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1 Introduction

Let X = {Xt, t ∈ [0,∞);Px, x ∈ X} be a diffusion process on a locally compact separable metric
space (X , d). A function h on a ball B = B(x, r) is harmonic if h(Xt∧τB ) is a local martingale
under Px for every x ∈ B; here τB is the exit time from B by the process X and the filtration
is the minimal augmented filtration generated by X. The (scale-invariant) elliptic Harnack
inequality (EHI) holds for X if there exist constants C ≥ 1 and δ ∈ (0, 1) such that whenever h
is non-negative and harmonic on a ball B = B(x, r), then

sup
B(x,δr)

h ≤ C inf
B(x,δr)

h. (1.1)

If it holds, the EHI is a valuable tool for the study of the processX and its associated heat kernel.
A well-known theorem of Moser [Mo1] is that the EHI holds if X is the symmetric diffusion
associated with a uniformly elliptic divergence form operator A = div(A(x)∇). Associated with
such a process is the symmetric Dirichlet form (E ,F) on L2(Rd; dx), where

F = W 1,2(Rd) =
{
f ∈ L2(Rd; dx) : ∇f ∈ L2(Rd; dx)

}
is the Sobolev space on Rd of order (1, 2) and

E(f, f) =
ˆ
Rd

∇f(x) ·A(x)∇f(x) dx, f ∈ F .

We say two symmetric Dirichlet forms E(1) and E(2) on L2(Rd; dx) with common domain F are
comparable if there exists C ≥ 1 such that

C−1E(1)(f, f) ≤ E(2)(f, f) ≤ CE(1)(f, f) for all f ∈ F .

Moser’s result gives the stability of the EHI, in the sense that if E(1) and E(2) are comparable
symmetric Dirichlet forms on L2(Rd; dx), associated with uniformly elliptic divergence form
operators Ai, then the EHI holds for E(2) if and only if it holds for E(1).
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A few years later, Moser [Mo2, Mo3] proved a parabolic Harnack inequality PHI, which holds
for non-negative solutions to the heat equation associated with a uniformly elliptic divergence
form operator A. In particular, if u is any non-negative solution to the heat equation ∂u

∂t =
Au in a time-space cylinder Q = (0, r2) × B(x, r), then writing T = r2, Q− = (T/4, T/2) ×
B(x, δr), Q+ = (3T/4, T )×B(x, δr), we have

ess sup
Q−

u ≤ CP ess inf
Q+

u,

where the constants CP > 1 and δ ∈ (0, 1) do not depend on x, r or u. Subsequently Grigor’yan
and Saloff-Coste in [Gr0, Sal92] gave a characterization of the PHI, and the stability of the PHI
follows immediately from this characterization. The methods of these papers are very robust,
and this characterization of the PHI was extended to diffusions on locally compact separable
metric spaces [St], and to random walks on graphs [De1].

For a number of years the stability of the apparently simpler EHI remained an open problem.
Stability on a large class of unbounded spaces (including Riemannian manifolds and graphs) was
proved by two of us recently in [BM1]. However, the result there relied on the metric space being
geodesic and satisfying some strong local regularity conditions; one key use of this regularity
was to ensure the existence of Green’s functions.

The natural context for the study of the EHI is that of locally compact separable metric
measure spaces with strongly local regular (symmetric) Dirichlet forms, which we call MMD
spaces. Examples include Riemannian manifolds, the cable systems of graphs [V], as well as
various classes of fractals. Not only do MMD spaces provide a common framework for all
these examples, but also certain transformations (change of measure, quasisymmetric change of
metric) which are natural for MMD spaces but are not so natural for manifolds and graphs.
These transformations are key to the argument in [BM1].

This paper has three main goals:

(i) We give a weak sufficient condition (a local Harnack inequality) for a MMD space to have
Green’s functions. This improves significantly the results of earlier papers, such as [BM1,
BM2], which needed some parabolic regularity. In particular, it allows us to drop the
Green function assumption ([BM1, Assumption 2.3]) made in [BM1].

(ii) We carry through the program of [BM1] in the context of a MMD space satisfying these
weak regularity conditions. In particular, we drop the bounded geometry assumption (see
[BM1, Assumption 2.5] for its definition) on the MMD space (X , d,m, E ,F), and relax
the condition that (X , d) is a length (or geodesic) space; both are needed in [BM1]. We
assume that (X , d) is a complete metric space and satisfies metric doubling—see Definition
1.1, which is equivalent under EHI to the ‘relatively ball connectedness’ condition (see
Definition 5.1). The latter has the advantage that it is preserved by quasisymmetric
changes of metric. Example 8.1 shows that some regularity of the metric is needed if we
are to have stability of the EHI.

(iii) The metric space (X , d) may either be of bounded diameter or of infinite diameter.

