi-isometric metric

measure spaces.

Lemma 2.19. ([22, Proposition 2.2]) Let Φ : (M1, d1, µ1) and (M2, d2, µ2) be
a quasi-isometry between metric measure spaces satisfying (V D)loc. Then for all
h > 0, there exists Ch > 0 such that

C−1
h V1(x,C−1

h r) ≤ V2(Φ(x), r) ≤ ChV1(x,Chr)

for all x ∈M1 and for all r ≥ h.

Proof. We denote balls and volumes by Bi and Vi respectively for i = 1, 2.
Let R ≥ h such that aR − b = R′ > 0 where a, b is from Definition 2.13. Let Y be
a maximal R-separated subset of B(x, r). Thus B(x, r) ⊆ ∪y∈YB(y,R). Hence

(2.8) V1(x, r) ≤
∑
y∈Y

V1(y,R)

By Lemma 2.10 and Definition 2.16, we have

(2.9) V1(y,R) ≤ C1,RV1(y, 1) ≤ C1,RCV2(Φ(y), 1).

for all y ∈ Y . The balls {B(y,R/2)}y∈Y are pairwise disjoint and hence the balls
B(Φ(xi), R

′/2) are pairwise disjoint. By Lemma 2.10

(2.10) V2(Φ(xi), h) ≤ Ch,R′V2(Φ(xi), R
′/2)
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Combining 2.8,2.9 and 2.10

V1(x, r) ≤
∑
y∈Y

C1,RCC1,R′V2(Φ(y), R′/2)

≤ C1,RCC1,R′V2(Φ(x), ar + b+R′/2)(2.11)

The last step follows from the definition of quasi-isometry, triangle inequality and
that B(Φ(xi), R

′/2) are pairwise disjoint. We can choose C2 large enough so that,
ar + b+R′/2 ≤ C2r for all r ∈ [h,∞). Hence by Lemma 2.11, we have the desired
lower bound on V2 for all r ≥ R and by Lemma 2.10 for all r ≥ h. Similar argument
applied to quasi-inverse Φ−1 yields

V2(Φ(x), r) ≤ CV1(Φ−1 ◦ Φ(x), Cr).

The conclusion follows from the fact that d1(Φ−1 ◦ Φ(x), x) is bounded uniformly
for all x ∈M1. �

For metric measure spaces satisfying (V D)loc, the condition (V D)∞ is preserved
by quasi-isometries. This is the content of the following lemma.

Proposition 2.20. ([22, Proposition 2.3]) Let (M1, d1, µ1) and (M2, d2, µ2)
be quasi-isometric spaces satisfying (V D)loc. Then (M1, d1, µ1) satisfies (V D)∞ if
and only if (M2, d2, µ2) satisfies (V D)∞.

Proof. Let Φ : M2 → M1 be a quasi-isometry. Using Lemma 2.19, there
exists C > 0 such that

C−1V2(x,C−1r) ≤ V1(Φ(x), r) ≤ CV2(x,Cr)

for all x ∈M2 and r ≥ 1. Hence by (2.4), we have

V2(x, 2r)

V2(x, r)
≤ C2 V1(Φ(x), 2Cr)

V1(Φ(x), C−1r)
≤ C2CD(2C2)δ

for all r ≥ max(C, 1). �

2.4. Approximating quasi-geodesic spaces by graphs

One might think of Zd as a graph approximation or discretization of Rd. More
generally, we can approximate quasi-geodesic spaces by graphs. By [77, Proposition
6.2], a metric space is quasi-isometric to a graph if and only if it is quasi-geodesic.
Therefore quasi-geodesic spaces form a natural class of metric spaces that can be
roughly approximated by graphs.
We begin by recalling some standard definitions and notation from graph theory.
We restrict ourselves to simple graphs. A graph G is a pair G = (V,E) where
V is a set (finite or infinite) called the vertices of G and E is a subset of P2(V )
(i.e.,two-element subsets of V ) called the edges of G. A graph (V,E) is countable
(resp. infinite) if V is a countable (resp. infinite) set. We say that p is a neighbor
of q (or in short p ∼ q), if {x, y} ∈ E. The degree of p is the number of neighbors of
p, that is deg(p) = |{q ∈ V : p ∼ q}|. A graph (V,E) is said to have bounded degree
if supv∈V deg(v) <∞.

A finite sequence (p0, p1, . . . , pl) of points in V is called a path from p0 to pl
of length l, if each pk is a neighbor of pk−1. A graph G = (V,E) is said to be
connected if for all p, q ∈ V , there exists a path from p to q. For points p, q ∈ V of
a graph G = (V,E), let dG(p, q) denote the minimum of the lengths of paths from
p to q with dG(p, q) = +∞ if there exists no path from p to q. This makes (V, dG)
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an extended metric space. The graph (V,E) is connected if and only if (V, dG) is
a metric space. The extended metric dG is called graph metric or combinatorial
metric of G. Notice that we can recover a graph (V,E) from its (extended) metric
space structure (V, dG) and vice-versa.

Using the above identification, we view a connected graph as a metric space.
We would like to view a connected graph as a metric measure space. This motivates
the definition of weighted graph. A weight m : V → (0,∞) on a graph (V,E) is a
positive function on V . With a slight abuse of notation, m induces a measure on
V (also denoted by m) as

m(A) =
∑
v∈A

m(v)

for each A ⊆ V . A weighted graph is a graph (V,E) endowed with a weight m.
By the above, we will identify a weighted graph G = (V,E) with weight m as a
(possibly extended) metric measure space (V, dG,m).

The definition of ε-net is due to Kanai in the setting of Riemannian manifolds
(See [50]) and was extended in [22] for weighted Riemannian manifolds.

Definition 2.21. A ε-net of a metric measure space (M,d, µ) is a weighted
graph G = (V,E) with weight m described as follows: The vertices V is a maximal
ε-separated subset of M . The edges E are defined by {x, y} ∈ E if and only if
0 < d(x, y) ≤ 3ε. The weight m is defined as m(x) = µ (B(x, ε)). Let dG denote
the graph metric of G. We often alternatively view the ε-net as (extended) metric
measure space (V, dG,m) defined by the corresponding weighted graph.

The above definition does not guarantee ε-net to be a connected graph. However
it is connected and countable in many situations as described in the lemma below.
We collect the basic properties of nets in Proposition 2.22 which builds on the ideas
of [50], [52] and [22].

Proposition 2.22. Let (M,d, µ) be a quasi-b-geodesic metric measure space
satisfying (V D)loc and let ε ≥ b. Let G = (X,E) be an ε-net of (M,d, µ) with
weight m and let (X, dG,m) denote the corresponding extended metric measure
space. Then we have the following:

(a) The collection of balls I = {B(x, ε/2) : x ∈ X} is pairwise disjoint and
the collection J = {B(x, ε) : x ∈ X} covers M where B(., .) denotes closed
metric ball in (M,d).

(b) Bounded degree property: The graph (X,E) is of bounded degree, that is
supp∈X deg(p) <∞.

(c) (X, dG,m) satisfies (V D)loc.
(d) There exists A > 0 such that

(2.12)
1

3ε
d(x, y) ≤ dG(x, y) ≤ Ad(x, y) +A

for all x, y ∈ X. Therefore G is a connected graph and (X, dG,m) is a
metric measure space.

(e) The metric measure spaces (M,d, µ) and (X, dG,m) are quasi-isometric.
(f) X is a countable set. Moreover if diameter(M,d) = ∞, then X is an

infinite set.
(g) If (M,d, µ) satisfies (V D)∞, then so does (X, dG,m).
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(h) Finite overlap property: Define

Np(δ) = |{x ∈ X : d(x, p) ≤ δ}|.
for each δ > 0 and p ∈M . Then supp∈M Np(δ) <∞.

Proof. We denote the volume of balls in (M,d, µ) and (X, dG,m) by VM and
VG respectively.

(a) The collection I is pairwise disjoint because X is ε-separated. The collection
J covers M due to the maximality of X.
(b) Let d(p) denote the degree of a vertex p. Since I is a disjoint collection, using
Lemma 2.10

VM (p, 4ε) ≥
∑

q∈V,q∼p
VM (q, ε/2)

≥ C−1
ε/2,7ε

∑
q∈V,q∼p

VM (q, 7ε) ≥ d(p)VM (p, 4ε)C−1
ε/2,7ε.

This yields d(p) ≤ Cε/2,7ε for all p ∈ X.
(c) Let x, y ∈ X with x ∼ y. By Lemma 2.10, we obtain

m(y)

m(x)
≤ V (x, 4ε)

V (x, ε)
≤ Cε,4ε.

Hence we have the uniform estimate

(2.13) Cm = sup
x,y∈X,x∼y

m(y)

m(x)
<∞.

By the above inequality and (b), we have

(2.14) m(x) ≤ VG(x, r) ≤ m(x)Crm

(
sup
x∈X

deg(x)

)r
for all x ∈ X and r > 0. This along with (b) yields (V D)loc.
(d) Let x, y ∈ X. By triangle inequality we have d(x, y) ≤ 3εdG(x, y). By Lemma
2.6, there exists C1 ≥ 1 and an ε-chain x = x0, x1, . . . , xk = y in (M,d) such that
k ≤ d(C1d(x, y))/εe. Since J covers M , for each xi ∈ M we can choose yi ∈ X
such that d(xi, yi) ≤ ε for i = 0, . . . , k. Note that x0 = y0 and xk = yk. By
triangle inequality d(yi, yi+1) ≤ 3ε or equivalently yi ∼ yi+1 or yi = yi+1 for all
i = 0, 1, . . . , k − 1. Therefore

dG(x, y) = dG(y0, yk) ≤ k ≤ C1

(
d(x, y)

ε
+ 1

)
.

This implies (2.12) which implies the remaining conclusions.
(e) It follows from (d) that the inclusion map Φ : (X, dG)→ (M,d) is a quasi-

isometry of metric spaces. Substituting m(x) = VM (x, ε) and r = 1 in (2.14) and
using (b), (2.13) and Lemma 2.10, there exists C > 0 such that

C−1VG(x, 1) ≤ VM (x, 1) ≤ CVG(x, 1).

This proves that Φ is a quasi-isometry between the metric measure spaces (M,d, µ)
and (X, dG,m).
(f) It follows from (b) and (d) that G is a connected graph with bounded degree.
Hence X is countable. By (2.12), we have diameter(X, dG) ≥ diameter(M,d)/3ε.
Therefore if diameter(M,d) = ∞, we have that G = (X,E) is a connected graph
with infinite diameter. Hence X is infinite.
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(g) It follows from (c),(e) and Proposition 2.20.
(h) The proof is similar to (b). Using (a) and Lemma 2.10, we have

V (p, δ + ε) ≥
∑

x∈X:d(x,p)<δ

V (x, ε/2)

≥ C−1
ε/2,2δ+ε

∑
x∈X:d(x,p)<δ

V (x, 2δ + ε)

≥ Np(δ)C−1
ε/2,2δ+εV (p, δ + ε).

This yields the uniform bound Np(δ) ≤ Cε/2,2δ+ε. �

The bounded degree property and the estimate (2.13) are true for all weighted
graphs (X, d,m) satisfying (V D)loc as shown below.

Lemma 2.23. Let (X, d,m) be a metric measure space satisfying (V D)loc that
corresponds to a weighted graph G = (X,E) with weight m. Then G is of bounded
degree and

(2.15) sup
x,y∈X:x∼y

m(y)

m(x)
= Cm <∞

Proof. By (V D)loc, there exists C > 0 such that

m(y) ≤ V (x, 1) ≤ CV (x, 1/2) = Cm(x)

for all x, y ∈ X with x ∼ y. The above inequality shows that Cm ≤ C and
supx∈X deg(x) ≤ C2 �





CHAPTER 3

Poincaré inequalities

Poincaré inequalities and its many variants are functional inequalities that have
been extensively studied. Many results in classical theory of Sobolev spaces, Hölder
regularity estimates for solutions of elliptic and parabolic partial differential equa-
tions, properties of harmonic functions, Harnack inequalities can be generalized to
spaces satisfying volume doubling and a Poincaré inequality. See the introduction
in [42] for a survey and references.

Roughly speaking Poincaré inequalities control the variance of a function on
a smaller ball by its Dirichlet energy (integral of the square of gradient) on a
larger ball. We start by reviewing Poincaré inequalities on weighted Riemannian
manifolds. Recall that a weighted Riemannian manifold (M, g, µ) is a Riemannian
manifold (M, g) equipped with a measure µ having a smooth positive density w
with respect to the Riemannian measure induced by the metric g. The above
function w with 0 < w ∈ C∞(M) is called a weight. Recall that the gradient grad f
of a function f ∈ C∞(M) is defined as the vector field satisfying g(grad f, Y ) =
Y f for all vector fields Y . The length of the gradient is denoted by |grad f| =√
g(grad f, grad f). We denote the Riemannian distance function by d, which makes

(M,d) a length space. In a context when distance function is important, we will
denote the weighted Riemannian manifold (M, g, µ) as a metric measure space
(M,d, µ). As before for (M,d, µ), we denote closed ball and their volumes by
B(x, r) and V (x, r) respectively.

Definition 3.1. We say that a complete weighted Riemannian manifold (M, g)
with measure µ satisfies a Poincaré inequality (P )Rm if there exists C1 > 0, C2 ≥ 1
such that for all f ∈ C∞(M), for all x ∈M and for all r > 0,

(P )Rm

∫
B(x,r)

∣∣f(y)− fB(x,r)

∣∣2µ(dy) ≤ C1r
2

∫
B(x,C2r)

|grad f(y)|2µ(dy)

where fB(x,r) denote the µ-average of f in B(x, r)

fB =
1

V (x, r)

∫
B(x,r)

f(y)µ(dy).

The above inequality is sometimes called a weak, local, scale-invariant or L2

Poincaré inequality but we will refrain from using such adjectives. The word local
means that we are interested in average and integrals around some point x. This
is in contrast with global Poincaré inequality in which average and integrals are
over the whole space M . The Poincaré inequality is scale-invariant or uniform
to emphasize the fact the the constants C1 and C2 is independent of x or r. For
1 ≤ p <∞, we might replace (P )Rm with the Lp Poincaré inequality∫

B(x,r)

∣∣f(y)− fB(x,r)

∣∣pµ(dy) ≤ C1r
p

∫
B(x,C2r)

|grad f(y)|pµ(dy).

25
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instead of L2 version presented above. For spaces satisfying global doubling prop-
erty, one can always take C2 = 1 in (P )Rm. This is due to D. Jerison by a Whitney
decomposition argument [47] (see also [72, Section 5.3.2]). The Poincaré inequality
with C2 = 1 is called strong Poincaré inequality as opposed to the weak inequality
(P )Rm.

3.1. Gradient and Poincaré inequality at a given scale

To generalize the Poincaré inequality (P )Rm to metric measure spaces, we must
find a suitable definition for “length of gradient”. We will consider a class of random
walks that spreads over different distances. Therefore we define length of gradient
over different scales for a metric measure space. We use the following definition
due to [77] for length of gradient at a scale h for a function f : M → R with
f ∈ L∞(M,µ) (denoted by |∇f|h).

Definition 3.2. Let (M,d, µ) be a metric measure space. For any function
f ∈ L∞loc(M,µ), the length of gradient at a scale h for f is defined as the function

(3.1) |∇f|h(x) =

(
1

V (x, h)

∫
B(x,h)

|f(y)− f(x)|2µ(dy)

)1/2

.

for all x ∈M .

Remark 3.3. Our definition of |∇f|h coincides with |∇f|h,2 in the notation of

Tessera [77].

Now that we are armed with length of gradient, we define the corresponding
Poincaré inequality.

Definition 3.4. We say that a metric measure space (M,d, µ) satisfies a
Poincaré inequality at scale h, if there exists C1 > 0, C2 ≥ 1, r0 > 0 such that
for all f ∈ L∞loc(M,µ), for all x ∈M and for all r ≥ r0.

(P )h

∫
B(x,r)

∣∣f(y)− fB(x,r)

∣∣2µ(dy) ≤ C1r
2

∫
B(x,C2r)

(|∇f|h(y))
2
µ(dy)

where fB(x,r) denote the µ-average of f in B(x, r)

fB =
1

V (x, r)

∫
B(x,r)

f(y)µ(dy).

We will denote the above inequality by Ph(r0, C1, C2) or simply (Ph).

The rest of the chapter is devoted to the study of various properties and ex-
amples of the above Poincaré inequality (P )h. In particular, we will show that for
a weighted Riemannian manifold the Poincaré inequality at scale h (P )h, general-
izes the Poincaré inequality (P )Rm under some mild hypothesis. One of the main
results that we will see in this chapter is that Poincaré inequality (P )h is preserved
under quasi-isometries.

The following simple fact will be frequently used in rest of this chapter. Let
(M,d, µ) be a metric measure space and let A ⊂M with 0 < µ(A) <∞. Then for
every function f ∈ L∞(A)

(3.2) inf
α∈R

∫
A

|f(y)− α|2µ(dy) =

∫
A

|f(y)− fA|2µ(dy)
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where fA is the µ-average of f in A,

fA =
1

µ(A)

∫
A

f dµ.

In other words, mean minimizes squared error.
A Poincaré inequality at scale h implies a Poincaré inequality at all larger scales

h′ with h′ ≥ h.

Lemma 3.5. Let (M,d, µ) be a metric measure space satisfying (V D)loc and
Poincaré inequality (P )h at scale h. Then for all h′ ≥ h, (M,d, µ) satisfies (P )h′ .

Proof. Assume Ph(r0, C1, C2). Then for all functions f ∈ L∞loc and for all
balls B(x, r) with r ≥ r0 and x ∈M , we have∫

B(x,r)

∣∣f − fB(x,r

∣∣2 dµ
≤ C1r

2

∫
B(x,C2r)

|∇hf|2 dµ

= C1r
2

∫
B(x,C2r)

∫
B(x,C2r+h′)

|f(y)− f(z)|2
1d(x,y)≤h

V (y, h)
dz dy

≤ Ch,h′C1r
2

∫
B(x,C2r)

∫
B(x,C2r+h′)

|f(y)− f(z)|2
1d(x,y)≤h′

V (y, h′)
dz dy

which is Ph′(r0, C1Ch,h′ , C2). In the last line above, we used Lemma 2.10. �

Remark 3.6. A question now arises: At what scales h does a Poincaré inequal-
ity (P )h hold ? We have a satisfactory answer for length spaces and graphs. If a
graph satisfies Poincaré inequality at some scale, it satisfies Poincaré inequality at
all scales h ≥ 1 (See Corollary 3.15). Moreover, a graph does not satisfy Poincaré
inequality for scales smaller than 1 because the gradient at scales smaller than 1 is
identically zero. If a length space satisfies Poincaré inequality at some scale, then
it satisfies Poincaré inequality at all positive scales (See Corollary 3.17). We will
see in Proposition 9.9 that if (P )h is satisfied at for some h > 0 then (P )h is true
for all h > b. We analyze an example which is neither a graph nor a length space
(See Example 3.22) to show that h > b is the best possible bound.

We now show that the constant r0 in Ph(r0, C1, C2) is flexible.

Lemma 3.7. Assume the Poincaré inequality Ph(r0, C1, C2) holds for a metric
measure space (M,d, µ). Then for every r1 > 0 and there exists constants C ′1, C

′
2

such that the Poincaré inequality Ph(r1, C
′
1, C

′
2) holds.

Proof. The non-trivial case to check is r1 < r0. Assume B(x, r) with r1 ≤
r < r0. Then for all functions f ∈ L∞loc(M), by (3.2) we have∫

B(x,r)

∣∣f − fB(x,r)

∣∣2 dµ ≤ ∫
B(x,r)

∣∣f − fB(x,r0)

∣∣2 dµ
≤
∫
B(x,r0)

∣∣f − fB(x,r0)

∣∣2 dµ.
Combining the above inequality with Ph(r0, C1, C2) yields∫

B(x,r)

∣∣f(y)− fB(x,r)

∣∣2 dy ≤ C1r
2
0

∫
B(x,C2r0)

|∇f|2h dµ.
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Hence we can choose C ′1 = C1(r0/r1)2 and C ′2 = C2(r0/r1). �

3.2. Robustness under quasi-isometry

Since quasi-isometry between metric measure spaces satisfying (V D)loc is an
equivalence relation, we may expect that a quasi-isometry preserves certain invari-
ants of such spaces. For instance, we saw in Proposition 2.20 that quasi-isometry
preserves the large scale doubling property. In this section, we shall see that quasi-
isometry preserves Poincaré inequality (P )h. The approach for proving robustness
of functional inequalities can traced back to the seminal works of Kanai [50, 51, 52]
and further developments by Couhlon and Saloff-Coste [22].

The idea is to show that a functional inequality on the metric measure space
is equivalent to a similar functional inequality on its net. Since quasi-isometry is
an equivalence relation, it suffices to show that the functional inequality on graphs
is preserved under quasi-isometries. To compare functional inequalities back and
forth between a metric measure space and its net, we need to be able to transfer
functions on metric measure space to functions on its net and vice-versa. We start
by developing those tools.

As before, let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying
(V D)loc and let (X, dG,m) be its ε-net for some fixed ε ≥ b. By Proposition 2.22,
we have that (X, dG,m) is a metric measure space satisfying (V D)loc. Moreover the
graph corresponding to (X, dG,m) is connected, countable with bounded degree.
Let DX = supx∈X deg(x) < ∞ be the maximum degree. We will denote closed
balls in (M,d, µ) and (X, dG, µ) by B and BG respectively. Similarly, we denote
their corresponding volumes by V and VG respectively.

Given a function g ∈ L∞loc(M,µ), we a define a function g̃ : X → R on its net
as

(3.3) g̃(x) =
1

V (x, ε)

∫
B(x,ε)

g dµ.

for all x ∈ M . Conversely, given a function f : X → R on the net, we define

f̂ : M → R as

(3.4) f̂ =
∑
x∈X

f(x)θx

where θx : M → R is defined by

(3.5) θx(p) =
1B(x,ε)(p)∑
y∈X 1B(y,ε)(p)

.

The sum in (3.4) and denominator of (3.5) is a finite sum due to the finite overlap
property of Proposition 2.22(h). Moreover, there exists a constant cX > 0 such
that {θx}x∈X is a partition of unity (

∑
x∈X θx ≡ 1) satisfying

(3.6) cX1B(x,ε) ≤ θx ≤ 1B(x,ε)

for all x ∈ X.The above properties of the partition of unity θx can be verified using
Proposition 2.22.

We will now compare norms and gradients for the transfer of functions between
metric measure space and its net. For a metric measure space (M,d, µ) and for all
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f ∈ L∞loc(A) where A ⊂M , we denote by

‖f‖p,A =

(∫
A

|f|p dµ
)1/p

.

We adapt the same notation for its net by considering it as a metric measure space.

Definition 3.8. For a function f : X → R on a graph (X,E), we define the
discrete gradient of f at x as

δf(x) =

(∑
y∼x
|f(y)− f(x)|2

)1/2

.

This definition of discrete gradient was used to define Poincaré inequality for
graphs in [22]. We now show that our definition of |∇f|1 is comparable to δf .

Lemma 3.9. Let (X, dG,m) be a weighted graph satisfying (V D)loc. Then there
exists C > 0 such that

C−1|∇f|1(x) ≤ δf(x) ≤ C|∇f|1(x)

for all functions f : X → R and for all x ∈ X.

Proof. We write the gradient as

(|∇f|1(x))
2

=
1

m(x) +
∑
y∈X:y∼xm(y)

∑
y∈X:y∼x

|f(y)− f(x)|2m(y).

The conclusion immediately follows from Lemma 2.23. �

Remark 3.10. Therefore our Poincaré inequality (P )1 generalizes the Poincaré
inequality for graphs considered by Delmotte [25, 27]. Using the above lemma, our
definition of (P )1 for graphs is equivalent to the L2 version of (P ) for graphs in
[22].

The next lemma compares gradient of a function on net and with its metric
measure space version.

Lemma 3.11. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfy-
ing (V D)loc and let (X, d,m) be its ε-net for some ε ≥ b. For all h > 0, there exists
positive reals C,C ′ such that for all x ∈ M , for all r ≥ 1, and for all functions
f : X → R, we have ∥∥∥∣∣∣∇f̂∣∣∣

h

∥∥∥2

2,B(x,r)
≤ C ‖δf‖22,BG(x̄,C′r)

where x̄ ∈ X is such that d(x, x̄) ≤ ε and f̂ : M → R is defined as in (3.4).

Proof. Using Lemma 2.10, Proposition 2.22 (a) and (2.12), there exists C1 > 0
such that ∫

B(x,r)

∫
M

∣∣∣f̂(y)− f̂(z)
∣∣∣2 1d(y,z)≤h

V (y, h)
dz dy(3.7)

≤
∑

s∈BG(x̄,C1r)

∫
B(s,ε)

∫
M

∣∣∣f̂(y)− f̂(z)
∣∣∣2 1d(y,z)≤h

V (y, h)
dz dy
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for all x ∈M and r ≥ 1. For all s ∈ X, y ∈ B(s, ε) and z ∈ B(y, h), we have

f̂(y)− f̂(z) =
∑
t∈X

f(t)(θt(y)− θt(z)) =
∑
t∈X

(f(t)− f(s))(θt(y)− θt(z))

=
∑

t∈X,d(s,t)≤2ε+h

(f(t)− f(s))(θt(y)− θt(z))

For the last line, if d(s, t) > 2ε + h, then by triangle inequality d(t, y) > h + ε,
d(t, z) > ε and therefore θt(y) = θt(z) = 0 whenever d(s, t) > 2ε+ h. Let DX <∞
be the maximum degree of the net from Proposition 2.22(b) and n0 = A(h+ 2ε) +
A+ h where A is from (2.12). Since |BG(s, n0)| ≤ 2Nn0 , we have

(3.8)
∣∣∣f̂(p1)− f̂(p2)

∣∣∣ ≤ 2
∑

t∈BG(s,n0)

|f(t)− f(s)| ≤ 4Dn0

X sup
t∈BG(s,n0)

|f(t)− f(s)|

Let p0, p1, . . . , pdG(s,t) be a path from s to t. For all t ∈ BG(s, n0), by Cauchy-
Schwarz inequality we have

(3.9) |f(t)− f(s)|2 ≤

dG(t,s)−1∑
i=0

(f(pi)− f(pi+1))

2

≤ n0

∑
p∈BG(s,n0)

|δf(p)|2.

Combining (3.7),(3.8) and (3.9)∥∥∥∣∣∣∇f̂∣∣∣
h

∥∥∥2

2,B(x,r)
≤

∑
s∈BG(x̄,C1r)

4N2n0n0

∑
t∈BG(s,n0)

|δf(t)|2m(s)

≤
∑

s∈BG(x̄,C1r)

Cn0
m 4N2n0n0

∑
t∈BG(s,n0)

|δf(t)|2m(t)

≤ 8Cn0
m D3n0

X n0

∑
s∈BG(x̄,C3r)

|δf(t)|2m(t)

for all x ∈ M and all r ≥ 1. The second line follows from (2.13) and the last line
from |B(t, n0)| ≤ 2Dn0

X . �

The following proposition shows that Poincaré inequalities can be transferred
between a metric measure space and its net.

Proposition 3.12. Let (M,d, µ) be a b-quasi-geodesic space satisfying (V D)loc

and let (X, d,m) be its ε-net for some ε ≥ b. Then for all h ≥ 5ε, (X, dG,m) satisfies
(P )1 if and only if (M,d, µ) satisfies (P )h.

Remark 3.13. In general, we do not know if the inequality h ≥ 5ε in the above
statement is required. We believe that h > b is sufficient but we are unable to prove
this.

Proof of Proposition 3.12. Suppose (X, dG,m) satisfies P1(r0, C
′
1, C

′
2).

Let g ∈ L∞loc and let g̃ : X → R be defined as (3.3). Let x ∈ M and r ≥ r0 be
arbitrary. Let x̄ ∈ X be such that d(x, x̄) ≤ ε. There exists C1 > 0 such that, we
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have ∫
B(x,r)

∣∣g(y)− gB(x,r)

∣∣2dy(3.10)

≤
∫
B(x,r)

|g(y)− α|2dy ≤
∑

p∈BG(x̄,C1r)

∫
B(p,ε)

|g(y)− α|2dy

≤ 2
∑

p∈BG(x̄,C1r)

(∫
B(p,ε)

|g(y)− g̃(p)|2dy +m(p)|̃g(p)− α|2
)

for all α ∈ R and all functions g. The second line above follows from (3.2), Propo-
sition 2.22 (a) and (2.12). The last line follows from (a+ b)2 ≤ 2(a2 + b2). The first
term above is bounded using Jensen’s inequality as∫

B(p,ε)

|g(y)− g̃(p)|2dy ≤ 1

V (p, ε)

∫
B(p,ε)

∫
B(p,ε)

|g(y)− g(z)|2 dz dy

Hence by Lemma 2.10, we have

I1 =
∑

p∈BG(x̄,C1r)

∫
B(p,ε)

|g(y)− g̃(p)|2dy

≤ Cε,6ε
∑

p∈BG(x̄,C1r)

∫
B(p,ε)

∫
B(p,ε)

|g(y)− g(z)|2
1d(y,z)≤2ε

V (y, 5ε)
dz dy

≤ C2 ‖|∇g|5ε‖
2
2,B(x,C3r)

(3.11)

for some C2, C3 large enough. We used Lemma 2.10 and triangle inequality in
second line above and Proposition 2.22(h) and (2.12) in the last line. Choose
α = g̃BG(x̄,C1r) in (3.10), so as to apply P1(r0, C

′
1, C

′
2) on (X, d,m) to bound the

second term in (3.10) as

(3.12) I2 =
∑

p∈BG(x̄,C1r)

m(p)|̃g(p)− α|2 ≤ C4r
2 ‖δg̃‖22,BG(x̄,C5r)

For all p, q ∈ X satisfying p ∼ q, by Jensen’s inequality and triangle inequality we
have

|̃g(p)− g̃(q)|2 ≤ 1

m(p)m(q)

∫
B(p,ε)

∫
B(q,ε)

|g(y)− g(z)|2 dz dy

≤ 1

m(p)m(q)

∫
B(p,ε)

∫
B(q,ε)

|g(y)− g(z)|21d(y,z)≤5ε dz dy

Hence for all p ∈ X,

|δg̃(p)|2m(p)

≤
∑

q∈X,q∼p

1

V (q, ε)

∫
B(p,4ε)

∫
B(p,4ε)

|g(y)− g(z)|21d(y,z)≤5ε dz dy

≤ Cε,9ε
∑

q∈X,q∼p

∫
B(p,4ε)

∫
B(y,4ε)

|g(y)− g(z)|2
1d(y,z)≤5ε

V (y, 5ε)
dz dy

≤ Cε,9εDX

∫
B(p,4ε)

∫
B(p,4ε)

|g(y)− g(z)|2
1d(y,z)≤5ε

V (y, 5ε)
dz dy(3.13)
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The third line follows from Lemma 2.10 and the last line from bounded degree
property of Proposition 2.22(b). Combining (3.12), (3.13) along with (2.12) and
Proposition 2.22(h) gives

(3.14) I2 ≤ C6r
2 ‖|∇g|5ε‖

2
2,B(x,C7r)

.

Combining (3.10),(3.11) and (3.14) yields Poincaré inequality (P )5ε for (M,d, µ).
By Lemma 3.5, we get (P )h for all h ≥ 5ε.

Conversely, suppose that (M,d, µ) satisfies Ph(r1, C
′
3, C

′
4) for some h ≥ 5ε. Let

f : X → R be an arbitrary function and define f̂ : M → R as in (3.4). Denote
BG(p, r) be an arbitrary ball in (X, d,m) where r ≥ r1. Then using (3.2), (V D)loc

and the inequality (a+ b)2 ≤ 2(a2 + b2) we have∑
q∈BG(p,r)

∣∣f(q)− fBG(x,r)

∣∣2m(q)(3.15)

≤
∑

q∈BG(p,n)

|f(q)− α|2m(q) ≤ Cε/2
∑

q∈BG(x,n)

∫
B(q,ε/2)

|f(q)− α|2 dµ

≤ 2Cε/2
∑

q∈BG(p,n)

∫
B(q,ε/2)

(∣∣∣f(q)− f̂(y)
∣∣∣2 +

∣∣∣f̂(y)− α
∣∣∣2) dy

for all α ∈ R. Using Proposition 2.22(a) and (2.12),there exists positive reals
C8, C11, C12 such that for all r ≥ min(1, r1/C8) and all functions f , we have

J2 =
∑

q∈BG(p,r)

∫
B(q,ε/2)

∣∣∣f̂(y)− α
∣∣∣2 dy ≤ ∫

B(p,C8r)

∣∣∣f̂(y)− α
∣∣∣2 dy

≤ C9r
2
∥∥∥∣∣∣∇f̂∣∣∣

h

∥∥∥2

2,B(p,C10r)
≤ C11r

2 ‖δf‖22,BG(p,C12r)
.(3.16)

In the second step above, we fix α = f̂B(p,C2r) and apply Poincaré inequality (P )h
and in the last line we apply Lemma 3.11. Let q ∈ X and y ∈ B(q, ε/2). Since

f̂(y) =
∑
t∈X:dG(t,q)≤1 θt(y)f(t), we have

∣∣∣f(q)− f̂(y)
∣∣∣ =

∣∣∣∣∣∣
∑

t∈X:d(t,q)≤1

θt(y)(f(q)− f(t))

∣∣∣∣∣∣ ≤
∑

t∈X:d(t,q)≤1

|(f(q)− f(t))|

≤ δf(q)
√
DX .

The last line follows from Cauchy-Schwarz inequality and maximum degree DX

from Proposition 2.22(b). Using this estimate, we have

J1 =
∑

q∈BG(p,r)

∫
B(q,ε/2)

∣∣∣f(y)− f̂(y)
∣∣∣2 dy ≤ DXCε/2

∑
y∈BG(p,r)

|δf(q)|2m(q)

≤ DXCε/2 ‖δf‖
2
2,BG(p,r) .(3.17)

Thus (P )1 for (X, d,m) follows from (3.15), (3.16) and (3.17) along with Lemma
3.9. �

We now show that Poincaré inequality (P )1 is preserved under quasi-isometry
for graphs.

Let (X, d,m) be a weighted graph. Then for the closed balls in the graph, we
have B(x, r) = B(x, brc). Hence by Lemmas 3.7 and 3.9, we have the following
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equivalent definition of (P )1: A weighted graph (X, d,m) satisfies (P )1, if there
exists C1 > 0, C2 ≥ 1 such that for all f : X → R, for all x ∈ X and for all n ∈ N∗.

(3.18)
∑

y∈B(x,n)

∣∣f(y)− fB(x,n)

∣∣2µ(dy) ≤ C1n
2

∑
B(x,C2n)

|δf(y)|2m(y)

where fB(x,n) is the average of f in B(x, n) with respect to measure m. We will
use the alternate definition for the proposition below.

Proposition 3.14 ([22], Proposition 4.2). Let (X1, d1,m1) and (X2, d2,m2)
be quasi-isometric weighted graphs that satisfy (V D)loc. Then (X1, d1,m1) satisfies
(P )1 if and only if (X2, d2,m2) satisfies (P )1.

Proof. We denote the balls, volume of balls and gradient of (Xi, di,mi) by
Bi, Vi, δi respectively for i = 1, 2.

Assume that (X1, d1,m1) satisfies (P )1. Let Φ : X1 → X2 be a quasi-isometry
with ∪x∈X1

B2(Φ(x), k) = X2 for some k ∈ N∗. Let f : X2 → R and let fk(x)
denote the average of f in B2(x, k) with respect to measure m2. Applying (P )1 to
the function fk ◦ Φ : X1 → R, we have

(3.19)
∥∥fk ◦ Φ− (fk ◦ Φ)B1(x,n)

∥∥2

2,B1(x,n)
≤ C1n

2 ‖δ1(fk ◦ Φ)‖22,B1(x,C′1n)

For all y ∈ X1, we have

|δ1(fk ◦ Φ)(y)|2m1(y) ≤ C2|δ1(fk ◦ Φ)(y)|2m2(Φ(y))

(3.20)

≤ C2DX1
sup

w1∈X1:w1∼y
|fk(Φ(w1))− fk(Φ(y))|2m2(Φ(y))

The first line follows from the quasi-isometry condition m1(y) ≤ C ′m2(Φ(y)) and
the second line from bounded degree property of Lemma 2.23. Since Φ is a quasi-
isometry, there exists l > 0 such that B2(Φ(y), l) ⊆ Φ(B1(y, 1)) for all y ∈ X1.
An application of Cauchy-Schwarz inequality along the minimal path Φ(w1) =
p0, p1, . . . , ps = Φ(y) gives

|fk(Φ(w1))− fk(Φ(y))|2 ≤ l
s−1∑
i=0

|fk(Φ(pi))− fk(Φ(pi+1))|2

≤ l
∑

z∈B2(Φ(y),l)

|δ2fk(z)|2(3.21)

for all y, w1 ∈ X1 such that y ∼ w1. Combining (3.20), (3.21) and (2.15) of Lemma
2.23, we obtain

(3.22) |δ1(fk ◦ Φ)(y)|2m1(y) ≤ C2DX1 lC
l
m

∑
z∈B2(Φ(y),l)

|δ2fk(z)|2m2(z)

Since Φ is a quasi-isometry, there exists C ′2 > 0 such that

∪z∈Φ(B1(x,C′1n))B2(z, l) ⊆ B2(Φ(x), C ′2n)

for all x ∈ X1 and n ∈ N∗. Combining this with (3.22) and Lemma 2.23 gives

(3.23) ‖δ1(fk ◦ Φ)‖22,B1(x,C′1n) ≤ C3 ‖δ2fk‖22,B2(Φ(x),C′2n)
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for all n ∈ N∗, for all x ∈M and for all functions f . We write,

|δ2fk(z)|2 =
∑

y∈X2:y∼z
|fk(z)− fk(y)|2

≤ 2
∑
y∼z

 1

V2(z, k)

∑
t∈B2(z,k)

|f(t)− f(z)|2m2(t)

+
1

V2(y, k)

∑
s∈B2(y,k)

|f(s)− f(z)|2m2(s)


≤ 2DX2

V2(z, k)

∑
t∈B2(z,k)

|f(t)− f(z)|2m2(t)

+
C4

V2(z, k)

∑
s∈B2(z,k+1)

|f(s)− f(z)|2m2(s).

The second and third lines above follow from (a + b)2 ≤ 2(a2 + b2) along with
Jensen’s inequality. The last two lines follow from Lemmas 2.23 and 2.10 to compare
V2(z, k) ≤ V2(y, k + 1) ≤ C4V2(y, k). By Lemma 2.23, we have m2(t) ≤ C ′3V2(z, k)
for all z ∈ X2 and for all t ∈ B2(z, k + 1). It follows that

|δ2fk(z)|2 ≤ C5

∑
t∈B2(z,k+1)

|f(t)− f(z)|2

An application of Cauchy-Schwarz inequality similar to (3.21) yields

|δ2fk(z)|2 ≤ C5(k + 1)DX2
k+1

∑
y∈B2(z,k+1)

|δ2f(y)|2

Finally by Lemma 2.23,

(3.24) ‖δ2fk(z)‖22,B2(Φ(x),C′1n) ≤ C6 ‖δ2f‖22,B2(Φ(z),C′4n)

Combining (3.19), (3.23) and (3.24), we have

(3.25)
∥∥fk ◦ Φ− (fk ◦ Φ)B1(x,n)

∥∥2

2,B1(x,n)
≤ C6n

2 ‖δ2f‖22,B2(Φ(z),C′4n)

Suppose we prove that∥∥f − fB2(Φ(x),n)

∥∥2

2,B2(Φ(x),n)
≤ C8 ‖δ2f‖22,B2(Φ(x),C′5n)(3.26)

+ C9

∥∥fk ◦ Φ− (fk ◦ Φ)B1(x,C′5n)

∥∥2

2,B1(x,C′5n)
.

Then (3.25) and (3.26) gives

(3.27)
∥∥f − fB2(Φ(x),n)

∥∥2

2,B2(Φ(x),n)
≤ C10n

2 ‖δ2f(z)‖22,B2(Φ(x),C′6n) .

for all x ∈M1 and for all n ∈ N∗. Thus we obtain Poincaré inequality for all balls
centered in the image of Φ. Let y ∈ M2. Then there exists ȳ ∈ M1 such that
y ∈ B2(Φ(ȳ), k). It follows from (3.2) that∥∥f − fB2(y,n)

∥∥2

2,B2(y,n)
≤
∥∥f − fB2(Φ(ȳ),n+k)

∥∥2

2,B2(y,n)

≤
∥∥f − fB2(Φ(ȳ),n+k)

∥∥2

2,B2(Φ(ȳ),n+k)
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Hence by (3.27), we have (P )1 for (X2, d2,m2).
It remains to show (3.26). Let Φ−1 : M2 →M1 denote the quasi-inverse such that
Φ−1(m2) ∈ M1 is such that d2(m2, (Φ ◦ Φ−1)(m2)) ≤ k. We have by (3.2) and
(a+ b)2 ≤ 2(a2 + b2) that∥∥f − fB2(Φ(x),n)

∥∥2

2,B2(Φ(x),n)
≤ ‖f − α‖22,B2(Φ(x),n) ≤ 2S1 + 2S2

where

S1 =
∥∥f − fk ◦ Φ ◦ Φ−1

∥∥2

2,B2(Φ(x),n)

and

S2 =
∥∥fk ◦ Φ ◦ Φ−1 − α

∥∥2

2,B2(Φ(x),n)

for all α ∈ R. Let z̄ = Φ ◦ Φ−1(z), then d2(z, z̄) ≤ k. We bound S1 as

S1 =
∑

z∈B2(Φ(x),n)

|f(z)− fk(z̄)|2m2(z)

≤
∑

z∈B2(Φ(x),n)

 1

V2(z̄, k)

∑
t∈B2(z̄,k)

|f(z)− f(t)|2m2(t)

m2(z)

≤ C11

∑
z∈B2(Φ(x),n)

∑
t∈B2(z,2k)

|δ2f(t)|2m2(z)

≤ C12 ‖δ2f‖22,B2(Φ(x),C′7n) .