For a metric space (X , d), we use B(x, r) to denote the open ball centered at x ∈ X with
radius r. The closure and the boundary of the ball B(x, r) will be denoted as B(x, r) and
∂B(x, r), respectively.
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Definition 1.1. A metric space (X , d) is said to be metric doubling (MD) if there exists N ≥ 2
such that for any x ∈ X , R > 0 there exist z1, . . . , zN ∈ X such that B(x,R) ⊂ ∪N

i=1B(zi, R/2).
We call a metric space that satisfies the metric doubling property a doubling metric space.

Remark 1.2. Assouad [Ass] showed that if (X , d) is (MD), then for every α ∈ (0, 1), the metric
space (X , dα) has a bi-Lipschitz embedding into Rn for some n ≥ 1. This in particular implies
that a doubling metric space (X , d) is always separable. One can also deduce the separability
of a doubling metric space from its definition. Indeed, every ball in a doubling metric space is
totally bounded by [Hei, Exercise 10.17], which implies the separability. Furthermore, if (X , d) is
complete and (MD), then every ball in (X , d) is relatively compact by the aforementioned totally
boundedness property. Consequently, any complete doubling metric space (X , d) is separable
and locally compact.

When (X , d) is a locally compact metric space, a Dirichlet form (E ,F) on L2(X ,m) is said to
be strongly local if E(u, v) = 0 whenever u, v ∈ F have compact supports with v being constant in
an open neighborhood of supp[u]. See Proposition 2.2 below for its equivalent characterizations.

The main result of this paper is the following stability result on the (scale invariant) EHI.
See Definition 4.1 for a precise definition of the EHI.

Theorem 1.3. Let (X , d) be a complete doubling metric space, and let m be a Radon measure on
X with full support. Let (E ,F) be a strongly local symmetric regular Dirichlet form on L2(X ;m).
Suppose that (X , d,m, E ,F) satisfies the EHI. Let (E ′,F) be another strongly local symmetric
regular Dirichlet form on L2(X ;m) such that

C−1E(f, f) ≤ E ′(f, f) ≤ CE(f, f) for all f ∈ F

for some C ≥ 1. Then (X , d,m, E ′,F) satisfies the EHI.

Theorem 1.3 is established based on characterizations of the EHI given in Theorem 7.9. This
stability result is further extended in Theorem 7.11 to strongly local MMD spaces that may
have different symmetrizing measures.

Suppose that (X , d) is a locally compact complete length space. By [BM1, Theorem 3.11],
(X , d) is metric doubling if (X , d,m, E ,F) satisfies the EHI and has regular Green functions.
Theorem 1.3 together with Theorems 4.8 and 4.6 readily implies the following corollary, which
substantially improves the main result, Theorem 1.3, of [BM1]. Alternately, Corollary 1.4 follows
from Theorems 1.3 and 5.4 since the condition (c) in Theorem 5.4 follows from [BBI, Theorem
2.5.28].

Corollary 1.4. Let (X , d) be a complete locally compact length space, and let m is a Radon
measure on X with full support. Let (E ,F) be a strongly local symmetric regular Dirichlet form
on L2(X ;m). Suppose that (X , d,m, E ,F) satisfies the EHI. Let (E ′,F) be another strongly local
symmetric regular Dirichlet form on L2(X ;m) such that for some C ≥ 1,

C−1E(f, f) ≤ E ′(f, f) ≤ CE(f, f) for all f ∈ F .

Then (X , d,m, E ′,F) satisfies the EHI.
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The above corollary implies a generalized version of Moser’s EHI [Mo1] from Rn to an arbi-
trary Riemannian manifold. Let (M, g) be a Riemannian manifold and let Sym(TM) denote the
bundle of symmetric endomorphisms of the tangent bundle TM . We say that A is a uniformly
elliptic operator in divergence form if there exists A : M → Sym(TM) a measurable section of
Sym(TM) and a constant K ≥ 1 such that

K−1g(ξ, ξ) ≤ g(Aξ, ξ) ≤ Kg(ξ, ξ) for all ξ ∈ TM ,

such that A(·) = div (A∇(·)), where div and ∇ denote the Riemannian divergence and gradient
respectively. This extends [BM1, Theorem 1.4(a)] without any assumption on curvature. The
description of the Dirichlet form in this context is given in [CF, §2.2.5]. The following generalized
Moser’s EHI follows from Corollary 1.4.

Corollary 1.5. Let (M, g) be a Riemannian manifold and let ∆ denote the corresponding
Laplace-Beltrami operator. If (M, g) satisfies EHI for non-negative solutions on ∆u = 0, then
it satisfies EHI for non-negative solutions of Au = 0, where A is any uniformly elliptic operator
in divergence form.

The remainder of this paper is organized as follows. In Section 2, we present definitions and
terminology associated with regular symmetric Dirichlet forms as well as some basic facts that
will be used in this paper. Existence and regularity of Green functions are given in Section
3 for transient regular Dirichlet forms. The transience condition is removed in Section 4. It
is shown there that any strongly local regular Dirichlet form (E ,F) on a connected locally
compact separable metric space X that satisfies the local EHI is irreducible and has regular Green
functions. Various consequences of the EHI are presented in Section 5. In particular, it is shown
that for a complete locally compact separable metric space (X , d), under the EHI, relatively
ball connected, metric doubling and quasi-arc connected properties are all mutually equivalent.
In Section 6, a good doubling measure µ is constructed on a MMD space (X , d,m, E ,F) that
satisfies the EHI and is relatively ball connected. This measure relates well with capacities and
is a smooth measure with full quasi support on X . It is shown in Section 7 that the Dirichlet
form time-changed by the positive continuous additive functional generated by this doubling
measure µ is a MMD space (X , d, µ, E ,Fµ) that satisfies Poincaré inequality PI(Ψ), the cutoff
energy inequality CS(Ψ) and a capacity estimate cap(Ψ), where Ψ is a suitable regular scale
function. From this we can obtain equivalent characterizations of the EHI in Theorem 7.9, and
deduce the stability result of the EHI stated in Theorem 1.3. The scale function Ψ varies both
in space and in time; [Te] first studied such location dependent scaling functions in detail. An
extension of Theorem 1.3 is given at the end of Section 7 that the second Dirichlet form E ′ may
have symmetrizing measure µ different from m; see Theorem 7.11. Three examples are given in
Section 8. The first example shows that without certain regularity of the metric, the stability of
the EHI may fail. The second example is of a strongly local regular Dirichlet form that fails to
satisfy the non-scale-invariant Harnack inequality. The third one is of a space which satisfies the
EHI and is covered by the results of this paper, but fails to satisfy the local regularity required
in [BM1].

2 Preliminaries

In this section, we give definitions of some terminology from Dirichlet form theory that are used
in this paper and some basic facts. We refer the reader to [CF, FOT] for more details on the
theory of symmetric Dirichlet forms. We use := as a way of definition.
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Let (X ,B(X )) be a measurable space and m a σ-finite measure on X . A bilinear form (E ,F)
on L2(X ;m) is said to be a symmetric Dirichlet form if

(i) F is a dense linear subspace of L2(X ;m);

(ii) E is symmetric and bilinear on F × F such that E(f, f) ≥ 0 for every f ∈ F ;

(iii) F is a Hilbert space with inner product E1(f, g) := E(f, g) +
´
X f(x)g(x)m(dx);

(iv) For every f ∈ F , g := (0 ∨ f) ∧ 1 is in F and E(g, g) ≤ E(f, f).

A bilinear form (E ,F) on L2(X ;m) satisfying properties (i)-(iii) above is called a symmetric
closed form. Any symmetric closed form is in one-to-one correspondence with a strongly con-
tinuous symmetric contraction semigroup {Tt; t ≥ 0} on L2(X ;m). Property (iv) above is called
the Markovian property which is equivalent to the corresponding semigroup {Tt; t ≥ 0} being
Markovian; that is, 0 ≤ Ttf ≤ 1 for any f ∈ L2(X ;m) with 0 ≤ f ≤ 1. A real-valued function f
is said to be in the extended Dirichlet space Fe if there is an E-Cauchy sequence {fk; k ≥ 1} ⊂ F
so that limk→∞ fk = f m-a.e. on X , and we define E(f, f) = limk→∞ E(fk, fk). Clearly, F ⊂ Fe.
It is known that F = Fe ∩ L2(X ;m); see [CF, Theorem 1.1.5(iii)].

The Dirichlet form (E ,F) on L2(X ;m) is said to be transient if there exists a bounded
g ∈ L1(X ;m) that is strictly positive on X so that

ˆ
X
|u(x)|g(x)m(dx) ≤ E(u, u)1/2 for every u ∈ F .

Clearly, if (E ,F) is transient, then (Fe, E) is a Hilbert space. The Dirichlet form (E ,F) on
L2(X ;m) is said to be recurrent if 1 ∈ Fe and E(1, 1) = 0. Denote by {Tt; t ≥ 0} the semigroup
on L2(X ;m) corresponding to the Dirichlet form (E ,F). By Theorem 2.1.5 and Theorem 2.1.8
of [CF], (E ,F) is transient if and only if there is some g ∈ L1(X ;m) that is strictly positive on
X and satisfies Gg :=

´∞
0 Ttg dt < ∞ m-a.e. on X ; and (E ,F) is recurrent if and only if for any

non-negative g on X with
´
X g(x)m(dx) < ∞, Gg ∈ {0,∞} m-a.e. on X .

Denote by Bm(X ) the completion of the field B(X ) under the measure m. A set A ∈ Bm(X )
is said to be {Tt}t≥0-invariant if Tt(1Acf) = 0 m-a.e. on A for all t > 0 and f ∈ L2(X ;m). By
[CF, Proposition 2.1.6], A ∈ Bm(X ) is {Tt}t≥0-invariant if and only if 1Au ∈ F for every u ∈ F
and

E(u, v) = E(1Au, 1Av) + E(1Acu, 1Acv) for every u, v ∈ F . (2.1)

The Dirichlet form (E ,F) on L2(X ;m) is said to be irreducible if for any {Tt}t≥0-invariant set
A, either m(A) = 0 or m(Ac) = 0. An irreducible Dirichlet form is either transient or recurrent;
see [CF, Propositions 2.1.3(iii) and 2.1.6].