The second line follows from Jensen’s inequality. The third line follows from
d2(z, z̄) ≤ k and an application of Cauchy-Schwarz inequality similar to (3.21).
The last two lines follows from bounded degree property and (2.15) of Lemma 2.23.
For the second term S2, we have

S2 ≤ C13

∑
z∈B2(Φ(x),n)

∣∣fk ◦ Φ ◦ Φ−1(z)− α
∣∣2m1(Φ−1(z))

≤ C14 ‖fk ◦ Φ− α‖22,B1(x,C′8n)

We use the fact that Φ and Φ−1 are quasi-isometries. Indeed, for C ′8 big enough
Φ−1(B2(Φ(x), n)) ⊂ B1(x,C ′8n), since Φ−1 is a quasi-isometry with

d2(x,Φ ◦ Φ−1(x)) ≤ k.
Moreover

∣∣{z ∈ X2 : Φ−1(z) = w}
∣∣ is uniformly bounded over all w ∈ X1. Choose

C ′5 = max(C ′7, C
′
8). The bounds on S1 and S2 along with the choice α = (fk ◦

Φ)B1(x,C′5n) concludes the proof of (3.26). �

Corollary 3.15. Let (X, d,m) be a weighted graph satisfying (V D)loc and let
h ≥ 1. Then (X, d,m) satisfies (P )1 if and only if (X, d,m) satisfies (P )h.

Proof. By Lemma 3.5, (P )1 implies (P )h.
Conversely, assume (X, d,m) satisfies (P )h. Fix k = bhc. Since |∇f|h = |∇f|k for all
functions f : X → R, (X, d,m) satisfies (P )k. k-fuzz of a weighted graph is defined
as the weighted graph (X, dk,m) where the edges are defined by dk(x, y) = 1 if
and only if 1 ≤ d(x, y) ≤ k for x, y ∈ X. It is straightforward to verify that
the k-fuzz (X, dk,m) satisfies (V D)loc and is quasi-isometric to (X, d,m). Since
(X, d,m) satisfies (P )k, the k-fuzz (X, dk,m) satisfies (P )1. Hence by Proposition
3.14, (X, d,m) satisfies (P )1. �
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As outlined at the start, the robustness of Poincaré inequality on graphs in
Proposition 3.14 can be transferred to arbitrary quasi-geodesic spaces using Propo-
sition 3.12.

Proposition 3.16. For i = 1, 2, let (Mi, di, µi) be quasi-bi-geodesic spaces
satisfying (V D)loc. Assume (M1, d1, µ1) and (M2, d2, µ2) are quasi-isometric. Let
h1 ≥ 5b1 and for all h2 ≥ 5b2. Then (M1, d1, µ1) satisfies (P )h1

if and only if
(M2, d2, µ2) satisfies (P )h2

.

Proof. It is a direct consequence of Propositions 3.12 and 3.14. �

The above Proposition along with the fact that length space is b-geodesic for
all b > 0 gives the following.

Corollary 3.17. Let (M,d, µ) be a length space satisfying (V D)loc. Then for
every h1, h2 > 0, (M,d, µ) satisfies (P )h1

if and only if (M,d, µ) satisfies (P )h2
.

3.3. Poincaré inequalities in Riemannian manifolds

In this section, we see the relationship between various Poincaré inequalities on
a weighted Riemannian manifold. We start by introducing some Poincaré inequal-
ities from [22].

Definition 3.18. We say that a complete weighted Riemannian manifold
(M, g) with measure µ satisfies (P )∞ if there exists r0 > 0, C1 > 0, C2 ≥ 1
such that for all f ∈ C∞(M), for all x ∈M and for all r ≥ r0, we have

(P )∞

∫
B(x,r)

∣∣f(y)− fB(x,r)

∣∣2µ(dy) ≤ Cr0r2

∫
B(x,C2r)

|grad f(y)|2µ(dy)

where fB(x,r) denote the average of f in B(x, r) with respect to µ. We say that a
complete weighted Riemannian manifold (M, g) with measure µ satisfies (P )loc if
there exists C1 > 0, C2 ≥ 1 such that for all f ∈ C∞(M), for all x ∈M and for all
r ≥ 0, we have

(P )loc

∫
B(x,r)

∣∣f(y)− fB(x,r)

∣∣2µ(dy) ≤ Cr
∫
B(x,C2r)

|grad f(y)|2µ(dy)

where fB(x,r) denote the average of f in B(x, r) with respect to µ.

It is clear that (P )Rm implies (P )∞ and (P )loc. The inequality (P )loc is a weak
assumption. For instance, manifolds with a lower bound on Ricci curvature satisfy
(P )loc. Inequality (P )∞ is a large scale version of (P )Rm.

Proposition 3.19. ([22, Proposition 6.10]) Let (M, g, µ) be a weighted Rie-
mannian manifold satisfying (V D)loc and (P )loc and let (X, d,m) be its ε-net for
some ε > 0. Then (M, g) with measure µ satisfies (P )∞ if and only if (X, d,m)
satisfies (P )1.

Propositions 3.19 and 3.12 along with Corollary 3.17 gives the following

Proposition 3.20. Let (M, g, µ) be a weighted Riemannian manifold with Rie-
mannian distance d. Denote by (X, dG,m) be an ε-net of (M,d, µ) for some ε > 0.
Assume (M,d, µ) satisfies (V D)loc and (P )loc. Then the following are equivalent:

(a) (M,d, µ) satisfies (P )∞.
(b) (M,d, µ) satisfies (P )h for some h > 0.
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(c) (M,d, µ) satisfies (P )h for all h > 0.
(d) (X, dG,m) satisfies (P )1.
(e) (X, dG,m) satisfies (P )h for some h ≥ 1.

3.4. Poincaré inequality: Examples and Non-examples

A large class of examples for (P )h can be obtained from Proposition 3.16 and
3.20. For instance, Buser proved (P )Rm for Riemannian manifolds with non-
negative Ricci curvature. Therefore by Proposition 3.20, Riemannian manifolds
with non-negative Ricci curvature satisfy (P )h for all positive scales h. The follow-
ing example is from [35].

Example 3.21. [Euclidean space with radial weights] Consider Rn with stan-
dard Riemannian metric g, Euclidean distance d and measure dµα(x) = (1 +

|x|2)α/2 dx. It is easy to verify that (Rn, d, µα) satisfies (V D)loc and (P )loc. More-
over (Rn, d, µα) satisfies (V D)∞ if and only if α > −n. If n ≥ 2, then (Rn, d, µα)
satisfies (P )∞ and therefore (P )h for all values of α ∈ R and h > 0 (See Remark
3.13 in [35]). However, (R, d, µα) does not satisfy (P )∞ for α ≥ 1. It can be easily
seen using the test function fα(x) =

∫ x
0

(1 + t2)−α/2 dt. By [35, Theorem 7.1(i)],
(R, d, µα) satisfies (P )∞ if −1 < α < 1. Due to an unpublished result of Grigor’yan
and Saloff-Coste, (R, d, µα) satisfies (P )∞ if and only if α < 1.

Example 3.22. We describe an example of quasi-geodesic space which is nei-
ther a graph, nor a length space. Consider the ‘Broken line’ BL ⊂ R

BL =
⋃
n∈Z

[n− 1/4, n+ 1/4]

It is quasi-b-geodesic if and only if b ≥ 1/2. We equip it with the Euclidean
distance d and restriction of Lebesgue measure µ on BL. (P )h is not true for
(BL, d, µ) if h ≤ 1/2. It can be seen using the test function f : BL → R defined
by f(x) = (−1)bx+1/4c. However, it can be shown that for (BL, d, µ) satisfies (P )h
for all h > 1/2.

Example 3.23 (Hyperbolic space). Consider the Hyperbolic n-space Hn with
Riemannian distance dH and Riemannian measure µ. (Hn, dH , µ) satisfies (V D)loc

and (P )loc. However (Hn, d, µ) does not satisfy (V D)loc because the volume of balls
grows exponentially. Further (Hn, dH , µ) does not satisfy the Poincaré inequality
(P )∞.

Another example in a similar spirit is the infinite d-regular tree Td equipped
with graph distance metric and counting measure. It is easy to very that if d ≥ 3,
Td does not satisfy (V D)∞ and does not satisfy (P )h for all h > 0.

Examples 3.21 and 3.23 illustrates all the four possibilities that can occur with
properties (V D)∞ and (P )∞. It is summarized in the table below.
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(V D)∞ (P )∞ Examples
True True (Rn, d, µα) with n ≥ 2 and α > −n or n = 1

and α ∈ (−1, 1)
True False (R, d, µα) with α ≥ 1
False True (Rn, d, µα) with α ≤ −n
False False (Hn, dH , µ)

Table 1. Examples of spaces in relation to the properties (V D)∞
and (P )∞



CHAPTER 4

Markov kernel, Semigroup and Dirichlet forms

In this chapter, we consider Markov chains on metric measure space (M,d, µ).
Let B denote the Borel σ-algebra on (M,d). Our work concerns long term behavior
of a natural family of Markov chains on the state space M . We will recall some
standard definitions and facts about discrete time Markov chains.

A Markov transition function is a map P : M ×B : [0,∞) such that x 7→ (x,A)
is B-measurable function on M for all A ∈ B and A 7→ P(x,A) is a probability
measure on (M,B) for all x ∈ M . A Markov transition function P on (M,B) is
µ-symmetric if

(4.1)

∫
M

∫
M

u1(x)u2(y)P(x, dy)µ(dx) =

∫
M

∫
M

u1(x)u2(y)P(x, dy)µ(dx)

for all measurable functions u1, u2 : M → [0,∞).

Remark 4.1. For the rest of this work, we assume that the our Markov tran-
sition function is µ-symmetric with respect to some measure µ.

Associated with a µ-symmetric Markov transition function P is a Markov op-
erator P , which is a linear operator defined by

(4.2) Pf(x) =

∫
M

f(y)P(x, dy)

on the set of bounded measurable functions. The operator P extends as a con-
traction operator on Lp(M) = Lp(M,µ) for all p ∈ [1,∞]. With a slight abuse
of notation, we denote this extension again by P : Lp(M) → Lp(M) for each
1 ≤ p ≤ ∞. Moreover P is positivity preserving, i.e. if f ≥ 0 then Pf ≥ 0.

The n-th iteration Pn of the operator P is just the operator associated with
kernel Pn defined inductively by

Pn(x,A) :=

∫
M

Pn−1(z,A)P(x, dz)

for all x ∈ M , for all measurable sets A ∈ B and P1 := P. We now have the
Markov semigroup of linear operators (Pn)n∈N0

where P 0 is the identity operator

on L2(M). The Chapman-Kolmogorov equation is given by

(4.3) Pm+n(x,A) =

∫
M

Pn(z,A)Pm(x, dz)

for all A ∈ B and for allm,n ∈ N∗. By Fubini’s theorem, (4.3) implies the semigroup
property Pm+nf = PmPnf for all m,n ∈ N0 and f ∈ L1(M).

The operator ∆ := I − P is the Laplacian which generates the Dirichlet form

E(f, f) = 〈f,∆f〉L2(M) =
1

2

∫
M

∫
M

(f(x)− f(y))
2 P(x, dy)µ(dx).

39
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on L2(M) with full domain D(E) = L2(M).
For every Markov transition function P on (M,B) there exists a Markov chain

(Xn,Px)n∈N0,x∈M on some path space (Ω,F) such that

P(x,A) = Px(X1 ∈ A).

(one can always choose the canonical path space Ω = M⊗N0 ,F = B⊗N0 and
Xn(ω) = ωn for ω = (ω0, ω1, . . .).) The transition function Pn is then given by
Pn(x,A) = Px(Xn ∈ A) and the operator Pn by Pnf(x) = Exf(Xn). The µ-
symmetry of P is equivalent to the µ-reversibility of the Markov chain:

Pµ(X0 ∈ A,X1 ∈ B) = Pµ(X1 ∈ A,X0 ∈ B)

where Pµ is a measure (not necessarily a probability measure) defined by Pµ(·) :=∫
M

Px(·)µ(dx).
If P(x, ·)� µ for all x ∈M , we denote its kernel by p : M ×M → [0,∞), that

is

P(x,A) =

∫
A

p(x, y)µ(dy)

for all x ∈ M and for all A ∈ B. The kernel p is called a Markov kernel with
respect to µ. The kernel p(x, ·) is the Radon-Nikodym derivative of P(x, ·) with
respect to µ, that is P(x,A) =

∫
A
p(x, y)µ(dy) for all x ∈ M and all A ∈ B. The

µ-symmetry of P implies symmetry of kernel, that is p(x, y) = p(y, x) for all µ× µ
almost every (x, y) ∈ M ×M . By definition, we have p(x, ·) ∈ L1(M,µ) for all
x ∈ M . However, we assume that p(x, ·) ∈ L∞(M,µ) for all x ∈ M . Under the
assumption p(x, ·) ∈ L1 ∩ L∞, we define iteratively

(4.4) pk+1(x, y) := [Ppk(x, ·)] (y) =

∫
M

pk(x, z)p1(y, z)µ(dz)

where p1 := p and k ∈ N∗. The function pk for k ∈ N∗ is called the heat kernel. We
will show some basic properties of heat kernel defined in (4.4).

Lemma 4.2. Let (M,d, µ) be a metric measure space and let P be a µ-symmetric
Markov transition function satisfying P(x, ·) � µ for all x ∈ M . Let p1(x, ·) =
dP(x,·)
dµ denote the corresponding Markov kernel. Assume further that p1(x, ·) ∈

L∞(M,µ) for all x ∈M . The the kernel pk defined in (4.4) satisfies

(a) pk(x, ·) = dPk(x,·)
dµ for all k ∈ N∗. That is Pk(x,A) =

∫
A
pk(x, z)µ(dz) for

all x ∈M , for all k ∈ N∗ and for all A ∈ B.
(b) pk(x, y) = pk(y, x) ∈ [0,∞) for all x, y ∈M and for all k ≥ 2.
(c) pk+l(x, y) = P k (pl(x, ·)) (y) for all x, y ∈M and for all k, l ∈ N∗.

Proof. Since p1(x, ·) ≥ 0 µ-almost everywhere for all x ∈ M , by induction
we have that pk(x, y) ∈ [0,+∞] for all x, y ∈ M and for all k ≥ 2. Therefore by
induction on k, we have∫

M

pk+1(x, y) dy =

∫
M

∫
M

pk(x, z)p1(y, z) dz dy =

∫
M

pk(x, z)

∫
M

p1(z, y) dy dz

=

∫
M

pk(x, z) dz = 1.

In the first line above we used Fubini’s theorem and that p1(y, z) = p1(z, y) µ× µ-
almost everywhere. Since ‖pk(x, ·)‖1 = 1 for all x ∈ M and for all k ∈ N∗, we
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have

pk+1(x, y) = ‖pk(x, ·)p1(y, ·)‖1 ≤ ‖pk(x, ·)‖1 ‖p1(y, ·)‖∞ ≤ ‖p1(y, ·)‖∞ <∞

for all k ∈ N∗ and for all x, y ∈M .
First we show (b) by induction. The result is obvious for k = 2. If k ≥ 2, we

have

pk+1(x, y) =

∫
M

pk(x, z)p1(y, z) dz =

∫
M

pk(z, x)p1(y, z) dz

=

∫
M

∫
M

pk−1(z, w)p1(x,w)p1(y, z) dw dz.

In the first line above, we used the induction hypothesis. By the above formula for
pk+1(x, y) it is clear that pk+1(x, y) = pk+1(y, x) for all x, y ∈M .

Now we verify (a) by induction. For k ∈ N∗, we have

Pk+1(x,A) =

∫
M

Pk(z,A)P(x, dz) =

∫
M

(∫
A

pk(z, w) dw

)
p1(x, z) dz

=

∫
A

∫
M

pk(z, w)p1(x, z) dz dw =

∫
A

∫
M

pk(w, z)p1(x, z) dz dw

=

∫
A

pk+1(w, x) dw =

∫
A

pk+1(x,w) dw

for all A ∈ B. In the first line above, we used induction hypothesis, the second line
follows from Fubini’s theorem, (b) and the µ×µ-a.e. symmetry of p1. The last line
again follows from (b).

By definition of pk (4.4), we have

pk+1(x, y) = P (pk(x, ·)) (y)

for all x, y ∈ M . Therefore (c) follows from repeated application of the above
equality. �

Remark 4.3. In light of (iii) above, we may alternatively define pk(x, ·) as

the Radon-Nikodym derivative dPk
dµ . However this alternate definition for pk(x, y)

makes sense only for µ-almost every y ∈ M (for a fixed value of x). Nevertheless,
since p1(y, ·) ∈ L∞ and pk−1(x, ·) ∈ L1, it is clear that for all k ≥ 2, the function
(x, y) 7→ pk(x, y) defined in (4.4) is well-defined for all x ∈ M and for all y ∈ M .
Hence for k ≥ 2, pk : M×M → R≥0 is a genuine function (as opposed to pk(x, ·) just
being in L1). For k ≥ 2, pk is a genuine function on M ×M but p1(x, ·) ∈ L1 ∩L∞
for all x ∈M .

Many questions concerning the long term behavior of the Markov chain can
be answered if we know pk. Therefore estimates on pk(x, y) for all x, y ∈ M and
for all k ∈ N∗ is of importance. Based on the remarks above on pk, any bound
on pk(x, ·) must be understood in the µ-almost everywhere sense for k = 1 and in
a point-wise sense for k ≥ 2. The estimates on heat kernel gives both qualitative
(e.g. recurrence/transience, Liouville property) and quantitative (e.g. estimates on
Green’s function, Hölder regularity) information on the long term behavior of the
Markov chain. See Chapter 10 for applications of Gaussian estimates on the heat
kernel.
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Example 4.4. Let (M,d, µ) satisfy (V D)loc and let h > 0. Consider the natural

ball walk with Markov kernel k with respect to µ defined as k(x, y) =
1B(x,h)(y)

V (x,h) . The

corresponding Markov transition function K is not necessarily µ-symmetric because

k(x, y) 6= k(y, x) in general. Consider the measure µ′ � µ with dµ′

dµ (x) = V (x, h).

The Markov kernel of K with respect to µ′ is p(x, y) =
1B(x,h)(y)

V (x,h)V (y,h) . Hence K is

µ′-symmetric. Such ball walks on compact Riemannian manifolds were studied in
[56].

A Markov chain (Xn,Px)n∈N0,x∈M is said to be lazy if infx∈M Px(X1 = x) > 0.

Example 4.5. Consider a metric measure space (M,d, µ) with a µ-symmetric
Markov transition function P. Define the Markov transition function

PL(x,A) :=
1

2
(P(x,A) + δx(A))

where δx(A) = 1A(x) denotes the Dirac measure at x. Note that PL µ-symmetric
and corresponds to a lazy Markov chain. Assume P has a kernel p with respect to
µ. Then PL has a kernel with respect to µ if and only if δx � µ for all x ∈ M . If
P is the Markov operator corresponding to P, then PL = (I + P )/2 is the Markov
operator corresponding to PL, where I is the identity operator on Lp(M). Hence
the corresponding Laplacian operators ∆ and ∆L are related by ∆L = ∆/2.

Some basic properties of a symmetric Markov kernel are listed without proof
in the lemma below.

Lemma 4.6 (Folklore). Let P denote a µ-symmetric Markov transition func-
tion over a metric measure space (M,d, µ) and let P be the corresponding Markov
operator. Then P is a contraction on all Lp(M,µ), that is

(4.5) ‖Pf‖p ≤ ‖f‖p
for all p ∈ [1,∞] and for all f ∈ Lp(M). A consequence of (4.5) is the inequality

(4.6) E(f, f) = 〈(I − P )f, f〉 ≤ 2 ‖f‖22
for all f ∈ L2(M). Moreover P is self-adjoint on L2(M), that is

(4.7) 〈f, Pg〉 = 〈Pf, g〉

for all f, g ∈ L2(M,µ) where 〈f1, f2〉 =
∫
M
f1f2 dµ denotes the inner product on

L2(M,µ).

We list some elementary properties of a symmetric Markov kernel below.

Lemma 4.7 (Folklore). Let P denote a µ-symmetric Markov transition function
over a metric measure space (M,d, µ) and let p be the corresponding Markov kernel.
Then for all x ∈M , the function

(4.8) n 7→ p2n(x, x)

is non-increasing. Moreover we have

(4.9) p2n(x, y) ≤ p2n(x, x)1/2p2n(y, y)1/2

for all x, y ∈M and for all n ∈ N∗.
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Proof. Note that the first claim follows from (4.5) by

p2n+2(x, x) = ‖pn+1(x, .)‖22 = ‖Ppn(x, .)‖22 ≤ ‖pn(x, .)‖22 = p2n(x, x).

For (4.9), we simply use Cauchy-Schwarz inequality to obtain

p2n(x, y) = 〈pn(x, .), pn(y, .)〉 ≤ ‖pn(x, .)‖2 ‖pn(y, .)‖2 .
�

4.1. Assumptions on the Markov chain

We introduce the main assumptions on the Markov chain in the following def-
inition.

Definition 4.8. For h > 0, a Markov transition function P on (M,B) is said
to be (h, h′)-compatible with (M,d, µ) if

(a) P is µ-symmetric.
(b) There exists a kernel p1 such that P(x,A) =

∫
A
p1(x, y)µ(dy) for all x ∈M

and for all A ∈ B. By (a), we have p1(x, y) = p1(y, x) for all µ×µ-almost
every (x, y) ∈M ×M .

(c) There exists reals c1, C1 > 0 and h′ ≥ h such that

(4.10)
c1

V (x, h)
1B(x,h)(y) ≤ p1(x, y) ≤ C1

V (x, h′)
1B(x,h′)(y)

for all x ∈M and for µ-almost every y ∈M .
(d) There exists α > 0 such that

(4.11) p2(x, y) ≥ αp1(x, y)

for all x ∈M and for µ-almost every y ∈M , where p2 is defined by (4.4).

The corresponding Markov kernel p1 is said to be (h, h′)-compatible with (M,d, µ).
If a Markov transition function P satisfies (a),(b),(c) above we say that P (respec-
tively p1) is weakly (h, h′)-compatible with (M,d, µ).

Similarly, we say the corresponding Markov operator P is (weakly) (h, h′)-
compatible with (M,d, µ) if the Markov transition function P is (weakly) (h, h′)-
compatible with (M,d, µ).

Remark 4.9. (i) Let (M,d, µ) satisfy (V D)loc and h1 ≥ h2 > 0. If a
Markov kernel p1 is (h1, h

′)-compatible with (M,d, µ) then p1 is (h2, h
′)-

compatible with (M,d, µ).
(ii) The condition (d) in Definition 4.8 may seem unnatural, but is impor-

tant for certain technical reasons. The proofs on Caccioppoli inequality
(Lemma 7.8) and discrete time integrated maximum principle (Proposi-
tion 7.12) and relies crucially on laziness of walks. Condition (d) enables
us to compare the behavior of a given random walk with its lazy version
as presented in Example 4.5.

(iii) There are several examples for which (d) is satisfied. For instance, a
Markov kernel on weighted graphs satisfying (V D)loc is weakly (h, h′)-
compatible if and only if it is (h, h′)-compatible. Consider a Markov ker-
nel p weakly (h, h)-compatible with a length space (M,d, µ) satisfying
(V D)loc, then p is (h, h) compatible.

(iv) Lemmas 4.11 and 4.16 show that the assumption (d) is not restrictive for
obtaining Gaussian estimates.
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(v) The condition (4.10) is an analog of the uniform ellipticity condition (1.4).

We record some important consequences of Condition (d) in Definition 4.8.

Lemma 4.10. Let (M,d, µ) be a metric measure space and let P be Markov
operator that is (h, h′)-compatible with (M,d, µ). Then the corresponding kernel pk
satisfies

(4.12) pk+1(x, y) ≥ αpk(x, y)

for all x, y ∈ M and for all k ≥ 2 where α is same as in (4.11). Moreover the
operator (P − (α/2)I)2 is positivity preserving, that is if f : M → R satisfies f ≥ 0,
then (P − (α/2)I)2f ≥ 0.

Proof. Since P k is a Markov operator, by (4.11) and Lemma 4.2(c) we have

pk+2(x, y)− αpk+1(x, y) = P k [p2(x, ·)− αp1(x, ·)] (y) ≥ 0

for all k ∈ N∗ and for all x, y ∈M . This proves (4.12).
By (4.11) and f ≥ 0, we have

(P − (α/2)I)2f(x) = (P 2 − αP )f(x) + (α/2)2f(x)

≥ (P 2 − αP )f(x) =

∫
M

f(y)(p2(x, y)− αp1(x, y)) dy ≥ 0

for all x ∈M . �

The following lemma shows that a large enough convolution power of a weakly
compatible kernel is compatible under some mild conditions.

Lemma 4.11. Let (M,d, µ) be a quasi-b-geodesic space satisfying (V D)loc and
let p1 be a Markov kernel weakly (h, h′)-compatible with (M,d, µ) for some h > b.
Then there exists k ∈ N∗ for which pl is (h, lh′)-compatible with (M,d, µ) for all
l ∈ N∗ such that l ≥ k.

Proof. Properties (a) and (b) of Definition 4.8 follows directly from the weak
compatibility of p1. It only remains to check properties (c) and (d). Assume that
p1 satisfies (4.10). Let x, y ∈M with d(x, y) ≤ h′. By Lemma 2.6, there exists even
number k ∈ N∗ such that for all l ≥ k ≥ 2, there exists a b-chain x0, x1, . . . , xl with
x0 = x, xl = y. Define h1 = (h− b)/2. By Chapman-Kolmogorov equation

pl(x, y)

≥
∫
B(xl−1,h1)

. . .

∫
B(x1,h1)

p(x, y1)p(y1, y2) . . . p(yl−1, y) dy1dy2 . . . dyl−1

≥
∫
B(xl−1,h1)

. . .

∫
B(x1,h1)

cl−1
1

V (x, h)V (y1, h) . . . V (yl−1, h)
dy1dy2 . . . dyl−1

≥
∫
B(xl−1,h1)

. . .

∫
B(x1,h1)

cl−1
1 C2−l

h,2h

V (x, h)V (x1, h) . . . V (xl−1, h)
dy1dy2 . . . dyl−1

≥
cl−1
1 C2−l

h,2h

V (x, h)
(4.13)

The third line above follows weakly (h, h′)-compatible condition (4.10) and the
fourth line follows from Lemma 2.10. Combining with the fact that p is weakly
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(h, h′)-compatible along with Lemma 2.10 gives the following lower bound: For all
l ≥ k and l ∈ N∗, there exists c1,l > 0 such that

(4.14) min(pl(x, y), pl+1(x, y)) ≥ c1,l
V (x,′ h)

1B(x,h′)(y)

for all x, y ∈ M . Hence by (4.14) and (4.10) we get pl+1 ≥ αlp1 for some αl > 0.
Since P is positivity preserving, we have

p2l(x, y) =
(
P l−1pl+1(x, .)

)
(y) ≥ αl

(
P l−1p1(x, .)

)
(y) = αlpl(x, y)

which is condition (d) of Definition 4.8. Note that (4.14) implies that pl satisfies
the lower bound in condition (c) of Definition 4.8.

Now we turn to the corresponding upper bound for pl. Since P is a contraction
on L∞, there exists C1 > 0 such that pm(x, y) ≤ C1/V (x, h) for all x, y ∈ M and
all m ∈ N∗. By triangle inequality pm(x, y) = 0 if d(x, y) > mh′ for all m ∈ N∗ and
for all x, y ∈M . Hence by Lemma 2.10 we have the desired conclusion. �

Remark 4.12. We now justify the condition h > b in the above lemma. It is to
avoid pathological examples of the following kind: Consider a ball walk of Example
4.4 with h ≤ 1/2 on Broken line space (BL, d, µ) from Example 3.22. It is easy to
check that such a random walk never leaves a connected component. Similarly, the
ball walk of Example 4.4 with h < 1 on a graph always stays at one point.

4.2. Gaussian estimates

The main property of a Markov kernel that we are interested in are Gaussian
estimates for its iterated kernel pn.

Definition 4.13. A µ-symmetric Markov kernel p on (M,d, µ) is said to satisfy
Gaussian upper bound (GUE) if there exists C1, C2 > 0 such that

(GUE) pn(x, y) ≤ C1

V (x,
√
n)

exp
(
−d(x, y)2/C2n

)
for all x, y ∈M and for all n ∈ N∗ satisfying n ≥ 2.

Similarly, a µ-symmetric Markov kernel p on a metric measure space (M,d, µ)
is said to satisfy Gaussian lower bound (GLE) if there exists c1, c2, c3 > 0 such
that

(GLE) pn(x, y) ≥ c1
V (x,

√
n)

exp
(
−d(x, y)2/c2n

)
for all x, y ∈M satisfying d(x, y) ≤ c3n and for all n ∈ N∗ satisfying n ≥ 2.

A µ-symmetric Markov kernel p on a metric measure space (M,d, µ) is said to
satisfy two sided Gaussian bound (GE) if it satisfies (GUE) and (GLE).

The condition d(x, y) ≤ c3n in (GLE) is needed because pn(x, y) vanishes for
compatible kernels if d(x, y) ≥ cn for some constant c > 0. In many situations, the
above Gaussian estimates are equivalent to the following (a priori weaker) estimates
which are easier to prove. We require the estimates in Definition 4.13 to hold only
for large enough n in the definition below.

Definition 4.14. A µ-symmetric Markov kernel p on (M,d, µ) is said to satisfy
Gaussian upper bound (GUE)∞ if there exists C1, C2, n0 > 0 such that

(GUE)∞ pn(x, y) ≤ C1

V (x,
√
n)

exp
(
−d(x, y)2/C2n

)
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for all x, y ∈M and for all n ∈ N∗ such that n ≥ n0.
The conditions (GLE)∞ and (GE)∞ are defined analogously.

Under mild conditions, we show that (GE)∞ implies (GE).

Lemma 4.15. Let (M,d, µ) be a quasi-b-geodesic space satisfying (V D)loc and
let p1 be a Markov kernel weakly (h, h′)-compatible with (M,d, µ) for some h > b.
The following hold:

(a) If p1 satisfies (GUE)∞, then p1 satisfies (GUE).
(b) If p1 satisfies (GLE)∞ , then p1 satisfies (GLE).
(c) If p1 satisfies (GE)∞ , then p1 satisfies (GE) .

Proof. Note that p1 satisfies (4.10).

(a) The Gaussian upper estimate for pn where n ≥ n0 follows from (GUE)∞.
If n < n0, we simply use that P is a contraction in L∞ along with (4.10)
to obtain

pn(x, y) ≤
C11B(x,n0h′)(y)

V (x, h′)

≤ C2

V (x,
√
n)

exp

(
−d(x, y)2

C2n

)
for all x, y ∈ M and for all n < n0. The first line above follows from
triangle inequality, ‖P‖L∞→L∞ = 1 and (4.10). The second line follows
from Lemma 2.10.

(b) The Gaussian lower bounds for pn where n ≥ n0 follows from (GLE)∞.
Let h1 = min(h/2, h− b). Using ideas similar to the proof of Lemma 4.11
(see (4.13)), there exists c2, c3, c4 > 0 such that

pn(x, y)

≥
∫
B(x,h1)

. . .

∫
B(x,h1)

p(x, y1)p(y1, y2) . . . p(yn−1, y) dy1dy2 . . . dyn−1

≥
c2c

n
3 1B(x,b)(y)

V (x, h)
≥ c4
V (x,

√
n)

exp

(
−d(x, y)2

c4n

)
for all n < n0 and for all x, y ∈M such that d(x, y) ≤ (b/n0)n.

(c) It is a direct consequence of (a) and (b).

�

Lemma 4.16. Let (M,d, µ) be a quasi-b-geodesic space satisfying (V D)loc and
let p be a Markov kernel weakly (h, h′)-compatible with (M,d, µ) for some h > b.
For some k ∈ N∗, if pk satisfies (GE)∞ then p satisfies (GE).

Proof. By Lemma 4.15 it suffices to show that p satisfies (GUE)∞ and
(GLE)∞.

Suppose p = p1 satisfies (4.10). For n ≥ k, there exists A = kh′ > 0 such that

(4.15) pn(x, y) ≤ sup
z∈B(y,A)

pkbn/kc(x, z)

for all x, y ∈ M and for all n ∈ N∗ with n ≥ k. This follows from Chapman-
Kolmogorov equation along with the fact that the support of pl(·, y) is contained
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in B(y, kh′) for all l ≤ k. Since pk satisfies (GUE)∞, there exists C1, C2 > 0 and
n0 > 0 such that

(4.16) pmk(x, y) ≤ C1

V (x,
√
m)

exp

(
−d(x, y)2

C2m

)
for all x, y ∈ M and for all m ∈ N∗ satisfying m ≥ n0. By (4.15),(4.16) and (2.4),
there exists C3, C4 > 0 and n1 > 0 such that

(4.17) pn(x, y) ≤ C3

V (x,
√
n)

sup
z∈B(y,A)

exp

(
−d(x, z)2

C4n

)
for all x, y ∈ M and for all n ∈ N∗ satisfying n ≥ n1. For every z ∈ B(y,A), we
have

(4.18) d(x, y)2 ≤ (d(x, z) +A)2 ≤ 2(d(x, y)2 +A2).

By (4.17) and (4.18), we have that p satisfies (GUE)∞.
It remains to show that p satisfies (GLE)∞. The proof is similar to above. As

in (4.15), we have the complementary inequality,

(4.19) pn(x, y) ≥ inf
z∈B(y,A)

pkbn/kc(x, z)

for all x, y ∈ M and for all n ∈ N∗ with n ≥ k. Since pk satisfies (GLE)∞, there
exists c1, c2, c3, n2 > 0 such that

(4.20) pmk(x, y) ≥ c1
V (x,

√
m)

exp

(
−d(x, y)2

c2m

)
for all x, y ∈M and for all m ∈ N∗ satisfying m ≥ n2 and d(x, y) ≤ c3m. By (4.19),
(4.20), there exists c4, c5 > 0 and n3 > 0 such that

(4.21) pn(x, y) ≥ c1
V (x,

√
n)

inf
z∈B(y,A)

exp

(
−d(x, y)2

c4n

)
for all x, y ∈ M and for all n ∈ N∗ satisfying n ≥ n2 and d(x, y) ≤ c5n. By
interchanging y and z in (4.18) along with (4.21) yields (GLE)∞ for the kernel
p. �

We describe two examples that does not fall under the framework given by
Definition 4.8 but nevertheless the methods developed in this work still applies.

Example 4.17 (Random walk with jumps supported in an annulus). We con-
sider a measured, complete, length space (M,d, µ) satisfying diam(M) = +∞ and
(V D)loc . Let P be a µ-symmetric Markov operator whose kernel p(x, y) satisfies
the following estimate: there exists C1 > 0 and h > 0, h1 > 0, h2 > 0 such that

(4.22) C−1
1

1B(x,2h)\B(x,h)(y)

V (x, h)
≤ p(x, y) ≤ C1

1B(x,h2)\B(x,h1)(y)

V (x, h)

for all x ∈M and for µ-almost every y ∈M .
In this case, it is easy to verify that the density p2 is weakly (h/5, 2h2)-

compatible with (M,d, µ). Note that for all x ∈ M , there exists z ∈ M such
that d(x, z) = 3h/2. Note that by Lemma 2.10 and (4.22), there exists C2 > 0 such
that for all x, y ∈M with d(x, y) ≤ h/5

p2(x, y) ≥
∫
B(z,h/4)

p1(x,w)p1(y, w)µ(dw) ≥ C−1
2

V (x, h/5)
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and for all x, y ∈M with d(x, y) ≤ 2h2 we have

p2(x, y) ≤
∫
B(x,2h2)

p1(x,w)p1(y, w)µ(dw) ≤ C2

V (x, 2h2)
.

Therefore p2 is weakly (h/5, 2h2) compatible with (M,d, µ).
For example, it is clear that the application to Liouville property will not be

affected if we replace the operator P by P 2. If the underlying space satisfies volume
doubling and Poincaré inequality we can use our main results to obtain Gaussian
estimates (GE)∞ provided (M,d, µ) satisfies (V D)∞ and (P )h. To prove the above
statement, we simply note by Theorem 1.4, Lemma 4.11 and Lemma 4.16 that p2

satisfies (GE) and by a similar argument p3 satifies (GE).

Example 4.18. We describe another example similar to Example 4.17. Con-
sider Rn equipped with Euclidean distance d and Lebesgue measure µ. Let e denote
an arbitrary unit vector in Rn. Consider the µ-symmetric random walk with the
kernel

p(x, y) =
1B(x+2e,1)∪B(x−2e,1)(y)

2V (x, 1)
.

Although p is not compatible with (Rn, d, µ), similar to Example 4.17 one can check
that (Rn, d, µ) satisfies that p2 and p3 are (1/3, 9)-compatible with (Rn, d, µ) and
that the kernel pk satisfies (GE)∞.

4.3. Comparison of Dirichlet forms

Let (M,d, µ) be a metric measure space with a µ-symmetric Markov operator
P and corresponding kernel p. Recall that we defined the Dirichlet form E(f, g) =
〈f,∆g〉 for f, g ∈ L2(M). We define another Dirichlet form E∗ which is the Dirichlet
form corresponding to the Markov operator P 2, that is

E∗(f, g) = 〈f, (I − P 2)g〉 = ‖f‖22 − ‖Pf‖
2
2 .

for all f, g ∈ L2(M).

Remark 4.19. Functional inequalities involving the Dirichlet form (for instance
Nash, Sobolev, log Sobolev, Poincaré inequalities) can be transferred to an inequal-
ity concerning the Markov semigroup, which in turn sheds light on asymptotic
behavior of Markov chains. For a continuous time Markov semigroup (Pt)t≥0 a

crucial identity to carry out this is
d‖Ptf‖22

dt = −2E(Ptf, Ptf) (for instance [5, Theo-
rems 4.2.5 and 6.3.1]) By the above definition, we have a similar identity for discrete
time Markov semigroup:

∂k
∥∥P kf∥∥2

2
:=
∥∥P k+1f

∥∥2

2
−
∥∥P kf∥∥2

2
= −E∗(P kf, P kf).

for all f ∈ L2(M). This is the main reason why we sometimes prefer E∗ instead of
E .

The above remark motivates us to compare the Dirichlet forms E and E∗.

Lemma 4.20. Consider a µ-symmetric Markov chain on (M,d, µ) with Markov
operator P and Dirichlet forms E and E∗ defined as above. We have the following:

(a) E∗(f, f) ≤ 2E(f, f) for all f ∈ L2(M).
(b) Assume further that P has a strongly (h, h′)-compatible kernel p with re-

spect to (M,d, µ). Then there exists a constant C > 0 such that E(f, f) ≤
CE∗(f, f) for all f ∈ L2(M).
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Proof. (a) Note that

〈Pf, f〉 ≤ 1

2
(〈Pf, Pf〉+ 〈f, f〉) =

1

2

(
〈P 2f, f〉+ 〈f, f〉

)
Hence

E(f, f) = 〈f, f〉M − 〈Pf, f〉M ≥ 〈f, f〉 −
1

2

(
〈P 2f, f〉+ 〈f, f〉

)
=

1

2
E∗(f, f)

(b) The conclusion follows from Property (d) of Definition 4.8 by observing
that

E(f, f) =
1

2

∫
M

∫
M

(f(x)− f(y))2p(x, y) dx dy(4.23)

E∗(f, f) =
1

2

∫
M

∫
M

(f(x)− f(y))2p2(x, y) dx dy(4.24)

�

Remark 4.21. The inequality E(f, f) ≤ CE∗(f, f) is not true in general. Con-
sider nearest neighbor (simple) random walk on a finite bipartite graph. Let f be
a function on the graph that assigns +1 to one partition and -1 to other. It is easy
to check that Pf = −f and therefore 2 ‖f‖22 = E(f, f) ≤ CE∗(f, f) = 0 fails.

4.4. Markov chains killed on exiting a ball

To obtain lower bounds on the heat kernel, we consider the corresponding
Markov process killed on exiting a ball B (See Chapter 8). Moreover functional
inequalities like Nash and Sobolev inequalities that we will encounter are local to
balls. Motivated by these considerations, we introduce Markov chains killed on
exiting a ball and their corresponding Markov operator and kernel. Let (Xn)n∈N
be a Markov chain on (M,d, µ) driven by a µ-symmetric Markov operator P with
kernel p1 with respect to µ. The corresponding Markov chain (XB

n )n∈N that is killed
on exiting a ball B has state space B ∪ {∂B} where ∂B is the absorbing cemetery
state. The Markov chain (XB

n )n∈N killed on exiting B is defined as

XB
n =

{
Xn if n < ζ

∂B if n ≥ ζ

where ζ is the lifetime of the process defined by

ζ = min {k : Xk /∈ B} .

For the killed Markov chain, we consider functions f : B ∪ ∂B → R with the
‘Dirichlet’ boundary condition f(∂B) = 0. Therefore, we can define corresponding
quantities like Markov kernel and Markov operator just by restriction to B. Define
the restricted kernel pB : B × B → R, as a restriction of p1 on B × B. We endow
B with the measure µB which is the restriction of µ to all Borel subsets of B. We
denote by L2(B) = L2(B,µB). We define the Markov operator PB with kernel pB
with respect to µB as

(4.25) PBf(x) :=

∫
B

f(y)p1(x, y)µ(dy) =

∫
B

pB(x, y)f(y)µB(dy).

Define the corresponding Dirichlet forms

(4.26) EB(f, f) := 〈f, (I − PB)f〉L2(B), EB∗ (f, f) := 〈f, (I − P 2
B)f〉L2(B)
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for all f ∈ L2(B). Similar to (4.4), we define the kernel pBk (x, y) iteratively as

(4.27) pBk+1(x, y) :=
[
PBp

B
k (x, ·)

]
(y) =

∫
B

pBk (x, z)pB1 (y, z)µ(dz)

for all k ∈ N∗ and for all x, y ∈ B. It is easy to check that the proof of Lemma
4.2 (b),(c) applies to the kernel pB . As before, the function (x, y) 7→ pBk (x, y) is
well-defined for all k ≥ 2. Further pB(x, ·) ∈ L1(B) for all x ∈M . It is easy to see
that

(4.28) pBk (x, y) ≤ pk(x, y)

for all x, y ∈M and for all k ≥ 2.
The operator PB is positivity preserving, that is f ≥ 0 implies PBf ≥ 0.