A Dirichlet form (E ,F) on L2(X ;m) is said to be regular if

(i) (X , d) is a locally compact separable metric space and m is a Radon measure on X with
full support;

(ii) F∩Cc(X ) is
√
E1-dense in F , where Cc(X ) is the space of continuous functions on X having

compact support;

(iii) F ∩ Cc(X ) is dense in Cc(X ) with respect to the uniform norm ∥f∥∞ = supx∈X |f(x)| .
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For a regular Dirichlet form (E ,F) on L2(X ,m), an increasing sequence {Fk; k ≥ 1} of closed
subsets of X is said to be an E-nest if ∪k≥1FFk

is
√
E1-dense in F , where FFk

:= {f ∈ F : f =
0 m-a.e. on X \Fk}. A set N ⊂ X is said to be E-polar if there is an E-nest {Fk; k ≥ 1} so that
N ⊂ X \∪k≥1Fk. An E-polar set A always has m(A) = 0. E-polar sets can also be characterized
by using capacity. Given a regular Dirichlet form (E ,F) on L2(X ;m), we can define 1-capacity
Cap1 as follows. For any open subset U ⊂ X ,

Cap1(U) := inf{E1(f, f) : f ∈ F , f ≥ 1 m-a.e. on U} (2.2)

with the convention that inf ∅ := ∞, and for any subset A ⊂ X ,

Cap1(A) := inf{Cap1(U) : U ⊂ X open, U ⊃ A}. (2.3)

It is known (see [CF, Theorem 1.3.14]) that for a regular Dirichlet form (E ,F) on L2(X ;m),
A ⊂ X is E-polar if and only if it has zero 1-capacity. A statement depending on x ∈ A is
said to hold E-quasi-everywhere (E-q.e. in abbreviation) if there is an E-polar set N ⊂ A so
that the statement is true for every x ∈ A \ N . A function f is said to be E-quasi-continuous
on X if there is an E-nest {Fk; k ≥ 1} so that f

∣∣
Fk

∈ C(Fk) for every k ≥ 1, where C(Fk) :=

{u : Fk → R|u is continuous}. When there is no possible ambiguity, we often drop “E-” from
E-quasi-everywhere and E-quasi-continuous. For a regular Dirichlet form (E ,F) on L2(X ;m),
every f ∈ Fe has an m-version that is quasi-continuous on X , which is unique up to an E-polar
set; see [CF, Theorem 2.3.4] or [FOT, Theorem 2.1.7]. We always take a function f in Fe to be
represented by its quasi-continuous version.

Recall that a Hunt process X = {Xt, t ≥ 0;Px, x ∈ X} on a locally compact separable metric
space X is a strong Markov process that is right continuous and quasi-left continuous on the one-
point compactification X∂ := X ∪ {∂} of X . A set C ⊂ X∂ is said to be nearly Borel measurable
if for any probability measure µ on X there are Borel sets A1, A2 such that A1 ⊂ C ⊂ A2 and

Pµ(there is some t ≥ 0 such that Xt ∈ A2 \A1) = 0.

Let m be a Radon measure with full support on X . A Hunt process X is said to be m-symmetric
if the transition semigroup is symmetric on L2(X ;m). For an m-symmetric Hunt process X on
X , a set N ⊂ X is said to be properly exceptional for X if N is nearly Borel measurable,
m(N ) = 0 and

Px(Xt ∈ X∂ \ N and Xt− ∈ X∂ \ N for all t > 0) = 1 for every x ∈ X \ N .

In 1971, Fukushima showed that any symmetric regular Dirichlet form (E ,F) on L2(X ;m)
has an m-symmetric Hunt process X = {Xt, t ≥ 0;Px, x ∈ X} on X associated with it in
the sense that the transition semigroup of X is a version of the strongly continuous semigroup
{Tt; t ≥ 0} on L2(X ;m) corresponding to (E ,F), see [FOT, Theorem 7.2.1]. Furthermore, for
any non-negative Borel measurable f ∈ L2(X ;m) and t > 0,

Ptf(x) := Ex[f(Xt)]

is a quasi-continuous version of Ttf on X . The Hunt process X associated with a regular
Dirichlet form (E ,F) on L2(X ;m) is unique in the following sense (see [FOT, Theorem 4.2.8]):
if X ′ is another Hunt process associated with the regular Dirichlet form (E ,F) on L2(X ;m),
then there is a common properly exceptional set outside which these two Hunt processes have
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the same transition functions. We say the m-symmetric Hunt process X on X is transient,
recurrent, and irreducible if so is its associated Dirichlet form (E ,F) on L2(X ;m).

In the remainder of this section, (E ,F) is a regular Dirichlet form on L2(X ;m) and X =
{Xt, t ≥ 0;Px, x ∈ X} is the Hunt process associated with it. Let ζ denote the lifetime of X,
and {Ft; t ≥ 0} be the minimum augmented filtration generated by X.

A subset N ⊂ X is said to be m-polar if there is a nearly Borel set N1 ⊃ N so that
Px(σN1 < ∞) = 0 for m-a.e. x ∈ X , where σN1 = inf{t > 0 : Xt ∈ N1}. It is known that a
subset N ⊂ X is E-polar if and only if it is m-polar, and any E-polar set is contained in a Borel
properly exceptional set for X; see [CF, Theorems 3.1.3 and 3.1.5].

If (E ,F) is irreducible, then (see [CF, Theorem 3.5.6]) for any non-E-polar nearly Borel
measurable set A,

Px(σA < ∞) > 0 for E-q.e. x ∈ X . (2.4)

Let D be an open subset of X . The part process XD of X killed upon exiting D is a Hunt
process on D whose associated Dirichlet form (ED,FD) on L2(D;m|D) is regular. Here m|D is
the measure m restricted to the open set D,

FD = {f ∈ F : f = 0 E-q.e. on Dc}, (2.5)

and ED = E on FD; see, e.g., Exercise 3.3.7 and Theorem 3.3.9 of [CF]. It is well known (see,
e.g., [CF, Theorem 3.3.8]) that A ⊂ D is ED-polar if and only if it is E-polar. Property (2.4)
combined with [CF, Proposition 2.1.10] yields the following.

Proposition 2.1. If (E ,F) is irreducible and Dc is not E-polar, then the regular Dirichlet form
(ED,FD) on L2(D;m|D) is transient.

For u ∈ Fe, the following Fukushima decomposition holds (see [CF, Theorem 4.2.6] or [FOT,
Theorem 5.2.2]): for E-q.e. x ∈ X ,Px-a.s.,

u(Xt)− u(X0) = Mu
t +Nu

t , t ≥ 0, (2.6)

where Mu is a martingale additive functional of X having finite energy and Nu is a continuous
additive functional of X having zero energy. The predictable quadratic variation ⟨Mu⟩ of the
square-integrable martingale Mu is a positive continuous additive functional of X, whose corre-
sponding Revuz measure is denoted by µ⟨u⟩. We call µ⟨u⟩ the energy measure of u ∈ Fe. It is
known that

1

2
µ⟨u⟩(X ) ≤ E(u, u) ≤ µ⟨u⟩(X ) for u ∈ Fe.

When (E ,F) admits no killing inside X , which is equivalent to the Hunt process admitting no
killing inside X (that is, Px(Xζ− ∈ X , ζ < ∞) = 0 for E-q.e. x ∈ X ), we have

E(u, u) = 1

2
µ⟨u⟩(X ) for u ∈ Fe. (2.7)

When u ∈ Fe is bounded, its energy measure µ⟨u⟩ can be computed by the formulaˆ
X
v(x)µ⟨u⟩(dx) = 2E(u, uv)− E(u2, v) for all bounded v ∈ F . (2.8)

For general u ∈ Fe, µ⟨u⟩ is the increasing limit of µ⟨un⟩ as n → ∞, where un := (−n)∨(u∧n) ∈ Fe.
See (4.3.12)-(4.3.13), and Theorems 4.3.10 and 4.3.11 of [CF] for the above stated properties of
µ⟨u⟩.

The following is taken from Theorem 2.4.3 and Theorem 4.3.4 of [CF].
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Proposition 2.2. The following are equivalent.

(i) (E ,F) is strongly local (i.e., E(u, v) = 0 whenever u, v ∈ F , the support of u is compact and
v is constant on a neighborhood of the support of u);

(ii) E(u, v) = 0 whenever u, v ∈ F with u(v − c) = 0 m-a.e. on X for some constant c;

(iii) The associated Hunt process X is a diffusion with no killing inside X ; that is, there is a
Borel properly exceptional set N0 ⊂ X so that for every x ∈ X \ N0,

Px(Xt is continuous in t ∈ [0, ζ)) = 1 and Px(Xζ− ∈ X , ζ < ∞) = 0. (2.9)

In Theorem 4.7 below, a new criterion for irreducibility will be given for strongly local regular
Dirichlet forms.

We use notation V ⋐ D for V being a relatively compact open subset of D. For any open
set U , we define

FU
loc :=

{
f

∣∣∣∣∣
f is an m-equivalence class of R-valued Borel measurable
functions on X such that for each open V ⋐ U , there is some
g ∈ FU so that f = g m-a.e. on V .

}
. (2.10)

Note that each f ∈ FU
loc admits an m-version that is E-quasi-continuous on U , which is unique

modulo an E-polar set. We always let a function in FU
loc be represented by its quasi-continuous

version. When U = X , we simply write Floc for FX
loc.