However unlike P , the operator PB is not necessarily conservative, that is PB1 6= 1
in general. Analogous to (4.5), we have that PB is a contraction on all Lp(B) for all
1 ≤ p ≤ +∞. We also define the corresponding ‘Dirichlet Laplacian’ ∆PB := I−PB .

We will compare Dirichlet forms on balls with Dirichlet forms on M below.

Lemma 4.22. Let f ∈ L2(B) and let f̃ ∈ L2(M) denote an extension of f
defined by

(4.29) f̃ =

{
f in B

0 in B{.

Then

(a) EB(f, f) = E(f̃ , f̃).

(b) EB∗ (f, f) ≥ E∗(f̃ , f̃).

Proof. For (a), observe that

EB(f, f) = 〈f, f〉L2(B) − 〈PBf, f〉L2(B)

= 〈f̃ , f̃〉L2(M) − 〈P f̃, f̃〉L2(M) = E(f̃ , f̃).

For (b), we have

EB(f, f) = 〈f, f〉L2(B) − 〈PBf, PBf〉L2(B)

= 〈f̃ , f̃〉L2(M) − 〈1BP f̃,1BP f̃〉L2(M)

≥ 〈f̃ , f̃〉L2(M) − 〈P f̃, P f̃〉L2(M) = E∗(f̃ , f̃).

�

We warn the reader of the following abuse of notation. We may consider a
function f ∈ L2(B) as a function in L2(M) using the extension given by (4.29).
Alternatively we may consider a function f ∈ L2(M) as a function in L2(B) by the
restriction fB .



CHAPTER 5

Sobolev-type inequalities

J. Moser proved parabolic Harnack inequalities for second-order uniformly ellip-
tic divergence form operators in Rd [62]. This approach was successfully adapted by
numerous authors. The previous versions of Theorem 1.4 as given in [69, 27, 76]
used Moser’s iterative method as a crucial ingredient. Along with Poincaré in-
equality and volume doubling, Moser’s iteration relies on repeated applications of
a Sobolev inequality.

We recall the difficulty arising due to Sobolev inequalities mentioned in the
introduction. The Sobolev inequalities in the previous works [69, 25, 27, 76] are
of the form

(5.1) ‖f‖22δ/(δ−2) ≤
Cr2

Vµ(x, r)2/δ

(
E(f, f) + r−2 ‖f‖22

)
for all ‘nice’ functions f supported in B(x, r). However (5.1) along with (4.6) implies
that L2(B(x, r)) ⊆ L2δ/(δ−2)(B(x, r)) for all balls B(x, r) which can happen only if
the space is discrete. Hence for discrete time Markov chains on continuous spaces
the Sobolev inequality (5.1) fails to hold. In this chapter, we prove a weaker form
of the above Sobolev inequality (see (5.2)) and study its properties. In the next
two sections, we will use the Sobolev inequality (5.2) to run the Moser’s iterative
method and obtain elliptic Harnack inequality and Gaussian upper bounds.

We adapt the approach of [69] to obtain a Sobolev inequality using (V D)∞
and (P )∞. The main result of this chapter is the following Sobolev inequality.

Theorem 5.1. Let (M,d, µ) be a quasi-b-geodesic metric measure space sat-
isfying (V D)loc, (V D)∞ and Poincaré inequality at scale h (P )h. Suppose that a
Markov operator P has a kernel p that is (h, h′)-compatible with respect to µ. Let
PB and EB denote the corresponding Markov operator and Dirichlet form restricted
to a ball B ⊂ M . Then there exists δ > 2 and CS > 0 such that for all r > 0, for
all x ∈M , and for all f ∈ L2(B), we have

(5.2) ‖PBf‖22δ/(δ−2) ≤
CSr

2

V (x, r)2/δ

(
EB(f, f) + r−2 ‖f‖22

)
where B = B(x, r).

Remark 5.2. Since PB is a contraction, note that (5.1) implies (5.2). Since we
rely on the weaker Sobolev inequality (5.2), our methods give an unified approach
to Gaussian bounds for graphs and continuous spaces. However we will encounter
new difficulties due to (5.2).

Let s > 0 and f ∈ L1
loc(M,µ). We define fs as

(5.3) fs(x) := fB(x,s) =
1

V (x, s)

∫
B(x,s)

f(x)µ(dx).

51
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5.1. Pseudo-Poincaré and Nash inequalities

As in [69, Lemma 2.4], we need a pseudo-Poincaré inequality.

Lemma 5.3 (Pseudo-Poincaré inequality). Under the hypotheses of Theorem
5.1, there exists C0 > 0 and s0 > 0 such that

(5.4) ‖f − fs‖22 ≤ C0s
2E(f, f)

for all f ∈ L2(M) and for all s ≥ s0.

Proof. Let (X, d,m) be a 2s-net of (M,d, µ) as given in Definition 2.21. By
Proposition 2.22(a), the collection of balls J = {B(x, 2s) | x ∈ X } cover M . There-
fore

‖f − fs‖22 ≤
∑

2B∈J

∫
2B

|f(x)− fs(x)|2µ(dx)

≤ 2

(∑
2B∈J

∫
2B

|f(x)− f3B|2µ(dx) +

∫
2B

|fs(x)− f3B|2µ(dx)

)
.(5.5)

For the first term, we use (P )h, to obtain C1, C2, s1 > 0 such that
(5.6)∫

2B

|f(x)− f3B|2µ(dx) ≤
∫

3B

|f(x)− f3B|2µ(dx) ≤ C1s
2

∫
3C2B

|∇f|2h(x)µ(dx)

for all s ≥ s0 and for all f ∈ L2(M). For the second term in (5.5), we use Jensen’s
inequality to obtain∫

2B

|fs(x)− f3B|2µ(dx) ≤
∫

2B

1

V (x, s)

∫
B(x,s)

|f(y)− f3B|2µ(dy)µ(dx)

≤
(∫

2B

V (x, s)−1µ(dx)

)
·
(∫

3B

|f(y)− f3B|2µ(dy)

)
(5.7)

for all f ∈ L2(M) and for all 2B ∈ J . By (2.4), there exists C3 > 0 such that

(5.8)

∫
2B

µ(dx)

V (x, s)
=

1

µ(2B)

∫
2B

µ(2B)µ(dx)

V (x, s)
≤ 1

µ(2B)

∫
2B

V (x, 4s)µ(dx)

V (x, s)
≤ C3

for all s ≥ s0 and for all 2B ∈ J . By (5.5),(5.6),(5.7) and (5.8), there exists C0 > 0
such that

(5.9) ‖f − fs‖22 ≤ C1(1 + C3)s2
∑

2B∈J

∫
3C2B

|∇f|2h(x)µ(dx) ≤ C0s
2E(f, f)

for all f ∈ L2(M). The last inequality in (5.9) follows from Proposition 2.22(h),
(4.23) along with (4.10). �

The following lemma is a consequence of doubling hypothesis.

Lemma 5.4. Let (M,d, µ) be a measure space satisfying (V D)loc and (V D)∞.
Then for all b > 0, there exists Cb > 0, δ > 2 such that

(5.10) ‖fs‖22 ≤
Cb

V (x, r)

(r
s

)δ
‖f‖21

for all f ∈ L1(M) is supported in B = B(x, r) and for all b ≤ s ≤ r
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Proof. By Hölder inequality, we have

(5.11) ‖fs‖22 ≤ ‖fs‖∞ ‖fs‖1 .

Since f is supported in B(x, r) and s ≤ r we have

‖fs‖∞ ≤ ‖f‖1 sup
y∈B(x,r+s)

1

V (y, s)
≤
‖f‖1
V (x, r)

sup
y∈B(x,r+s)

V (y, 3r)

V (y, s)
.

By (2.4), there exists C1 > 0 and δ > 2 such that

(5.12) ‖fs‖∞ ≤
C1

V (x, r)

(r
s

)δ
‖f‖1

for all b ≤ s ≤ r and for all f ∈ L1 supported in B(x, r).
Further there exists C2 > 0 such that

‖fs‖1 =

∫
B(x,r+s)

|fs(y)|µ(dy) ≤
∫
B(x,r+s)

1

V (y, s)

∫
B(y,s)

|f(z)|µ(dz)µ(dy)

≤
∫
B(x,r+s)

|f(z)|
∫
B(z,s)

1

V (y, s)
µ(dy)µ(dz)

≤ C2

∫
B(x,r+s)

|f(z)|
∫
B(z,s)

1

V (z, s)
µ(dy)µ(dz) = C2 ‖f‖1(5.13)

for all b ≤ s ≤ r and for all f ∈ L1 supported in B(x, r). The second line follows
from Fubini’s theorem and (5.13) above follows from (2.5). The desired conclusion
(5.10) follows from (5.11),(5.12) and (5.13). �

Next, we show a Nash inequality using the pseudo-Poincaré inequality and
doubling hypotheses by adapting the approach of [69, Theorem 2.1].

Proposition 5.5. Let (M,d, µ) be a quasi-b-geodesic metric measure space
satisfying (V D)loc, (V D)∞ and Poincaré inequality at scale h (P )h. Suppose that
a Markov operator P has a kernel p that is (h, h′)-compatible with respect to µ. Let
E denote the Dirichlet form corresponding to P . Then there exists δ > 2, CN > 0
such that

(5.14) ‖Pf‖2+(4/δ)
2 ≤ CNr

2

V (x, r)2/δ

(
E(f, f) + r−2 ‖f‖22

)
‖f‖4/δ1

for all r > 0, for all x ∈M , and for all f ∈ L2(M) with f supported in B(x, r).

Proof. We start with an observation that (5.14) follows directly for small
values of r. Let r0 > 0 be an arbitrary constant. If r ≤ r0, by (4.10) and (2.2),
there exists C1, C2 > 0 such that for all functions f ∈ L1(M) supported in B(x, r),
we have

‖Pf‖∞ ≤ ‖f‖1 sup
y∈B(x,r+h′)

C1

V (y, h′)
≤ ‖f‖1 sup

y∈B(x,r0+h′)

C1

V (y, h′)

≤ C1

V (x, r0)
‖f‖1 sup

y∈B(x,r0+h′)

V (y, 2r0 + h′)

V (y, h′)
≤ C2

V (x, r)
‖f‖1 .(5.15)

By Hölder inequality along with (5.15) and (4.5), we have C3 > 0 such that

(5.16) ‖Pf‖2 ≤ ‖Pf‖
1/2
∞ ‖Pf‖

1/2
1 ≤ C3

V (x, r)1/2
‖f‖1
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for all function f ∈ L2(M) supported in B(x, r) with r ≤ r0. By (5.16) and (4.5)

and by the choice CN ≥ C4/δ
3 , it suffices to show (5.14) for the case r > r0.

Note that

(5.17) ‖Pf‖2 ≤ ‖Pf − (Pf)s‖2 + ‖(Pf)s‖2 .
We use pseudo-Poincaré inequality (Lemma 5.3) to bound the first term and use
the (h, h′)-compatibility of P along with doubling hypotheses to bound the second
term. To obtain (5.14), we minimize the bound on right hand side of (5.17) by
varying s.

By Lemma 5.4, there exists C0 ≥ 1 and r0 > 0 such that

(5.18) ‖Pf − (Pf)s‖2 ≤ C0s
√
E(Pf, Pf)

for all f ∈ L2(M) and for all s ≥ r0.
By (5.10) and (4.5), there exists C4 > 0 and δ > 2 such that

(5.19) ‖(Pf)s‖2 ≤
C4

V (x, r)1/2

(r
s

)δ/2
‖f‖1

for all f ∈ L2(M) supported in B(x, r) and for all r0 ≤ s ≤ r. Combining
(5.17),(5.18), (5.19), we obtain

(5.20) ‖Pf‖2 ≤ C0s
(√
E(Pf, Pf) + r−1 ‖Pf‖2

)
+

C4

V (x, r)1/2

(r
s

)δ/2
‖f‖1

for all f ∈ L2(M) supported in B(x, r) and for all s ≥ r0 and for all r ≥ r0. In
order to minimize the right side of (5.20), the choice of s (up to a constant factor)
is

(5.21) s1(f) :=

(
‖f‖21 rδ

(E(Pf, Pf) + r−2 ‖Pf‖22)V (x, r)

)1/(δ+2)

.

However, we want to choose s ≥ r0 in (5.20). We will do that by showing that
s1(f) is bounded below. For all r ≥ r0, by (4.6) we have

(5.22) E(Pf, Pf) + r−2 ‖Pf‖22 ≤ (2 + r−2
0 ) ‖Pf‖22 ≤ (2 + r−2

0 ) ‖Pf‖∞ ‖f‖1
for all f ∈ L2(M). Since f is supported in B(x, r), there exists C5, C6 > 0

‖Pf‖∞ ≤ C5 ‖f‖1 sup
y∈B(x,r+h′)

1

V (y, h′)
≤ C5

V (x, r)
‖f‖1 sup

y∈B(x,r+h′)

V (y, 2r + h′)

V (y, h′)

≤ C6

V (x, r)
rδ ‖f‖1(5.23)

for all f ∈ L2 supported in B(x, r) with r ≥ r0. The first line above follows from
(4.10) and the second line follows from (2.4) and r ≥ r0. By (5.22) and (5.23),
there exists c1 > 0 such that

(5.24) s1(f) =

(
‖f‖21 rδ

(E(Pf, Pf) + r−1 ‖Pf‖2)V (x, r)

)1/(δ+2)

≥ c1

for all x ∈ M , for all r ≥ r0 and for all f ∈ L2(M) supported in B(x, r). By

plugging in s = (r0/c1)s1(f) in (5.20), there exists CN ≥ C4/δ
3 such that

(5.25) ‖Pf‖2+(4/δ)
2 ≤ CNr

2

V (x, r)2/δ

(
E(Pf, Pf) + r−2 ‖Pf‖22

)
‖f‖4/δ1



5.2. ULTRACONTRACTIVITY ESTIMATE ON BALLS 55

for all x ∈M , for all r ≥ r0 and for all f ∈ L2(M) supported in B(x, r). By (4.5),
we have

(5.26)
√
E(Pf, Pf) =

∥∥∥P (I − P )1/2f
∥∥∥

2
≤
∥∥∥(I − P )1/2f

∥∥∥
2

=
√
E(f, f)

for all f ∈ L2(M). By (5.24),(5.25) and (4.5), we obtain the desired Nash inequality
(5.14). �

Before we proceed, we restate the above Nash inequality for functions defined
on balls.

Corollary 5.6. Let (M,d, µ) be a quasi-b-geodesic metric measure space sat-
isfying (V D)loc, (V D)∞ and Poincaré inequality at scale h (P )h. Suppose that a
Markov operator P has a kernel p that is (h, h′)-compatible with respect to µ. Let
PB and EB denote the corresponding Markov operator and Dirichlet form restricted
to a ball B ⊂M . Then there exists δ > 2, CN > 0 such that

(5.27) ‖PBf‖2+(4/δ)
2 ≤ CNr

2

V (x, r)2/δ

(
EB(f, f) + r−2 ‖f‖22

)
‖f‖4/δ1

for all r > 0, for all x ∈M , and for all f ∈ L2(M) with f supported in B(x, r).

Proof. We define f̃ ∈ L2(M) as in (4.29). Since P f̃ = PBf on B, we have

‖PBf‖2 ≤
∥∥∥P f̃∥∥∥

2
. Combining this observation along with ‖f‖p =

∥∥∥f̃∥∥∥
p
, Lemma

4.22(a) and Proposition (5.5) yields (5.14). �

Remark 5.7. It is easy to prove Nash inequality (5.27) using Sobolev inequality
(5.2) just by an application of Hölder inequality

‖PBf‖2 ≤ ‖PBf‖
δ/(δ+2)
2δ/(δ−2) ‖PBf‖

2/(δ+2)
1 ≤ ‖PBf‖δ/(δ+2)

2δ/(δ−2) ‖f‖
2/(δ+2)
1

along with the fact that PB is a contraction on L1(B). However proving (5.2) using
(5.27) is harder. There is a direct and elementary approach using slicing of functions
developed in [4]. Their approach was used by Delmotte in the setting of graphs
[25, Theorem 4.4] to prove a Sobolev inequality. However those slicing techniques
not so seem to apply directly for proving (5.2), since the (sub-Markov) operator
PB does not commute with the slicing maps f 7→ (f − s)+ ∧ t. It is an interesting
open problem to make this approach work for our Sobolev-type inequalities.

5.2. Ultracontractivity estimate on balls

In light of the above remark, we adapt a different approach based on Hardy-
Littlewood-Sobolev theory for discrete time Markov semigroups as developed in
[21, Theorems 5 and 6]. Our approach is to obtain an upper bound for

∥∥P kB∥∥1→∞
using (5.27) which in turn is used to prove the Sobolev inequality (5.2).

Lemma 5.8. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying
(V D)loc, (V D)∞. Suppose that a Markov operator P has a kernel p that is (h, h′)-
compatible with respect to µ. Let PB and EB denote the corresponding Markov
operator and Dirichlet form restricted to a ball B ⊂ M . Further assume that the
operators PB satisfy the Nash inequality (5.27) with constant δ > 2. There exists
Cu > 0 such that

(5.28)
∥∥P kB∥∥1→∞ ≤

Cu(1 + r2)δ/2

V (x, r)

(1 + r−2)k−1

kδ/2
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for all x ∈M , for all r > 0 and for all k ∈ N∗ where B = B(x, r).

Remark 5.9. If two side Gaussian estimate (GE) holds for pk and if we choose

r �
√
k, then the upper bound (5.28) is sharp up to a constant factor.

Proof of Lemma 5.8. Let x ∈ M , r > 0 and B = B(x, r). Our first step
is an upper bound for

∥∥P kB∥∥1→2
. Let f ∈ L1(B) be an arbitrary function with

‖f‖1 = 1. The constants in this proof do not depend on the choice of x ∈ M ,
k ∈ N∗, r > 0 or f ∈ L1(B).

Then by Hölder inequality,

‖PBf‖22 ≤ ‖PBf‖1 ‖PBf‖∞ ≤ ‖f‖1 ‖PBf‖∞ = ‖PBf‖∞ .

By (5.15) and (5.23), there exists C1 > 0 such that

(5.29) ‖PBf‖22 ≤ ‖PBf‖∞ ≤
C1(1 + r2)δ/2

V (x, r)
.

By (5.27), along with Lemma 4.22 and Lemma 4.20(b), there exists CN > 0 such
that

(5.30) ‖PBg‖2+(4/δ)
2 ≤ CNr

2

V (x, r)2/δ

(
EB∗ (g, g) + r−2 ‖g‖22

)
‖g‖4/δ1

for all r > 0, for all x ∈M , and for all g ∈ L2(B) where B = B(x, r). Define

vk := (1 + r−2)−(k−1)
∥∥P kBf∥∥2

2

for all k ∈ N∗. Substituting g = P kBf in (5.30) and using the fact that
∥∥P kBf∥∥1

≤
‖f‖1 = 1 and EB∗ (P kBf, P

k
Bf) =

∥∥P kBf∥∥2

2
−
∥∥P k+1

B f
∥∥2

2
, we obtain the following

difference inequality for vk:

(5.31) v
1+(2/δ)
k+1 ≤ CN (1 + r2)

V (x, r)2/δ
(vk − vk+1)

for all k ∈ N∗. Next, we ‘solve’ the difference inequality given by (5.31). Define

(5.32) C2 := max
(
C1, ((δCN )/2)δ/22(1+(δ/2))(δ/2)

)
.

We claim that

(5.33) vk ≤ C2
(1 + r2)δ/2

V (x, r)
k−δ/2

for all k ∈ N∗. We prove (5.33) by induction. The base case k = 1 follows from
(5.29) and (5.32). For the inductive step, assume that (5.33) holds for all k =
1, 2, . . . , n for some n ∈ N∗. We will show that (5.33) holds for k = n+ 1. Assume
to the contrary that

(5.34) vn+1 > C2
(1 + r2)δ/2

V (x, r)
(n+ 1)−δ/2
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By (5.31), (5.34) and the induction hypothesis, we obtain

v
1+(2/δ)
n+1 <

CNC2(1 + r2)1+(δ/2)

V (x, r)1+(2/δ)

(
n−δ/2 − (n+ 1)−δ/2

)
<
CNC2(1 + r2)1+(δ/2)

V (x, r)1+(2/δ)

δ

2
n−(1+(δ/2))

≤ C2(1 + r2)1+(δ/2)

V (x, r)1+(2/δ)
((δCN )/2)21+(δ/2)(n+ 1)−(1+(δ/2))

≤
(
C2

(1 + r2)δ/2

V (x, r)
(n+ 1)−δ/2

)1+(2/δ)

.(5.35)

The second line above follows from intermediate value theorem, the third line follows
from n ≥ 1 and the last line follows from (5.32). The desired contradiction follows
from (5.34) and (5.35). Using (5.31), we obtain the estimate

(5.36)
∥∥P kB∥∥2

1→2
≤ C2(1 + r2)δ/2

V (x, r)

(1 + r−2)k−1

kδ/2

for all x ∈M and all r > 0 where B = B(x, r). Since PB is self-adjoint operator in
L2(B), by duality we have the bound∥∥P kB∥∥1→∞ ≤

∥∥∥P b(k/2)c
B

∥∥∥
1→2

∥∥∥P d(k/2)e
B

∥∥∥
1→2

.

Using the above bound along with (5.36) yields (5.28) for k ≥ 2. The case k = 1
follows from (5.29). �

We are ready to prove the Sobolev inequality (5.2) using the ultracontractivity
estimate (5.28) above.

For an operator T , we define the operator (I − T )1/2 as

(I − T )1/2 =

∞∑
k=0

akT
k

where ak is defined by the Taylor series (1− x)α =
∑∞
k=0 akx

k for x ∈ (−1, 1). By
a classical estimate on coefficient of Taylor series, there exists Ca > 0 such that

(5.37)
C−1
a

(k + 1)1/2
≤ ak ≤

Ca
(k + 1)1/2

for all k ∈ N≥0.

5.3. Local Sobolev inequality

We use the ultracontractivity estimate (5.28) to obtain Sobolev inequality (5.2).
The proof uses Riesz-Thorin and Marcinkiewicz interpolation theorems which we
briefly review in Appendix A.

Proposition 5.10. Let (M,d, µ) be a quasi-b-geodesic metric measure space
satisfying (V D)loc, (V D)∞. Suppose that a Markov operator P has a kernel p that
is (h, h′)-compatible with respect to µ. Let PB and EB denote the corresponding
Markov operator and Dirichlet form restricted to a ball B ⊂M . Assume that there
exists Cu > 0 such that

(5.38)
∥∥P kB∥∥1→∞ ≤

Cu(1 + r2)δ/2

V (x, r)

(1 + r−2)k−1

kδ/2
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for all x ∈ M , for all r > 0 and for all k ∈ N∗ where B = B(x, r). Then we have
the Sobolev inequality (5.2).

Proof. As in the proof of Nash inequality (5.14), we start by considering the
case r ≤ 1. By (5.15), there exists C2 > 0 such that

(5.39) ‖PB‖1→∞ ≤
C1

V (x, r)

for all balls B = B(x, r) with r ≤ 1. Since PB is a contraction on all Lp(B), we
have

(5.40) ‖PB‖2(δ−1)/(δ−2)→2(δ−1)/(δ−2) ≤ 1.

Applying Riesz-Thorin interpolation between (5.39) and (5.40) yields

‖PB‖2→2δ/(δ−2) ≤
(

C1

V (x, r)

)1/δ

for all balls B = B(x, r) with r ≤ 1. By choosing CS ≥ C
2/δ
1 , we have (5.2) for all

balls B(x, r) with r ≤ 1.
Next we consider the case r > 1. Since

EB(f, f) + r−2 ‖f‖22 =
∥∥∥((1 + r−2)I − PB

)1/2
f
∥∥∥2

,

it suffices to show that there exists C2 > 0 such that

(5.41)
∥∥∥PB (I − (1 + r−2)−1PB

)−1/2
∥∥∥

2→2δ/(δ−2)
≤ C2

(1 + r2)1/2

V (x, r)1/δ

for all balls B = B(x, r) with r > 1. To see this, note that CS = max(C
2/δ
1 , 2C2

2 )
satisfies (5.2). Define

(5.42) E(B) :=
(1 + r2)

µ(B)
, TB := PB

(
I − (1 + r−2)−1PB

)−1/2
.

Let p ∈ [1, δ) and q ∈ [δ/(δ − 1),∞) satisfy

(5.43) p−1 = q−1 + δ−1.

For all p ∈ [1, δ) and q ∈ [δ/(δ−1),∞) satisfying (5.43), we show that the operator
TB is of weak-type (p, q). An application of Marcinkiewicz interpolation then yields
(5.2). Recall that TB =

∑∞
k=1 ak−1(1 + r−2)−(k−1)P kB . For N ∈ N∗, we define

operators

RB,N :=

N∑
k=1

ak−1(1 + r−2)−(k−1)P kB , SB,N := TB −RB,N .

By (5.38) and Riesz-Thorin interpolation, we obtain

(5.44)
∥∥P kB∥∥p→∞ ≤ C1/p

u E(B)δ/(2p)
(1 + r−2)(k−1)/p

kδ/(2p)
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for all balls B, for all k ∈ N∗ and for all 1 ≤ p <∞. For each p ∈ [1, δ), there exists
C3 > 0 such that

‖SB,N‖p→∞ ≤
∞∑

k=N+1

ak−1(1 + r−2)−(k−1)
∥∥P kB∥∥p→∞

≤ C1/p
u E(B)δ/(2p)Ca

∞∑
k=N+1

k−1/2k−δ/(2p)

≤ C3E(B)δ/(2p)N−δ/(2q)(5.45)

for all balls B, where q is given by (5.43). In (5.45) C3 depends only on p, q, δ but
not on B = B(x, r). In the second line above we use (5.44) and (5.37) and we used
(5.43) and p ∈ [1, δ) in the last line. By the same argument as above and increasing
C3 = C3(p) if necessary, we may assume that

(5.46) ‖TB‖p→∞ ≤ C3E(B)δ/(2p)

for all balls B.
Let g ∈ Lp(B) satisfy ‖g‖p = 1. For λ > 0, let N0 = N0(λ,B) denote the

smallest positive integer such that C3E(B)δ/(2p)N
−δ/(2q)
0 ≤ λ/2. By union bound,

for each p ∈ [1, δ) and q given by (5.43), there exists C4, C5 > 0 such that

µB {x ∈ B : |TBg(x)| > λ} ≤ µB {x ∈ B : |RB,N0g(x)| > λ/2}
+ µB {x ∈ B : |SB,N0

g(x)| > λ/2}
≤ µB {x ∈ B : |RB,N0

g(x)| > λ/2}
≤ (2/λ)p ‖RB,N0

g‖pp

≤ Cpu(2/λ)p

(
N0∑
k=1

k−1/2

)p
≤ C4(2Cu)pλ−pN

p/2
0

≤ C5E(B)q/2λ−q(5.47)

for all balls B = B(x, r). In the second step above we used the definition of N0. The
third step follows from Chebyshev inequality, the fourth step follows from (5.37)
and

∥∥P kB∥∥p→p ≤ 1. The last step (5.47) follows from (5.37), (5.43), (5.46) and the

definition of N0. By Marcinkiewicz interpolation theorem and the estimates given
by (5.47), there exists C6 > 0 such that

‖TB‖2→2δ/(δ−2) ≤ C6

√
E(B)

for all balls B = B(x, r). This is precisely (5.41) which we intended to prove. �

We record two important consequences of Proposition 5.10 first of which is the
proof of Theorem 5.1

Proof of Theorem 5.1. Theorem 5.1 follows from Corollary 5.6, Lemma 5.8
and Proposition 5.10. �

The next corollary shows that Sobolev inequality is necessarily true under dou-
bling hypothesis and Gaussian upper bounds (GUE).

Corollary 5.11. Let (M,d, µ) be a quasi-b-geodesic metric measure space
satisfying (V D)loc, (V D)∞. Suppose that a Markov operator P has a kernel p that
is (h, h′) compatible with respect to µ. Further assume that iterated kernel pk that
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satisfies (GUE). Let PB and EB denote the corresponding Markov operator and
Dirichlet form restricted to a ball B ⊂M . Then the Sobolev inequality (5.2) holds.

Proof. By Proposition 5.10 it suffices to show the ultracontractivity estimate
(5.38) on

∥∥P kB∥∥1→∞. By (GUE), there exists C1 > 0 such that

(5.48)
∥∥P kB∥∥1→∞ ≤ sup

y∈B,z∈B
pk(y, z) ≤ sup

y∈B(x,r)

C1

V (y,
√
k)

for all balls B = B(x, r) and for all k ∈ N∗. By (2.4), there exists δ > 2 and C2 > 0
such that
(5.49)

sup
y∈B(x,r)

1

V (x,
√
k)
≤ 1

V (x, r)
sup

y∈B(x,r)

V (x, 2(r ∨
√
k))

V (y,
√
k)

≤ 1

V (x, r)
C2

(
2(r ∨

√
k)√

k

)δ
for all balls B(x, r) and for all k ∈ N∗. The desired estimate (5.38) follows from
(5.48) and (5.49). �

5.4. Sobolev inequality implies large scale doubling property

Next, we show that Sobolev inequality implies (V D)∞ under natural hypothe-
ses. More precisely

Proposition 5.12. Let (M,d, µ) be a metric measure space satisfying (V D)loc.
Let P be (h, h′) compatible Markov operator in a metric measure space (M,d, µ)
satisfying Sobolev inequality (5.2). Then (M,d, µ) satisfies the large scale doubling
property (V D)∞.

We need the following volume comparison lemma.

Lemma 5.13. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfy-
ing (V D)loc and let h′ ≥ b > 0. Then there exists C0 > 0 such that

(5.50) V (x, r + h′) ≤ C0V (x, r)

for all x ∈M and for all r ≥ 3h′.

Proof. Let Y be a maximal h′-separated subset of B(x, r) where x ∈M and
r ≥ 3h′. The collection of balls {B(y, h′/2) : y ∈ Y } are disjoint and hence

(5.51) V (x, r) ≥
∑

y∈Y ∩B(x,r−h′)

V (y, h′/2).

However since B(x, r) ⊆ ∪y∈YB(y, h′) and r ≥ 3h′, we have

(5.52) ∅ 6= B(x, r − 2h′) ⊆ ∪y∈Y ∩B(x,r−h′)B(y, h′),

By quasi-b-geodesicity and b ≤ h′, there exists C1 > 0 such that for all z ∈
B(x, r + h′), there exists a b-chain x0, x1, . . . , xm b-chain from x to z such that

(5.53) xi ∈ B(x, r − 2h′) and d(xi, z) ≤ C1h
′.

Combining (5.52) and (5.53), we obtain

(5.54) B(x, r + h′) ⊆ ∪y∈Y ∩B(x,r−h′)B(y, (C1 + 1)h′).
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Combining (5.54),Lemma 2.10 and (5.51), we obtain

V (x, r + h′) ≤
∑

y∈Y ∩B(x,r−h′)

V (y, (C1 + 1)h′)

≤ Ch′/2,(C1+1)h′

∑
y∈Y ∩B(x,r−h′)

V (y, h′/2) ≤ Ch′/2,(C1+1)h′V (x, r).

�

Proof of Proposition 5.12. . We adapt the argument of [19, Proposition
2.1]. However unlike in [19, Proposition 2.1], we do not consider volumes of arbi-
trarily small balls.

Let x ∈M and r ≥ 3h′ be arbitrary. For s > 0, define the ‘tent function’

fs(y) = max(s− d(x, y), 0).

By (h, h′) compatibility of P , we have PB(x,r)f3h′ ≥ h′1B(x,h′). Therefore by ap-
plying (5.2), we have

(h′)2V (x, h′)(δ−2)/δ ≤ CSr
2

V (x, r)2/δ

(
(h′)2V (x, 4h′) + r−2(3h′)2V (x, 3h′)

)
for all r ≥ 3h′ and for all x ∈M . Combined with Lemma 2.10, there exists C1 > 0
such that

(5.55)
V (x, r)

V (x, h′)
≤ C1r

δ

for all r ≥ 3h′ and for all x ∈M .
Let 3h′ ≤ s ≤ r. Then by (h, h′) compatibility of P , we have PB(x,r)fs ≥

(s/6)1B(x,s/2). Hence by Sobolev inequality (5.2), (4.10) and Lemma 4.22(a), we
obtain

(s/6)2V (x, s/2)(δ−2)/δ ≤ CSr
2

V (x, r)2/δ

(
(h′)2V (x, s+ h) + r−2s2V (x, s)

)

Combined with Lemma 5.13, there exists C2 > 0 such that

(5.56) V (x, s) ≥
(
sδV (x, r)

C2rδ

)2/δ

V (x, s/2)(δ−2)/δ

for all x ∈M and for all 3h′ ≤ s ≤ r. We replace s by s/2 in (5.56) and iterate to
obtain
(5.57)

V (x, s) ≥ 4−
∑i−1
j=0 j(δ−2)j/δj

(
sδV (x, r)

C2rδ

)(2/δ)
∑i−1
j=0(δ−2)j/δj

V (x, s/2i)(δ−2)i/δi

for all 3h′ ≤ s/2i−1 ≤ s ≤ r. In particular if we choose i = dlog2(s/3h′)e, we have
(3h′)/2 ≤ s/2i ≤ 3h′. Hence by (5.57) and (5.55),we have
(5.58)

V (x, s) ≥ 4−
∑∞
j=0 j(δ−2)j/δj

(
sδV (x, r)

C2rδ

)(2/δ)
∑i−1
j=0(δ−2)j/δj (

V (x, r)

C1rδ

)(δ−2)i/δi
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for all x ∈ M and for all 3h′ ≤ s ≤ r, where i = dlog2(s/3h′)e. By (5.58), there
exists C3 > 0 such that

(5.59)
V (x, r)

V (x, s)
≤ C3(r/s)δs(δ−2)i/δi−1

for all x ∈ M and for all 3h′ ≤ s ≤ r, where i = dlog2(s/3h′)e. Since the map

s 7→ exp
(
δ((δ − 2)/δ)dlog2(s/3h′)e ln s

)
is bounded in [3h′,∞), by (5.59) there exists

C4 > 0 such that
V (x, r)

V (x, s)
≤ C4

(r
s

)δ
for all x ∈M and for all 3h′ ≤ s ≤ r. The above equation clearly implies (V D)∞.

�



CHAPTER 6

Elliptic Harnack inequality

In this chapter, we prove elliptic Harnack inequality for non-negative harmonic
functions. As before, we consider a metric measure space (M,d, µ) and a Markov
operator P that is (h, h′)-compatible with (M,d, µ). Recall that the operator ∆ :=
I − P is the Laplacian corresponding to P .

6.1. Harmonic functions

Definition 6.1. Let P be a Markov operator on (M,d, µ). A function f : U →
R is P -harmonic in B(x, r) if

∆f(y) = f(y)− Pf(y) = 0

for all y ∈ B(x, r).
Similarly, we say f : M → R is P -subharmonic (resp. P -superharmonic) in

B(x, r) if

∆f(y) ≤ 0 (resp. ≥ 0)

for all y ∈ B(x, r).
We say a function f : M → R is P -harmonic (resp. subharmonic, superhar-

monic) if ∆f ≡ 0 (resp. ∆f ≤ 0, ∆f ≥ 0).

Remark 6.2.

(a) Consider a Markov operator P that is (h, h′)-compatible with (M,d, µ). By
(4.10), Pf(y) depends only on f in B(y, h′). Therefore the property that
f : M → R is P -harmonic in B(x, r) depends only on the values of f in
B(x, r + h′). Hence in this case it suffices to have B(x, r + h′) ⊆ Domain(f).

(b) We use the term harmonic instead of P -harmonic if the Markov operator P is
clear from the context. Same holds for superharmonic or subharmonic func-
tions.

The main result of the chapter is the following elliptic Harnack inequality.

Theorem 6.3 (Elliptic Harnack inequality). Let (M,d, µ) be a quasi-b-geodesic
metric measure space satisfying (V D)loc, (V D)∞ and Poincaré inequality at scale
h (P )h. Suppose that a Markov operator P has a kernel p that is (h, h′)-compatible
with respect to µ for some h > b. Then there exists c > 0, r0 > 0, CE > 0 such that
for all x ∈ M , for all r ≥ r0 and for all non-negative functions u : B(x, r) → R≥0

that are P -harmonic in B(x, r) the following Harnack inequality holds:

(6.1) sup
x∈B(x,cr)

u ≤ CE inf
x∈B(x,cr)

u.

In (6.1), the sup and inf must be understood as essential sup and essential inf
with respect to µ.
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We follow Moser’s iteration method [61] to prove the elliptic Harnack inequality.
Our approach is an adaptation of Delmotte’s approach except that we have to rely
on a weaker version of Sobolev inequality and a modified version of John-Nirenberg
inequality. Moser’s iteration relies on estimating the quantities

(6.2) φ(u, p,B′) :=

(
1

µ(B′)

∫
B′
|u|p dµ

)1/p

for different balls B′ ⊂ B and for different values of p ∈ R \ {0}. By Jensen’s
inequality, p 7→ φ(u, p,B′) is non-decreasing function. The function φ satisfies
limp→−∞ φ(u, p, cB) = infcB u and limp→+∞ φ(u, p, cB) = supcB u [49, Lemma
14.1.4]. To obtain (6.1), Moser’s iterative method relies on establishing bounds
of the form φ(u, p1, B

′) ≤ Cp1,p2φ(u, p2, B
′′) for different values of p1, p2 ∈ R \

{0} satisfying p1 < p2. Sobolev inequality and Poincaré inequality are crucial
ingredients to run this iterative procedure. For a function f that is defined on a
ball B, we denote the mean integral by

fB = −
∫
B

f dµ =
1

µ(B)

∫
B

f dµ.

We start with a local version of the above elliptic Harnack inequality.

Lemma 6.4. Let (M,d, µ) be a quasi-b-geodesic space satisfying (V D)loc and
let P be a weakly (h, h′)-compatible Markov operator with (M,d, µ) for some h > b.
There exists C > 0 and r0 > 0 such that

(6.3) u(y) ≤ Cu(z)

for all x ∈M , for all r ≥ r0, for all y, z ∈ B(x, r/2) satisfying d(y, z) ≤ h′ and for
all non-negative functions u : B(x, r + h′)→ R harmonic in B(x, r).

Proof. There exists c1 > 0 and l ∈ N∗ such that

(6.4) pl(z, w) = pl(w, z) ≥
c11B(z,2h′)(w)

V (w, h′)

for all y, w ∈ M . The proof of (6.4) is analogous to that of (4.13). Therefore by
(6.4), (V D)loc weak (h, h′)-compatibility of p1 and triangle inequality, there exists
c2 > 0 such that

(6.5) pl(z, w) ≥
c11B(z,2h′)(w)

V (w, h′)
≥
c11B(y,h′)(w)

V (w, h′)
≥ c2p1(w, y) = c2p1(y, w)

for all y, z, w ∈M satisfying d(y, z) ≤ h′.
Choose r0 large enough so that r/2 + lh′ ≤ r + h′ for all r ≥ r0. Note that

for every harmonic function u : B(x, r + h′)→ R in B(x, r) with r ≥ r0 and for all
z ∈ B(x, r/2), we have

(6.6) u(z) = P lu(z) =

∫
B(z,lh′)

pl(z, w)u(w)µ(dw)

By (6.6) and (6.5), we obtain
(6.7)

u(z) =

∫
B(z,lh′)

pl(z, w)u(w)µ(dw) ≥ c2
∫
B(y,h′)

p1(y, w)u(w)µ(dw) = c2u(y)

for all non-negative harmonic functions u in B(x, r) for all x ∈ M , for all z, y ∈
B(x, r/2) with r ≥ r0. The choice C = c−1

2 satisfies (6.3). �
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6.2. John-Nirenberg inequality

Moser [61], used John-Nirenberg inequality to obtain an estimate of the form
φ(u,−q,B′) ≤ C ′φ(u, q,B′) for some q, C ′ > 0. An alternative approach is to use
an abstract lemma of Bombieri and Guisti was later proposed by Moser [72, Section
2.2.3].

John-Nirenberg inequality is an estimate on distribution of functions of bounded
mean oscillation which were introduced in [48]. A locally integrable function
f : B → R define is of bounded mean oscillation (BMO) if

‖f‖BMO(B) := sup
B′⊂B

1

µ(B′)

∫
B′
|f − fB′| dµ <∞.

John-Nirenberg inequality states that functions of bounded mean oscillation have
an exponentially decaying distribution function.

In [1, Theorem 5.2] a version of John-Nirenberg inequality is shown for spaces
satisfying the doubling hypothesis (V D). However for us, the metric measure space
(M,d, µ) only satisfies (V D)loc and (V D)∞. Since we do not have doubling hypoth-
esis on arbitrarily small balls, we introduce a modified version of BMO seminorm
(BMO seminorm at scale h) defined as

(6.8) ‖f‖BMO(B(x0,r0)),h = sup
B(y,r)⊆B(x0,r0),r≥h

1

V (y, r)

∫
B(y,r)

∣∣f − fB(y,r)

∣∣ dµ.
Our proof is motivated by the presentation in [1]. We start by recalling the

Vitali covering lemma.

Lemma 6.5 (Vitali covering lemma). Let F be a family of balls with positive
and uniformly bounded radii in a metric space (M,d). Then there exists a disjoint
subfamily G ⊆ F such that ⋃

B∈F
B ⊆

⋃
B∈G

5B.

In fact, every ball B ∈ F meets a ball B′ ∈ G with radius at least half that of B and
therefore satisfies B ⊆ 5B′.

The proof of Vitali covering lemma follows from an application of Zorn’s lemma.
We refer the reader to [46, Theorem 1.2] for a proof of Lemma 6.5. A crucial ingre-
dient in the proof of John-Nirenberg inequality is the following version of Calderón-
Zygmund decomposition lemma. Since we replaced (V D) by weaker assumptions
(V D)loc and (V D)∞, we need some other method to control the behavior of a BMO
function at small length scales. This is why we assume a local Harnack inequality
(by Lemma 6.4 the local Harnack inequality holds for harmonic functions).

Lemma 6.6 (Calderón-Zygmund decomposition lemma). Suppose (M,d, µ) be
a metric measure space satisfying (V D)loc and (V D)∞. Let f be a non-negative
locally integrable function on B(x0, 11r0) for some r0 ≥ r1 ≥ h > 0. Further we
assume that there exists C1 ≥ 1 such that f satisfies the local Harnack inequality

(6.9) f(y) ≤ C1f(z)

for all y, z ∈ B(x0, r0 + h) satisfying d(y, z) ≤ h. Further, assume that

(6.10) λ0 ≥
1

V (x0, r)

∫
B(x0,11r0)

f dµ
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Then there exists countable (possibly finite) family of disjoint balls F = {Bi} of
disjoint balls centered in B(x0, r) and satisfying 5Bi ⊆ B(x0, 11r0) for all Bi ∈ F0

so that

(i) f(x) ≤ C1λ0 for all x ∈ B(x0, r0) \
(⋃

Bi∈F 5Bi
)
.

(ii) λ0 < −
∫
Bi
f dµ ≤ C2λ0 for all Bi ∈ F0.

(iii) C−1
2 λ0 < −

∫
5Bi

f dµ ≤ λ0 for all Bi ∈ F0.

The family of balls F0 satisfying the above conditions are called Calderón-Zygmund
balls at level λ0. Moreover if λ0 ≤ λ1 ≤ . . . ≤ λN , then the family Calderón-
Zygmund balls Fn corresponding to different levels λn may be chosen in such a way
that every Bi(λn+1) ∈ Fn+1 is contained in some 5Bj(λn) where Bj(λn) ∈ Fn.

Proof. We denote B(x0, r0) as B0. Define a maximal function

MB0
f(x) = MB(x0,r0)f(x) = sup

B(y,r)⊂B(x0,r0+h):
y∈B(x0,r0),r≥h,B(y,r)3x

−
∫
B(y,r)

f dµ

for all x ∈ B(x0, r). We define

Eλ =
{
x ∈ B(x0, r0) : MB(x0,r0)f(x) > λ

}
.

First consider λN . By definition for every x ∈ EλN , there exists a ball Bx =
B(yx, rx) satisfying yx ∈ B0, x ∈ Bx, Bx ⊆ B(x0, r0 + h), rx ≥ h and

(6.11) λ0 ≤ λ1 ≤ . . . ≤ λN < −
∫
Bx

f dµ.

Let k = kx ∈ N∗ be such that 5k−1rx ≤ 2r0 ≤ 5krx. Then B0 ⊆ 5kBx ⊆ 11B0.
Combining this with (6.10), we have

−
∫

5kBx

f dµ ≤ 1

µ(B0)

∫
11B0

f dµ ≤ λ0 ≤ λN .

However since −
∫
Bx
f dµ > λN , there exist smallest nx ≥ 1 such that

(6.12) −
∫

5nxBx

f dµ ≤ λN

and

(6.13) −
∫

5jBx

f dµ > λN

for all j = 0, 1, . . . , nx − 1. The balls 5nx−1Bx forms a covering of EλN . Therefore
by Vitali covering lemma (Lemma 6.5), we pick a family FN of pairwise disjoint
balls Bi = 5nxi−1Bxi satisfying EλN ⊆

⋃
B∈FN 5B. We now check the construction

above satisfies the desired properties. By (6.12), (6.13) and (2.4), there exists
Ch > 0, δ > 0 such that

λN < −
∫

5nx−1Bx

f dµ ≤ Ch5δ−
∫

5nxBx

f dµ ≤ Ch5δλN .

Choosing C2 = 5δCh, we obtain properties (ii) and (iii) of Calderón-Zygmund
decomposition.



6.2. JOHN-NIRENBERG INEQUALITY 67

It remains to verify (i). If x ∈ B0 \
(⋃

Bi∈F 5Bi
)
⊆ B0 \ EλN , we have

MB0f(x) ≤ λN . Therefore by (6.9), we have

λN ≥MB0f(x) ≥ −
∫
B(x,h)

f dµ ≥ C−1
1 f(x).

This give property (i). We have now constructed the desired decomposition at level
λN . Next we consider λN−1.

Since EλN ⊆ EλN−1
, for every x ∈ EλN , we may start with exactly the same

ball satisfying (6.11) as before. For every x ∈ EλN−1
\ EλN , we choose a ball

Bx = B(yx, rx) satisfying Bx 3 x, yx ∈ B0, rx ≥ h, Bx ⊂ B(x0, r0 + h) and

(6.14) λ0 ≤ . . . ≤ λN−1 < −
∫
Bx

f dµ.

As before for each ball Bx, we choose the smallest integer mx ≥ 1 such that

(6.15) −
∫

5mxBx

f dµ ≤ λN−1

and

(6.16) −
∫

5jBx

f dµ > λN−1

for j = 0, 1, . . . ,mx − 1. Note that if x ∈ EλN , then nx ≤ mx. As before, we apply
Vitali’s covering lemma to the balls

{
5mx−1Bx : x ∈ EλN−1

}
to obtain a pairwise

disjoint family of balls FN−1 satisfying (i)-(iii) with λ0 replaced by λN−1.
Let Bi(λN ) ∈ FN . Then Bi(λN ) = 5nx−1Bx for some x ∈ EλN . Since nx ≤ mx,

we have Bi(λN ) ⊂ 5mx−1Bx. By Vitali’s covering lemma, there exists Bj(λN−1) ∈
FN−1 such that Bi(λN ) ⊆ 5mx−1Bx ⊆ 5Bj(λN−1). We continue this procedure to
get decomposition at all levels λ0 ≤ . . . ≤ λN . �

Remark 6.7. In the above proof, we use (6.9) to obtain property (i) of the
Calderón-Zygmund decomposition. Typically property (i) is proved using Lebesgue
differentiation theorem. However the proof of Lebesgue differentiation theorem
requires (V D). (See [1] and [46, Theorem 1.8])

Next, we prove the John-Nirenberg inequality for spaces satisfying (V D)loc and
(V D)∞.

Proposition 6.8 (John-Nirenberg inequality). Let (M,d, µ) be a metric mea-
sure space satisfying (V D)loc and (V D)∞. Let f be a non-negative locally integrable
function on B(x0, 11r0) for some r0 ≥ h > 0. Further we assume that there exists
C1 ≥ 1 such that f satisfies the local Harnack inequality

(6.17) f(y) ≤ C1f(z)

for all y, z ∈ B(x0, r0 + h) satisfying d(y, z) ≤ h. Then there exists C2 > 0 such
that

(6.18) µ ({x ∈ B0 : |f − fB0
|} > λ) ≤ C2µ(B0) exp(−λ/(C2 ‖f‖BMO(11B0),h))

for all λ > 0. The constant C2 depends only on C1, h and constants associated with
doubling hypotheses (V D)loc and (V D)∞.
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Proof. Let B0 = B(x0, r0). Without loss of generality, we assume fB0
=

0 and ‖f‖BMO(11B0),h = 1 . It suffices to consider f such that fB0 = 0 and

‖f‖BMO(11B0),h = 1 as we may replace the function f by (f−fB0
)/ ‖f‖BMO(11B0),h.

By (2.4), there exists C3 > 0 such that

1

µ(B0)

∫
11B0

|f − fB0| dµ ≤ C3−
∫

11B0

|f − f11B0| dµ+ C3|fB0 − f11B0|

≤ C3 ‖f‖BMO(11B0),h′ + C3−
∫
B0

|f − f11B0| dµ

≤ 2C2
3 ‖f‖BMO(11B0),h = 2C2

3 .

If Bj is the Calderón-Zygmund balls at level C−1
1 λ where λ ≥ 2C1C

2
3 , then by

Lemma 6.6

(i) |f(x)| ≤ λ for all x ∈ B0 \ ∪j5Bj .
(ii) C−1

1 λ < −
∫
Bj
|f| dµ ≤ C3C

−1
1 λ for all j.

(iii) C−1
1 C−1

3 λ < −
∫

5Bj
|f| dµ ≤ C−1

1 λ for all j.

By (i) and (2.4), we have

(6.19) µ ({x ∈ B0 : |f(x)| > λ}) ≤
∑
j

µ(5Bj) ≤ C3

∑
j

µ(Bj)

In order to estimate
∑
j µ(Bj), we consider Calderón-Zygmund decomposi-

tion at levels C−1
1 λ > C−1

1 γ ≥ 2C2
3 as in Lemma 6.6. We partition the family{

Bj(C
−1
1 λ)

}
j

as follows: First we collect those which are contained in 5B1(C−1
1 γ).

From the remaining balls we collect those balls which are contained in 5B2(C−1
1 γ)

and so on. More precisely, we partition the Calderón-Zygmund balls at level C−1
1 λ

as {
Bj(C

−1
1 λ)

}
=
⋃
k

{
Bj(C

−1
1 λ)

}
j∈Jk

,

where Jk’s are defined as

J1 =
{
j : Bj(C

−1
1 λ) ⊆ 5B1(C−1

1 γ)
}

J2 =
{
j : Bj(C

−1
1 λ) ⊆ 5B2(C−1

1 γ), j /∈ J1

}
J3 =

{
j : Bj(C

−1
1 λ) ⊆ 5B3(C−1

1 γ), j /∈ J1 ∪ J2

}
and so on. By (ii), we have

λ
∑
j

µ(Bj(C
−1
1 λ)) ≤ C1

∑
j

∫
Bj(C

−1
1 λ)

|f| dµ

≤ C1

∑
k

∑
j∈Jk

∫
Bj(C

−1
1 λ)

|f| dµ.(6.20)
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In addition for each k, we have∑
j∈Jk

∫
Bj(C

−1
1 λ)

|f| dµ ≤
∑
j∈Jk

∫
Bj(C

−1
1 λ)

∣∣∣(|f|+ C−1
1 γ −

∣∣∣f5Bk(C−1
1 γ)

∣∣∣)∣∣∣ dµ
≤
∑
j∈Jk

∫
Bj(C

−1
1 λ)

∣∣∣f − f5Bk(C−1
1 γ)

∣∣∣ dµ+ C−1
1 γ

∑
j∈Jk

µ(Bj(C
−1
1 λ))

≤
∫

5Bk(C−1
1 λ)

∣∣∣f − f5Bk(C−1
1 γ)

∣∣∣ dµ+ C−1
1 γ

∑
j∈Jk

µ(Bj(C
−1
1 λ))

≤ µ(5Bk(C−1
1 λ)) + C−1

1 γ
∑
j∈Jk

µ(Bj(C
−1
1 λ))

≤ C3µ(Bk(C−1
1 γ)) + C−1

1 γ
∑
j∈Jk

µ(Bj(C
−1
1 λ)).

The fourth line above follows from ‖f‖BMO(11B0),h = 1. We sum over k and use

(6.20)

λ
∑
j

µ(Bj(C
−1
1 λ)) ≤ C1C3

∑
k

µ(Bk(C−1
1 γ)) + γ

∑
j

µ(Bj(C
−1
1 λ))

for all λ ≥ γ ≥ 2C1C
2
3 . This implies

(λ− γ)
∑
j

µ(Bj(C
−1
1 λ)) ≤ C1C3

∑
k

µ(Bk(C−1
1 γ))

for all λ ≥ γ ≥ 2C1C
2
3 .

In particular if λ ≥ a := 2C1C
2
3 , we have

(6.21)
∑
j

µ(Bj(C
−1
1 (λ+ a))) ≤ 1

2

∑
k

µ(Bk(C−1
1 λ)).

Let λ ≥ a and let N = bλ/ac. Then we apply the Calderón-Zygmund decompo-
sition at levels C−1

1 a < 2C−1
1 a < . . . < C−1

1 Na. By (6.19) and repeated application
of (6.21), we obtain

µ ({x ∈ B0 : |f(x)| > λ}) ≤ µ ({x ∈ B0 : |f(x)| > Na})

≤ C3

∑
j

µ(Bj(C
−1
1 Na)) ≤ C32−N+1

∑
j

µ(Bj(C
−1
1 a))

≤ 2C32−Nµ(11B0) ≤ 4C2
32−λ/aµ(B0)

≤ 4C2
3 exp(−(λ ln 2)/a)µ(B0)(6.22)

The case λ < a follows easily since

µ ({x ∈ B0 : |f(x)| > λ}) ≤ µ(B0) ≤ 4C2
3 exp(−(λ ln 2)/a)µ(B0).

The choice C2 = max(4C2
3 , a/ ln 2) satisfies (6.18). �

We have the following corollary.

Corollary 6.9. Let (M,d, µ) be a metric measure space satisfying (V D)loc

and (V D)∞. Let f be a non-negative locally integrable function on B(x0, 11r0) for
some r0 ≥ h′ > 0. Further we assume that there exists C1 ≥ 1 such that f satisfies
the local Harnack inequality

(6.23) f(y) ≤ C1f(z)
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for all y, z ∈ B(x0, r0 +h′) satisfying d(y, z) ≤ h. Then there exists c0, C0 > 0 such
that

(6.24)

∫
B0

e(c0f(y)/‖f‖BMO(11B0),h′) dy

∫
B0

e(−c0f(y)/‖f‖BMO(11B0),h′) dy ≤ C2
0µ(B0)2

where B0 = B(x0, r0). The constants c0, C0 depends only on C1, h
′ and constants

associated with doubling hypotheses (V D)loc and (V D)∞.

Proof. There exists C2, C3 > 0 such that∫
B0

exp
(
c0(f(y)− fB0)/ ‖f‖BMO(11B0),h′

)
dy

≤ µ(B0) +

∞∑
k=0

µ

({
y ∈ B0 : k <

f(y)− fB0

‖f‖BMO(11B0),h′
≤ k + 1

})
ec0(k+1)

≤ µ(B0)

(
1 + C2

∞∑
k=0

ec0(k+1)e−k/C2

)
≤ C0µ(B0)

In the last line above, we fix c0 = 1/(2C2) where C2 is the constant from Propo-
sition 6.8. Replacing f by −f in the above inequality and multiplying those two
inequalities yields (6.24). �

6.3. Discrete Calculus

Before we dive into computations, we introduce simplifying notations and col-
lect basic rules that mimics calculus rules in a discrete setting. Let f be a function
on N×M or on M . Depending on context, we may abbreviate f(k, x) to fk(x), fk
or even f .

1. ‘Gradient’

(6.25) ∇xyf := f(y)− f(x)

and the ‘time derivative’

(6.26) ∂kf(x) := f(k + 1, x)− f(k, x).

2. Differentiation of product

(6.27) ∇xy(fg) = (∇xyf)g(y) + (∇xyg)f(x).

3. Differentiation of square

(6.28) ∇xyf2 = 2(∇xyf)f(x) + (∇xyf)2.

4. The same formulas for the ‘time derivatives’:

(6.29) ∂k(fg) = (∂kf)gk+1 + (∂kg)fk

and

(6.30) ∂k(f2) = 2(∂kf)fk + (∂kf)2.

5. Let ∆ = I − P denote the Laplacian corresponding to a µ-symmetric
Markov operator P with kernel p1. Then

∆f(x) := (I − P )f(x) =

∫
M

p1(x, y)∇yxf dy.
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6. Integration by parts: If f, g ∈ L2(M,µ), then

(6.31)

∫
M

∆f(x)g(x)dx =
1

2

∫
M

∫
M

(∇xyf)(∇xyg)p1(x, y) dy dx.

7. Consider a µ-symmetric Markov operator with kernel p1. We define |∇f|
corresponding to the Markov operator P as

(6.32) |∇P f|2(x) :=

∫
M

(∇xyf)2p1(x, y) dy.

We caution the reader to be aware of different uses of the symbol ∇ in (3.1), (6.25)
and (6.32) with slight change in subscript. The subscript could be a positive real
number, a pair of points or a Markov operator. We hope the different notations of
∇ would be clear from the context.

6.4. Logarithm of a harmonic function

If u is a positive harmonic function, then we show that log u has bounded BMO
seminorm. This combined with John-Nirenberg inequality yields φ(u,−q, c1B) ≤
C ′φ(u, q, c1B) for some q, C ′ > 0 and c1 ∈ (0, 1).

Lemma 6.10. Let (M,d, µ) be a quasi-b-geodesic metric measure space satis-
fying (V D)loc, (V D)∞ and Poincaré inequality at scale h (P )h. Suppose that a
Markov operator P has a kernel p that is (h, h′)-compatible with respect to µ for
some h > b. Let u be a positive P -harmonic function on B = B(x, r). Let η be
a non-negative function on B satisfying supp(η) ⊂ B(x, (r/2) − h′). There exists
C0 > 0 and r0 > 2h′ satisfies
(6.33)∫

B/2

∫
B/2

(
ln
u(y)

u(z)

)2

η(z)2p1(y, z) dy dz ≤ C0

∫
B/2

∫
B/2

(∇yzη)
2
p1(y, z) dy dz

for all balls B, for all functions u, η satisfying the above requirements.

Proof. Define ψ := η2/u. By product rule (6.27)

(6.34) ∇yzψ = ∇yz(1/u)η(z)2 + (1/u(y))∇yz(u2).

Using integration by parts (6.31) along with supp(η) ⊂ B(x, (r/2)−h′), we deduce

(6.35)

∫
B/2

∫
B/2

p1(y, z)(∇yzψ)(∇yzu) dy dz = 0.

Combining (6.34), (6.35), we have

−
∫
B/2

∫
B/2

p1(y, z)(∇yzu)

(
∇yz

1

u

)
η(z)2 dy dz

≤
∫
B/2

∫
B/2

p1(y, z)|∇yzu|
∣∣∇yzη2

∣∣ 1

u(y)
dy dz.(6.36)

By Lemma 6.4, u satisfies the local Harnack inequality on B/2 for large enough
balls B. Hence there exists c1, C1 > 0 and r0 > 2h′ such that

−(∇yzu)

(
∇yz

1

u

)
=

(u(y)− u(z))2

u(y)u(z)
≥ c1

(
ln
u(y)

u(z)

)2

(6.37)

|∇yzu|/u(y) ≤ C1

∣∣∣∣ln u(y)

u(z)

∣∣∣∣(6.38)
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for all positive P -harmonic functions u on B = B(x, r), for all y, z ∈ B/2 with
d(y, z) ≤ h′ and r > r0. Combining (6.36), (6.37) and (6.38), we obtain∫

B/2

∫
B/2

p1(y, z)

(
ln
u(y)

u(z)

)2

η(z)2 dy dz

≤ C1

c1

∫
B/2

∫
B/2

p1(y, z)|∇yzη|(η(y) + η(z))

∣∣∣∣ln u(y)

u(z)

∣∣∣∣ dy dz(6.39)

Since p1(y, z) = p1(z, y) for µ× µ-almost every (y, z) ∈M ×M , we have∫
B/2

∫
B/2

p1(y, z)|∇yzη|η(y)

∣∣∣∣ln u(y)

u(z)

∣∣∣∣ dy dz
=

∫
B/2

∫
B/2

p1(y, z)|∇yzη|η(z)

∣∣∣∣ln u(y)

u(z)

∣∣∣∣ dy dz(6.40)

By (6.39) and (6.40)∫
B/2

∫
B/2

p1(y, z)

(
ln
u(y)

u(z)

)2

η(z)2 dy dz

≤ 2C1

c1

∫
B/2

∫
B/2

p1(y, z)|∇yzη|η(z)

∣∣∣∣ln u(y)

u(z)

∣∣∣∣ dy dz(6.41)

By Hölder inequality(∫
B/2

∫
B/2

p1(y, z)|∇yzη|η(z)

∣∣∣∣ln u(y)

u(z)

∣∣∣∣ dy dz
)2

≤
∫
B/2

∫
B/2

p1(y, z)|∇yzη|2 dy dz ·
∫
B/2

∫
B/2

p1(y, z)

(
ln
u(x)

u(y)

)2

η(z)2 dy dz.

(6.42)

Combining (6.41) and (6.42), we obtain (6.33) with C0 = 4C2
1/c

2
1. �

In the next proposition, we show that logarithm of a harmonic function has
bounded mean oscillation. Then using John-Nirenberg inequality we prove a weak
form of elliptic Harnack inequality.

Proposition 6.11. Under the assumptions of Theorem 6.3, there exists q > 0,
c0 ∈ (0, 1) and C0, r0 > 0 such that

(6.43) φ(u,−q, c0B) ≤ C0φ(u, q, c0B)

for all P -harmonic functions u on B = B(x, r) with r ≥ r0 and for all x ∈M .

Proof. Let c1 ∈ (0, 1) (its value will be determined later in the proof). Let
B = B(x, r) and let B1 = B(x1, r1) ⊆ c1B with r1 ≥ h′. For any positive harmonic
function u on B, by (P )∞ there exists C1, C2, C3 > 1 such that∫

B1

|lnu(y)− (lnu)B1|
2
dy ≤ C1r

2
1

∫
C2B1

|∇(lnu)|2h(y) dy

≤ C3r
2
1

∫
(C2+1)B1

∫
(C2+1)B1

p1(y, z)

(
ln
u(y)

u(z)

)2

dy dz(6.44)
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We used (P )h in the first line and (4.10) and r ≥ h′ We choose c1 = 1/(3(C2 + 2)),
so that (C2 + 1)B1 ⊆ B/3 for all B1 ⊆ c1B. We define η as

η(y) = max

(
1,min

(
0,

(C2 + 2)r1 − d(y, x1)

r1

))
.

Note that for large enough r, we have supp η ⊆ (C2 + 2)B1 ⊆ (C2 + 2)c1B ⊆
B(x, (r/2)− h′). Since η ≡ 1 on (C2 + 1)B1, there exists C4, C5 > 0∫

(C2+1)B1

∫
(C2+1)B1

p1(y, z)

(
ln
u(y)

u(z)

)2

dy dz

≤
∫

(C2+2)B1

∫
(C2+2)B1

p1(y, z)

(
ln
u(y)

u(z)

)2

η(z)2 dy dz

≤ C4

∫
B/2

∫
B/2

p1(y, z) (∇yzη)
2
dy dz ≤ C5r

−2
1 µ(B1)(6.45)

In the last line above we used Lemma 6.10, (4.10), definition of η, triangle inequality
and (2.4). By Hölder inequality

(6.46)

(∫
B1

|lnu(y)− (lnu)B1| dy
)2

≤ µ(B1)

∫
B1

|lnu(y)− (lnu)B1|
2
dy

Combining (6.44), (6.45) and (6.46) we obtain

(6.47) ‖lnu‖BMO(c1B),h′ ≤ (C3C5)1/2

for all positive harmonic functions u on B = B(x, r) and for all r sufficiently large.
By Lemma 6.4, (6.47) and Corollary 6.9, there exists q > 0, C6 > 0 such that

φ(u, q, (c1/11)B)qφ(u,−q, (c1/11)B)−q ≤ C2
6

for all sufficiently large balls B and for all positive P -harmonic functions u on B.
This immediately yields (6.43). �

6.5. Mean value inequality for subharmonic functions

For the rest of the chapter, we will rely on (V D)∞, (V D)loc and the Sobolev in-
equality (5.2) to prove Theorem 6.3. We obtain various inequalities on subharmonic
functions. The following elementary property of subharmonic and superharmonic
functions is useful.

Lemma 6.12. Let P be a Markov operator.

(a) If f is a non-negative function that is P -subharmonic in B(x, r), then fp is
P -subharmonic in B(x, r) for all p ∈ [1,∞).

(b) If f is a positive function that is P -superharmonic in B(x, r), then fp is P -
subharmonic in B(x, r) for all p < 0.

Proof. If y ∈ B(x, r), then by Jensen’s inequality and the fact that f is
P -subharmonic in B(x, r)

fp(y) ≤ (Pf(y))p ≤ (Pfp)(y).

This proves (a). We again use Jensen’s inequality, f is P -superharmonic in B(x, r)
and p < 0 to obtain

fp(y) ≤ (Pf(y))p ≤ (Pfp)(y)

�
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Moser’s iteration relies on repeated application of the following Lemma.

Lemma 6.13. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfy-
ing (V D)loc and (V D)∞. Suppose that a Markov operator P has a kernel p that is
(h, h′)-compatible with respect to µ for some h > b. Further assume that P satisfies
the Sobolev inequality (5.2). There exists C0 > 0 such that

(6.48) φ(u, 2(1 + 2/δ), B(x, (1− σ)r − h′) ≤ C0σ
−δ/(δ+2)φ(u, 2, B(x, r + h′))

for all x ∈ M , for all r ≥ 3h′, for all σ ∈ (0, 1/2) and for all functions u that are
non-negative and P -subharmonic on B(x, r).

Proof. Define

(6.49) ψ(y) := max

(
0,min

(
1,
r − d(x, y)

σr

))
.

Note that ψ ≡ 0 in B(x, r){ and ψ ≡ 1 in B(x, (1− σ)r). Since ∆u ≤ 0 in B(x, r)
and u ≥ 0, we have

0 ≤ −
∫
B(x,r)

ψ2(y)u(y)∆u(y) dy

= −1

2

∫
B(x,r+h′)

∫
B(x,r+h′)

p1(y, z)
(
∇yz(ψ2u)

)
(∇yzu) dy dz

= −1

2

∫
B(x,r+h′)

∫
B(x,r+h′)

p1(y, z)ψ2(y) (∇yzu)
2
dy dz

− 1

2

∫
B(x,r+h′)

∫
B(x,r+h′)

p1(y, z)u(z)
(
∇yzψ2

)
(∇yzu) dy dz.(6.50)

The above steps follows from integration by parts (6.31) and product rule (6.27).
We use the inequality ab ≤ a2/4 + b2 to obtain∣∣u(z)

(
∇yzψ2

)
(∇yzu)

∣∣ = |(ψ(y) + ψ(z))u(z)(∇yzψ)(∇yzu)|

≤ 1

4
(ψ2(y) + ψ2(z)) (∇yzu)

2
+ 2u2(z) (∇yzψ)

2
.(6.51)

Since p1(y, z) = p1(z, y) for µ× µ-almost every (y, z), we have

(6.52)

∫
B1

∫
B1

p1(y, z)ψ2(y) (∇yzu)
2
dy dz =

∫
B1

∫
B1

p1(y, z)ψ2(z) (∇yzu)
2
dy dz

where B1 := B(x, r + h′). Combining (6.50), (6.51) and (6.52)
(6.53)∫

B1

∫
B1

p1(y, z)ψ2(y) (∇yzu)
2
dy dz ≤ 4

∫
B1

∫
B1

p1(y, z)u2(z) (∇yzψ)
2
dy dz.

The inequality (a+ b)2 ≤ 2(a2 + b2) along with product rule (6.27) implies∫
B1

∫
B1

p1(y, z) (∇yz(ψu))
2
dy dz ≤ 2

∫
B1

∫
B1

p1(y, z)ψ2(y) (∇yzu)
2
dy dz

+ 2

∫
B1

∫
B1

p1(y, z)u2(z) (∇yzψ)
2
dy dz.(6.54)

Combining (6.53) and (6.54), we obtain
(6.55)∫

B1

∫
B1

p1(y, z) (∇yz(ψu))
2
dy dz ≤ 10

∫
B1

∫
B1

p1(y, z)u2(z) (∇yzψ)
2
dy dz.
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By (6.49) and (4.10), there exists C1 > 0 such that

(∇yzψ)
2
p1(y, z) ≤ (h′)2σ−2r−2p1(y, z)

for all y ∈M and for µ-almost every z ∈M . Combined with (6.55), we have

(6.56)

∫
B1

∫
B1

p1(y, z) (∇yz(ψu))
2
dy dz ≤ 10(h′)2σ−2r−2

∫
B1

u2(z) dz.

We define
u1 := PB(x,(1−σ)r)u, u2 := PB1(ψu).

Since ψ ≡ 1 in B(x, (1− σ)r), by (4.10) we have

(6.57) u2(y) = u1(y) = Pu(y) = u(y)−∆u(y) ≥ u(y)

for all y ∈ B(x, (1− σ)r − h′). By (6.57) along with Hölder inequality, we have∫
B(x,(1−σ)r−h′)

u2(1+(2/δ)) dµ ≤
∫
B(x,(1−σ)r)

u
2(1+(2/δ))
1 dµ

≤

(∫
B(x,(1−σ)r)

u2
1 dµ

)2/δ (∫
B(x,(1−σ)r)

u
(2δ)/(δ−2)
1 dµ

)(δ−2)/δ

≤

(∫
B(x,(1−σ)r)

u2 dµ

)2/δ (∫
B(x,(1−σ)r)

u
(2δ)/(δ−2)
2 dµ

)(δ−2)/δ

(6.58)

In (6.58), we used that PB(x,(1−σ)r) is a contraction in L2 and that u2 ≥ u1 in
B(x, (1 − σ)r). By Sobolev inequality (5.2), Lemma 4.22(a) and integration by
parts (6.31) (∫

B1

u
(2δ)/(δ−2)
2 dµ

)(δ−2)/δ

≤ CS
(r + h′)2

2V (x, r + h′)2/δ

∫
B1

∫
B1

p1(y, z) (∇yz(ψu))
2
dy dz

+ CS
1

V (x, r + h′)2/δ

∫
B1

(ψu)2 dµ(6.59)

By using (6.58), (6.59), (6.56), ψ ≤ 1, r ≥ 3h′ and (2.4), there exists C2 > 0 such
that

−
∫
B(x,(1−σ)r−h′)

u2(1+(2/δ)) dµ ≤ C2σ
−2

(
−
∫
B(x,r+h′)

u2 dµ

)1+(2/δ)

.

This immediately yields (6.48). �

We modify the proof of the Lemma 6.13 to obtain a reverse Poincaré inequality
for all P -harmonic functions (not necessarily non-negative). The below reverse
Poincaré inequality and its proof is essentially same as (6.56).

Lemma 6.14 (Reverse Poincaré inequality). Let (M,d, µ) be a quasi-b-geodesic
metric measure space satisfying (V D)loc and (V D)∞. Suppose that a Markov op-
erator P has a kernel p that is weakly (h, h′)-compatible with respect to µ for some
h > b. For all Ω > 1, there exists C = C(Ω) such that for all P -harmonic functions
u, for all x ∈M and for all r > 3h′/(Ω− 1)

(6.60)

∫
B(x,r)

|∇Pu|2 dµ ≤ Cr−2

∫
B(x,Ωr)

u2 dµ.
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In particular, there exists CR = C(2) such that such that for all P -harmonic func-
tions u, for all x ∈M and for all r > 3h′

(6.61)

∫
B(x,r)

|∇Pu|2 dµ ≤ CRr−2

∫
B(x,2r)

u2 dµ.

Proof. We repeat the steps in the proof of Lemma 6.13. Define

(6.62) ψ(y) := max

(
0,min

(
1,

Ωr − h′ − d(x, y)

(Ω− 1)r − 2h′

))
.

Note that ψ ≡ 0 in B(x,Ωr−h′){ and ψ ≡ 1 in B(x, r+h′). Since ∆u = (I−P )u =
0, for all r > 3h′/(Ω− 1) and for all x ∈M we have

0 = −
∫
M

ψ2(y)u(y)∆u(y) dy = −
∫
B(x,Ωr−h′)

ψ2(y)u(y)∆u(y) dy

= −1

2

∫
B(x,Ωr)

∫
B(x,Ωr)

p1(y, z)
(
∇yz(ψ2u)

)
(∇yzu) dy dz

= −1

2

∫
B(x,Ωr)

∫
B(x,Ωr)

p1(y, z)ψ2(y) (∇yzu)
2
dy dz

− 1

2

∫
B(x,Ωr)

∫
B(x,Ωr)

p1(y, z)u(z)
(
∇yzψ2

)
(∇yzu) dy dz.(6.63)

The above steps follows from integration by parts (6.31) and product rule (6.27).
We use the inequality ab ≤ a2/4 + b2 to obtain∣∣u(z)

(
∇yzψ2

)
(∇yzu)

∣∣ = |(ψ(y) + ψ(z))u(z)(∇yzψ)(∇yzu)|

≤ 1

4
(ψ2(y) + ψ2(z)) (∇yzu)

2
+ 2u2(z) (∇yzψ)

2
.(6.64)

Since p1(y, z) = p1(z, y) for µ× µ-almost every (y, z), we have

(6.65)

∫
B1

∫
B1

p1(y, z)ψ2(y) (∇yzu)
2
dy dz =

∫
B1

∫
B1

p1(y, z)ψ2(z) (∇yzu)
2
dy dz

where B1 := B(x,Ωr). Combining (6.63), (6.64) and (6.65)
(6.66)∫

B1

∫
B1

p1(y, z)ψ2(y) (∇yzu)
2
dy dz ≤ 4

∫
B1

∫
B1

p1(y, z)u2(z) (∇yzψ)
2
dy dz.

The inequality (a+ b)2 ≤ 2(a2 + b2) along with product rule (6.27) implies∫
B1

∫
B1

p1(y, z) (∇yz(ψu))
2
dy dz ≤ 2

∫
B1

∫
B1

p1(y, z)ψ2(y) (∇yzu)
2
dy dz

+ 2

∫
B1

∫
B1

p1(y, z)u2(z) (∇yzψ)
2
dy dz.(6.67)

Combining (6.66) and (6.67), we obtain
(6.68)∫

B1

∫
B1

p1(y, z) (∇yz(ψu))
2
dy dz ≤ 10

∫
B1

∫
B1

p1(y, z)u2(z) (∇yzψ)
2
dy dz.

By (6.62) and (4.10), there exists C1 > 0 such that

(∇yzψ)
2
p1(y, z) ≤ (3h′)2(Ω− 1)−2r−2p1(y, z)
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for all y ∈ M , for µ-almost every z ∈ M and for all r > 3h′/(Ω − 1). Combined
with (6.55), we have

(6.69)

∫
B1

∫
B1

p1(y, z) (∇yz(ψu))
2
dy dz ≤ (3h′)2(Ω− 1)−2r−2

∫
B1

u2(z) dz.

for all P -harmonic functions u, for all r > 3h′/(Ω − 1) and for all x ∈ M . Since
ψ ≡ 1 in B(x, r + h′) the desired inequality (6.60) follows from (6.69). �

The next lemma is a L2-mean value inequality for positive P -subharmonic
functions.

Lemma 6.15. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfy-
ing (V D)loc and (V D)∞. Suppose that a Markov operator P has a kernel p that is
(h, h′)-compatible with respect to µ for some h > b. Further assume that P satisfies
the Sobolev inequality (5.2). There exists C1 > 0 and r1 > 0 such that

(6.70) φ(u,∞, B(x, r/6)) ≤ Cφ(u, 2, B(x, r + h′))

for all x ∈ M , for all r ≥ r1 and for all functions u that are non-negative and
P -subharmonic on B(x, r).

Proof. Define a sequence of radii iteratively by r(1) = r + h′,

r(i+ 1) = (r(i)− h′)
(

1− 1

3i+1

)
− h′

for i = 1, 2, . . . , dlog re. By the above definition, there exists r0 > 0 such that

(6.71) r(dlog re+ 2)− h′ ≥ r

1−
i∑

j=1

3−(i+1)

− 4h′(log r + 3) ≥ r/2 ≥ 3h′

for all r ≥ r0. We define the balls Bi = B(x, r(i)) for i ∈ N∗ and exponents
pi = (1 + 2/δ)i for i ∈ N≥0. By Lemma 6.12 upi is P -subharmonic for all i ∈ N≥0.
By applying Lemma 6.13 to the function upi−1 that is P -subharmonic in Bi, we
obtain

(6.72) φ(u, 2pi, Bi+1) ≤ C1/pi−1

0 3−(i+1)/piφ(u, 2pi−1, Bi)

for i = 1, 2, . . . , dlog re and r ≥ r0. Combining the estimates in (6.72), there exists
C2 > 0 such that

(6.73) φ(u, 2pdlog re, Bdlog re+1) ≤ C2φ(u, 2, B(x, r + h′))

for all x ∈ M , for all r ≥ r0 and for all non-negative subharmonic u in B(x, r).
There exists C3, C4 > 0 such that

sup
B(x,r/2)

u2pdlog re ≤ sup
B(x,r/2)

P (u2pdlog re)

≤ sup
y∈Bdlog re+1

C3

V (y, h′)

∫
Bdlog re+1

u2pdlog re dµ

≤ C3

µ(Bdlog re+1)

(
sup

y∈B(x,r)

V (y, 2r)

V (y, h′)

)∫
Bdlog re+1

u2pdlog re dµ

≤ C4r
δ−
∫
Bdlog re+1

u2pdlog re dµ(6.74)
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The first line above follows from Lemma 6.12, the second line follows from (4.10)
and (6.71), the third line follows from (6.71) and the last line from (2.4) and (6.71).
Combining (6.73) and (6.74), we obtain (6.70). �

The next lemma is analogous to Lemma 6.13 and will be used for an iteration
procedure.

Lemma 6.16. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfy-
ing (V D)loc and (V D)∞. Suppose that a Markov operator P has a kernel p that is
(h, h′)-compatible with (M,d, µ) for some h > b. Further assume that P satisfies
the Sobolev inequality (5.2). There exists C0 > 0, r0 > 0 such that∫

B(x,r/2)

∫
B(x,r/2)

ψ(y)2|∇yz(up)|p1(y, z) dy dz

≤ C0

(
2p

2p− 1

)2 ∫
B(x,r/2)

∫
B(x,r/2)

u(y)2p|∇yzψ|p1(y, z) dy dz(6.75)

for all x ∈ M , for all r ≥ r0, for all p ∈ (0, 1] \ {1/2}, for all positive functions u
that are P -harmonic on B(x, r) and for all ψ ≥ 0 with supp(ψ) ⊆ B(x, r/2− h′).

Proof. Let η := u2p−1ψ, where ψ ≥ 0 satisfies supp(ψ) ⊆ B(x, r/2− h′) and
u > 0 is P -harmonic in B(x, r). By product rule (6.27)

∇yzη =
(
∇yz(u2p−1)

)
ψ(y)2 + u(z)2p−1

(
∇yzψ2

)
.

By integration by parts (6.31), we obtain∫
B

∫
B

p1(y, z)(∇yzu)
(
∇yz(u2p−1)

)
ψ(y)2 dy dz(6.76)

= −
∫
B

∫
B

p1(y, z) (∇yzu)u(z)2p−1
(
∇yz(ψ2)

)
dy dz

where B := B(x, r/2). There exists C1 > 0 such that

|2p− 1| (∇yz(up))2 ≤ p2(∇yzu)(∇yz(u2p−1))(6.77)

|∇yzu|u(z)p−1 ≤ C1p
−1|∇yz(up)|.(6.78)

for all p ∈ (0, 1], for all y, z ∈ M with d(y, z) ≤ h′ and for all positive u. The
estimate (6.77) is elementary and is a version of Stroock-Varopoulos inequality.
The proof of (6.77) is essentially contained in [63, Lemma 2.4]. The estimate
(6.78) follows from mean value theorem and the local Harnack inequality given by
Lemma 6.4. Combining (6.76), (6.77) and (6.78), we have

C−1
1

|2p− 1|
p

∫
B

∫
B

p1(y, z)ψ(y)2|∇yz(up)|2 dy dz

≤
∫
B

∫
B

p1(y, z)u(z)p|∇yzψ||ψ(y) + ψ(z)||∇yz(up)| dy dz

≤
(∫

B

∫
B

p1(y, z)u(y)2p|∇yzψ|2 dy dz
)1/2

×
(∫

B

∫
B

p1(y, z)2(ψ(y)2 + ψ(z)2)|∇yz(up)|2 dy dz
)1/2

.(6.79)
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We use Cauchy-Schwarz inequality and (a + b)2 ≤ 2(a2 + b2) in the last step. By
the µ× µ-almost everywhere symmetry of p1, we have

(6.80)

∫
B

∫
B

p1(y, z)ψ(z)2|∇yz(up)|2 dy dz =

∫
B

∫
B

p1(y, z)ψ(y)2|∇yz(up)|2 dy dz.

Combining (6.79) and (6.80) yields (6.75). �

We do another iteration procedure between the exponents q and 2 using Lemma
6.16.

Lemma 6.17. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfy-
ing (V D)loc and (V D)∞. Suppose that a Markov operator P has a kernel p that
is (h, h′)-compatible to (M,d, µ) for some h > b. Further assume that P Sobolev
inequality (5.2). For any fixed q > 0, there exists C1 > 0, c1 ∈ (0, 1/2) and r1 > 0
such that

(6.81) φ(u, 2, B(x, c1r)) ≤ C1φ(u, q,B(x, r/2))

for all x ∈ M , for all r ≥ r1 and for all functions u that are non-negative and
P -subharmonic on B(x, r).

Proof. If q ≥ 2, then (6.81) follows from Jensen’s inequality. Hence it suffices
to consider q ∈ (0, 2).