When the Dirichlet form (E ,F) is strongly local, the energy measure µ⟨u⟩ has the following
strong local property; see [CF, Proposition 4.3.1 and Theorem 4.3.10(i)].

Proposition 2.3. Suppose the Dirichlet form (E ,F) is strongly local and D is an open subset
of X . Then

(i) µ⟨u⟩(D) = 0 if u ∈ Fe and u is constant E-q.e. on D;

(ii) µ⟨u⟩ = µ⟨v⟩ on D for every u, v ∈ F so that u− v is a constant E-q.e. on D.

Let {Uk; k ≥ 1} be an increasing sequence of relatively compact open subsets whose union is
X . For u ∈ Floc, there is some uk ∈ F so that uk = u m-a.e. on Uk. Define µ⟨u⟩ = µ⟨uk⟩ on Uk.
Since (E ,F) is strongly local, µ⟨u⟩ is uniquely defined by Proposition 2.3(ii). In view of (2.7),
this allows us to extend the definition of E to Floc by setting

E(u, u) := 1

2
µ⟨u⟩(X ), u ∈ Floc. (2.11)

In this paper, we will use time change of Dirichlet form and its associated Hunt process so
we need the notion of smooth measure. The following definition is from [CF, Definition 2.3.13].

Definition 2.4. Let (E ,F) be a regular Dirichlet form on L2(X ;m). A (positive) Borel measure
µ on X is smooth if it satisfies the following conditions:

(a) µ charges no E-polar set;

(b) there exists an E-nest {Fk} such that µ(Fk) < ∞ for all k ≥ 1.
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By [CF, Theorem 1.2.14], the above definition of smooth measure is equivalent to that defined
in [FOT, p.83]. Clearly every positive Radon measure charging no E-polar set is smooth, as in
this case we can take the E-nest {Fk} to be the closures of an increasing sequence of relatively
compact open sets whose union is X . We say D ⊂ X is quasi open if there exists an E-nest
{Fn} such that D ∩ Fn is an open subset of Fn in the relative topology for each n ∈ N. The
complement of a quasi open set is called quasi closed.

Definition 2.5. (See [CF, Definition 3.3.4] or [FOT, p.190].) Let µ be a smooth Borel measure
on X . A set F ⊂ X is called a quasi support of µ if it satisfies the following:
(a) F is quasi closed and µ(X \ F ) = 0.
(b) If F̃ is another set that satisfies (a), then F \ F̃ is E-polar.
Such a set F exists by [FOT, Theorem 4.6.3]. We say that µ has full quasi support if X is a
quasi support of µ.

We assume in the remaining of this paper that (E ,F) is a symmetric strongly local regular
Dirichlet form on L2(X ;m). We call (X , d,m, E ,F) a metric measure Dirichlet (MMD) space.
Sometimes, to emphasize its dependence on the symmetrizing measure, we write Fm for F .
Let X = {Xt, t ≥ 0;Px, x ∈ X} be the diffusion process associated with (X , d,m, E ,F), whose
lifetime is denoted by ζ and whose shift operators are denoted by {θt}t≥0. The one-point
compactification of the locally compact metric space (X , d) is denoted as X∂ := X ∪ {∂}. For a
nearly Borel measurable set A ⊂ X∂ , define the stopping times

σA = inf{t > 0 : Xt ∈ A}, τA = σX∂\A = inf{t > 0 : Xt /∈ A},

and write τx for τ{x}. Note that by definition, τA ≤ ζ if A ⊂ X .

Here and in the following, we use the convention that X∞ := ∂, and that any function u
defined on a subset of X is extended to {∂} by taking u(∂) = 0.

The following definition is taken from [Che, Definition 2.1].

Definition 2.6. Let D be an open subset of X . We say a universally measurable function u
defined E-q.e. on D is harmonic in D (with respect to the process X) if for every relatively
compact open subset U of D, t 7→ u(Xt∧τU ) is a uniformly integrable Px-martingale for E-q.e.
x ∈ U . We say that a universally measurable function u on D is regular harmonic in D (with
respect to the process X) if Ex[|u(XτD)|] < ∞ and u(x) = Ex[u(XτD)] for E-q.e. x ∈ D.

Remark 2.7. (i) Observe that if u is a universally measurable function on U and if Px(τU <
∞) = 1 for E-q.e. x ∈ U , then t 7→ u(Xt∧τU ) is a uniformly integrable Px-martingale for
E-q.e. x ∈ U if and only if Ex[|u(XτU )|] < ∞ and u(x) = Ex [u(XτU )] for E-q.e. x ∈ U .
Sufficient conditions on Px(τU < ∞) = 1 for E-q.e. x ∈ U are given in Propositions 3.1
and 3.2 below.

(ii) By the Markov property of X, it is clear that any regular harmonic function in D is
harmonic in D.