Define θ := δ/(δ − 2). We slightly decrease q if necessary so that qθk 6= 1/2
for all i ∈ N. Define k ∈ N∗ as the integer that satisfies qθk−1 < 2 ≤ qθk. Define
c1 := 4−k and iteratively define

si := 2si−1 + 2h′

for i = 1, . . . , k, where s0 := c1r. Fix r0 > 0 such that sk ≤ r/2− h′ for all r ≥ r0

where k and sk are defined as above.
Define qi := qθi/2, Bi = B(x, sk−i) for i = 0, 1, . . . , k. Define the functions

ψi(y) = max

(
0,min

(
1,

2sk−i−1 + h′ − d(x, y)

sk−i−1

))
for i = 0, 1, . . . , k − 1. Note that ψi ≡ 1 in B(x, sk−i−1 + h′) and ψ ≡ 0 in

B(x, sk−i − h′){.
By Sobolev inequality (5.2) there exists C2 > 0 such that(∫
Bi

(PBi(ψiu
qi)(y))

2θ
dy

)1/θ

≤
C2s

2
k−i

µ(Bi)2/δ

∫
Bi

∫
Bi

p1(y, z)|∇yz(ψiuqi)|2 dy dz

+
C2

µ(Bi)2/δ

∫
Bi

ψi(y)2u(y)2qi dy(6.82)

for all i = 0, 1, . . . , k − 1. By (4.10) and Lemma 6.4 there exists C3 > 0 such that

PBi(ψu
qi)(y) =

∫
B(y,h′)

uqi(z)p1(y, z) dz ≥ C−qi3 uqi(y)

for all y ∈ Bi+1. Therefore

(6.83)

(∫
Bi+1

u(y)2qi+1 dy

)1/θ

≤
(
Cqi3

∫
Bi

(
PBi+1(ψuqi)(y)

)2θ
dy

)1/θ
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for x ∈ Bi+1. There exists C4, C5, C6 > 0 such that∫
Bi

∫
Bi

p1(y, z)|∇yz(ψuqi)|2 dy dz

≤ 2

∫
Bi

∫
Bi

p1(y, z)ψ(y)2|∇yz(uqi)|2 dy dz + 2

∫
Bi

∫
Bi

p1(y, z)|∇yzψ|2u(z)2qi dy dz

≤ C4

[(
2qi

2qi − 1

)2

+ 1

]∫
Bi

∫
Bi

p1(y, z)|∇yzψi|2u(y)2qi dy dz

≤ C5

s2
k−i−1

[(
2qi

2qi − 1

)2

+ 1

]∫
Bi

u(z)2qi dz

≤ C6

s2
k−i−1

∫
Bi

u(z)2qi dz.

(6.84)

In the first step above, we used product rule (6.27) and the inequality (a + b)2 ≤
2(a2+b2). In the second step we use Lemma 6.16 and in the third step we use (4.10).
In the last step, we simply bound 2qi/|2qi − 1| by max0≤i≤k 2pi/|2pi − 1| <∞.

Combining (6.82), (6.83), (6.84) along with sk−i/sk−i−1 ≤ 4k yields(∫
Bi+1

u(y)2qi+1 dy

)1/θ

≤ C7

µ(Bi)2/δ

∫
Bi

u(y)2qi dy

for some C7 > 0. Combined with r ≥ r0 and (2.4), we deduce

(6.85) φ(u, 2qi+1, Bi+1) ≤ C8φ(u, 2qi, Bi)

for i = 0, 1, . . . , k − 1, for all x ∈ M , for all r ≥ r0 and for all P -harmonic u > 0.
The estimates (6.85) along with Jensen’s inequality implies (6.81) with C1 = Ck8
and c1 = 4−k. �

We are now ready to prove elliptic Harnack inequality.

Proof of Theorem 6.3. It suffices to consider the case u > 0 because we
can replace u ≥ 0 by u+ ε and let ε ↓ 0.

Note that we have Sobolev inequality (5.2) by Theorem 5.1. There exists r0 > 0
Ci > 0, ci ∈ (0, 1) for 1 ≤ i ≤ 5 such that for all x ∈ M and for all r ≥ r0 and for
all positive functions u that are P -harmonic on B := B(x, r)

φ(u,∞, c1B) ≤ C1φ(u, c2, B)

≤ C2φ(u, q, c3B)

≤ C3φ(u,−q, c4, B)

≤ C4φ(u,−∞, c5B).

The first line above follows from Lemma 6.15, the second line above follows from
Lemma 6.17 and the third line follows from Proposition 6.11. The last line follows
from applying Lemma 6.15 to the function u−q/2 which is subharmonic by Lemma
6.12(b). Choosing c = min(c1, c5) yields the elliptic Harnack inequality. �

The constant c ∈ (0, 1) in (6.1) is flexible. More precisely, we can slightly
improve the conclusion of Theorem 6.3 for b-geodesic spaces by an easy chaining.
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Corollary 6.18 (Elliptic Harnack inequality). Let (M,d, µ) be a b-geodesic
space satisfying (V D)loc, (V D)∞ and Poincaré inequality (P )h at scale h. Suppose
that a Markov operator P has a kernel p that is (h, h′)-compatible with (M,d, µ)
for some h > b. Then for all c ∈ (0, 1), there exists r0 > 0, CE > 0 such that for
all x ∈M , for all r ≥ r0 and for all non-negative functions u : B(x, r)→ R≥0 that
are P -harmonic in B(x, r) the following Harnack inequality holds:

(6.86) sup
x∈B(x,cr)

u ≤ CE inf
x∈B(x,cr)

u.

The above corollary is a consequence of Theorem 6.3 applied repeatedly to a
sequence of points in an approximate geodesic. We do not use the above corollary.
The proof of Corollary 6.18 is left to the reader.

6.6. Applications of elliptic Harnack inequality

We present two immediate and well-known applications of elliptic Harnack
inequality.

Proposition 6.19 (Liouville property). Assume that (M,d, µ) is a quasi-b-
geodesic metric measure space satisfying (V D)loc, (V D)∞ and Poincaré inequal-
ity (P )h at scale h. Suppose that a Markov operator P has a kernel p that is
(h, h′)-compatible with (M,d, µ) for some h > b. Then all non-negative P -harmonic
functions are constant (strong Liouville property). Therefore all bounded harmonic
functions are constant (weak Liouville property).

Proof. Let u be a non-negative harmonic function. Then v = u − inf u is
a non-negative harmonic function with inf v = 0. By elliptic Harnack inequality,
there exists c ∈ (0, 1) and C > 1 such that supB(x,cr) v ≤ C infB(x,cr) v for all large
enough r. Letting r → ∞, we have supM v ≤ 0 which implies v ≡ 0. This proves
strong Liouville property. The weak Liouville property follows from the observation
that for any bounded harmonic function h, the function h− inf h is a non-negative
harmonic function. �

The following Hölder regularity-type estimate is a direct consequence of ellip-
tic Harnack inequality. Our argument is an adaptation of Moser’s argument [61,
Section 5] which uses an oscillation inequality.

Proposition 6.20. There exists c ∈ (0, 1), α > 0 , C > 0 and r1 > 0 such that

(6.87) |u(y)− u(z)| ≤ C
(

max(d(y, z), 1)

r

)α
sup
B(x,r)

u

for all y, z ∈ B(x, cr), for all x ∈ M , for all r ≥ r1 and for all non-negative
functions u : M → R that is P -harmonic on B(x, r) with B(x, r) 6= M .

Proof. Let c, r0, CE be constants from from Theorem 6.3. We optionally
decrease the c so that c ≤ 1/4. Let B = B(x, r) be an arbitrary ball with r ≥ r0,
B(x, r) 6= M and y, z ∈ B(x, cr). Define a sequence of balls by

si := c−1+ir1, Bi := B(y, si)

for i ∈ N∗, where s1 := max(r0, d(y, z) + h′). Note that B(y, h′) ∪ B(z, h′) ⊆ B1.
Choose r1 := 2 max(h′, r0) so that B1 ⊆ B(x, r) for all r ≥ r1 and for all y, z ∈
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B(x, cr). Let r ≥ r1 and let k := max {i ∈ N∗ : B1 ⊂ B}. Since B(x, r) 6= M
there exists C1 > 0 such that

(6.88) k ≤ C1 log(r/s1) + 1.

Denote by Mi := supBi u and mi := infBi u for i = 1, . . . , k, where u is an arbitrary
non-negative function u : M → R that is P -harmonic on B(x, r). By elliptic
Harnack inequality of Theorem 6.3, we have

Mi −mi−1 = sup
Bi−1

(Mi − u) ≤ CE inf
Bi−1

(Mi − u) = CE(Mi −Mi−1),(6.89)

Mi−1 −mi = sup
Bi−1

(u−mi) ≤ CE inf
Bi−1

(u−mi) = CE(mi−1 −mi)(6.90)

for i = 2, 3, . . . , k. By adding (6.89) and (6.90), we obtain

(6.91) Mi−1 −mi−1 ≤
CE − 1

CE + 1
(Mi −mi)

for i = 2, 3, . . . , k. Combining (6.91) along with (6.88), we obtain

(6.92) M1 −m1 ≤
(
CE − 1

CE + 1

)k−1

(Mk −mk) ≤
(
CE − 1

CE + 1

)C1 log(r/s1)

sup
B(x,r)

u.

Since u is P -harmonic in B(x, r), we have

|u(y)− u(z)| = |P (y)− P (z)| ≤ sup
B(y,h′)∪B(z,h′)

u− inf
B(y,h′)∪B(z,h′)

u ≤M1 −m1.

The above inequality along with (6.92) implies (6.87). �

Note that above result does not give Hölder continuity for harmonic functions
which is in contrast to [61, Section 5]. However we will see that Proposition 6.20
is useful. In particular, we use Proposition 6.20 to prove Gaussian lower bounds in
Chapter 8.



CHAPTER 7

Gaussian upper bounds

The goal of this chapter is to prove the following Gaussian upper bounds using
Sobolev inequality. The results of this chapter rely only on (V D)loc, (V D)∞ and
the Sobolev inequality (5.2). We do not assume the Poincaré inequality (P )h to
show Gaussian upper bounds. More precisely, we show

Proposition 7.1. Let (M,d, µ) be a quasi-b-geodesic metric measure space
satisfying (V D)loc and (V D)∞. Suppose that a Markov operator P has a kernel
p that is (h, h′)-compatible with (M,d, µ) for some h > b. Further assume that P
satisfies the Sobolev inequality (5.2). There exists C > 0 such that

(7.1) pn(x, y) ≤ C

V (x,
√
n)

exp

(
−d(x, y)2

Cn

)
for all x ∈M and for all n ∈ N≥2.

The first step is to obtain the following on-diagonal upper bound.

Proposition 7.2. Let (M,d, µ) be a quasi-b-geodesic metric measure space
satisfying (V D)loc and (V D)∞. Suppose that a Markov operator P has a kernel
p that is (h, h′)-compatible with (M,d, µ) for some h > b. Further assume that P
satisfies the Sobolev inequality (5.2). There exists C0 > 0 such that

(7.2) pn(x, x) ≤ C

V (x,
√
n)

for all x ∈M and for all n ∈ N≥2.

A crucial ingredient in the proof of Proposition 7.2 is a L1 to L∞ mean value
inequality for the solutions of a heat equation. We again rely on Moser’s iterative
method and the calculations are similar but more involved than those encountered
in Section 6.5 for harmonic functions. The lazy walk defined in Example 4.5 will
play an important role in this chapter. Recall that for a Markov operator P , the
corresponding ‘lazy’ versions of Markov operator and Laplacian are given by

(7.3) PL = (I + P )/2 and ∆L = ∆/2 = (I − P )/2.

For a, b ∈ N, we denote the integer intervals by

Ja, bK := {i ∈ N : a ≤ i ≤ b} .
The following definition is analogous to Definition 6.1. Caloric functions are solu-
tions to heat equation.

Definition 7.3. Let P be a Markov operator on (M,d, µ) and let a, b ∈ N. A
function u : N×M → R is P -caloric (respectively PL-caloric) in Ja, bK×B(x, r) if

∂ku(y) + ∆uk(y) = 0 (respectively ∂ku(y) + ∆Luk(y) = 0)

83
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for all k ∈ Ja, bK and for all y ∈ B(x, r).
Similarly, we say a function u : N×R→ R is P -subcaloric (resp. P -supercaloric)

in Ja, bK×B(x, r) if

∂ku(y) + ∆uk(y) ≤ 0 (respectively ≥ 0)

for all k ∈ Ja, bK and for all y ∈ B(x, r). Analogously, we define PL-subcaloric and
PL-supercaloric functions simply by replacing ∆ with ∆L in the equation above.

Remark 7.4.

(a) We can restate the above definitions using ∂ku + ∆uk = uk+1 − Puk and
∂ku+ ∆Luk = uk+1 − PLuk.

(b) Consider a Markov operator P that is (h, h′)-compatible with (M,d, µ). Similar
to Remark 6.2(a), the property that u : N×M → R is P -caloric (or PL-caloric)
in Ja, bK × B(x, r) depends only on the value of u in Ja, b + 1K × B(x, r + h′).
Therefore it suffices if the function u has a domain that satisfies Ja, b + 1K ×
B(x, r + h′) ⊆ Domain(u).

Although our eventual goal is to prove parabolic Harnack inequality for P -
caloric functions, the Moser’s iteration procedure is applied to PL-caloric functions.
The laziness is introduced to handle certain technical difficulties that arise due to
discreteness of time. Another method to avoid these technical difficulties that arise
due to discreteness of time is to carry out Moser’s iteration method for solutions of
the continuous time heat equation ∂u

∂t +∆u = 0 (See [27, Section 2] for this method
on graphs).

In continuous time case the product rule of differentiation implies ∂(u2)
∂t = 2u∂u∂u ;

however for discrete time the analogous formula is ∂k(u2) = 2uk∂uk + (∂ku)
2
. The

‘error term’ (∂ku)
2

due to discreteness of time is a source of difficulty in the proofs
of Caccioppoli inequality and an integral maximum principle for P -caloric and P -
subcaloric functions. However as we shall see, this ‘error term’ can be handled
using a Cauchy-Schwarz inequality for PL-caloric and PL-subcaloric functions (See
Remark 7.9). As a result, we will primarily be concerned with PL-caloric and PL-
subcaloric functions for now. The assumption (d) in Definition 4.8 will allow to
compare the random walks driven by P and PL.

As mentioned in the beginning of Chapter 5, we rely on a version of Sobolev
inequality that is weaker than the ones assumed in previous works. This causes
new difficulties for Moser’s iteration method which relies on a Sobolev inequality.
The difficulty is even more significant in the parabolic case compared to that of the
elliptic case in Chapter 6. This is because the difference between the strong (5.1)
and weak (5.2) formulations of Sobolev inequalities is not significant for harmonic
functions. To see why this might be true, note that if a function u is P -harmonic
in B = B(x, r) then PBu = u in B(x, r − h) and therefore the weaker formulation
(5.2) yields an estimate that is close to that of (5.1). However the same cannot be
said about P -caloric functions.

The following lemma and its proof is analogous to that of Lemma 6.12.

Lemma 7.5. Let P be a Markov operator. Assume that the function u : N ×
M → R≥0 is P -subcaloric in Ja, bK× B(x, r) for some x ∈ M , r > 0 and a, b ∈ N.
Then up is a P -subcaloric in Ja, bK×B(x, r) for all p ≥ 1.
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Proof. Note that

upk+1(y) = (∂ku+ uk)p(y) ≤ (−∆uk + uk)p = (Puk(y))
p ≤ P (upk)(y)

for all (k, y) ∈ Ja, bK × B(x, r). The first inequality above follows from the fact
that u ≥ 0 is P -subcaloric in Ja, bK× B(x, r) and the second follows from Jensen’s
inequality. �

For a function f : N×M → R and a Markov operator P on M , we denote the
function Pf : N×M → R

Pf(k, x) := (Pf(k, ·))(x) = (Pfk)(x)

for all k ∈ N and for all x ∈ M . We require the following property of subcaloric
functions.

Lemma 7.6. Let (M,d, µ) be a metric measure space and let P be a Markov
operator that is (h, h′)-compatible to (M,d, µ). If u : N×M → R is PL-subcaloric
in Ja, bK×B(x, r), then Pu is PL-subcaloric in Ja, bK×B(x, r − h′)) for all x ∈M
and for all r > h′.

Proof. If (k, y) ∈ Ja, bK×B(x, r− h′) and u : N×M → R is PL-subcaloric in
Ja, bK×B(x, r) , then

[(Pu)k+1 − PL(Pu)k](y) = P (uk+1 − PLuk) (y) ≤ 0.

In the above equality, we used that P and PL commute. The inequality follows
from (4.10) and the fact that any Markov operator is positivity preserving. �

7.1. Mean value inequality for subcaloric functions

We will prove the following mean value inequality in a weak form. The in-
equality bounds from above a weak version of L∞ norm on a space-time cylinder
by a weak version of L1 norm. Our version of the mean value inequality in Lemma
7.7 is weaker than the one known for graphs [19, Theorem 4.1] mainly because we
rely on a weaker Sobolev-type inequality (5.2). Although the mean value inequality
is weaker, we will obtain on-diagonal upper bounds using Lemma 7.7. Using an
integral maximum principle argument, we will obtain Gaussian upper bounds in
Chapter 7.

Lemma 7.7. Under the assumptions of Proposition 7.2, there exists constants
C1 > 0, n1 > 0 such that

(7.4) inf
k∈J0,nK

sup
y∈B(x,

√
n/2)

P 2dlog
√
ne+2uk(y) ≤ C1

V (x,
√
n)

sup
k∈J0,nK

∫
B(x,

√
n+h′)

uk dµ

for all n ∈ N∗ satisfying n > n1, for all x ∈ M , for all non-negative functions
u : N×M → R that is PL-subcaloric in J0, nK×B(x,

√
n).

The proof of Lemma 7.7 relies on Moser’s iteration procedure. Couhlon and
Grigor’yan [19, Section 4] obtained a similar (stronger) mean value inequality in the
graph setting using an iteration procedure. However they relied on a Faber-Krahn
inequality that is equivalent to the Sobolev inequality (5.1) and therefore does not
hold for discrete time Markov chains on continuous spaces.

In this section, we carry out Moser’s iteration procedure for subcaloric functions
relying on the weaker1 Sobolev inequality (5.2). To prove the elementary iterative

1‘weaker’ compared to Sobolev inequalities in [69, 70, 76, 25, 27, 45].
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step of iteration, we need the following discrete Caccioppoli inequality. The proof
is an adaptation [19, Proposition 4.5]. The next two Lemmas together may be
regarded as the parabolic version of Lemma 6.13.

Lemma 7.8 (Caccioppoli inequality). Under the assumptions on Proposition
7.2, we have

(7.5)

∫
M

∂k(u2)ψ2 dµ+
1

8
E(ukψ, ukψ) ≤ 17

8

∫
M

∫
M

|∇yzψ|2u2
k(y)p1(y, z) dy dz

for all x ∈M , for all r > 0, for all non-negative functions ψ : M → R≥0 satisfying
supp(ψ) ⊆ B(x, r), for all a, b ∈ N, for all k ∈ Ja, bK and for all non-negative
functions u : N×M → R≥0 such that u is PL-subcaloric in Ja, bK×B(x, r).

Proof. Fix x ∈M , r > h′ and define B := B(x, r+h′). Let u : N×M → R≥0

be such that u is PL-subcaloric in Ja, bK × B(x, r). We start with the elementary
inequality

(7.6) ∂k(u2)(y) ≤ −uk(y)∆uk(y) +
1

4
(∆uk(y))

2

for all (k, y) ∈ Ja, bK×B(x, r), as we now show. Since u is PL-subcaloric in Ja, bK×
B(x, r), we have uk+1(y) ≤ PLuk(y) for all (k, y) ∈ Ja, bK × B(x, r). Combined

with the fact that u is non-negative, we have u2
k+1(y) ≤ (PLuk(y))

2
for all (k, y) ∈

Ja, bK×B(x, r) which can be rearranged into (7.6).
Let (k, y) ∈ Ja, bK×B(x, r). Recall that B = B(x, r+h′). Using (7.6), integra-

tion by parts (6.31) and supp(ψ) ⊆ B(x, r), we have∫
B

ψ2∂k(u2) dµ ≤ −1

2

∫
B

∫
B

(∇yzuk)
(
∇yz(ukψ2)

)
p1(y, z) dy dz

+
1

4

∫
B

(∆uk(y))2ψ2(y) dy.(7.7)

The second term in (7.7) can be handled using Cauchy-Schwarz inequality as

(∆uk(y))2 =

(
−
∫
M

(∇yzuk)p1(y, z) dz

)2

≤
(∫

M

p1(y, z) dz

)(∫
M

(∇yzuk)2p1(y, z) dz

)
=

∫
M

(∇yzuk)2p1(y, z) dz.(7.8)

For the first term in (7.7), we use product rule (6.27)

(7.9) ∇yz(ukψ2) = uk(z)∇yzψ2 + ψ2(y)∇yzuk.

Combining (7.7), (7.8) and (7.9), we have∫
B

ψ2(y)∂k(u2)(y) dy +
1

4

∫
B

∫
B

(∇yzuk)
2
ψ2(y)p1(y, z) dy dz

≤ −1

2

∫
B

∫
B

uk(z)
(
∇yzψ2

)
(∇yzuk) p1(y, z) dy dz.(7.10)
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The right side of (7.10) can be bounded using t1t2 ≤ t21/8 + 2t22 as∣∣−uk(z)
(
∇yzψ2

)
(∇yzuk)

∣∣ ≤ uk(z)ψ(y)|(∇yzψ) (∇yzuk)|
+ uk(z)ψ(z)|(∇yzψ) (∇yzuk)|

≤ 1

8
(ψ2(y) + ψ2(z)) (∇yzuk)

2

+ 4u2
k(z)|∇yzψ|2.(7.11)

Using p1(y, z) = p1(z, y) for µ× µ-almost every (y, z), we obtain

(7.12)

∫
B

∫
B

ψ2(y) (∇yzuk)
2
p1(y, z) dy dz =

∫
B

∫
B

ψ2(z) (∇yzuk)
2
p1(y, z) dy dz.

Combining (7.10),(7.11) and (7.12), we deduce∫
B

ψ2(y)∂k(u2)(y) dy +
1

8

∫
B

∫
B

(∇yzuk)
2
ψ2(y)p1(y, z) dy dz

≤ 2

∫
B

∫
B

u2
k(z) (∇yzψ)

2
p1(y, z) dy dz.(7.13)

Since supp(ψ) ⊆ B(x0, r − h′), using integration by parts (6.31) we have

(7.14) E(ψuk, ψuk) =
1

2

∫
B

∫
B

|∇yz(ukψ)|2p1(y, z) dy dz.

Using product rule (6.27) and the inequality (t1 + t2)2 ≤ 2(t21 + t22), we obtain

|∇yz(ukψ)|2 = |ψ(y)(∇yzuk) + uk(z)(∇yzψ)|2

≤ 2
(
ψ2(y)(∇yzuk)2 + u2

k(z)(∇yzψ)2
)
.(7.15)

Combining (7.13), (7.14), (7.15) and µ×µ-almost everywhere symmetry of p1 yields
(7.5). �

Remark 7.9. Recall the product rule of differentiation ∂k(u2) = 2uk∂uk +

(∂ku)
2

gives rise to the ‘error term’ (∂ku)
2

which occurs due to discreteness of time.
This error term occurs in (7.7) and is controlled using Cauchy-Schwarz inequality
in (7.8). However the estimate given by (7.8) is sufficient to prove Caccioppoli
inequality only in the presence of some laziness. A similar difficulty arises in the
proof of discrete integral maximum principle and is the reason behind considering
the operator PL as opposed to P in this section.

Next, we prove the elementary iterative step of Moser’s iteration in parabolic
setting. The proof relies on Caccioppoli inequality (7.5) and Sobolev inequality
(5.2). Let µc denote the counting measure on N and let (M,d, µ) be a metric
measure space. We denote the product measure on N×M by µ̃ := µc × µ. Similar
to (6.2), we define

(7.16) φ̃(u, p,Q) :=

(
1

µ̃(Q)

∫
Q

up dµ̃

)1/p

for all p > 0, for all Q ⊂ N×M and for all functions u : N×M → R≥0.



88 7. GAUSSIAN UPPER BOUNDS

Lemma 7.10. Under the assumptions of Proposition 7.2, for all K1 ≥ 1, there
exists C1 > 0, r1 > 0 (depending on K1) such that

φ̃(Pu, 2 + (4/δ), Jd(1− σ2)a0 + σ2a1e, a1K×B(x, (1− σ)r − h′))

≤ C1σ
−1φ̃(u, 2, Ja0, a1K×B(x, r + h′))(7.17)

for all σ ∈ (0, 1/2), for all x ∈ M , for all r ≥ r1, for all a0, a1 ∈ N satisfying
K−1

1 r2 ≤ a2−a1 ≤ K1r
2 and for all non-negative functions u : N×M → R≥0 such

that u is PL-subcaloric in Ja0, a1K×B(x, r).

Proof. Let x ∈ M , σ ∈ (0, 1/2) and let r > r1 ≥ 4h′, where r1 will be
determined later. Let u be a non-negative function that is PL-subcaloric in Ja0, a1K×
B(x, r).

We start by defining appropriate cut-off functions in space and time. Define
B := B(x, r + h′) and ψ : M → R≥0 as

ψσ(y) := max

(
0,min

(
1,
r − d(x, y)

σr

))
.

Note that supp(ψσ) ⊆ B(x, r) and ψ ≡ 1 on B(x, (1 − σ)r). Define aσ := d(1 −
σ2)a0 + σ2a1e and χ : N→ R as

χσ(k) =


1 if k ≥ aσ
0 if k ≤ a0

k−a0
aσ−a0 otherwise.

Since u is non-negative and PL-subcaloric in Ja0, a1K × B(x, r), by Caccioppoli
inequality (Lemma 7.8) and product rule (6.29), we obtain∫

B

(
∂k(χσu)2

)
ψ2
σ dµ+

χ2
σ(k + 1)

8
EB(ψσuk, ψσuk)

≤ 17

8
χ2
σ(k + 1)

∫
B

∫
B

|∇yzψσ|2u2
k(y)p1(y, z) dy dz + ∂kχ

2
σ

∫
B

u2
kψ

2
σ dµ(7.18)

for all k ∈ [a, b). Since p1 is (h, h′)-compatible with (M,d, µ), we have

(7.19) |∇yzψ|2p1(y, z) ≤ (h′)2

(σr)2
p1(y, z).

We use product rule (6.29), triangle inequality, χσ ≤ 1 and aσ−a0 ≥ σ2(a1−a0) ≥
σ2K−1

1 r2 to deduce

(7.20)
∣∣∂kχ2

σ

∣∣ ≤ (χσ(k + 1) + χσ(k))|∂kχσ| ≤ 2|∂kχσ| ≤
2

(aσ − a0)
≤ 2K1

σ2r2

Combining (7.18), (7.19) and (7.20), there exists C2 > 0 such that

(7.21)

∫
B

ψ2
σ

(
∂k(χσu)2

)
dµ+

χ2
σ(k + 1)

8
EB(ψσuk, ψσuk) ≤ C2

σ2r2

∫
B

u2
k dµ

for all k ∈ Ja0, a1K. In (7.21), C2 depends only on K1 and h′.
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Adding (7.21), from k = a0 to k ∈ Ja0, a1K, yields

sup
k∈[aσ,a1]

∫
B

ψ2
σu

2
k dµ ≤

C2

σ2r2

a1∑
k=a0

∫
B

u2
k dµ(7.22)

a1∑
k=aσ

E(ψσuk, ψσuk) ≤ 8C2

σ2r2

a1∑
k=a0

∫
B

u2
k dµ.(7.23)

Define wk := PB(ψσuk). Since ψ ≡ 1 on B(x, (1−σ)r), by (4.10) wk = PB(ψσuk) =
Puk on B(x, (1− σ)r − h′). Combined with Hölder inequality, we have
(7.24)∫

B(x,(1−σ)r−h′)
(Puk)

2(1+2/δ)
dµ ≤

(∫
B

w2
k dµ

)2/δ (∫
B

w
2δ/(δ−2)
k dµ

)(δ−2)/δ

.

Since PB is a contraction in L2(B), we have

(7.25)

∫
B

w2
k dµ ≤

∫
B

ψ2
σu

2
k dµ.

By Sobolev inequality (5.2), Lemma 4.22(a) and (4.10), we obtain
(7.26)(∫

B

w
2δ/(δ−2)
k dµ

)(δ−2)/δ

≤ CSr
2

V (x0, r)2/δ

(
E(ψσuk, ψσuk) + r−2

∫
B

ψ2
σu

2
k dµ

)
By (7.22), (7.23),(7.24),(7.25), (7.26) and a1− a0 ≤ K1r

2, there exists C3 > 0 such
that
(7.27)
a1∑

k=aσ

∫
B(x,(1−σ)r−h′)

(Puk)
2(1+2/δ)

dµ ≤ C4r
2

V (x, r)2/δ

(
(rσ)−2

a1∑
k=a0

∫
B

u2
k dµ

)1+2/δ

.

We choose r1 ≥ 4h′ so that aσ ≤ a1/2 ≤ (a0 + a1)/2 for all a0, a1 ∈ N so that

a1− a0 ≥ K−1
1 r2

1. Since r ≥ 4h′ and σ < 1/2, we have (1− σ)r− h′ ≥ (r/2)− h′ ≥
r/4. Hence by (2.4), K−1

1 r2 ≤ a1−a0 ≤ K1r
2 along with (7.27), we have (7.17). �

Proof of Lemma 7.7. We carry out Moser’s iteration in two stages. In the
first stage of the iteration, we obtain a L1 to L2 mean value inequality and in the
second stage we show a L2 to L∞ mean value inequality. Combining the two stages
yields the desired L1 to L∞ mean value inequality. The proof relies on repeated
application of the elementary iterative step given by Lemma 7.10.

Let r1(0) :=
√
n + h′, a1(0) := 0, N := dlog

√
ne and θ := 1 + (2/δ). For the

first stage of iteration, we iteratively define the quantities

r1(i+ 1) := (r1(i)− h′)
(

1− 4−1

3N+1−i

)
− h′

a1(i+ 1) :=

⌈(
1− 4−2

9Nr+1−i

)
a1(i) +

4−2

9Nr+1−in

⌉
for i = 0, 1, . . . , N . We define a non-increasing sequence of space-time cylinders

Qi(i) = Ja1(i), nK×B(x, ri), for i = 0, 1, . . . , N + 1.
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The following estimates are straightforward from definitions of r1 and a1: There
exists n0 > 0 such that for all n ≥ n0, we have

r1(N + 1) ≥
√
n

1− 4−1
N+1∑
j=1

3−j

− 2(log
√
n+ 3 + h′)

≥ (7/8)
√
n− 2(log

√
n+ 3 + h′) ≥ (6/7)

√
n,(7.28)

n− a1(N + 1) ≥ n

1− 4−2
N+1∑
j=1

9−j

− 2(N + 1)

≥ (31/32)n− 2(log
√
n+ 2) ≥ (15/16)n.(7.29)

Let u : N × M → R≥0 be an arbitrary non-negative function that is PL-
subcaloric in J0, nK×B(x,

√
n) where n ≥ n1. By Lemma 7.6 P iu is PL-subcaloric

in J0, nK×B(x,
√
n− ih′) and therefore PL-subcaloric in Ja1(i), nK×B(x, r1(i)−h′)

for all i = 0, 1, . . . , N + 1. Hence by applying Lemma 7.10 for the function P iu
which is PL-subcaloric on Ja1(i), nK × B(x, r1(i) − h′) with σ = 4−13−(N+1−i), we
have C2 > 0 such that

(7.30) φ̃(P i+1u, 2θ,Qi+1) ≤ C23N+1−iφ̃(P iu, 2, Qi)

for all i = 0, 1, . . . , N . We may choose K1 = 8 in the application of Lemma 7.10
above due to (7.28) and (7.29).

By Hölder inequality along with (7.28), (7.29) and (2.4), there exists C3 > 0
such that

(7.31) φ̃(P i+1u, 2, Q1(i+ 1)) ≤ C3φ̃(P i+1u, 1, Q1(i+ 1))αφ̃(P i+1u, 2θ,Q1(i+ 1))β

for all i = 1, 2, . . . , N , where α = 1− β = 2/(δ + 4). By (4.10), u ≥ 0, (7.28),(7.29)
and (2.4), there exists C4 > 0 such that

(7.32) φ̃(P iu, 1, Q1(i)) ≤ C4φ̃(u, 1, Q1(0))

for all i = 0, 1, . . . , N + 1. Combining (7.30), (7.31), (7.32), there exists C5 > 0
such that

(7.33) φ̃(P i+1u, 2, Q1(i+ 1)) ≤ C53β(N+1−i)φ̃(u, 1, Q1(0))αφ̃(P iu, 2, Q1(i))β

for i = 1, . . . , N . By iterating (7.33), we obtain
(7.34)

φ̃(PN+1u, 2, Q1(N+1)) ≤ C
∑∞
i=0 β

i

5 3
∑∞
i=1 iβ

i

φ̃(u, 1, Q1(0))(1−βN )φ̃(Pu, 2, Q1(1))β
N

.

Since u ≥ 0, by Hölder inequality, (4.10) and (2.4), there exists C6, C7 > 0 such
that ∫

B(x,r1(1))

(Pui)
2 dµ ≤

(
sup

B(x,r1(1))

Pui

)∫
B(x,r1(1))

Pui dµ

≤

(∫
B(x,

√
n+h′)

ui dµ

)2

sup
y∈B(x,

√
n)

C6

V (y, h′)

≤ C7n
δ/2

V (x,
√
n)

(
sup

i∈J0,nK

∫
B(x,

√
n+h′)

ui dµ

)2

(7.35)
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for all i ∈ J0, nK. Combining (7.34), (7.35) along with (2.4) yields

(7.36) φ̃(PN+1u, 2, Q1(N + 1)) ≤ C8

V (x,
√
n)

sup
k∈J0,nK

∫
B(x,

√
n+h′)

uk dµ

for some C8 > 0. The inequality (7.36) is a L1 to L2 mean value inequality and
this concludes the first part of iteration.

For the second part, we define v = PN+1u, a2(0) = a1(N + 1) and r2(0) =
r1(N + 1). As before, we iteratively define

r2(i+ 1) := (r2(i)− h′)
(

1− 4−1

3i+1

)
− h′,

a2(i+ 1) :=

⌈(
1− 4−2

9i+1

)
a2(i) +

4−2

9i+1
n

⌉
for i = 1, 2, . . . , N + 1. As before, define a non-increasing sequence of space-time
cylinders by Q2(i) := Ja2(i), nK×B(x, r2(i)) for i = 0, 1, . . . , n. Note that Q2(0) =
Q1(N + 1).

Similar to (7.28) and (7.29), there exists n1 ≥ n0 such that for all n ≥ n1,

r2(i) ≥ r2(N + 1) ≥
√
n/2(7.37)

n− a2(i) ≥ n− a2(N + 1) ≥ n/2(7.38)

for all i = 0, 1, . . . , N + 1. By Jensen’s inequality, we have

(7.39) (P i+1v)θ
i+1

≤
(
P
[
(P iv)θ

i
])θ

for all i ∈ N. By Lemma 7.6 and Lemma 7.5, the function (P iv)θ
i

is PL-subcaloric
in Ja2(i), nK×B(x, r2(i)− h) for all i = 0, 1, . . . , N + 1. Therefore by Lemma 7.10

for the function (P iv)θ
i

and (7.39), there exists C9 > 0 such that

(7.40) φ̃(P i+1v, 2θi+1, Q2(i+ 1)) ≤ Cθ
−i

9 3(i+1)θ−i φ̃(P iv, 2θi, Q2(i))

for i = 0, 1, . . . , N − 1. Iterating the inequalities (7.40), there exists C10 > 0 such
that

(7.41) φ̃(PNv, 2θN , Q2(N)) ≤ C10φ̃(v, 2, Q2(0)) = C10φ̃(v, 2, Q1(N + 1)).

There exists C11, C12, C13 > 0 such that, for all k ∈ N

sup
y∈B(x,r2(N+1))

PN+1vk(y) ≤ C11−
∫
B(y,h′)

PNvk dµ

≤ C11

(
−
∫
B(y,h′)

(PNvk)2θN dµ

)1/(2θN )

≤ C12n
δ/(4θN )

(
−
∫
B(x,r2(N))

(PNvk)2θN dµ

)1/(2θN )

≤ C13

(
−
∫
B(x,r2(N))

(PNvk)2θN dµ

)1/(2θN )

(7.42)

The first line above follows from (4.10), the second line follows from Jensen’s in-
equality, the third line follows from (2.4) and the last line follows from the fact that
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n 7→ nδ/(4θ
logn) is bounded in [2,∞). By (7.41), (7.42) and v = PN+1u, we have a

L2 to L∞ mean value inequality

(7.43) inf
k∈J0,nK

sup
B(x,r2(N+1))

P 2N+2u ≤ C10C13φ̃(PN+1u, 2, Q1(N + 1)).

Combining (7.36) and (7.43), we have the desired inequality (7.4). �

7.2. On-diagonal upper bound

The following lemma provides a useful example of PL-caloric function.

Lemma 7.11. Let (M,d, µ) be a metric measure space. Let P be Markov oper-
ator equipped with kernel (pk)k∈N that is (h, h′)-compatible with (M,d, µ). Define
for all k ∈ N, the function hk : M ×M → R by

(7.44) hk(x, y) :=
(
P kLp2(x, ·)

)
(y) = 2−n

n∑
i=0

(
n

i

)
pi+2(x, y)

where PL = (I + P )/2 as before. Then for all x ∈M , the function

(k, y) 7→ hk(x, y)

is PL-caloric in N×M .

Proof. The second equality in (7.44) is a consequence of binomial theorem
and Lemma 4.2(c). Note that

PL(hk(x, ·))(y) = PL(P kLp2(x, ·))(y) = P k+1
L (p2(x, ·)) (y) = hk+1(x, y).

Therefore (k, y) 7→ hk(x, y) is PL-caloric in N×M for all x ∈M . �

We are ready to prove Proposition 7.2 using the mean value inequality (7.4).

Proof of Proposition 7.2. Let hk(x, y) be defined as (7.44). Choose n1 ∈
N such that

(7.45) 2dlog
√
ne+ 4 ≤ n

for all n ≥ n1. By Lemma 7.7, Lemma 7.11 and
∫
M
hk(x, y) dy = 1, there exists

n2 ≥ n1 and C1 > 0 such that the PL-caloric function (k, y) 7→ hk(x, y) satisfies
the mean value inequality
(7.46)

inf
k∈J0,nK

P 2dlog
√
ne+2hk(x, x) ≤ inf

k∈J0,nK
sup

y∈B(x,
√
n/2)

P 2dlog
√
ne+2hk(x, y) ≤ C1

V (x,
√
n)

for all x ∈M and for all n ∈ N satisfying n ≥ n2.
By (4.11), we have p2(x, ·)−αp1(x, ·) ≥ 0 µ-almost everywhere for each x ∈M .

By (4.12) of Lemma 4.10 and Lemma 4.7, we have

(7.47) pk(x, x) ≤ α−1p2dk/2e(x, x) ≤ α−1p2dk/2e(x, x) ≥ α−1p2n(x, x)

for all x ∈M and for all 2 ≤ k ≤ 2n. By (7.47) and (7.45),

(7.48) P 2dlog
√
ne+2hk(x, x) ≥ α−1p2n(x, x)

for all x ∈M , for all k ∈ J0, nK and for all n ≥ n2. Combining (7.48), (4.12), (7.44)
and (7.46), there exists C2 > 0 such that

(7.49) pn(x, x) ≤ C2

V (x,
√
n)
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for all n ≥ 2n2. Since P is a contraction in L∞ by (4.10), Lemma 4.2(c) and (2.4),
there exists C3, C4 > 0 and δ > 2 such that

(7.50) pn(x, x) ≤ C3

V (x, h′)
≤ C4n

δ/2

V (x,
√
n)

for all x ∈M and for all n ∈ N with n ≥ 2. Combining (7.49) and (7.50) gives the
diagonal bound (7.2). �

7.3. Discrete integral maximum principle

We use Discrete integral maximum principle and diagonal upper bound to
obtain Gaussian upper bounds. This approach is detailed in [20] for graphs. A
crucial assumption in [20] is the laziness assumption for the corresponding Markov
chain (Xn)n∈N given by infx∈M Px(X1 = x) > 0. As explained in [20, Section
3] this laziness assumption is not too restrictive for graphs because under natural
conditions the iterated operator P 2 corresponds to a lazy Markov chain. However
this fails to be true for continuous spaces.

Since the laziness assumption is unavoidable for discrete integral maximum
principle, we consider the Markov operator PL = (I + P )/2 instead of P . Using
discrete integral maximum principle corresponding to PL and diagonal estimate on
pk, we obtain off-diagonal estimates on hk defined in (7.44). We rely on careful
comparison between off-diagonal estimates of hk and the Markov kernel pk. The
comparison arguments are new but elementary and involves Stirling’s approxima-
tion. Our comparison arguments rely crucially on the compatibility assumption
(4.11). Similar comparison arguments for off-diagonal estimates was carried out
in [27, Section 3.2] to compare Markov chains on graphs with its corresponding
continuous time version.

The main technical tool to prove Gaussian upper bounds is the following dis-
crete integral maximum principle. The statement below and its proof is adapted
from [20, Proposition 2.1].

Proposition 7.12 (Discrete integral maximum principle). Suppose that P is
a Markov operator that is (h, h′)-compatible with a metric measure space (M,d, µ).
Let f be a strictly positive continuous function on J0, nK×M such that,

(7.51) ∂kf(x) +
|∇P fk+1|2

4fk+1
(x) ≤ 0.

for all x ∈M and k ∈ J0, n− 1K where |∇P f| is as defined in (6.32). Let u : N×M
bounded function that is PL-caloric on J0, n−1K×M satisfying supp(u0) ⊂ B(w,R)
for some w ∈M,R ∈ (0,∞). Then the function

k 7→ Jk = Jk(u) :=

∫
M

u2
kfk dµ

is non-increasing in J0, nK.