The relation of the above probabilistic notion of harmonicity to the analytic notion of har-
monicity has been investigated in [Che] for general symmetric regular Dirichlet forms. In the
setting of strongly local symmetric regular Dirichlet forms, one direction becomes much easier
to analyze; cf. [Che, Theorem 2.7 and Remark 2.8].
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Definition 2.8. Let D be an open subset of X . We say a function u is E-harmonic in D if
u ∈ FD

loc and
E(u, v) = 0 for every v ∈ Cc(D) ∩ F . (2.12)

Note that as explained in (2.11), the bilinear form E(u, v) in (2.12) is well defined due to the
strong locality of (E ,F).

Proposition 2.9. Let D be an open subset of X .

(i) Any E-harmonic and E-quasi-continuous function in D is harmonic in D.

(ii) Moreover, any E-harmonic and E-quasi-continuous function in D is regular harmonic in
any relatively compact open subset U of D such that

Px(τU < ∞) > 0 for E-q.e. x ∈ U . (2.13)

(iii) If u is locally bounded and harmonic in D, then u is E-quasi-continuous on D and E-
harmonic in D.

Proof. The proof for (i) and (ii) is essentially a particular case of [Che, Theorem 2.7]. For
strongly local regular Dirichlet forms, the proof can be much simplified. For the reader’s conve-
nience, we present a proof here.

(i) Suppose that h is an E-harmonic function in D. Let U be any relatively compact open subset
of D. There is a relatively compact open subset V of D so that U ⊂ V . Since h ∈ FD

loc, there is
some f ∈ FD so that f = h m-a.e. on V and hence E-q.e. on V as they are all represented by
their E-quasi-continuous versions. Since h is E-harmonic in D and (E ,F) is strongly local, we
have

E(f, v) = E(h, v) = 0 for every v ∈ Cc(U) ∩ F . (2.14)

Set g(x) := Ex[f(XτU )]. Then by [CF, Theorem 3.4.8] or [FOT, Theorem 4.6.5], g ∈ Fe, g = f
E-q.e. on U c and g is E-harmonic in U . Since f − g ∈ Fe with f − g = 0 E-q.e. on U c, we have
E(f − g, f − g) = 0. By [Che, Lemma 2.2],

Px(f(Xt)− g(Xt) = f(X0)− g(X0) for every t ≥ 0) = 1 E-q.e. on X . (2.15)

Therefore t 7→ h(Xt∧τU ) = f(Xt∧τU ) = f(X0) − g(X0) + g(Xt∧τU ) is a uniformly integrable
Px-martingale for E-q.e. x ∈ U . So h is harmonic in D. This proves (i).

(ii) We continue with the notation of part (i), and assume that (2.13) holds. Note that by [CF,
Theorems 3.3.9 and 3.4.9], f − g is in the extended Dirichlet space for the part Dirichlet form
(EU ,FU ) with EU (f − g, f − g) = E(f − g, f − g) = 0. Under condition (2.13), we have by
[Che, Lemma 2.2] applied to (EU ,FU ) that h = f = g E-q.e. on U . Thus for E-q.e. x ∈ U ,
h(x) = g(x) = Ex[f(XτU )] = Ex[h(XτU )], where the last equality is due to the fact that h = f
E-q.e. on V ⊃ U . This proves that h is regular harmonic in U .

(iii) The proof of this part is the same as that of [Che, Theorem 2.9] except that the first sentence
in the proof there needs some details as follows. Without loss of generality, we assume that the
Hunt process X associated with the strongly local regular DIrichlet form (E ,F) is defined on
the canonical sample space Ω, which is the space of continuous functions on [0,∞) taking values
in X∂ := X ∪ {∂}. Denote by {θt; t ≥ 0} time shifting operators on Ω. Let {Ft; t ≥ 0} be the
minimal augmented filtration generated by X, which is known to be right continuous. Suppose
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that u is locally bounded and harmonic in D. Then for every relatively compact open subset U
of D, there is a properly exceptional set N ⊂ U so that t 7→ u(Xt∧τU ) is a uniformly integrable
(in fact bounded) Px-martingale for every x ∈ U \ N . Let Ω0 be the collections of those ω ∈ Ω
so that

ξ(ω) := lim
n∈N,n→∞

u(Xn∧τU (ω))(ω) exists as a finite number. (2.16)

From the discrete martingale theory, we know that for x ∈ U \ N , Px(Ω0) = 1 and u(Xn∧τU )
converges to ξ in L1(Px) as n → ∞. This together with the strong Markov property of X implies
that for each x ∈ U \ N and t ≥ 0, Px-a.s.

u(Xt∧τU ) = lim
n→∞

Ex [u(Xn∧τU )|Ft∧τU ] = lim
n→∞

Ex [u(Xn∧τU )|Ft] = Ex [ξ|Ft] . (2.17)