Proof. Since supp(u0) ⊆ B(w,R), by (4.10) supp(uk) ⊆ B(w,R + kh′).
Therefore by continuity of fk and boundedness of u all the integrals Jk are finite.
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By product rule (6.29), (6.30) and ∂ku = −∆uk/2, we have for all k ∈ J0, n− 1K

∂kJ(u) =

∫
M

∂k(u2f) dµ

= 2

∫
M

uk∂kufk+1 dµ+

∫
M

(∂ku)
2
fk+1 dµ+

∫
M

u2
k∂kf dµ

= −
∫
M

ukfk+1∆uk dµ+

∫
M

(∂ku)
2
fk+1 dµ+

∫
M

u2
k∂kf dµ.(7.52)

Using integration by parts (6.31) and product rule (6.27), the first term in (7.52) is

−
∫
M

ukfk+1∆uk dµ

= −1

2

∫
M

∫
M

(∇xyuk)∇xy(ukfk+1)p1(x, y) dy dx

= −1

2

∫
M

∫
M

[
(∇xyuk)2fk+1(x) + (∇xyuk)uk(y)(∇xyfk+1)

]
p1(x, y) dy dx

= −1

2

∫
M

∫
M

[
(∇xyuk)2fk+1(x) + (∇xyuk)uk(x)(∇xyfk+1)

]
p1(x, y) dy dx(7.53)

In order to get the last equation we switch x and y and use the fact that p1(x, y) =
p1(y, x) for µ× µ-almost every (x, y). To handle the second term in (7.52), we use
∂ku = −∆uk/2 (7.8) to obtain

(7.54)

∫
M

(∂ku)2fk+1 dµ ≤
1

4

∫
M

∫
M

(∇xyuk)2fk+1(x)p1(x, y) dy dx

for all k ∈ J0, n− 1K. Substituting (7.53) and (7.54) in (7.52), we deduce

∂kJ(u) ≤ −1

4

∫
M

∫
M

(∇xyuk)2fk+1(x)p1(x, y) dy dx+

∫
M

u2
k(x)∂kf(x) dx

− 1

2

∫
M

∫
M

(∇xyuk)uk(x)(∇xyfk+1)p1(x, y) dy dx

= −1

4

∫
M

∫
M

(
∇xyuk

√
fk+1(x) +

uk(x)√
fk+1(x)

∇xyfk+1

)2

p1(x, y) dy dx

+

∫
M

u2
k(x)

(
|∇P fk+1|2(x)

4fk+1(x)
+ ∂kf(x)

)
dx.

The given condition (7.51) ensures that ∂kJ ≤ 0, that is Jk+1 ≤ Jk for all k ∈
J0, n− 1K. �

The following lemma essentially follow from [20, Proposition 2.5]. We repeat
the proof for completeness. Lemma 7.13 provides a weight function f that will be
used in the application of discrete integral maximum principle.

Lemma 7.13. Let (M,d, µ) be a metric measure space and let P be a Markov
operator that is (h, h′)-compatible with (M,d, µ). Let σ : M → R be a 1-Lipschitz
function such that inf σ ≥ h′. There exists a positive number D1 such that for all
D ≥ D1, the weight function

(7.55) fk(x) = fDk (x) := exp

(
− σ2(x)

D(n+ 1− k)

)
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satisfies

∂kf(x) +
|∇P fk+1|2

4fk+1
(x) ≤ 0.

for all x ∈M , for all n ∈ N∗ and k ∈ J0, n− 1K.

Proof. Note that

−∂kf(x) =

(
exp

(
σ2(x)

D(n+ 1− k)(n− k)

)
− 1

)
fk+1(x)

≥
(

exp

(
σ2(x)

2D(n− k)2

)
− 1

)
fk+1(x)(7.56)

and

|∇P fk+1(x)|2 =

∫
M

p1(x, y)

(
exp

(
− σ2(y)

D(n− k)

)
− exp

(
− −σ

2(x)

D(n− k)

))2

dy

= f2
k+1(x)

∫
M

p1(x, y)

(
exp

(
σ2(x)− σ2(y)

D(n− k)

)
− 1

)2

dy

for all k ∈ J0, n − 1K. By the Lipschitz condition and the hypothesis σ(x) ≥ 1, we
have ∣∣σ2(x)− σ2(y)

∣∣ = |σ(x)− σ(y)||σ(x) + σ(y)| ≤ 2h′σ(x) + (h′)2 ≤ 3h′σ(x)

for all x, y ∈ M such that d(x, y) ≤ h′. Next we use the following elementary
inequality: if |t| ≤ s, then ∣∣et − 1

∣∣ ≤ es − 1.

Combining together the previous lines and (4.10), we obtain

(7.57) |∇P fk+1(x)|2 ≤ f2
k+1(x)

(
exp

(
3h′σ(x)

D(n− k)

)
− 1

)2

.

Next let us use another elementary fact: there exists B > 0 such that, for all t > 0,

(et − 1)2 ≤ 4(eBt
2

− 1).

Setting t = 3h′σ(x)/(D(n− k)), we obtain that

1

4

(
exp

(
3h′σ(x)

D(n− k)

)
− 1

)2

≤ exp

(
B(3h′)2σ2(x)

D2(n− k)2

)
− 1.

Hence, if D ≥ D1 := 2B [3h′]
2
, then the right hand side of the above inequality is

bounded from above by

exp

(
σ2(x)

2D(n− k)2

)
− 1.

Combining with (7.56) and (7.57), we obtain

|∇fk+1(x)|2

4fk+1(x)
≤ fk+1(x)

4

(
exp

(
3h′σ(x)

D(n− k)

)
− 1

)2

≤ fk+1(x)

(
exp

(
σ2(x)

2D(n− k)2

)
− 1

)
≤ −∂kf(x)

for all x ∈M and for all k ∈ J0, n− 1K. �

Next, we need the following estimate on hk defined in (7.44). The proof uses
the diagonal estimate in Proposition 7.2.
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Lemma 7.14. Under the assumptions of Proposition 7.1, there exists C0 > 0
such that

(7.58)

∫
M

h2
n(x, y)dy ≤ C0

V (x,
√
n+ 2)

for all n ∈ N and for all x ∈M where h is as defined in (7.44).

Proof. By (7.44) of Lemma 7.11, Lemma 4.2(c) and Vandermonde’s convolu-
tion formula, we have∫

M

(hn(x, y))2 dy = 4−n
∫
M

(
n∑
i=0

(
n

i

)
pi+2(x, y)

)2

dy

= 4−n
2n∑
i=0

(
2n

i

)
pi+4(x, x)(7.59)

for all x ∈M . By Proposition 7.2, there exists C1 > 0 such that

pk(x, x) ≤ C1

V (x,
√
k)

for all k ≥ 2 and for all x ∈ M . Combined with (7.59) and (2.4), we obtain
C2 > 0, δ > 2 such that∫

M

(hn(x, y))2 dy ≤ 4−n
2n∑
i=0

(
2n

i

)
C1

V (x,
√
i+ 4)

≤ C2

V (x,
√

2n+ 4)
4−n

2n∑
i=0

(
2n

i

)(
2n+ 4

i+ 4

)δ/2
(7.60)

for all n ∈ N and all x ∈M . By the above inequality, we have

4−n
2n∑
i=0

(
2n

i

)(
2n+ 4

i+ 4

)δ/2
≤ 4−n

2n∑
i=0

(
2n

i

)(
2n+ 4

i+ 4

)κ

≤ 42κκ!

2n∑
i=0

(
2n+ κ

i+ κ

)
2−(2n+κ) ≤ 42κκ!(7.61)

where κ := dδ/2e ∈ N∗. Combining (7.60), (7.61) along with (2.4) implies (7.58).
�

Our next result involves repeated application of the discrete integral maximum
principle.

Lemma 7.15. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfy-
ing (V D)loc and (V D)∞. Suppose that a Markov operator P has a kernel p that is
(h, h′)-compatible with (M,d, µ) for some h > b. Further assume that P satisfies
the Sobolev inequality (5.2). Define

(7.62) ED(k, x) :=

∫
M

h2
k(x, z) exp

(
d2

1(x, z)

Dk

)
dz

for all k ∈ N∗ and x ∈ M , where d1(x, z) := max(d(x, z), h′) and hk is defined by
(7.44). There exists C,D > 0 such that

(7.63) ED(k, x) ≤ C

V (x,
√
k)
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for all x ∈M and for all k ∈ N∗.

Proof. Let x ∈M be an arbitrary point. The constants below do not depend
on the choice of x. Define

I(R, k) = I(R, k, x) :=

∫
B(x,R){

h2
k(x, z) dz

for R > 0 and k ∈ N. We start by estimating I(R, k) using iteration. The iterative
step is contained in the following estimate: There exists D1 > 0 such that

(7.64) I(R,n) ≤ exp((h′)2/D1)

(
I(r, k) + exp

(
− (R− r)2

2D1(n− k)

)∫
M

h2
k(x, z) dz

)
for all R, r satisfying R > r > 0, for all n ∈ N∗ and for all k ∈ J0, n− 1K.

To prove (7.64), we define

σR(z) := max(R− d(x, z), 0) + h′.

Note that σR is 1-Lipschitz with inf σR ≥ h′. Define

fk(z) := exp

(
− σ2

R(z)

D1(n+ 1− k)

)
for all z ∈M and all k ∈ J0, nK, where D1 is the constant from Lemma 7.13. Since

fk ≥ exp(−(h′)2/D1) in B(x,R){, we have

(7.65) I(R,n) =

∫
B(x,R){

h2
n(x, z) dz ≤ exp((h′)2/D1)

∫
M

h2
n(x, z)fn(z) dz.

By Lemma 7.13 and Proposition 7.12, we have

(7.66)

∫
M

h2
n(x, z)fn(z) dz ≤

∫
M

h2
k(x, z)fk(z) dz

for all k ∈ J0, nK. Since σR ≥ R− r in B(x, r) and fk ≤ 1, we have∫
M

h2
k(x, z)fk(z) dz =

∫
B(z,r){

h2
k(x, z)fk(z) dz +

∫
B(x,r)

h2
k(x, z)fk(z) dz

≤ I(r, k) + exp

(
− (R− r)2

D1(n+ 1− k)

)∫
B(x,r)

h2
k(x, z) dz

≤ I(r, k) + exp

(
− (R− r)2

2D1(n− k)

)∫
M

h2
k(x, z) dz(7.67)

for all k ∈ J0, n − 1K and for all R > r > 0. Combining (7.65), (7.66) and (7.67),
we obtain (7.64). Now by Lemma 7.14 and (7.64), there exists C1 > 1 such that

(7.68) I(R,n) ≤ exp((h′)2/D1)

(
I(r, k) + exp

(
− (R− r)2

2D1(n− k)

)
C1

V (x,
√
k)

)
for all n ∈ N∗, for all k ∈ J0, n− 1K and for all R > r > 0.

Next, we show that there exists C2, C3 > 0 such that

(7.69) I(R, k) ≤ C2

V (x,
√
k)

exp

(
− R2

C3k

)
for all R > 10h′ and for all k ∈ N∗. By (4.10) and (7.44), we have I(R, k) = 0 if
R > (k + 2)h′. Hence it suffices to consider the case (k + 2)h′ ≥ R.
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Given any finite decreasing sequence {Rj}j0j=1 of real numbers and any finite

strictly decreasing sequence {kj}j0j=1 such that R1 = R, k1 = k and I(Rj0 , kj0) = 0,

we can iterate (7.65) and obtain

(7.70) I(R, k) ≤
j0−1∑
j=1

C1 exp(j(h′)2/D1)

V (x,
√
kj+1)

exp

(
− (Rj −Rj+1)2

2D1(kj − kj+1)

)
.

Let R > 10h′ and define

Rj := R/2 +R/(j + 1), tj := k/2j−1, kj := dtje
so that R1 = R and k1 = k. Let j0 = min {j : Rj > h′(kj + 2)} (note that j0 > 1
since (k + 2)h′ ≥ R). By construction one has I(Rj0 , kj0) = 0. Also, for all j < j0
we have kj > Rj − 1 > R/2− 1. Since R > 10h′, we have

tj − tj+1 = tj/2 ≥ (kj − 1)/2 ≥ 1

2

(
Rj
h′
− 3

)
≥ 1

2

(
R

2h′
− 3

)
> 1

which means kj > kj+1 for all j ∈ J1, j0 − 1K. Therefore

(7.71) kj − kj+1 ≤ k/2j−1 − k/2j + 1 = k/2j + 1 ≤ k/2j−1

for all j ∈ J1, j0 − 1K. Using (7.71) and the identity

(Rj −Rj+1)2 =
R2

(j + 1)2(j + 2)2
,

we obtain

(7.72)
(Rj −Rj+1)2

2D1(kj − kj+1)
≥ R2

C3k
(j + 1),

where

C3 := max
j≥1

D1(j + 1)3(j + 1)2

2j−2
∈ (0,∞)

Therefore by (7.70) and (7.72), we have

(7.73) I(R, k) ≤
j0−1∑
j=1

C1

V (x,
√
tj+1)

exp

(
j(h′)2

D1
− R2

C3k
(j + 1)

)
By (7.71) and (2.4), there exists C4 > 1 such that

V (x,
√
tj)

V (x,
√
tj+1)

≤ C4

for all j ∈ J1, j0 − 1K. Therefore

V (x,
√
t1)

V (x,
√
tj+1)

=
V (x,

√
t1)

V (x,
√
t2)

V (x,
√
t2)

V (x,
√
t3)

. . .
V (x,

√
tj)

V (x,
√
tj+1)

≤ Cj4

Thus setting L := log(C1C4), we obtain

C1

V (x,
√
tj+1)

≤ 1

V (x,
√
k)

exp(jL),

for all j ∈ J1, j0 − 1K. Therefore by (7.73), we have

(7.74) I(R, k) ≤ 1

V (x,
√
k)

exp

(
− R2

C3k

) j0−1∑
j=1

exp

(
−j
(
R2

C3k
− L− (h′)2

D1

))
.
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for all R > 10h′ and for all k ∈ N∗ satisfying R ≤ (k+ 2)h′. We consider two cases.
Case 1: Let

R2

C3k
− L− (h′)2

D1
≥ log 2

In this case, by (7.74) we have

I(R, k) ≤ 1

V (x,
√
k)

exp

(
− R2

C3k

) j0−1∑
j=1

2−j ≤ 1

V (x,
√
k)

exp

(
− R2

C3k

)
Case 2: Let

R2

C3k
− L− (h′)2

D1
< log 2

In this case we estimate I(R, k) differently as

I(R, k) ≤
∫
M

h2
k(x, z) dz ≤ C1

V (x,
√
k)

≤ 2C1

V (x,
√
k)

exp

(
L+

(h′)2

D1
− R2

C3k

)
=

C6

V (x,
√
k)

exp

(
− R2

C3k

)
.

Combining the two cases we have (7.69).
Finally, we are ready to prove (7.63). Define for j ∈ N,

ARj :=

{
{z ∈M : d1(x, z) ≤ R}, j = 0

{z ∈M : 2j−1R < d1(x, z) ≤ 2jR}, j ≥ 1,

and

(7.75) ED(k, x) =

∞∑
j=0

∫
ARj

h2
k(z) exp

(
d2

1(x, z)

Dk

)
dz.

For all D > 0 and for all R ≥ h′ the first term admits the estimate

(7.76)

∫
AR0

h2
k(x, z) exp

(
d2

1(x, z)

Dk

)
dz ≤ C1

V (x,
√
k)

exp

(
R2

Dk

)
.

Now for the remaining terms we have

(7.77)

∫
ARj

h2
k(x, z) exp

(
d2

1(x, z)

Dk

)
dz ≤ exp

(
4jR2

Dk

)
I(2j−1R, k)

for all R > 10h′ and j ∈ N∗. By (7.69)

I(2j−1R, k) ≤ C2

V (x,
√
k)

exp

(
−4j−1R2

C3k

)
.

Combining with (7.77)∫
ARj

h2
k(x, z) exp

(
d2

1(x, z)

Dk

)
dz ≤ exp

(
4jR2

Dk

)
C2

V (x,
√
k)

exp

(
−4j−1R2

C3k

)
≤ C2

V (x,
√
k)

exp

(
−4j−1R2

Dk

)
(7.78)

for all j ∈ N∗, provided D ≥ 5C3 and R > 10h′. Define

(7.79) D := max

(
5C3,

(11h′)2

log 2

)
.
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Then by (7.75), (7.76) and (7.78) we obtain, for all R > 10h′

(7.80) ED(k, x) ≤ C1

V (x,
√
k)

exp

(
R2

Dk

)
+

C2

V (x,
√
k)

∞∑
j=1

exp

(
−4j−1R2

Dk

)
.

Given k ∈ N∗ choose R so that R2/(Dk) = log 2 which by (7.79) satisfies R > 10h′.
Therefore by (7.80), we conclude

ED(k, x) ≤ 2C1

V (x,
√
k)

+
C2

V (x,
√
k)

∞∑
j=1

2−4j−1

≤ 2C1 + C2

V (x,
√
k)

which is the desired estimate (7.63). �

We use Lemma 7.15 to prove a Gaussian upper bound for hk.

Lemma 7.16. Under the assumptions of Proposition 7.1, there exists positive
reals C0, D0 such that

(7.81) h2k(x, y) ≤ C0

V (x,
√
k)

exp

(
−d

2(x, y)

D0k

)
for all x, y ∈M and for all k ∈ N∗.

Proof. By triangle inequality and the inequality (a + b)2 ≤ 2(a2 + b2), we
have

(7.82) d1(x, y)2 ≤ 2(d1(x, z)2 + d1(y, z)2)

for all x, y, z ∈ M , where d1(x, y) := max(d(x, y), h′) as before. By (4.12), (7.82)
and Cauchy-Schwarz inequality we have

h2k(x, y) =

2k∑
i=0

(
2k

i

)(
1

2

)2k

pi+2(x, y)

≤ α−2
2k∑
i=0

(
2k

i

)(
1

2

)2k

pi+4(x, y) = α−2

∫
M

hk(x, z)hk(y, z) dz

≤ α−2

∫
M

hk(x, z)hk(z, y)ed1(x,z)2/2Dked1(z,y)2/2Dke−d1(x,y)2/4Dk dz

≤ α−2
√
ED(k, x)ED(k, y)e−d

2
1(x,y)/4Dk

≤ α−2
√
ED(k, x)ED(k, y)e−d(x,y)2/4Dk(7.83)

for all x, y ∈M , for all k ∈ N∗ and for all D > 0, where α > 0 is from (4.11). The
equality in the second line above follows from a calculation analogous to (7.59).

The bound (7.83) and Lemma 7.15 implies that there exists C1, D1 > 0 such
that

(7.84) h2k(x, y) ≤ C1(
V (x,

√
k)V (y,

√
k)
)1/2

exp

(
−d

2(x, y)

D1k

)
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for all x, y ∈ M and for all k ∈ N∗. However by (2.4), there exists C2, C3, C4 >
0, δ > 0 such that

V (x,
√
k)

V (y,
√
k)
≤ V (y,

√
k + d(x, y))

V (y,
√
k)

≤ C2

(
1 +

d(x, y)√
k

)δ
≤ C3

(
1 +

d2(x, y)

k

)δ/2
≤ C4 exp

(
d2(x, y)

2D1k

)
(7.85)

for all x, y ∈ M . Combining (7.84) and (7.85) yields the desired Gaussian upper
bound (7.81). �

7.4. Comparison with lazy random walks

We want to convert the Gaussian bounds on hk given by Lemma 7.16 to Gauss-
ian bounds on pk. To accomplish this we need the following elementary polynomial
identities.

Lemma 7.17. For all β > 0 and for all n ∈ N∗, we have the following polynomial
identities

zn =
∑

k∈J1,nK,k odd

(
n

k

)
βn−k(z − β)k−1z(7.86)

+
∑

k∈J1,n−1K,k odd

(
n− 1

k

)
βn−1−k(z − β)k−1(z2 − 2βz),

(
1 + z

2

)n
=

1

2n
+

∑
k∈J1,nK,k odd

(
n

k

)(
1 + β

2

)n−k (
1

2

)k
(z − β)k−1z

(7.87)

+
∑

k∈J1,n−1K,k odd

sn,k

(
1 + β

2

)n−1−k (
1

2

)k+1

(z − β)k−1(z2 − 2βz)

where (z − β)0 = 1 and

sn,k = (1 + β)−(n−1−k)
n∑

i=k+1

(
n

i

)(
i− 1

k

)
βi−1−k ≥

(
n− 1

k

)
.

Proof. Note that

(7.88) zn = z

(
zn − (2β − z)n

2(z − β)

)
+ (z2 − 2βz)

(
zn−1 − (2β − z)n−1

2(z − β)

)
for all z 6= β. To obtain (7.86), we expand zn, zn−1, (2β− z)n, (2β− z)n−1 in (7.88)
using binomial expansion and the substitution

z = β + (z − β) and 2β − z = β − (z − β).
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To show (7.87), we use binomial expansion on (1 + z)n and then use (7.86) to
obtain

(1 + z)n = 1 +

n∑
i=1

(
n

i

)
zi

= 1 +

n∑
i=1

∑
k∈J1,iK,k odd

(
n

i

)(
i

k

)
βi−k(z − β)k−1z

+

n∑
i=1

∑
k∈J1,i−1K,k odd

(
n

i

)(
i− 1

k

)
βi−1−k(z − β)k−1(z2 − 2βz).(7.89)

The coefficient of (z − β)k−1z in (7.89) is

n∑
i=k

(
n

i

)(
i

k

)
βi−k =

(
n

k

) n∑
i=k

(
n− k
i− k

)
βi−k =

(
n

k

)
(1 + β)n−k.

Similarly, the coefficient of (z − β)k−1(z2 − 2βz) in (7.89) is

n∑
i=k+1

(
n

i

)(
i− 1

k

)
βi−1−k =

(
n− 1

k

) n∑
i=k+1

n

i

(
n− 1− k
i− 1− k

)
βi−1−k

≥
(
n− 1

k

) n∑
i=k+1

(
n− 1− k
i− 1− k

)
βi−1−k

=

(
n− 1

k

)
(1 + β)n−1−k.

This gives (7.87) with sn,k ≥
(
n−1
k

)
. �

We are now prepared to prove Gaussian upper bounds for pk.

Proof of Proposition 7.1. By Lemma 4.10 there exists β > 0 such that
uk, vk : M ×M → R satisfy

uk(x, y) :=
[
(P − βI)kp2(x, ·)

]
(y) ≥ 0,(7.90)

vk(x, y) :=
[
(P − βI)k(p3(x, .)− 2βp2(x, ·))

]
(y) ≥ 0(7.91)

for all x, y ∈ M and for all even non-negative integers k. For instance β = α/2
where α is given by (4.11) would satisfy the above requirements.

Using Lemma 4.2(c) and (7.86) of Lemma 7.17, we have

pn+1(x, y) = [Pnp1(x, ·)] (y)

=
∑

k∈J1,nK,k odd

(
n

k

)
βn−kuk−1(x, y)

+
∑

k∈J1,n−1K,k odd

(
n− 1

k

)
βn−1−kvk−1(x, y)(7.92)
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for all n ∈ N∗ and for all x, y ∈ M . By (7.90), (7.91), Lemma 4.10 and Lemma
7.17, we have

h2n(x, y) =
[
((I + P )/2)

2n
p2(x, ·)

]
(y)

≥ α
∑

k∈J1,2nK,k odd

(
2n

k

)(
1 + β

2

)2n−k (
1

2

)k
uk−1(x, y)

+ α
∑

1≤k≤2n−1,k odd

s2n,k

(
1 + β

2

)2n−1−k (
1

2

)k+1

vk−1(x, y)(7.93)

for all x, y ∈M . Define the ratio of coefficients in (7.92) and (7.93) as

(7.94) ak,n =

(
2n
k

) (
1+β

2

)2n−k (
1
2

)k(
n
k

)
βn−k

and bl,n =

(
2n−1
l

) (
1+β

2

)2n−1−l (
1
2

)l+1(
n−1
l

)
βn−1−l

for each k ∈ J1, nK and for each l ∈ J1, l − 1K. If k ∈ J1, n− 1K, then

ak+1,n

ak,n
=

β

1 + β

2n− k
n− k

.

Therefore ak+1,n ≥ ak,n if and only if k ≥ n(1 − β). Thus ak,n reaches minimum
for k = dn(1− β)e. By Stirling’s approximation there exists constant C1 > 0 such
that for all r ∈ N∗,

C−1
1 rr+(1/2)e−r ≤ r! ≤ C1r

r+(1/2)e−r.

We use the Stirling’s approximation to estimate ak,n at k = n(1 − β) + ε where
ε = dn(1− β)e − n(1− β) ∈ [0, 1). There exists c1 > 0 such that

min
k∈J1,nK

ak,n ≥ adn(1−β)e,n

≥ C−4
1 (2n)2n+(1/2)e−2n(βn− ε)βn+(1/2)−εe−βn+ε (1 + β)

(1+β)n−ε

22nnn+(1/2)e−n(n(1 + β)− ε)n(1+β)+(1/2)−εe−n(1+β)+εββn−ε

≥ c1
for all n ∈ N∗ satisfying n ≥ 2/β. Therefore there exists c2 > 0 such that

(7.95) ak,n ≥ c2
for all n ∈ N∗ and for all k ∈ J1, kK. Similarly,

(7.96) bl,n =
1

2
al+1,n ≥

1

2
c2

for all n ∈ N∗ and for all l ∈ J1, n − 1K. Combining (7.90), (7.91), (7.92), (7.93),
(7.94), (7.95) and(7.96), there exists c3 > 0 such that

(7.97) h2n(x, y) ≥ c3pn+1(x, y)

for all n ∈ N∗, and for all x, y ∈ M . Combining (7.97) along with Lemma 7.16
yields the Gaussian upper bound (7.1). �

We have shown the following equivalence

Theorem 7.18. Let (M,d, µ) be a quasi-b-geodesic metric measure space sat-
isfying (V D)loc. Suppose that a Markov operator P has a kernel p that is (h, h′)-
compatible with (M,d, µ) for some h > b. Then the following are equivalent:



104 7. GAUSSIAN UPPER BOUNDS

(i) Sobolev inequality (5.2).
(ii) Large scale volume doubling property (V D)∞ and Gaussian upper bounds

(GUE).

Proof. By Corollary 5.11, (ii) implies (i).
Next, we assume the Sobolev inequality (5.2). By Proposition 5.12 we have

(V D)∞. In addition, by Proposition 7.1 we have (GUE). This proves (i) implies
(ii). �



CHAPTER 8

Gaussian lower bounds

In this chapter, we use elliptic Harnack inequality and Gaussian upper bounds
to establish Gaussian lower bounds. The proofs in this chapter is adapted from [45].
In [45], Hebisch and Saloff-Coste provide an alternate approach to prove parabolic
Harnack inequality using elliptic Harnack inequality and Gaussian upper bounds.
This method avoids relying on the full strength of Moser’s iteration method in
parabolic setting.

Although [45] concerns diffusions on strictly local Dirichlet spaces, we will
see that their methods can be extended to discrete time Markov chains on quasi-
geodesic spaces. This extension was alluded to in [45] where the authors say “This
route to the parabolic Harnack inequality seems especially valuable in the setting
of analysis on graphs which is not covered by the present strictly local Dirichlet
space framework. In fact, the results above originated from our desire to overcome
some of the difficulties that appear in the case of graphs. This will be developed
elsewhere.”

The main result of this chapter is the following Gaussian lower bound.

Proposition 8.1. Let (M,d, µ) be a quasi-b-geodesic metric measure space
satisfying (V D)loc, (V D)∞, diam(M) =∞ and Poincaré inequality at scale h (P )h.
Suppose that a Markov operator P has a kernel p that is (h, h′)-compatible with
respect to µ for some h > b. Then the corresponding kernel pk satisfies Gaussian
lower bounds (GLE).

Note that under the assumptions of Proposition 8.1, we have Gaussian upper
bounds (GUE). This is a direct consequence of Theorem 5.1 and Proposition 7.1.

We focus on the case diam(M) = ∞ just for simplicity. In fact, we expect
these methods to work when diam(M) < ∞. However when the space has finite
diameter, it is important to find optimal constants (or close to optimal) for various
functional inequalities. To compute these optimal constants, one has to exploit the
specific structure of the Markov chain under consideration. We plan to address the
finite diameter case in a sequel.

8.1. On-diagonal lower bounds

The first step is to obtain lower bounds on pk(x, x). It is well-known that
Gaussian upper bounds implies a matching diagonal lower bounds. We repeat the
proof for convenience.

Lemma 8.2. Under the assumption of Proposition 8.1, there exists c0 > 0 such
that

pn(x, x) ≥ c0
V (x,

√
n)

for all x ∈M and for all n ∈ N satisfying n ≥ 2.

105
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Proof. By Lemma 4.10 it suffices to prove the inequality for even n, since
there exists α > 0 such that

p2k+1(x, x) ≥ αp2k(x, x)

for all x ∈M and for all k ∈ N∗.
Let n ∈ N∗ be even. By Cauchy-Schwarz inequality and Lemma 4.2(c), we have

pn(x, x) =

∫
M

p2
n/2(x, y) dy ≥

∫
B(x,

√
T )

p2
n/2(x, y) dy

≥ 1

V (x,
√
T )

(∫
B(x,

√
T )

pn/2(x, y)dy

)2

=
1

V (x,
√
T )

(
1−

∫
B(x,

√
T ){

pn/2(x, y)dy

)2

(8.1)

for all T > 0 and for all n ∈ 2N∗.
By Theorem 5.1 and Proposition 7.1 we have (GUE). By (GUE), there exists

C1, C2 > 0

(8.2) pk(x, y) ≤ C1

V (x,
√
k)

exp

(
−d

2(x, y)

C2k

)
for all x, y ∈ M and k ∈ N∗. There exists C3 > 1 such that for all A >
max(1, (8C2δ)

2), we have∫
B(x,

√
Ak){

pk(x, y) dy =

∞∑
i=1

∫
2i−1

√
Ak<d(x,y)≤2i

√
Ak

pk(x, y) dy

≤ C1

∞∑
i=1

V (x, 2i
√
Ak)

V (x,
√
k)

exp

(
− 4iT

4C2k

)

≤ C3

∞∑
i=1

exp

(
δ log

(
2i
√
A
)
− 4iA

4C2

)

≤ C3

∞∑
i=1

exp

(
δ2i
√
A− 4iA

4C2

)

≤ C3

∞∑
i=1

exp

(
− 4iA

8C2

)
≤ C4 exp

(
− A

2C2

)
(8.3)

for all k ∈ N∗ and for all x ∈M . We used (8.2) in the second line above and (2.4)
in the third line. By (8.3), there exists A1 > 1 such that

(8.4)

∫
B(x,

√
A1k){

pk(x, y) dy < 1/2

for all k ∈ N∗ and for all x ∈ M . We choose T = A1(n/2) in (8.1) and use (8.4)
and (2.4), to obtain

pn(x, x) ≥ 1

2V (x, (A1n/2)1/2)
≥ c1
V (x,

√
n)

for all n ∈ 2N∗ and for all x ∈M . �
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The following lemma is a discrete time analog of [45, Lemma 3.7], where we
transfer the on-diagonal lower bound given by Lemma 8.2 to on-diagonal lower
bound for the ‘Dirichlet kernel’ pBk on a ball B defined in (4.27).

Lemma 8.3. Under the assumptions of Proposition 8.1, there exists c > 0 and
A > max(1, h′) such that

pB(x,r)
n (x, x) ≥ c

V (x,
√
n)

for all x ∈M , for all n ∈ N∗ with n ≥ 2 and for all r ≥ A
√
n

Proof. We abbreviate B(x, r) by B. We denote the exit time from ball B by

τ := min {k : Xk /∈ B}

where (Xk)k∈N is the Markov chain driven by the kernel pk.
By strong Markov property, the Dirichlet kernel pBn can be expressed in terms

of pk as

(8.5) pBn (x, x) = pn(x, x)− Ex
[
pn−τ (Xτ , x)1J1,n−1K(τ)

]
for all n ≥ 2 and for all x ∈ M , where Ex denotes that X0 = x. If we choose
A > h′, by (4.10),we can rewrite (8.5) as

(8.6) pBn (x, x) = pn(x, x)− Ex
[
pn−τ (Xτ , x)1J2,n−2K(τ)

]
for all n ≥ 2 and for all x ∈ M with B = B(x, r) satisfying r > h′. For the first
term in (8.6), by Lemma 8.2, there exists c1 > 0 such that

(8.7) pn(x, x) ≥ c1
V (x,

√
n)

for all x ∈M and for all n ≥ 2.
We use Gaussian upper bound (GUE) to estimate the second term in (8.6).

There exists C1, C2, C3, C4, δ > 0 and such that

Ex
[
pBn−τ (Xτ , y)1J1,n−1K(τ)

]
≤ sup
l∈J2,n−2K

sup
y/∈B(x,r)

C1

V (x,
√
l)
e−d(x,y)2/(C2l)

≤ sup
l∈J2,n−2K

C1

V (x,
√
l)
e−(A2n)/(C2l)

≤ C3

V (x,
√
n)

sup
l∈J2,n−2K

(n/l)δ/2e−(A2n)/(C2l)

≤ C4

AδV (x,
√
n)

(8.8)

for all x ∈M , for all n ≥ 2, for all A > h′ and for all B = B(x, r) with r ≥ A
√
n >

h′. In the first line above we used (8.2), in the second line we used d(x, y) ≥ r ≥
A
√
n and in the third line we used (2.4).
Clearly we can choose A > h′ large enough such that C4/A

δ < c1/2. Therefore
by (8.6),(8.7) and (8.8), we obtain the desired bound. �
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8.2. Spectrum of the Dirichlet Laplacian on balls

Our next result is a bound on the spectrum of PB or alternatively on the
Dirichlet Laplacian ∆PB . The following Proposition is a discrete time analog of
[45, Theorem 2.5]. However unlike [45], we cannot apply the stronger Sobolev
inequality (5.1).

Proposition 8.4. Let (M,d, µ) be a quasi-b-geodesic metric measure space
satisfying (V D)loc, (V D)∞ and Poincaré inequality at scale h (P )h. Suppose that
a Markov operator P has a kernel p that is (h, h′)-compatible with respect to µ for
some h > b. Then there exists positive reals a, ε0 such that

(8.9)
∥∥PB(x,r)

∥∥
2→2

:= sup
f∈L2(B(x,r)),‖f‖2=1

∥∥PB(x,r)f
∥∥

2
≤ 1− a

r2

for all x ∈M and for all r ∈ R satisfying r ≥ h′ and r ≤ ε0 diam(M).

Proof. We abbreviate the ball B(x, r) by B. Note that PB is a contraction
in L2(B), that is ‖PB‖2→2 ≤ 1. Since PB is a bounded, self-adjoint operator in
L2(B), by [18, Proposition 2.13] we have

(8.10) ‖PB‖2→2 = sup
f∈L2(B),f 6≡0

|〈f, PBf〉B|
‖f‖22

where 〈·, ·〉B denotes the inner product in L2(B). Therefore it suffices to show that
there exists positive reals a, ε0 such that

(8.11) −
(

1− a

r2

)
≤ 〈f, PBf〉B

‖f‖22
≤ 1− a

r2

for all f ∈ L2(B) and for all B = B(x, r) with r ≥ h′ and r ≤ ε0 diam(M).
We prove (8.10) in two steps. We start with the proof of upper bound in (8.11).

With slight abuse of notation, we consider L2(B) ⊆ L2(M) using the map given
by (4.29). By this identification, a function f ∈ L2(M) with supp(f) ⊆ B can be
considered to be in L2(B).

By Lemma 4.22(a), we can rewrite the upper bound in (8.11) as

(8.12)
E(f, f)

‖f‖22
=
EB(f, f)

‖f‖22
=
‖f‖22 − 〈f, PBf〉B

‖f‖22
≥ a

r2
.

Since E(|f|, |f|) ≤ E(f, f), in order to show (8.12) it suffices to consider the case
f ≥ 0.

By (5.25) and (5.26) of Proposition 5.5 along with Lemma 4.20(b), there exists
CN > 0 such that

(8.13) ‖Pf‖2+(4/δ)
2 ≤ CNr

2

V (x, r)2/δ

(
E∗(f, f) + r−2 ‖Pf‖22

)
‖f‖4/δ1

for all x ∈ M , for all r > 0 and for all functions f ∈ L2(M) supported in B(x, r).
By (8.13), we have

(8.14) ‖Pf‖22

(
‖Pf‖4/δ2

‖f‖4/δ1

− CN
V (x,Kr)2/δ

)
≤ CN (Kr)2

V (x,Kr)2/δ

(
‖f‖22 − ‖Pf‖

2
2

)
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for all x ∈M , for all r > 0, for all K > 1 and for all functions f ∈ L2(M) supported
in B(x, r). If f ≥ 0 , we have

‖Pf‖1 = 〈Pf,1〉 = 〈f, P1〉 = 〈f,1〉 = ‖f‖1 .

Hence by Hölder inequality, (4.10) and (2.4), there exists C1 > 0 such that

(8.15) ‖f‖1 = ‖Pf‖1 ≤ (V (x, r + h′))
1/2 ‖Pf‖2 ≤ C1V (x, r)1/2 ‖Pf‖2

for all f ≥ 0 with f ∈ L2(M) and supp(f) ⊆ B(x, r) and r ≥ h′. Combining (8.11)
and (8.15), we have

(8.16) ‖Pf‖22

(
C
−4/δ
1 − CNV (x, r)2/δ

V (x,Kr)2/δ

)
≤ CN (Kr)2

(
‖f‖22 − ‖Pf‖

2
2

)
for all K > 1, for all r ≥ h′, for all x ∈ M and for all f ∈ L2(M) with supp(f) ⊆
B(x, r) and f ≥ 0. By Lemma 2.12, there exists K > 1 such that

(8.17)
CNV (x, r)2/δ

V (x,Kr)2/δ
<

1

2
C
−4/δ
1

for all x ∈M , for all r ≥ h′ and all r ≤ diam(M)/K. Combining (8.16) and (8.17),
there exists ε0 = K−1 > 0 ,C2 > 0 such that

(8.18) ‖Pf‖22 ≤ C2r
2
(
‖f‖22 − ‖Pf‖

2
2

)
for all x ∈ M , for all f ∈ L2(M) with supp(f) ⊆ B(x, r) and f ≥ 0, where r
satisfies r ≥ h′ and r ≤ ε0 diam(M). By Lemma 4.20(a) and (8.18), there exists
a > 0 such that
(8.19)

E(f, f)

‖f‖22
≥ E(|f|, |f|)

‖f‖22
≥ E∗(|f|, |f|)

2 ‖|f|‖22
=

1

2

(
1−
‖(P |f|)‖22
‖f‖22

)
≥ 1

2(1 + C2r2)
≥ a

r2

for all x ∈ M , for all f ∈ L2(M) with supp(f) ⊆ B(x, r), where r satisfies r ≥ h′

and r ≤ ε0 diam(M). Therefore by (8.12) and (8.19), there exists ε0 > 0 and a > 0
such that

(8.20)
〈f, PBf〉B
‖f‖22

≤ 1− a

r2

for all f ∈ L2(B) and for all B = B(x, r) with r ≥ h′ and r ≤ ε0 diam(M). By
integration by parts (6.31) and symmetry of p1 we have

E(f, f) + E(|f|, |f|) =
1

2

∫
M

∫
M

p1(x, y)
[
(∇xyf)2 + (∇xy|f|)2

]
dy dx

≤
∫
M

∫
M

p1(x, y)(f(x)2 + f(y)2) dy dx = 2 ‖f‖22(8.21)

for all f ∈ L2(M). Combining (8.19) and (8.21), there exists a, ε0 > 0 such that

(8.22)
E(f, f)

‖f‖22
≤ 2− E(|f|, |f|)

‖f‖22
≤ 2− a

r2

for all x ∈ M , for all f ∈ L2(M) with supp(f) ⊆ B(x, r), where r satisfies r ≥ h′

and r ≤ ε0 diam(M). Therefore by (8.22) and Lemma 4.22(a), there exists ε0 > 0



110 8. GAUSSIAN LOWER BOUNDS

and a > 0 such that

(8.23)
〈f, PBf〉B
‖f‖22

≥ −
(

1− a

r2

)
for all f ∈ L2(B) and for all B = B(x, r) with r ≥ h′ and r ≤ ε0 diam(M).
Combining (8.20) and (8.23) yields (8.11), which along with (8.10) implies (8.9). �

Remark 8.5.

(a) A simple consequence of Proposition 8.4 is that there exists a, ε0 > 0 such that

Spectrum(PB) ⊆
[
−
(
1− ar−2

)
, 1− ar−2

]
, Spectrum(∆PB ) ⊆

[
ar−2, 2− ar−2

]
for all x ∈M and for all r satisfying r ≥ h′ and r ≤ ε0 diam(M).

(b) If diam(M) =∞, then for all balls B = B(x, r) with r ∈ (0,∞), we have

‖PB‖2→2 < 1.

The case r ≥ h′ is clear from Proposition 8.4. The case r < h′ follows from
‖PB‖2→2 ≤

∥∥PB(x,h′)

∥∥
2→2

.

(c) Note that if diam(M) < ∞, then the conclusion Proposition 8.4 is vacuously
true as one can choose ε0 = h′/(2 diam(M)). However if h′ � diam(M) and if
we have good control of the constants in various functional inequalities, we can
prove useful estimates which in turn yields applications to estimates on mixing
times. We will extend the techniques developed here to finite diameter spaces
elsewhere.

(d) Note that the condition r ≤ ε0 diam(M) is necessary. Too see this consider the
case when diam(M) < ∞ and B(x, r) = M . It is clear that (8.9) fails to be
true because PB(x,r)1 = 1.

8.3. Near diagonal lower bound

As in [45, Proposition 3.5], the following near diagonal estimate is an important
step in obtaining Gaussian lower bounds.

Proposition 8.6 (Near diagonal lower bound). Under the same assumptions
as in Proposition 8.1, there exists positive reals ε1, c1 such that pk satisfies the lower
bound

(8.24) inf
y∈B(x,ε1

√
k)
pk(x, y) ≥ c1

V (x,
√
k)

for all x ∈M and for all k ∈ N∗ satisfying k ≥ 2.

From the above near diagonal lower bound, we will see that the Gaussian lower
bound follows by a well-established ‘chaining argument’.

The idea behind the proof of Proposition 8.6 is to convert the elliptic Hölder-
like regularity estimate (Proposition 6.20) into a parabolic Hölder-like regularity
estimate for the function (k, y) 7→ pBk (x, y) as follows:

Lemma 8.7. Under the assumptions of Proposition 8.1, for all σ > 0 and all
A ≥ 1, there exists three positive reals Cσ,A, ε0 ≤ A and N0 ≥ 2 such that

(8.25)
∣∣pBk (x, y)− pBk (x, x)

∣∣ ≤ [σ + Cσ,A

(
d(x, y) ∨ 1√

k

)α]
1

V (x,
√
k)

for all x ∈ M , k ∈ N∗ with k ≥ N0 and for all y ∈ B(x, ε0
√
k), where B =

B(x,A
√
k) and α is the exponent in (6.87).
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The proof of Lemma 8.7 is long and involves many technical estimates. We will
need some upper bounds on pBk (y, z) and its ‘time derivative’

∂kp
B(y, z) := pk+1(y, z)− pk(y, z)

for all y, z ∈ B.

Lemma 8.8. Under the assumptions of Proposition 8.1, the following estimates
hold:

(i) There exists C1, D1 > 0 such that

(8.26) p
B(x,A

√
k)

j (y, z) ≤ C1

V (y,
√
j)

exp

(
−d(y, z)2

D1j

)

for all x ∈ M , for all k ∈ N∗, for all j ≥ 2, for all A ≥ 1 and for all
y, z ∈ B(x,A

√
k).

(ii) There exists C2, δ > 0 such that

(8.27)
∣∣∣∂kpB(x,A

√
k)(y, z)

∣∣∣ ≤ C2A
δ

kV (x,
√
k)

for all x ∈M , for all k ∈ N≥2, for all A ≥ 1 and for all y, z ∈ B(x,A
√
k).

(iii) For all A > 1 ∨ h′, there exists ε, a1 > 0, such that for all θ ∈ (0, 1), there
exists Cθ such that,

(8.28) p
B(x,A

√
k)

j (y, z) ≤ CθA
δ

V (x,
√
k)

(
1− a1

A2k

)j
for all x ∈M , for all k ∈ N∗, for all j ∈ N satisfying j ≥ max(2, θk) and for

all y, z ∈ B(x,A
√
k).

Proof. The first inequality (8.26) follows from Proposition 7.1 and the in-

equality p
B(x,A

√
k)

j ≤ pj for all j ≥ 2.
For k ≥ 20, we decompose k = k1 + k2 + k3 + k4 such that k1, k3 ∈ 2N∗,

ki ∈ N∗ and ki ≥ k/5 for i = 1, 2, 3, 4. Note that, we require k1, k3 to be even. We

abbreviate B(x,A
√
k) by B. By Cauchy-Schwarz inequality and Lemma 4.22 and

Lemma 4.20(b) there exists C4 > 0 such that

∣∣∂kpB(y, z)
∣∣ =

∣∣〈(I − PB)pBk1+k2(y, ·), pBk3+k4(z, ·)〉B
∣∣

=
∣∣∣〈(I − PB)1/2pBk1+k2(y, ·), (I − PB)1/2pBk3+k4(z, ·)〉B

∣∣∣
≤
[
EB(pBk1+k2(y, ·), pBk1+k2(y, ·)), EB(pBk3+k4(z, ·), pBk3+k4(z, ·))

]1/2
≤ C4

[
EB∗ (pBk1+k2(y, ·), pBk1+k2(y, ·)), EB∗ (pBk3+k4(z, ·), pBk3+k4(z, ·))

]1/2
.(8.29)
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Since k1 is even and k1 ≥ k/5, by spectral decomposition and Proposition 7.1 there
exists C5, C6, δ > 0 such that

EB∗ (pBk1+k2(y, ·), pBk1+k2(y, ·)) =
∥∥∥(I − P 2

B)1/2P k1B pBk2(y, .)
∥∥∥2

2

≤
∥∥∥(I − P 2

B)1/2P k1B

∥∥∥2

2→2
‖pk2(y, .)‖22

≤

(
sup
λ∈[0,1]

(1− λ)1/2λk/10

)2

sup
y∈B

p2k2(y, y)

≤ C5k
−1 sup

y∈B(x,A
√
k)

1

V (y,
√
k)

≤ C5

kV (x,
√
k)

sup
y∈B(x,A

√
k)

V (y, (A+ 1)
√
k)

V (y,
√
k)

≤ C6

kV (x,
√
k)

(8.30)

for all k ≥ 20, for all x ∈ M , for all A > 1 and for all y ∈ B = B(x,A
√
k). In the

last line above we used (2.4). By (8.30) and (8.29), we obtain the desired bound
(8.27) for k ≥ 20.

If 2 ≤ k ≤ 20 , we use (8.26) and triangle inequality
∣∣∂kpB∣∣ ≤ pBk+1 + pBk to

obtain (8.27).

For the proof of (8.28), we use Proposition 8.4. As before we denote B(x,A
√
k)

by B.
We first consider the case where j ∈ N∗ is even. By Proposition 8.4, for each

A ≥ (1 ∨ h′), there exists a > 0, ε > 0 such that

sup
y,z∈B

pBj (y, z) = sup
x∈B

∥∥∥pBj/2(y, ·)
∥∥∥2

2
=
∥∥∥P j/2B

∥∥∥2

2→∞

≤
∥∥∥P (j/2)−j1

B

∥∥∥2

2→2

∥∥∥P j1B ∥∥∥2

2→∞

≤
(

1− a

A2k

)j−2j1
sup
y∈B

p2j1(y, y)(8.31)

for all x ∈ M , for all 1 ≤ j1 ≤ (j/2), for all k ∈ N∗. We choose j1 := dθk/4e in
(8.31) and use (2.4) to obtain positive reals δ > 0 and C7 = C7(θ)

(8.32) sup
y∈B(x,A

√
k)

p2j1(y, y) ≤ C7A
δ

V (x,
√
k)

for all x ∈M , for all θ ∈ (0, 1), for all A ≥ 1 and for all k ∈ N∗ where j1 = d(θk/4)e.
For all θ ∈ (0, 1), there exists C8 = C8(θ) > 0 such that

(8.33)
(

1− a

A2k

)−2d(θk/4)e
≤ (1− a)−2

(
1− a

k

)−(θk/2)

≤ C8

for all k ∈ N∗, for all A ≥ 1 ∨ h′. Combining (8.31), (8.32) and (8.33), we obtain
the bound (8.28) for all even j ≥ 2N∗.

For all odd j ∈ N∗ satisfying j ≥ 3, we use the even case and the bound
supy,z∈B p

B
j (y, z) ≤ supy,z∈B p

B
j−1(y, z) to obtain (8.28). �
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Remark 8.9. The constants C1, C1, C2, Cθ and a1 in Lemma 8.8 do not depend
on A, x and k.

Proof of Lemma 8.7. One of the consequences of Proposition 8.4 as noted
in Remark 8.5(b) is that

∥∥PB(x,r)

∥∥
2→2

< 1 for all x ∈ M and for all r ∈ (0,∞).

Therefore ∆PB : L2(B)→ L2(B) is invertible with inverse

(8.34) ∆−1
PB

= (I − PB)−1 =

∞∑
j=0

P jB .

Further the inverse ∆−1
PB

is bounded with ‖∆PB‖2→2 ≤ (1− ‖PB‖2→2)
−1

. Moti-
vated by this remark, we define ‘Green’s function on a ball’

(8.35) GB(y, ·) :=

∞∑
i=1

pBi (y, ·)

for all balls B with ‖PB‖2→2 < 1 and for all y ∈ B. By (8.34) and (8.35)

pBk (y, z) =
[
∆−1
PB

∆PBp
B
k (y, ·)

]
(z) =

[
∆−1
PB
∂kp

B(y, ·)
]

(z)

= ∂kp
B(y, z) +

∫
B

GB(z, w)∂kp
B(y, w) dw(8.36)

for all x ∈ M , for all A ≥ 1 ∨ h′, for all y, z ∈ B = B(x,A
√
k) and for all k ≥ 2.

By (8.36) and triangle inequality, we obtain∣∣pBk (x, y)− pBk (x, x)
∣∣ ≤ ∣∣∂kpB(x, y)

∣∣+
∣∣∂kpB(x, x)

∣∣
+

∫
B

∣∣GB(x,w)−GB(y, w)
∣∣∣∣∂kpB(x,w)

∣∣ dw(8.37)

for all x ∈ M , for all A ≥ 1, and for all y ∈ B = B(x,A
√
k). We write the right

side in (8.37) by splitting it into four parts as

K =
∣∣∂kpB(x, y)

∣∣+
∣∣∂kpB(x, x)

∣∣
I1 + I2 + J =

∫
B

∣∣GB(x,w)−GB(y, w)
∣∣∣∣∂kpB(x,w)

∣∣ dw.
where I1, I2, J are terms corresponding to the integration over the sets

W1 =
{
w ∈ B : d(x,w) ≤ η

√
k
}
, W2 =

{
w ∈ B : d(y, w) ≤ η

√
k
}

for I1, I2 and

W =
{
w ∈ B : d(x,w) > η

√
k and d(y, w) > η

√
k
}

for J , where η > 0 will be chosen later.
As before, we will abbreviate B(x,A

√
k) by B. By Lemma 8.8(b), there exists

C2 > 0, δ > 0 such that

(8.38) K ≤ 2 sup
y,z∈B

∣∣∂kpB(y, z)
∣∣ ≤ 2C2A

δ

kV (x,
√
k)
≤ τ

V (x,
√
k)

for all τ > 0, for all A ≥ 1, for all x ∈ M and for all k ∈ N∗ satisfying k ≥ 2 and
k ≥ (2C2A

δ)/τ .
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Next, we bound I1 and I2. We treat I2 in detail but the same estimate applies
to I1. By Lemma 8.8(b), we have

I2 ≤
(

sup
z1,z2∈B

∂kp
B(z1, z2)

)∫
W2

(GB(x,w) +GB(y, w)) dw

≤ C2A
δ

kV (x,
√
k)

∫
W2

(GB(x,w) +GB(y, w)) dw(8.39)

for all k ≥ 2. By Lemma 8.8(c), there exists Cθ > 0, a1 > 0 such that∫
W2

GB(z, w) dw ≤
∫
W2

bθkc∑
j=1

pBj (z, w) dw +

∫
W2

∞∑
j=bθkc+1

pBj (z, w) dw

≤ θk +

∞∑
j=bθkc+1

∫
W2

pBj (z, w) dw

≤ θk +
CθA

δ

V (x,
√
k)

(
1− a1

A2k

)θk A2k

a1
µ(W2)

≤ θk +
CθA

δ+2k

a1V (x,
√
k)
V (y, η

√
k)(8.40)

for all x ∈M , for all A ≥ 1 ∨ h′, for all θ ∈ (0, 1), for all k ∈ N∗ with k ≥ 2/θ and

for all y, z ∈ B = B(x,A
√
k). For all y ∈ B(x,A

√
k), by Lemma 2.12 and (2.4)

there exists C3 > 1, γ > 0 such that

(8.41)
V (y, η

√
k)

V (x,
√
k)
≤ V (y, η

√
k)

V (y,
√
k)

V (x, 2A
√
k)

V (x,
√
k)
≤ C3A

δηγ

for all x ∈ M , for all A ≥ 1, for all y ∈ B(x,A
√
k), for all η ∈ (0, 1) and for all

k ∈ N∗ with k ≥ (b/η)2.
For all τ > 0, we choose θ ∈ (0, 1) and η ∈ (0, 1) such that

(8.42) θ ≤ τ

4C2Aδ
,

2CθC3A
2δ+2ηγ

a1
≤ τ

4C2Aδ
.

Given the above choice of θ, η, for all τ > 0, for all A ≥ 1 ∨ h′, by (8.39), (8.40),
(8.41) there exists N1 ≥ 2 such that

(8.43) max(I1, I2) ≤ τ

V (x,
√
k)

for all x ∈ M and for all k ∈ N∗ with k ≥ N1. By (8.38) and (8.43), for all
σ > 0, A ≥ 1 ∨ h′ there exists N2 ≥ 2 and η ∈ (0, 1) such that

(8.44) K + I1 + I2 ≤
σ

V (x,
√
k)

for all x ∈M and for all k ∈ N∗ with k ≥ N2.
It remains to handle J . For the rest of the proof, we fix the choice of η ∈ (0, 1)

from (8.42). Since pB1 (x, ·) is only defined up to µ-almost everywhere, so is GB(x, ·).
However since pBj (x, ·) is a genuine function for all j ≥ 2, by (4.10) we can redefine

GB in (8.35) as

(8.45) GB(y, z) =

∞∑
j=2

pBj (y, z)
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for all y, z ∈ B with d(y, z) > h′. In other words GB(y, ·) can be defined as a
genuine function in B \ B(y, h′) with GB(y, z) = GB(z, y) for all y, z ∈ B with
d(y, z) > h′. Further the function

z 7→ GB(w, z) = GB(z, w)

is P -harmonic in B(y, d(y, z)− 3h′), whenever y ∈ B, B(y, d(x,w)− 2h′) ⊆ B and
d(y, w) > 3h′. Therefore for all x ∈ M , for all A ≥ 1 and for all k ∈ N∗ with

k ≥ (6h′/η)2, for all w ∈ B(x,A
√
k)\B(x, η

√
k), the function z 7→ GB(x,A

√
k)(z, w)

is P -harmonic in B(x, η
√
k/2). By the Hölder-type regularity estimate for harmonic

functions (Proposition 6.20), there exists C4 > 0, N3 ≥ 2 ∨ (6h′/η)2, α > 0, ε0 ∈
(0, η/2) such that

(8.46)
∣∣GB(x,w)−GB(y, w)

∣∣ ≤ C4

(
d(x, y) ∨ 1

η
√
k

)α
sup

z∈B(x,η
√
k/2)

GB(z, w)

for all x ∈ M , for all y ∈ B(x, ε0
√
k), for all A ≥ 1, w ∈ B(x,A

√
k) \ B(x, η

√
k)

and for all k ∈ N∗ with k ≥ N3.
Following (8.46), we need to estimate supw∈B\B(x,η

√
k),z∈B(x,η

√
k/2)G

B(z, w).

For all z, w ∈ B such that d(z, w) > h′, we have

GB(z, w) =

k∑
j=2

pBj (z, w) +

∞∑
j=k+1

pBm(z, w).

For the first term, by Lemma 8.8(a) and (2.4) there exists C1, D1, C5, C6 > 1 and
δ > 0 such that

k∑
j=2

pBj (z, w) ≤
k∑
j=2

C1

V (z,
√
j)

exp

(
−d(y, z)2

D1j

)
V (z, 2

√
k)

V (x,
√
k)

≤ C5

V (x,
√
k)

k∑
j=2

(
k

j

)δ/2
exp

(
− η2k

4D1j

)
≤ C6k

V (x,
√
k)

(8.47)

for all z ∈ B(x,
√
k), for all w ∈ B such that d(z, w) > η

√
k/2 ≥ h′. To obtain

(8.47) above, we used that the function t 7→ tδ/2 exp(−η2t/(4D1)) is bounded in
(0,∞).

Next, we bound pj for large values of j. By Lemma 8.8(c) there exists C7 > 0
such that

(8.48)

∞∑
j=k+1

pB(z, w) ≤ C7
Aδ

V (x,
√
k)

∞∑
j=k+1

(
1− a1

A2k

)j
≤ C7A

δ+2k

a1V (x,
√
k)

for all k ∈ N∗, A ≥ 1, for all x ∈M and for all z, w ∈ B = B(x,A
√
k).

Combining (8.46), (8.47), (8.48) along with Lemma 8.8(b) and (2.4), for each
A ≥ 1 and any choice of η ∈ (0, 1), there exists C8 ≥ 1, N4 ≥ 2, ε0 ∈ (0, 1)
(depending on A, η) and α > 0 such that

(8.49)
∣∣GB(x,w)−GB(y, w)

∣∣ ≤ C8

(
d(x, y) ∨ 1√

k

)α
1

V (x,
√
k)
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for all x ∈ M , for all y ∈ B(x, ε0
√
k) and for all k ∈ N∗ satisfying k ≥ N4, where

B = B(x,A
√
k) and α is as in (6.87). Combining (8.44) and (8.49), we obtain the

desired estimate (8.25). �

Now, we are ready to prove the near diagonal lower bound using Lemma 8.7
and Lemma 8.3.

Proof of Proposition 8.6. By Lemma 8.3, there exists A ≥ 1∨h′ and c > 0
such that

(8.50) p
B(x,A

√
k)

k (x, x) ≥ c

V (x,
√
k)

for all x ∈ M and for all k ∈ N∗ with k ≥ 2. By Lemma 8.7, there exists C1 >
1, N1 ≥ 2, ε ∈ (0, 1), α > 0 such that

(8.51)
∣∣pBk (x, y)− pBk (x, x)

∣∣ ≤ [ c
3

+ C1

(
d(x, y) ∨ 1√

k

)α]
1

V (x,
√
k)

for all x ∈ M , for all k ∈ N∗ with k ≥ N0, for all y ∈ B(x, ε
√
k) where B =

B(x,A
√
k). Next, we choose ε1 ∈ (0, ε) and N1 ≥ N0 such that for all k ≥ N1, we

have

C1

(
ε1
√
k ∨ 1√
k

)α
≤ C1 max(εα, N

−α/2
0 ) ≤ c

3
.

By the above choice of ε1, N1 along with (8.50),(8.51) and the triangle inequality,
we have

inf
y∈B(x,ε1

√
k)
p
B(x,A

√
k)

k (x, y) ≥ c

3V (x,
√
k)

for all x ∈ M and for all k ∈ N∗ with k ≥ N1. Since pBk ≤ pk, the above equation
yields the desired near diagonal lower bound (8.24) for all k ≥ N1.

If k ∈ J2, N1K, then we reduce ε if necessary so that ε ≤ h/
√
N1. Hence

d(x, y) ≤ ε
√
k and k ≤ N1 implies d(x, y) ≤ h. Therefore by (4.12) of Lemma 4.10

and (4.10), we obtain (8.24) for all k ∈ J2, N1K. �

8.4. Off-diagonal lower bounds

The near diagonal lower bound of Proposition 8.6 can be easily upgraded to
full Gaussian lower bounds (GLE) by a well-known chaining argument (See [44,
Theorem 5.1], [27, Theorem 3.8]). For general quasi-geodesic spaces, we rely on
the chain lemma (Lemma 2.6). We now prove the main result of this chapter, i.e.
Gaussian lower bound.

Proof of Proposition 8.1. By Lemma 2.6 there exists C1 > 1 such that
for all b1 ≥ b and for all x, y ∈ M , there exists a b1-chain x = x0, x1, . . . , xm = y
with

(8.52) m ≤
⌈
C1d(x, y)

b1

⌉
.

By Proposition 8.6, there exists ε > 0, c1 > 0 such that

(8.53) inf
y∈B(x,ε

√
k)
pk(x, y) ≥ c1

V (x,
√
k)
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for all x ∈M and for all k ≥ 2. If

(8.54) s :=
C1ε

2k

C2d(x, y)
≥ b,

then there exists a s-chain x = x0, x1, . . . , xm = y between x and y with

(8.55) m :=

⌈
C2d(x, y)2

ε2k

⌉
.

However (8.54) holds whenever d(x, y) ≤ c3k and c3 ≤ C1ε
2/C2b. If C2 ≥ 1 and

d(x, y) ≥ ε
√
k, we have

(8.56) m :=

⌈
C2d(x, y)2

ε2k

⌉
≤ 2C2d(x, y)2

ε2k
.

If d(x, y) ≤ c3k and c3 ≤ ε/
√

(2C2), we have

(8.57)
k

m
≥ ε2k2

C2d(x, y)2
≥ ε2

C2c23
≥ 2.

We fix c3 = min
(
ε/
√

(2C2), C1ε
2/C2b

)
, so that (8.54),(8.55) and (8.57) are satis-

fied. We will fix C2 ≥ 1 later.
We will require

(8.58) d(xi, xi+1) ≤ s =
C1ε

2k

C2d(x, y)
≤ ε

3

√
k

2m
≤ ε

3

√⌊
k

m

⌋
for all i = 0, 1, . . . ,m − 1 and for all k ≥ m. We fix C2 := 36C2

1 ≥ 1, so that by
(8.56) we deduce

(8.59) s =
C1ε

2k

C2d(x, y)
≤ ε

3

(
ε2k2

4C2d(x, y)2

)1/2

≤ ε

3

√
k

2m
≤ ε

3

√⌊
k

m

⌋
for all x, y ∈M and k ∈ N∗ such that d(x, y) ≥ ε

√
k and k/m ≥ 2, where s,m is as

defined in (8.54) and (8.55). Define k0, . . . , km−1 such that

ki :=

⌊
k

m

⌋
or

⌊
k

m

⌋
+ 1

satisfying
∑m−1
i=0 ki = k. Consider the s-chain x = x0, . . . , xm = y between x

and y where s,m are given by (8.54),(8.55). By (8.59) and definition of ki, for all

wi ∈ B(xi, (ε/3)
√
bk/mc), for i = 0, 1, . . . ,m− 1 we have

d(wi, wi+1) ≤ ε
√
bk/mc ≤ ε

√
ki.

Therefore by (8.53), (8.57) and (2.5), there exists c4, c5 ∈ (0, 1) such that for all for

i = 0, 1, . . . ,m− 1, wi ∈ B(xi, (ε/3)
√
bk/mc), we have

(8.60) pki(wi, wi+1) ≥ c1

V (wi,
√
ki)
≥ c4

V (wi,
√
bk/mc)

≥ c5

V (xi,
√
bk/mc)

for all x, y ∈M , k ≥ 2 satisfying d(x, y) ≥ ε
√
k and d(x, y) ≤ c3k.
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Define Bi = B(xi, (ε/3)
√
bk/mc). By Chapman-Kolmogorov equation and

(8.60), for all x, y ∈M , k ≥ 2 satisfying d(x, y) ≥ ε
√
k and d(x, y) ≤ c3k, we obtain

pk(x, y)

=

∫
M

. . .

∫
M

p(x0, w1)p(w1, w2) . . . p(wm−2, wm−1)p(wm−1, y) dw1 . . . dwm−1

≥
∫
Bm−1

. . .

∫
B1

p(x0, w1)p(w1, w2) . . . p(wm−2, wm−1)p(wm−1, y) dw1 . . . dwm−1

≥ cm−1
5

V (x,
√
k)

m−1∏
i=1

V (xi, (ε/3)
√
bk/mc)

V (xi,
√
bk/mc)

(8.61)

By (2.4), (8.56), (8.57) and (8.61), there exists c6, c7 ∈ (0, 1) such that

pk(x, y) ≥ cm6

V (x,
√
k)
≥ exp

(
2C2d(x, y)2 log c6

ε2k

)
1

V (x,
√
k)

≥ 1

V (x,
√
k)

exp

(
−d(x, y)2

c7k

)
(8.62)

for all x, y ∈ M , k ≥ 2 satisfying d(x, y) ≥ ε
√
k and d(x, y) ≤ c3k. This yields

(GLE) for the case d(x, y) ≥ ε
√
k.

The case d(x, y) ≤ ε
√
k follows from (8.53). This completes the proof of (GLE).

�



CHAPTER 9

Parabolic Harnack inequality

In this chapter, we use the two sided Gaussian estimates on the heat kernel to
prove parabolic Harnack inequality. Moreover, we show the necessity of Poincaré
inequality and large scale volume doubling using parabolic Harnack inequality.

Based on ideas of Nash [64], Fabes and Stroock [31] gave a proof of parabolic
Harnack inequality using Gaussian bounds on the heat kernel for uniformly elliptic
operators on Rn. This idea of using Gaussian estimates on the heat kernel to prove
parabolic Harnack inequality was extended in various settings [74, 68, 27, 10].
Delmotte [27] introduced a discrete version of balayage formula to prove parabolic
Harnack inequality on graphs. We use a direct adaptation of Delmotte’s method
to prove parabolic Harnack inequality.

Recall that we defined caloric function as solutions to the discrete time heat
equation ∂ku + ∆uk = 0 in Definition 7.3. We introduce the parabolic Harnack
inequality for non-negative caloric functions.

Definition 9.1. Let (M,d, µ) be a metric measure space and let P be a Markov
operator on (M,d, µ). Let 0 < ζ < 1 and 0 < θ1 < θ2 < θ3 < θ4. We that a µ-
symmetric Markov operator P (or equivalently its heat kernel pk) on (M,d, µ)
satisfies the discrete-time parabolic Harnack inequality

H(ζ, θ1, θ2, θ3, θ4)

if there exists positive reals C,R such that for all x ∈ M, r ∈ R, a ∈ N with r > R
and every non-negative P -caloric function u : N×M → R≥0 on

Q = Ja, a+ bθ4r
2cK×B(x, r),

we have

sup
Q	

u ≤ C inf
Q⊕

u,

where

Q	 := Ja+ dθ1r
2e, a+ bθ2r

2cK×B(x, ζr),

Q⊕ := Ja+ dθ3r
2e, a+ bθ4r

2cK×B(x, ζr).

Remark 9.2.

(i) The exact values of the constants ζ ∈ (0, 1) and θ1, θ2, θ2, θ4 are unimportant.
For example, for graphs and length spaces if the parabolic Harnack inequality
is satisfied for one set of constants, then it is satisfied for every other set
of constants. The argument in [10, Proposition 5.2(iv)] can be adapted for
graphs and length spaces in the above discrete-time setting.

(ii) It suffices to consider the case a = 0 in the definition above by simply by
shifting the function in the time component.

119
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(iii) Analogous to Remark 7.4(b), if P is (h, h′)-compatible with (M,d, µ) we may
only require the function u to be defined on a smaller domain.

9.1. Gaussian estimates implies parabolic Harnack inequality

In this section, we prove the following parabolic Harnack inequality using two
sided Gaussian bounds.

Proposition 9.3. Let (M,d, µ) be a quasi-b-geodesic metric measure space
satisfying (V D)loc. Suppose that a Markov operator P has a kernel pk that is
weakly (h, h′)-compatible with respect to µ for some h > b. Moreover, suppose that
pk satisfies two sided Gaussian estimate (GE). Then there exists η ∈ (0, 1) such
that P satisfies the parabolic Harnack inequality H(η/2, η2/2, η2, 2η2, 4η2).

First we start by verifying that Gaussian lower bound implies large scale volume
doubling property.

Lemma 9.4. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying
(V D)loc. Suppose that a Markov operator P has a kernel pk that satisfies (GLE).
Then (M,d, µ) satisfies (V D)∞.

Proof. By (GLE) there exists c1, c2, c3 > 0 such that

pn(x, y) ≥ c1
V (x,

√
n)

exp
(
−d(x, y)2/c2n

)
for all x, y ∈ M satisfying d(x, y) ≤ c3n and for all n ∈ N∗. Therefore there exists
N1 ≥ 1 such that 4

√
n ≤ c3n for all n ≥ N1. By the Gaussian lower bound above

1 =

∫
M

pn(x, y) dy ≥
∫
B(x,4

√
n)

pn(x, y) dy ≥ V (x, 4
√
n)

V (x,
√
n)

c1 exp(−4/c2)

for all x ∈M and for all n ≥ N1. Therefore there exists R := N2
1 such that for all

x ∈M and for all r ≥ R, we have

V (x, r) ≥ V (x, brc) ≥ c1 exp(−4/c2)V (x, 4brc) ≥ c1 exp(−4/c2)V (x, 2r).

�

We show the following near diagonal lower bounds as a consequence of two
sided Gaussian bound (GE).

Lemma 9.5. Under the assumptions of Proposition 9.3, there exists c1 > 0,
η ∈ (0, 1) and R0 > 0 such that for all x ∈M , for all r ≥ R0, for all y, z ∈ B(x, ηr),
for all k ∈ N∗ satisfying (ηr)2 ≤ k ≤ (2ηr)2, we have

(9.1) p
B(x,r)
k (y, z) ≥ c1

V (x,
√
k)
.

Proof. We abbreviate B(x, r) by B. We denote the exit time from ball B by

τ := min {n : Xn /∈ B}

where (Xn)n∈N is the Markov chain on M corresponding to the kernel pk.
By strong Markov property and µ-symmetry, the Dirichlet kernel pBk can be

expressed in terms of pk as

(9.2) pBk (y, z) = pk(y, z)− Ey
[
pk−τ (z,Xτ )1J1,k−1K(τ)

]
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for all n ≥ 2 and for all x ∈M , where Ey denotes that the Markov chain starts at
X0 = y. We choose R0 > (1− η)−1h′, so that by (4.10)

Ey
[
pk−τ (z,Xτ )1J1,k−1K(τ)

]
= Ey

[
pk−τ (z,Xτ )1J2,k−2K(τ)

]
for all y, z ∈ B(x, ηr), for all k ≥ 2, for all x ∈ M and for all r ∈ R with r ≥ R0.
Combining this with (9.2) and Xτ /∈ B, we have

(9.3) pBk (y, z) ≥ pk(y, z)− sup
l∈J2,kK

sup
w/∈B(x,r)

pl(z, w)

for all y, z ∈ B(x, ηr), for all k ≥ 2, for all x ∈ M and for all r ∈ R with r ≥
(1− η)−1h′.

Note that by Lemma 9.4 we have (V D)∞. Therefore by (GLE), (2.4) and
k ≥ (ηr)2, there exists c2, c3 > 0 and R1 > 0 such that

(9.4) pk(y, z) ≥ c2

V (y,
√
k)

exp

(
− (2ηr)2

c2(ηr)2

)
≥ c3

V (x,
√
k)

for all x ∈ M , for all r ≥ R1, for all η ∈ (0, 1), for all y, z ∈ B(x, ηr) and for all
k ∈ N∗ satisfying (ηr)2 ≤ k.

For the second term in (9.3) by (GUE), there exists C1 > 0 such that

pl(z, w) ≤ C1

V (z,
√
l)

exp

(
−d(z, w)2

C1l

)
≤ C1

V (z,
√
l)

exp

(
− (1− η)2r2

C1l

)
for all l ∈ N∗ with l ≥ 2, for all x ∈ M , for all r > 0, for all η ∈ (0, 1), for all
z ∈ B(x, ηr) and for all w /∈ B(x, r). Combined this with (2.4) and k ≤ (2ηr)2,
there exists C2, C3, C4, δ > 0 such that for all η ∈ (0, 1/2), for all x ∈ M , for all
z ∈ B(x, ηr), for all k ∈ N∗ satisfying (ηr)2 ≤ k ≤ (2ηr)2, for all l ∈ J2, kK and for
all w /∈ B(x, r), we have

pl(z, w) ≤ C2

V (z,
√
k)

(
k

l

)δ
exp

(
− (1− η)2r2

C1l

)
≤ C3η

2δ

V (x,
√
k)

(
r2

l

)δ
exp

(
− r2

4C1l

)
<

C4η
2δ

V (x,
√
k)
.(9.5)

The second line above follows from η < 1/2 and (2.4) and the last line follows from
the fact the function t 7→ tδ exp(−t/4C1) is bounded in (0,∞). Combining (9.3),
(9.4) and (9.5), there exists c1 > 0 and R0 > 0 such that pBk satisfies (9.1). �

The following lemma provides a discrete time version of Balayage decomposition
for the heat equation.

Lemma 9.6. Let (M,d, µ) be a quasi-b-geodesic metric measure space satisfying
(V D)loc. Suppose that a Markov operator P has a kernel pk that is weakly (h, h′)-
compatible with respect to µ for some h > b. Then for all x ∈ M , for all r > h′,
for all r1 such that 0 < r1 < r1 + h′ < r, for all a, b ∈ N, for all non-negative
function u : N × M → R≥0 that is P -caloric in Ja, bK × B(x, r), there exists a
non-negative function v : N × M → R (depending on u) such that supp(v) ⊆
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Ja+1, bK×(B(x, r1 + h′) \B(x, r1)) and for all y ∈ B(x, r1) and for all k ∈ Ja, b+1K,
we have
(9.6)

u(k, y) =

∫
B(x,r1+h′)

pBk−a(y, z)u(a, z) dz +

k−1∑
l=a+1

∫
B(x,r1+h′)

pBk−l(y, w)v(l, w) dw,

where B = B(x, r).

Proof. Denote by B1 = B(x, r1 + h′) and B = B(x, r). Define

v1(k, y) = u(k, y)−
∫
B(x,r1+h′)

pBk−a(y, z)u(a, z) dz

for all (k, y) ∈ Ja+ 1, b+ 1K×B(x, r1 + h′). Note that

(k, y) 7→
∫
B1

pBk−a(y, z)u(a, z) dz

is P -caloric in Ja+ 1, bK×B(x, r1). Since u ≥ 0, by (4.10) we have v1(a+ 1, y) = 0
for all y ∈ B(x, r1) and by maximum principle v1 ≥ 0 in Ja+ 1, b+ 1K×B(x, r1).

Next, we construct v : N ×M → R iteratively. We assume that supp(v) ⊆
Ja + 1, bK × (B(x, r1 + h′) \B(x, r1)). Define v(a + 1, y) = v1(a + 1, y) for all y ∈
B(x, r1 + h′) \B(x, r).

Since v1 is a difference of two P -caloric functions, we have v1 is P -caloric in
Ja+ 1, bK×B(x, r1). We repeat this construction iteratively by defining

(9.7) vi+1(k, y) = vi(k, y)−
∫
B(x,r1+h′)

pBk−a−i(y, z)vi(a+ i, z) dz

for all (k, y) ∈ Ja+ i+ 1, b+ 1K×B(x, r1 + h′) and

v(a+ i+ 1, w) = vi+1(a+ i+ 1, w)

for all w ∈ B(x, r1 + h′) \ B(x, r1) and i = 0, 1, . . . , b − a − 1. By the same
argument as above, vi is non-negative and caloric in Ja + i, bK × B(x, r1) for all
i = 0, 1, . . . , b− a+ 1. Further

(9.8) ui(a+ i, z) = 0

for all z in B(x, r1) and i = 1, 2, . . . , b−a. Combining (9.7),(9.8) and gives (9.6). �

We are now ready to prove the parabolic Harnack inequality.

Proof of Proposition 9.3. Let η ∈ (0, 1) be as given by Lemma 9.5. Note
that for all r > 12h′/η, we have ηr−h′ > 2ηr/3 > η/2. Moreover for all r > 12h′/η,
for all y ∈ B(x, ηr/2) and for all z ∈ B(x, ηr) \B(x, ηr− h′) we have d(y, z) > 2h′.
Let R1 := 1 + max(R0, 12h′/η, 10/η) where R0 is the constant from Lemma 9.5.
By the above remarks, (4.10) and Lemma 9.6, for all x ∈M , for all r ≥ R1, for all
non-negative function u that is P -caloric in J0, b4η2r2cK × B where B = B(x, r),
there exists a non-negative function v supported in B(x, ηr) \ B(x, ηr − h′) such
that

(9.9) u(k, y) =

∫
B(x,ηr)

pBk (y, z)u(a, z) dz +

k−2∑
l=1

∫
B(x,ηr)

pBk−l(y, w)v(l, w) dw

for all (k, y) ∈ J1, b4η2r2c+ 1K×B(x, ηr/2).
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For some fixed x ∈M and r > R1, we define
(9.10)
Q	 := Jdη2r2/2e, bη2r2cK×B(x, ηr/2), Q⊕ := Jd2η2r2e, b4η2r2cK×B(x, ηr/2)

and Q := J0, b4η2r2cK×B(x, ηr).
By Lemma 9.4 we have (V D)∞. Therefore by Lemma 9.5 and (2.4) there exists

c1, c2 > 0 such that for all x ∈ M , for all r ≥ R1, for all y ∈ B(x, ηr/2), for all
z ∈ B(x, ηr), we have

(9.11) inf
(k,y)∈Q⊕

pBk (y, z) ≥ inf
k∈Jd2η2r2e,b4η2r2cK

c1

V (x,
√
k)
≥ c1
V (x, 2ηr)

≥ c2
V (x, ηr)

.

Similarly by Lemma 9.5 for all x ∈M , for all r ≥ R1, for all y ∈ B(x, ηr/2), for all
z ∈ B(x, ηr) \B(x, ηr − h′), for all l ∈ J1, bη2r2c − 2K we have

(9.12) inf
(k,y)∈Q⊕

pBk−l(y, z) ≥ inf
k∈Jd2η2r2e,b4η2r2cK

c1

V (x,
√

(k − l))
≥ c2
V (x, ηr)

.

For upper bounds in Q⊕ we simply use (GUE) as follows. By (GUE) and
(2.5), there exists C1, C2 > 0 such that for all x ∈ M , for all r ≥ R1, for all
y ∈ B(x, ηr/2), for all z ∈ B(x, ηr) we have

(9.13) sup
(k,y)∈Q	

pBk (y, z) ≤ sup
(k,y)∈Q	

pk(y, z) ≤ sup
(k,y)∈Q	

C1

V (y,
√
k)
≤ C2

V (x, ηr)
.

Similarly by (GUE) and (2.4), there exists C3, C4, C5, δ > 0 such that for all x ∈M ,
for all r ≥ R1, for all y ∈ B(x, ηr/2), for all z ∈ B(x, ηr) \ B(x, ηr − h′), for all
(k, y) ∈ Q	 and for all l ∈ J1, k − 2K we have

pBk−l(y, z) ≤ pk−l(y, z) ≤
C3

V (y,
√

(k − l))
exp

(
− d(y, z)2

C3(k − l)

)

≤ C4

V (y, ηr)

(
η2r2

(k − l)

)δ/2
exp

(
− η2r2

36C3(k − l)

)
≤ C5

V (x, ηr)
.(9.14)

The last line follows from the fact that the function t 7→ tδ/2 exp(−t/(36C3)) is
bounded in (0,∞) along with (2.5).

Combining the inequalities (9.11),(9.12),(9.13) and (9.14) along with the bal-
ayage formula (9.9) for all x ∈ M , for all r ≥ R1, for all non-negative function u
that is P -caloric in J0, b4η2r2cK×B(x, r), we have

sup
(k,y)∈Q	

u(k, y) ≤ c−1
2 max(C2, C5) inf

(k,y)∈Q⊕
u(k, y)

where Q	, Q⊕ are as defined in (9.10). Note that by Remark 9.2(ii), we have the
desired Harnack inequality. �

9.2. Necessity of Poincaré inequality and large scale volume doubling

In the previous sections, we have obtain two-sided Gaussian bounds on the heat
kernel and parabolic Harnack inequality assuming large scale volume doubling and
a Poincaré inequality. Now we show that large scale volume doubling and Poincaré
inequality are necessary to have two-sided Gaussian bounds on the heat kernel and
parabolic Harnack inequality. The was first proved by Saloff-Coste in [69, Theorem
3.1] using an argument due to Kusuoka and Stroock [55].Delmotte [27] followed the
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same strategy in discrete-time setting for random walk on graphs. The following is
an adaptation of the argument in [69, 27].

Proposition 9.7. Let (M,d, µ) be a quasi-b-geodesic metric measure space
satisfying (V D)loc. Suppose that a Markov operator P has a kernel pk that is weakly
(h, h′)-compatible with respect to µ for some h > b and there exists η ∈ (0, 1) such
that P satisfies the parabolic Harnack inequality H(η/2, η2/2, η2, 2η2, 4η2). Then
(M,d, µ) satisfies (V D)∞ and (P )h′ .

Proof. Let x ∈M and r > 0. Define u = ux,r as

u(l, y) =


1 if l ∈ J0, bη2r2c − 1K
1B(x,r)(y) if l = bη2r2c∫
B(x,r2(k))

p
B(x,r)
l−bη2r2c(y, w) dw if l > bη2r2c.

Note that u is non-negative and u-caloric in N× B(x, r). For k ∈ N∗, we choose r
such that η2r2 = k. By applying H(η/2, η2/2, η2, 2η2, 4η2) to the function u, there
exists CH , N1 > 1 such that

(9.15) 1 = u(k, x) ≤ CHu(2k, x) = CH

∫
B(x,

√
k/η)

p
B(x,

√
k/η)

k (x, z) dz

for all x ∈ M , for all k ∈ N∗ with k ≥ N1. Squaring (9.15) and applying Cauchy-
Schwarz inequality we obtain

1 ≤ C2
H

(∫
B(x,

√
k/η)

p
B(x,

√
k/η)

k (x, z) dz

)2

≤ C2
HV (x,

√
k/η)

∫
B(x,

√
k/η)

(
p
B(x,

√
k/η)

k (x, z)
)2

dz

= C2
HV (x,

√
k/η)p

B(x,
√
k/η)

2k (x, x)

for all x ∈M and for all k ∈ N∗ satisfying k ≥ N1. Therefore

(9.16) p
B(x,

√
k/η)

2k (x, x) ≥ C−2
H

1

V (x,
√
k/η)

for all x ∈M and for all k ∈ N∗ satisfying k ≥ N1.
Next we apply H(η/2, η2/2, η2, 2η2, 4η2) to the non-negative, P -caloric function

(l, y) 7→ pl+2(x, y) on J0, b4η2r2c,×KB(x, r) where r is chosen such that η2r2 =
k − 2 ≥ k/2. Then there exists N2 ≥ max(4, N1) such that for all k ≥ N1, we have

(9.17) pk(x, x) ≤ CHp2k(x, y)

for all x ∈ M , for all k ≥ N2 and for all y ∈ B(x,
√
k/2). Integrating (9.17) over

y ∈ B(x,
√

(k/2)), we obtain

(9.18) pk(x, x) ≤ CH
1

V (x,
√

(k/2))

for all x ∈M , for all k ≥ N2. Iterating (9.17) with y = x, we obtain

(9.19) p2k(x, x) ≤ ClHp2l+1k(x, x)
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for all x ∈ M , for all k ≥ N2 and for all l ∈ N. Combining (9.16), (9.18), (9.19)
along with pB2k ≤ p2k, we obtain

1

V (x, η−1
√
k)
≤

Cl+3
H

V (x, 2l/2
√
k)

for all l ∈ N, for all x ∈ M and for all k ∈ N satisfying k ≥ N2. Next we choose l
such that 2l/2 > 4η−1 so that there exists C1 > 1 such that

V (x, 4η−1
√
k) ≤ C1V (x, η−1

√
k)

for all x ∈ M and for all k ∈ N satisfying k ≥ N2. Therefore there exists R1 > 0
such that for all r > R1 and for all x ∈M we have

V (x, r) ≥ V (x, η−1
√
bη2r2c) ≥ C−1

1 V (x, 4η−1
√
bη2r2c) ≥ C−1

1 V (x, 2r).

This completes the proof of (V D)∞.
It remains to prove the Poincaré inequality (P )h′ . We start by showing a near

diagonal lower bound for the ‘Dirichlet kernel’ pB(x,η−1
√
k).

By H(η/2, η2/2, η2, 2η2, 4η2) applied to the function (l, y) 7→ p
B(x,η−1

√
k)

k+l (x, y)

that is P -caloric on J0, 4kK×B(x, η−1
√
k), we have

(9.20) p
B(x,η−1

√
k)

2k (x, x) ≤ CH inf
y∈B(x,

√
k/2)

p
B(x,η−1

√
k)

3k (x, y)

for all k ≥ N2 and for all x ∈M . Similarly by H(η/2, η2/2, η2, 2η2, 4η2) applied to

the function (l, z) 7→ p
B(x,η−1

√
k)

2k+l (z, y) that is P -caloric on J0, 4kK × B(x, η−1
√
k),

we have

(9.21) p
B(x,η−1

√
k)

3k (x, y) ≤ CH inf
z∈B(x,

√
k/2)

p
B(x,η−1

√
k)

4k (z, y)

for all k ≥ N2, for all x ∈M and for all y ∈ B(x,
√
k/2). Combining (9.16), (9.20),

(9.21) and (2.4) there exists c1 > 0 such that for all x ∈ M and for all k ∈ N∗
satisfying k ≥ N2, we have

(9.22) inf
y,z∈B(x,

√
k/2)

p
B(x,η−1

√
k)

4k (y, z) ≥ c1

V (x,
√
k)
.

For a ball B = B(x, η−1
√
k), we define a Markov operator

QBf(y) := PBf(y) +

(
1−

∫
B

pB1 (y, z) dz

)
f(y)

for all y ∈ B and for all functions f on B. Note that unlike PB , the operator QB
is conservative, that is

QB1B = 1B .
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For the rest of the this proof we abbreviate B(x, η−1
√
k) by B. By (9.22) for all

B = B(x, η−1
√
k) satisfying k ≥ N2 and for all y ∈ B(x,

√
k/2), we have

Q4k
B

[
f −Q4k

B f(y)
]

(y) ≥ P 4k
B

[
f −Q4k

B f(y)
]

(y)

≥
∫
B(x,

√
k/2)

(
f(z)−Q4k

B f(y)
)2
p4k
B (y, z) dz

≥ c1

V (x,
√
k)

∫
B(x,

√
k/2)

(
f(z)−Q4k

B f(y)
)2
dz

≥ c1

V (x,
√
k)

∫
B(x,

√
k/2)

(
f(z)− fB(x,

√
k/2)

)2

dz.(9.23)

The first line above follows from QBg ≥ PBg for all g ≥ 0, the third line above
follows from (9.22) and the last line above follows from the fact that mean minimizes
square error (3.2). By (9.23) along with (2.4) there exists c2 > 0 such that for all
x ∈M and for all k ∈ N∗, we have∫

B

Q4k
B

[
f −Q4k

B f(y)
]

(y) dy ≥
∫
B(x,

√
k/2)

Q4k
B

[
f −Q4k

B f(y)
]

(y) dy

≥ c2
∫
B(x,

√
k/2)

(
f(z)− fB(x,

√
k/2)

)2

dz(9.24)

where B = B(x, η−1
√
k).

By linearity of the operator Q4k
B , we have

Q4k
B

[
f −Q4k

B f(y)
]2

(y) =
(
Q4k
B f

2
)

(y)−
(
Q4k
B f(y)

)2
Therefore by the symmetry of the operator QB and QB1B = 1B , we have∫

B

Q4k
B

[
f −Q4k

B f(y)
]2

(y) dy = 〈1B , Q4k
B f

2〉L2(B) −
∥∥Q4k

B f
∥∥2

L2(B)

= 〈Q4k
B 1B , f

2〉L2(B) −
∥∥Q4k

B f
∥∥2

L2(B)

= ‖f‖2L2(B) −
∥∥Q4k

B f
∥∥2

L2(B)

=

4k−1∑
l=0

(∥∥QlBf∥∥2

L2(B)
−
∥∥Ql+1

B f
∥∥2

L2(B)

)
.(9.25)

The identity ‖f‖2L2(B) − ‖QBf‖
2
L2(B) =

∥∥(I −Q2
B)1/2

∥∥2

L2(B)
along with the fact

that QB is a contraction in L2 yields
(9.26)∥∥QlBf∥∥2

L2(B)
−
∥∥Ql+1

B f
∥∥2

L2(B)
=
∥∥∥QlB(I −Q2

B)1/2f
∥∥∥2

L2(B)
≤ ‖f‖2L2(B)−‖QBf‖

2
L2(B)

for all l ∈ N. Combining (9.25) and (9.26), we obtain

(9.27)

∫
B

Q4k
B

[
f −Q4k

B f(y)
]2

(y) dy ≤ 4k
(
‖f‖2L2(B) − ‖QBf‖

2
L2(B)

)
.
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Using the inequality a2 − b2 ≤ 2a(a− b), we have

‖f‖2L2(B) − ‖QBf‖
2
L2(B) =

∫
B

(f(y))2 − (QBf(y))2 dy

≤ 2

∫
B

f(y) (f(y)−QBf(y)) dy

=

∫
B

∫
B

(f(y)− f(z))
2
pB(y, z) dy dz

− 2

∫
B

(
1−

∫
B

pB(y, z) dz

)
(f(y))2 dy

≤
∫
B

∫
B

(f(y)− f(z))
2
pB(y, z) dy dz.(9.28)

Combining (9.24), (9.27) and (9.28), for all x ∈M , for all k ∈ N∗ with k ≥ N2 and
for all f ∈ L2(M), we have∫

B(x,
√
k/2)

(
f(z)− fB(x,

√
k/2)

)2

dz ≤ 4c−1
2 k

∫
B

∫
B

(f(y)− f(z))2p(y, z) dy dz

where B = B(x, η−1
√
k). Therefore there exists R > 0,C1, C2 > 0 such that for all

x ∈M , for all r > R and for all f ∈ L2(M), we have∫
B(x,r)

(
f(z)− fB(x,r)

)2
dz ≤

∫
B(x,r)

(
f(z)− f

B(x,
√
d4r2e/2)

)2

≤
∫
B(x,
√
d4r2e/2)

(
f(z)− f

B(x,
√
d4r2e/2)

)2

dz

≤ C1R
2

∫
B(x,C2r)

∫
B(x,C2r)

(f(y)− f(z))
2
p(y, z) dy dz.(9.29)

By (4.10) and (9.29), we have the desired Poincaré inequality (P )h′ . �

We now have all the ingredients to prove our main result in a slightly weaker
form.

Proposition 9.8. Let (M,d, µ) be a quasi-b-geodesic metric measure space
satisfying (V D)loc and diam(M) = +∞. Suppose that a Markov operator P has a
kernel p that is (h, h′)-compatible with (M,d, µ) with either h = h′ > b or h′ > h ≥
5b . Then the following are equivalent:

(i) Parabolic Harnack inequality: there exists η ∈ (0, 1) such that P satisfies
H(η/2, η2/2, η2, 2η2, 4η2).

(ii) Gaussian bounds on the heat kernel: the heat kernel pk satisfies (GE).
(iii) The conjunction of large scale volume doubling property (V D)∞ and Poincaré

inequality (P )h.

Proof. The implication “(iii) implies (ii)” follows from Theorem 5.1, Propo-
sition 7.1 and Proposition 8.1. (ii) implies (i) follows from Proposition 9.3. (i)
implies (iii) follows from Proposition 9.7 and Corollary 3.17. �

Next, we answer the question raised in Remark 3.6.

Proposition 9.9. Let (M,d, µ) be a quasi-b-geodesic metric measure space
satisfying (V D)loc, (V D)∞, (P )h′ for some h′ > b and diam(M) = +∞. Then
(M,d, µ) satisfies (P )h for all h > b.
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Proof. By Lemma 3.5 it suffices to consider the case b < h < h′. Consider
the Markov chain with density

p(x, y) =
1B(x,h)(y)

Q(x)Q(y)
√
V (x, h)V (y, h)

that is symmetric with respect to the measure µ′(dx) = Q(x)µ(dx), where

Q(x) =

∫
M

1B(x,h)(y)√
V (x, h)V (y, h)

µ(dy).

By (V D)loc, there exists C1 > 0 such that

(9.30) C−1
1 ≤ Q(x) ≤ C1

for all x ∈ M . Therefore the space (M,d, µ′) satisfies (V D)loc, (V D)∞, (P )h′ for
some h′ > b. Moreover by (9.30), p is weakly (h, h)-compatible with (M,d, µ′).
By the same argument as Lemma 4.11, there exists l ∈ N∗ such that pl is (h′, lh)
compatible with (M,d, µ′). Therefore by Proposition 9.8 and Lemma 4.16 the
kernel pk satisfies (GE). The Poincaré inequality (P )h for (M,d, µ′) then follows
from Propositions 9.3 and 9.7. An easy comparison argument using (9.30) gives
(P )h for (M,d, µ). �

The following is the main result of our work.

Theorem 9.10. Let (M,d, µ) be a quasi-b-geodesic metric measure space satis-
fying (V D)loc and diam(M) = +∞. Suppose that a Markov operator P has a kernel
p that is (h, h′)-compatible with (M,d, µ), where h′ ≥ h > b. Then the following
are equivalent:

(i) Parabolic Harnack inequality: there exists η ∈ (0, 1) such that P satisfies
H(η/2, η2/2, η2, 2η2, 4η2).

(ii) Gaussian bounds on the heat kernel: the heat kernel pk satisfies (GE).
(iii) The conjunction of large scale volume doubling property (V D)∞ and Poincaré

inequality (P )h.

Proof. Combining Propositions 9.8, 9.7 and 9.9 yields the desired result. �

As announced in the introduction, we will show Theorem 1.4 and Theorem 1.3
are covered by our results. Theorem 1.3 is clearly a special case of Theorem 9.10.
So it remains to verify Theorem 1.4.

Proof of Theorem 1.4. We need only to check the implication (c) implies
(b) as the other implications follow as in Theorem 9.10. Although p1 is only weakly
(h, h′)-compatible to (M,d, µ), by Lemma 4.11, Theorem 9.10 and Lemma 4.16, we
have that pk satisfies (GE). �



CHAPTER 10

Applications

Perhaps the most important application of the characterization of parabolic
Harnack inequality and Gaussian bounds on the heat kernel is the stability under
quasi-isometries.

Theorem 10.1. Let (Mi, di, µi) be a quasi-bi-geodesic metric measure spaces
satisfying (V D)loc and diam(Mi) = +∞, for i = 1, 2. Moreover we assume that
(M1, d1, µ1 and (M2, d2, µ2) are quasi-isometric metric measure spaces. Suppose
that a Markov operator Pi has a kernel that is (hi, h

′
i)-compatible with (Mi, di, µi)

with h′i ≥ hi > bi for i = 1, 2. Then

(i) The kernel corresponding to P1 satisfies (GE) if and only if the kernel corre-
sponding to P2 satisfies (GE).

(ii) The operator P1 satisfies the Harnack inequality H(η/2, η2/2, η2, 2η2, 4η2) for
some η ∈ (0, 1) if and only if P2 satisfies H(ζ/2, ζ2/2, ζ2, 2ζ2, 4ζ2) for some
ζ ∈ (0, 1).

Proof. The is a direct consequence of Theorem 9.10 along with stability of
(V D)∞ given by Proposition 2.20, stability of (P )h given by Proposition 3.16,
Proposition 9.9 and Lemma 3.5. �

As mentioned in the introduction, it is a long standing open problem to prove
such a stability result for elliptic Harnack inequality. A partial result in this direc-
tion is obtained by Bass. In [12], Bass proves stability of elliptic Harnack inequality
for weighted graphs under bounded perturbation of the conductances. However the
weighted graphs were assumed to be transient and they satisfy certain regularity
hypotheses. In [6], Barlow introduced the dumbbell condition that is stable un-
der bounded perturbation of weights of a weighted graph and asks if the dumbbell
condition is equivalent to elliptic Harnack inequality.

Recall that we proved an elliptic Hölder regularity estimate for P -harmonic
functions in Proposition 6.20 and we used the regularity in the proof of Gaussian
lower bounds (Lemma 8.7). There is an analogous parabolic Hölder regularity
estimate which follows from parabolic Harnack inequality. The proof is similar,
for example the proof given in [72, Theorem 5.4.7] can be adapted for the present
setting. Such parabolic Hölder continuity estimates were first obtained by Nash
[64].

Proposition 10.2. Let (M,d, µ) be a quasi-b-geodesic metric measure space
satisfying (V D)loc and diam(M) = +∞. Suppose that a Markov operator P has
a kernel p that is weakly (h, h′)-compatible with (M,d, µ) and satisfies parabolic
Harnack inequality H(η/2, η2/2, η2, 2η2, 4η2) for some η ∈ (0, 1). Then there exists
C > 0, R > 0 and α > 0 such that for all x ∈ M , for all r > R and for any non-
negative function u : N ×M → R that is P -caloric in J0, b4η2r2cK × B(x, r) = Q,

129
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we have the regularity estimate

sup
(k1,x1),(k2,x2)∈Jd2η2r2e,b4η2r2cK×B(x,r)

|u(k1, x1)− u(k2, x2)|
(max(1, |k1 − k2|+ d(x1, x2))

α ≤
C

rα
sup
Q
u.

Note that we do not obtain continuity, because we do not have Hólder continu-
ity estimate at arbitrarily small distances. Another application of elliptic Harnack
inequality is Liouville property for harmonic functions that was shown in Proposi-
tion 6.19.

Next, we turn attention to application of two sides Gaussian estimates (GE). Of
course, the estimates given by (GE) has enough information to determine whether
or not the the random walk is transient. The estimate given by [27, Proposition
4.3] can be easily generalized to metric measure spaces in which case we obtain

Proposition 10.3. Let (M,d, µ) be a quasi-b-geodesic metric measure space
satisfying (V D)loc and diam(M) = +∞. Consider a µ-symmetric Markov operator
P that is (h, h′)-compatible with (M,d, µ) for some h > b and whose kernel pk
satisfies (GE). Then the random walk corresponding to P is transient if and only
if

(10.1)

∞∑
n=1

n

V (x, n)
< +∞

for some x ∈M .

It is easy to see that the convergence of the series in (10.1) does not depend on
the choice of x ∈M . Unless the space is discrete, we do not have a ‘Green’s function’
as the Green operator ∆−1 =

∑∞
i=0 P

i does not have a kernel as there is ‘delta mass’
singularity at the starting point. However, we may consider the off-diagonal part of
the Green operator given by the “Green’s function” G(x, y) =

∑∞
i=1 pi(x, y). The

estimate given by [27, Proposition 4.3] can be again generalized as follows.

Proposition 10.4. Under the assumptions of Proposition 10.3, there exists
C > 0 such that

(10.2) C

∞∑
n=dd(x,y)e

n

V (x, n)
≤ G(x, y) :=

∞∑
i=1

pi(x, y) ≤ C
∞∑

n=dd(x,y)e

n

V (x, n)

for some x ∈M and for all y ∈M with d(x, y) > h′.

As noted in [44, Theorem 9.1], the Gaussian estimate is sufficient to prove law
of iterated logarithm in a weak form. The proof in [44] can be generalized for
metric measure spaces.

Proposition 10.5. Under the assumptions of Proposition 10.3, there exist
C > 0 such that for all starting points X0 ∈M

C−1 ≤ lim sup
d(X0, Xn)

(n log log n)
1/2

≤ C

almost surely, where (Xk)k∈N is the Markov chain corresponding to P .

We refer the reader to [44, Section 9] for other probabilistic applications in
similar spirit.

We sketch a possible application to mixing times of Markov chains that will
be developed elsewhere. If the space has finite diameter the techniques developed
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here can be used to prove upper and lower bounds on mixing times. In this case µ
is a finite measure on M and can be normalized if necessary to be the stationary
probability measure. Roughly speaking, in this case for (h, h)-compatible Markov
operator on a space with diameter D, it takes (D/h)2 steps of the Markov chain to
get close to the stationary distribution µ. The Poincaré inequality and Gaussian
upper bounds can be used to obtain upper bounds on mixing time as outlined in
[30, Lemma 2.1 and Remark 1 after Lemma 2.2]. For lower bounds on the mixing
time one would need Gaussian lower bounds. We plan to address these questions
in a sequel and obtain results complementary to those in [56]. We refer the reader
to [28, 29] for other recent works in this direction.

10.1. Harmonic functions with polynomial volume growth

In [17], Colding and Minicozzi proved that the space of harmonic functions with
polynomial volume growth with fixed rate on a manifold satisfying volume doubling
and Poincaré inequality is finite dimensional. As a corollary, they prove a conjecture
of S. T. Yau on manifolds that asserts the above property for Riemannian manifolds
with non-negative Ricci curvature. A recent surprising application of this result is
an alternate proof of Gromov’s theorem on groups of polynomial volume growth
due to Kleiner [53]. This new proof avoids the solution to Hilbert’s fifth problem
(Montgomery-Zippin-Yamabe structure theory). To precisely state a theorem we
need the following definition.

Definition 10.6. For a metric measure space (M,d, µ) and a µ-symmetric
Markov operator P on M , we define the space of P -harmonic functions with growth
rate d as the vector space Hd(M,P ) consisting of all P -harmonic functions u such
that there exists C > 0, p ∈M (depending on u) such that |u(x)| ≤ C(1 + d(x, p)γ)
for all x ∈M .

We have the following theorem that extends the result of Colding and Minicozzi
to random walks on metric measure spaces.

Theorem 10.7. Let (M,d, µ) be a quasi-geodesic metric measure spaces satis-
fying diam(M) = +∞, volume doubling hypotheses (V D)loc, (V D)∞ and Poincaré
inequality (P )h. Let P be a Markov operator that is (h, h′)-compatible with (M,d, µ).
Then the space of P -harmonic functions Hd(M,P ) with a fixed growth rate d is fi-
nite dimensional for any d ≥ 0.

The proof of Colding and Minicozzi’s theorem in [17] relies on three ingredients:
volume doubling hypotheses (V D), a Poincaré inequality 1.7 and a reverse Poincaré
inequality for harmonic functions. We have all the three ingredients as we showed
the reverse Poincaré inequality in Lemma 6.14. A caveat is that we have to rely
on weaker versions of all the three ingredients but nevertheless we will see that
Theorem 10.7 can be proved using the techniques introduced of [17]. T. Delmotte
adapted an alternate approach due to P. Li [57] to prove a similar statement for
random walks on graphs satisfying doubling and Poincaré inequality [26].

The next proposition below is a slightly weaker version of [17, Proposition 2.5].

Proposition 10.8. Let (M,d, µ) be a quasi-geodesic metric measure spaces
satisfying diam(M) = +∞, volume doubling hypotheses (V D)loc, (V D)∞ and
Poincaré inequality (P )h and let P be a Markov operator that is (h, h′)-compatible
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with (M,d, µ). There exists ε ∈ (0, 1) such that for all p ∈ M , for all k ≥ 1
satisfying r ≥ k/ε and for all functions f1, f2, . . . , fn ∈ L∞loc(M) satisfying

(10.3)

∫
B(p,r)

f2
i dµ = V (p, r)

for all i = 1, 2, . . . , n;

(10.4)

∣∣∣∣∣
∫
B(p,r)

fifj dµ

∣∣∣∣∣ < V (p, r)

2

for all 1 ≤ i < j ≤ n; and

(10.5)

∫
B(p,2r)

(
f2
i + (2r)2|∇P fi|2

)
dµ ≤ k2V (p, r)

for all i = 1, 2, . . . , n, we have n ≤ N , where N depends on k but does not depend
on r ≥ k/ε or p ∈M .

Proof. By Lemma 2.11 there exists CD > 0 such that

(10.6) V (x, 2r1) ≤ V (x, r1)

for all r1 ≥ 1 and for all x ∈M . Moreover if we set δ := log2 CD, we have

(10.7)
V (x, r2)

V (x, r1)
≤ CD

(
r2

r1

)δ
for all x ∈ M and for all 1 ≤ r1 ≤ r2. By Lemma 3.7 and (4.10), there exists
constants CA > 0 and A ≥ 1 such that for all x ∈ M , for all r1 ≥ 1, for all
functions f ∈ L∞loc(M), we have

(10.8)

∫
B(x,r1)

∣∣f − fB(x,r1)

∣∣2 dµ ≤ CAr2
1

∫
B(x,Ar1)

|∇P f|2 dµ.

Let p ∈M , r > 0, k ≥ 1 and k ≤ εr. Define

(10.9) r0 :=
εr

k
≥ 1,

where ε ∈ (0, 1) will be determined later.
Let x1, x2, . . . , xν be a 2r0-net of B(p, r). We set

(10.10) ε := min

(
1

2A
,

1

20C
1/2
A C

1/2
D (4A+ 1)δ/2

)
.

Since ε ≤ 1/2 and r > r0 ≥ 1, by (10.6), (10.7), we have
(10.11)

1

CD
≤ V (xj , r)

V (xj , 2r)
≤ V (xj , r)

V (p, r)
≤ V (xj , r0)

V (p, r)

V (xj , r)

V (xj , r0)
≤ CD

(
k

ε

)δ
V (xj , r0)

V (p, r)

for all j = 1, 2, . . . , ν and for all r ≥ 1. Since r0 ≤ r by Proposition 2.22(a), (10.11)
and (10.6), we have

(10.12)

ν∑
j=1

V (xj , r0) ≤ V (p, r + r0) ≤ V (p, 2r) ≤ CDV (p, r).

By (10.11) and (10.12), we have

(10.13) ν ≤ C3
D(k/ε)δ.
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Next we bound the overlap of the balls (B(xj , 2Ar0))1≤j≤ν . Define η(y) as

the cardinality of the set {j : y ∈ B(xj , 2Ar0)}. If y ∈ ∩η(y)
m=1B(xjm , 2Ar0), then

B(y, (2A+ 1)r0) contains the disjoint balls B(xjm , r0) and hence

(10.14)

η(y)∑
m=1

V (xjm , r0) ≤ V (y, (2A+ 1)r0)

However by (10.6), (10.7), for all y ∈M , for all jm such that y ∈ B(xjm , 2Ar0), we
have

(10.15) V (y, (2A+ 1)r0) ≤ V (xjm , (4A+ 1)r0) ≤ CD(4A+ 1)δV (xjm , r0).

By (10.14) and (10.15), we have

(10.16) C̄ := sup
y∈M

η(y) ≤ CD(4A+ 1)δ.

By Proposition 2.22 the balls B(xj , 2r0) covers B(p, r). We now partition B(p, r)
into ν disjoint subsets S1, S2, . . . , Sν , where B(xj , r0) ∩ B(p, r) ⊂ Sj ⊂ B(xj , 2r0).
Let P = {xj : 1 ≤ j ≤ ν} denote the finite set of points in B(p, r). For any function
f ∈ L∞loc(M), we set

(10.17) Ai,j := −
∫
B(xj ,2r0)

fi dµ =
1

V (xj , 2r0)

∫
B(xj ,2r0)

fi dµ.

By Cauchy-Schwarz inequality, (10.11), (10.5), we have

|Ai,j|2 ≤ −
∫
B(xj ,2r0)

f2
i dµ ≤

1

V (xj , r0)

∫
B(xj ,2r0)

f2
i dµ

≤ C2
D(k/ε)δ

1

V (p, r)

∫
B(xj ,2r0)

f2
i dµ ≤ C2

D(k/ε)δ
1

V (p, r)

∫
B(p,2r)

f2
i dµ

≤ C2
Dk

2(k/ε)δ(10.18)

for all i = 1, . . . , n and for all j = 1, . . . , ν.
Let Λ :=

{
s
10 : s ∈ Z, |s| ≤ 10CDk(k/ε)δ/2

}
. Next, we define a map fi 7→

M(fi), where M(fi) : P → Λ is a function from a finite set P to another finite set
Λ. With a slight abuse of notation, we intepret the function M(fi) as a piecewise
constant function on B(p, r) that takes the value M(fi)(xj) on Sj , where j =
1, . . . , ν. For all i = 1, . . . , n and for all j = 1, . . . , ν, we define M(fi)(xj) ∈ Λ as
any closest point of Λ to Ai,j . By definition of Λ and (10.18), for all i, j we have

(10.19) |Ai,j −M(fi)(xj)|2 ≤
1

400
.

Combining the Poincaré inequality (10.8), (10.19) and Sj ⊂ B(xi, 2Ar0), we obtain∫
Sj

|fi −M(fi)(xj)|2 dµ

≤ 2

∫
B(xj ,2r0)

|fi −Ai,j|2 dµ+ 2

∫
Sj

|Ai,j −M(fi)(xj)|2 dµ

≤ 8r2
0CA

∫
B(xj ,2Ar0)

|∇P fi|2 dµ+
µ(Sj)

200
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for all i = 1, . . . , n and for all j = 1, . . . , ν. Hence by (10.16), (10.5) and (10.10),
we have∫

B(p,r)

|fi −M(fi)|2 dµ ≤ 8r2
0CAC̄

∫
B(p,2r)

|∇P fi|2 dµ+

ν∑
j=1

µ(Sj)

200

≤ 2r2
0CAC̄k

2r−2V (p, r) +
V (p, r)

200
≤ V (p, r)

100
.(10.20)

By the triangle inequality along with (10.20), we obtain

(∫
B(p,r)

|fi − fj|2 dµ

)1/2

−

(∫
B(p,r)

|M(fi)−M(fj)|2 dµ

)1/2

(10.21)

≤

(∫
B(p,r)

|fi −M(fi)|2 dµ

)1/2

+

(∫
B(p,r)

|fj −M(fj)|2 dµ

)1/2

≤
√
V (p, r)

5

for all i 6= j. By (10.4) and (10.3), we have for i 6= j

(10.22)

(∫
B(p,r)

|fi − fj|2 dµ

)1/2

>
√
V (p, r).

Combining (10.21) and (10.22), for all i 6= j we obtain(∫
B(p,r)

|M(fi)−M(fj)|2 dµ

)1/2

> 0.

Hence the map M is injective. Therefore by (10.13)

n ≤ |Λ||P| = |Λ|ν ≤ N :=
(

20CDk(k/ε)δ/2 + 1
)C3

D(k/ε)δ

.

Note that the value of N does not depend on the value of p ∈M or r but only on k
and the constants associated with doubling properties and Poincaré inequality. �

Next, we recall the a result due to Colding and Minicozzi [17, Proposition 4.16].
We omit the proof as it is identical to that of [17, Proposition 4.16].

Proposition 10.9. Consider a metric measure space (M,d, µ) satisfying the
hypotheses (V D)loc, (V D)∞ and diam(M) = +∞. Let P be a Markov opera-
tor that is (h, h′)-compatible with (M,d, µ) for some 0 < h ≤ h′. Suppose that
u1, u2, . . . , u2k ∈ Hd(M,P ) are linearly independent. There exists δ > 0, p ∈ M
such that for all d > 0, Ω > 1 and m0 > 0, there exists m ≥ m0, l ≥ k

2 Ω−4d−δ, and
functions v1, . . . , vl in the linear span of ui such that

(10.23) 2Ω4d+2δV (p,Ωm) = 2Ω4d+2δ

∫
B(p,Ωm)

v2
i dµ ≥

∫
B(p,Ωm+1)

v2
i dµ

and

(10.24)

∫
B(p,Ωm)

vivj dµ = δi,jV (p,Ωm).

In Proposition 10.9, we may choose δ as the constant in (10.7). We are now
ready to prove Theorem 10.7.
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Proof of Theorem 10.7. Fix Ω > max(4, 3h′), d > 0 and p ∈ M . Let
CR be as given by Lemma 6.14 and set k2 = (8CR + 2)Ω4d+2δ. Let ε ∈ (0, 1)
be given by Proposition 10.8. We choose m0 ∈ N∗ such that Ωm0 ≥ k/ε. Let
dimHd(M,P ) ≥ N0 := 4Ω4d+2δN where N is given by Proposition 10.8 where k is
as defined above.

Suppose that u1, u2, . . . , uN0
∈ Hd(M,P ) be linearly independent. Then by

Proposition 10.9 and reverse Poincaré inequality (Lemma 6.14) there exists CR >
0 and m > m0 such that for all f ∈ L∞loc(M,µ), we have harmonic functions
v1, v2, . . . , vl satisfying

(10.25) l ≥ 1

4
N0Ω−4d−2δ = N ,

(10.26)

∫
B(p,Ωm)

vivj dµ = V (p,Ωm)δi,j ,

(10.27)

∫
B(p,Ωm+1)

v2
i dµ ≤ 2CRΩ4d+2δV (p,Ωm),

and

(10.28)

∫
B(p,2Ωm)

|∇P vi|2 dµ ≤ CRΩ−2m

∫
B(p,4Ωm)

v2
i dµ ≤ 2Ω4d+2δ−2mV (p,Ωm).

Note that (10.26), (10.27), (10.28) and Ω > 4 implies that v1, v2, . . . , vl satisfy
(10.3), (10.3)

(10.29)

∫
B(p,2Ωm)

v2
i + (2Ωm)2|∇P vi|2 dµ ≤ (8CR + 2)Ω4d+2δV (p, r)

for all i = 1, . . . , l. Note that (10.25), (10.26), (10.29) along with Proposition 10.8
implies the desired contradiction. Therefore dimHd(M,P ) < N0 <∞. �

Remark 10.10. Similar to [53], we can replace the volume doubling hypotheses
(V D)loc, (V D)∞ of Theorem 10.7 by a weakly polynomial growth assumption on
the volume growth.

10.2. Directions for future work

We end with a few directions for future work. One of the features of our
work is that it provides an unified approach to Gaussian estimates for discrete
time Markov chains on both discrete and continuous spaces. Recently, there has
been considerable interest in analysis and probability on fractals and fractal-like
manifolds and graphs. For many natural family of fractals the heat kernel satisfies
sub-Gaussian estimates of the form

pt(x, y) � C1

V (x, t1/β)
exp

(
−C2

(
d(x, y)β

t

)1/(β−1)
)

for all t > 0 and for all x, y ∈M and β > 1 is a parameter (See [11, Theorem 1.5(e)]
for an early example). Here � means that both inequalities ≤ and ≥ hold with
different values of constants C1, C2. Similar to the characterizations of Gaussian
estimates in [32, 69, 76, 27, 42] there exists various characterizations for sub-
Gaussian estimates both in the setting of diffusions on local Dirichlet spaces [8] and
for discrete time Markov chains on graphs [7, 9, 37, 38]. As in the case of Gaussian



136 10. APPLICATIONS

estimates, it is desirable to obtain characterizations of sub-Gaussian estimates that
are stable under quasi-isometries. This was achieved using a condition called cutoff-
Sobolev inequality first introduced by Barlow and Bass [7] (See also [8]). Our work
naturally raises an analogous question for sub-Gaussian estimates on Markov chains.

Problem 10.11. Characterize sub-Gaussian estimates for discrete time Markov
chains on quasi-geodesic metric measure spaces using geometric conditions that are
stable with respect to quasi-isometries.

Another direction for future work is to clarify the applications to mixing times
in the finite diameter case as mentioned in Remark 8.5(b).

As mentioned in the introduction, we state the problem concerning the stability
of the elliptic Harnack inequality.

Problem 10.12. Is elliptic Harnack inequality stable under quasi-isometries?
If so, characterize the elliptic-Harnack inequality by geometric properties that are
stable under quasi-isometries.

We refer the reader to [12, 6] for partial progress and conjectures aimed at
solving the above problem.



APPENDIX A

Interpolation Theorems

In this appendix, we state Riesz-Thorin and Marcinkiewicz interpolations the-
orems and refer the reader to the literature for a proof.

Let T : (X, ‖·‖X) → (Y, ‖·‖Y ) be a linear operator between normed linear
spaces. We denote the operator norm by

‖T‖X→Y = sup
x∈X,x 6=0

‖Tx‖Y
‖x‖X

= sup
x∈X,‖x‖=1

‖Tx‖Y .

If ‖T‖X→Y < ∞, we say the operator T is bounded. It is well known that T is
bounded if and only if T is continuous. We abbreviate ‖T‖Lp→Lq as ‖T‖p→q.

Theorem A.1 (Riesz-Thorin interpolation theorem). Assume that (X,Σ, µ)
is a σ-finite measure space. Suppose 1 ≤ p0, p1 ≤ ∞, 1 ≤ q0, q1 ≤ ∞. Let
T : Lp0 + Lp1 → Lq0 + Lq1 , be a linear operator such that T : Lp0 → Lq0 and
Lp1 → Lq1 are bounded. Then

‖T‖pθ→qθ ≤ ‖T‖
1−θ
p0→q0 ‖T‖

θ
p1→q1

for all θ ∈ (0, 1) where 1/pθ := (1− θ)/p0 + θ/p1 and 1/qθ := (1− θ)/q0 + θ/q1.

We refer the reader to [75] for a proof of Stein’s interpolation theorem which
in turn implies Theorem A.1.

Consider a σ-finite measure space (X,Σ, µ). The distribution function of f is
defined by

λf (t) = µ {x ∈ X : |f(x)| > t}
We denote weak Lp space by Lp,w For a measurable function f and 1 ≤ p <∞,

we define its Lp,w norm by

‖f‖p,w =

(
sup
t>0

tpλf (t)

)1/p

.

We say a measurable function f ∈ Lp,w if ‖f‖p,w < ∞. Note that Lp,w is not

a true norm, since ‖·‖p,w does not satisfy triangle inequality. If f ∈ Lp, then

‖f‖p ≤ ‖f‖p,w. Therefore Lp ⊂ Lp,w. It is easy to check that Lp 6= Lp,w in general.

Theorem A.2 (Marcinkiewicz interpolation theorem). Let 1 ≤ p0 ≤ q0 < ∞,
1 ≤ p1 ≤ q1 < ∞ with q0 6= q1. Let T be a linear operator from Lp1 + Lp2 to the
space of measurable functions. If T satisfies

‖Tf‖qi,w ≤ Bi ‖f‖pi for all f ∈ Lpi , i = 0, 1

then
‖T‖pθ→qθ ≤ Cp0,p1,q0,q1,θB

1−θ
0 Bθ1

for all θ ∈ (0, 1), where 1/pθ := (1 − θ)/p0 + θ/p1, 1/qθ := (1 − θ)/q0 + θ/q1 and
Cp0,p1,q0,q1,θ <∞ depends only on p0, p1, q0, q1, θ.
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We refer the reader to [2, Theorem 2.58] for a proof of Theorem A.2.



APPENDIX B

Examples

Here we collect various examples discussed earlier and supplement them with
more examples, comments and pictures.

Example B.1 (Euclidean space with radial weights). We expand upon the ball
walk described in Example 4.4 for specific metric measure spaces. If a weighted
Riemannian manifold satisfies two-sided Gaussian estimates for its canonical diffu-
sion, one might näıvely expect the same to hold for the ball walk. However this is
not true in general because the measure µ′ of Example 4.4 is not necessarily compa-
rable to µ. The measure µ′ might fail to satisfy either (V D)∞ or (P )∞. Recall the
example (M,d, µ) = (Rn, ‖·‖2 , µα) from Example 3.21, where µα = (1 + |x|)α/2 dx.

Note that if α > 0 there is a drift away from the origin and if α < 0 there is
a drift towards the origin. If µ = µα one can verify that µ′ = µ′α is comparable to
µ2α. Therefore the ballwalk accentuates the drift towards or away from the origin
(See Figure 1). In light of the above observation along with Table 1, Theorem 1.4
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Figure 1. Density of µα and µ′α for the case α = 0.6 (left) and
α = −0.6 (right) in R. Here µ′α is normalized to have density 1 at
origin.

and Proposition 3.20, if n ≥ 2 and α ∈ (−n,−n/2], then the canonical diffusion on
(Rn, ‖·‖2 , µα) satisfies Gaussian estimates but the ball walk fails to satisfy Gaussian
estimates because (Rn, ‖·‖2 , µ′α) does not satisfy (V D)∞. In the case n = 1 and
α ∈ [1/2, 1), the canonical diffusion on (R, ‖·‖2 , µα) satisfies Gaussian estimates
but the ball walk fails to satisfy Gaussian estimates because (R, ‖·‖2 , µ′α) does not
satisfy (P )∞.

Even when both diffusion and ball walk satisfy Gaussian estimates for the
transition kernels with respect to the invariant measures, the long term behavior
might be different. For example, if n ≥ 3 and if 2 − n < α ≤ (2 − n)/2 then both
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diffusion and ball walk on (Rn, d, µα) satisfy Gaussian estimates for the transition
kernels with respect to the invariant measures. However in this case the ball walk
is recurrent but the diffusion is transient.

For n ∈ N∗, the the ball walk on (Rn, d, µα) is positive recurrent chain α <
−n/2, null recurrent for −n/2 ≤ α ≤ (2− n)/2 and transient if α > (2− n)/2 (See
[59, Proposition 10.1.1] and Proposition 10.3). However the canonical diffusion on
(Rn, d, µα) is positive recurrent chain α < −n, null recurrent for −n ≤ α ≤ 2 − n
and transient if α > 2− n.

Example B.2 (Complexes). Consider the Euclidean 2-complex in R3 formed
by the hyperplanes Hi,n = {(x1, x2, x3) : xi = n} where i = 1, 2, 3 and n ∈ Z. The
metric is described by the intrinsic metric and the measure is the two dimensional
surface measure. Dirichlet forms on such Riemannian complexes have been studied
in [66]. This example satisfies both Poincaré inequality (P )h for all h > 0 and
Volume doubling (V D)∞. The geometry of the balls depend on the center (See
Figure 2).

The above example can also be viewed as a Cayley complex [43, p. 77] corre-
sponding to the presentation

Z3 =
〈
a1, a2, a3 a1a2a

−1
1 a−1

2 , a2a3a
−1
2 a−1

3 , a3a1a
−1
3 a−1

1

〉
.

More generally, consider a finitely generated and finitely presented group G =
〈S R〉. Note that the 1-skeleton of the Cayley complex is the Cayley graph of
〈S R〉 and the 2-cells (faces) are in bijection with G× R. We equipp each 2-cell
with the the usual Euclidean metric on the regular n-gon with edges of length 1 and
we endow the space with the measure obtained by equiping each two-cell with its
Lebesgue measure. It is easy to verify that the Cayley complex is quasi-isometric
to the Cayley graph of G with the quasi-isometry given by the natural embedding
of the Cayley graph in the Cayley complex. By the stability of (V D)∞ and (P )h
under quasi-isometries, we have that ball walk on Cayley complexes of nilpotent
groups (such groups are finitely generated and finitely presented) satisfy two sided
Gaussian bounds.

Figure 2. Two balls (in intrinsic metric) with same radius but
different centers in the Cayley complex of Z3.

In Figure 3 we consider the 1-complex
{

(x, y) ∈ R2 : x ∈ Z or y ∈ Z
}

equipped
with intrinsic metric. Note that the geometry of the balls depend both on the
location of the center and the radius.
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Figure 3. The blue lines shows the balls (in intrinsic metric) of
various sizes while the red squares correspond to the L1 balls.

Next, we consider an example from [35, Example 3.14].

Example B.3 (Model manifolds/Surfaces of revolution). Given a smooth func-
tion ψ : (0,∞) → (0,∞), denote by Mψ a model manifold. Here by model man-
ifold, we mean RN equipped with the Riemannian metric in polar coordinates
(r, θ) ∈ (0,+∞)× SN−1 by

d s2 = d r2 + ψ(r)2 d θ2,

where d θ2 is the standard metric on SN−1 and ψ is a smooth positive function on
(0,+∞). The necessary and sufficent conditions under which d s2 can be smoothly
extended to a metric on the entire space RN is given by

ψ(0) = 0, ψ′(0) = 1, and ψ′′(0) = 0

(see [35, equation (4.12)]). Therefore we may choose ψ(r) = rα where α ∈ R for
all r ≥ 1 and extend it smoothly satisfying the above conditions.

It is known that that Mψ with ψ(r) = rα for r ≥ 1 satisfies parabolic Harnack
inequality if and only if −1/(N − 1) < α ≤ 1. The Riemannian measure (in polar
coordinates) is given by dµ = ψ(r)N−1 d r d θ. One can check that the reversible
measure µ′ for the ball walk satisfies dµ′ = V (x, 1) dµ ≈ ψ(r)2(N−1) dr dθ for the
case α < 0 and dµ′ = V (x, 1) dµ ≈ dµ for the case α ≥ 0 (see [35, p. 856]).
Therefore the ball walk on the model manifold Mψ with ψ(r) = rα for r ≥ 1
satisfies the parabolic Harnack inequality and two-sided Gaussian estimates if and
only if −1/2(N − 1) < α ≤ 1. Using Lemma 2.12, it is easy to verify that Mψ

with ψ(r) = rα for r ≥ 1 equipped with the measure µ′ fails to satisfy (V D)∞ if
α ≤ −1/2(N−1). Therefore for the case −1/(N−1) < α ≤ −1/2(N−1), the model
manifold Mψ defined above satisfies two sided Gaussian estimates for diffusion but
fails to satisfy two sided Gaussian estimates for the ball walk.

These model manifolds can also be considered as surfaces of revolution formed
by the graph of the function ψ (see [34, Section 5.1]). Similar to Example B.1, the
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ball walk and diffusions may exhibit different behaviors in terms of null recurrence,
positive recurrence and transience depending on α and N .

Example B.4 (Bodies of revolution). Another related class of examples given
in [34, Section 5.2] are bodies of revolution. Let f : [0,∞) → [0,∞) be a concave
function with f(0) = 0. Then the body of revolution in Rn (with n > 1) defined by

M :=
{

(u, t) ∈ Rn : u ∈ Rn−1, t ≥ 0, ‖u‖2 ≤ f(t)
}

where ‖·‖2 above denotes the Euclidean norm in Rn−1 (See figure 4). Note that

x
1

x
3

x
2

f(x
1
)

Figure 4. The body of revolution corresponding to f in R3. This
figure shows two balls of the same radius.

since f is concave, M is a convex subset of Rn. By the results of [58], we have
that M satisfies two-sided Gaussian estimates for the heat kernel corresponding to
the Neumann Laplacian. Hence by Theorem 1.1 the Neumann Laplacian satisfies
Poincaré inequality in M and satisfies volume doubling. If we set f(x) = xα for
some α ∈ (0, 1) and by Proposition 3.20 and Theorem 1.4 the ball walk on M
satisfies two-sided Gaussian bounds. Hence by Proposition 10.3 the corresponding
ball walk on M ⊂ Rn with f(x) = xα is transient if and only if α(n− 1) > 1.
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