Since ξ is F∞-measurable, and the filtration {F ; t ≥ 0} is right continuous, there exists a right
continuous martingale (Mt) such that Mt is a version of Ex(ξ|Ft) for each t. Using (2.16) and
the martingale convergence theorem, Mt converges to Ex [ξ|F∞] = ξ both P-a.s. and in L2(Px)
as t → ∞. Hence for every x ∈ U \ N and t ≥ 0, we have by (2.17) and (2.16) that Px-a.s. on
{t < τU},

ξ ◦ θt =
(
lim
n→∞

Ex [ξ|Fn−t]
)
◦ θt = lim

n→∞
u(X(n−t)∧τU ) ◦ θt = lim

n→∞
u(Xn∧τU ) = ξ. (2.18)

By (2.16), (2.17) and (2.18), the random variable ξ has the property that

u(x) = lim
t→∞

Ex[u(Xt∧τU )] = Ex[ξ] for x ∈ U \ N , (2.19)

Px(ξ ̸= ξ ◦ θt, t ≤ τU ) = 0 for every x ∈ U \ N . (2.20)

Moreover, it follows from (2.16) that

Px(ξ = u(XτU ) on {τU < ∞}) = 1 for x ∈ U \ N . (2.21)

We can then use the same proof as that for [Che, Theorem 2.9] to conclude that u is E-harmonic
in U and hence in D. From (2.19)-(2.20) and [CF, Theorem 6.1.6], we conclude that u is E-
quasi-continuous on D. □

As noted in (2.4), condition (2.13) is satisfied if (E ,F) is irreducible and U c is non-E-polar.
It follows from Proposition 2.9 that a locally bounded universally measurable function u in D
is harmonic in D if and only if it is E-quasi-continuous on D and E-harmonic in D.

Proposition 2.10. Suppose D is an open subset of X .

(i) Any non-negative regular harmonic function u in D is the E-q.e. limit on D of an increasing
sequence of bounded non-negative regular harmonic functions {un;n ≥ 1} in D.

(ii) Suppose that u is a non-negative harmonic function in D and that U is a relatively compact
open subset of D. Then u

∣∣
U

is the increasing limit E-q.e. on U of a sequence of bounded
harmonic functions on U .
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Proof. (i) For n ≥ 1, define un(x) = Ex [(n ∧ u)(XτD)] for x ∈ D \N0. Clearly, by (2.9) and the
fact that Px(τD = 0) = 1 for E-q.e. x ∈ ∂D by [FOT, Theorem A.2.6(i), 4.1.3 and 4.2.1(ii)], un
is a bounded non-negative regular harmonic function in D that increases to u(x) = Ex [u(XτD)]
for x ∈ D \ N0, as n → ∞.

(ii) Let U be any relatively compact open subset of D. By definition, there is a property
exceptional set N ⊂ U so that t 7→ u(Xt∧τU ) is a Px-uniformly integrable martingale for every
x ∈ U \ N . As noted in the proof for Proposition 2.9(iii), from the martingale theory, we know
that for x ∈ U \ N , Px-a.s,

Mt := lim
s∈Q:s→t+

u(Xs∧τU ) exists for every t ≥ 0 (2.22)

and Mt is a right-continuous modification of u(Xt∧τD). By the martingale convergence theorem.
Mt converges to some random variable ξ ≥ 0 in L1(Px) and Px-a.s. for every x ∈ U \ N as
t → ∞. Note that in view of (2.16), ξ has the property that for every x ∈ U \ N , u(x) = Ex[ξ]
and Px-a.s. ξ = ξ ◦ θt∧τU for every t ∈ [0, τU ). For each n ≥ 1, define un(x) = Ex[ξ ∧ n]. Then
un is bounded and harmonic in U and it increases to u on U \ N as n → ∞. □

3 Local regularity for transient spaces

Since (E ,F) is strongly local, by Proposition 2.2, its corresponding Hunt process X is a diffusion
that admits no killing inside X . Thus there exists a Borel properly exceptional set N0 so that
the Hunt process X, whose lifetime is denoted by ζ, can start from every point in X \ N0 and
(2.9) holds. It follows that

Px(Xt = x for all t ∈ [0, ζ) and ζ < ∞) = 0 for every x ∈ X \ N0. (3.1)

In the remainder of this section unless otherwise specified, we assume in addition that (E ,F)
is transient. In view of [CF, Theorem 3.5.2], by enlarging the Borel properly exceptional set N0

if needed, we may and do assume that

Px
(
ζ = ∞ and lim

t→∞
Xt = ∂

)
= Px (ζ = ∞) for every x ∈ X \ N0. (3.2)

Proposition 3.1. For any relatively compact open subset D ⊂ X ,

Px(τD < ζ) = 1 for every x ∈ D \ N0.

Proof. Recall that X∂ = X ∪{∂} is the one-point compactification of X . Since D is a relatively
compact open subset of X , X ∪{∂} \D is an open neighborhood of ∂. We know from (2.9) that

Px(Xζ− = ∂, ζ < ∞) = Px(ζ < ∞) for x ∈ X \ N0.

This together with (3.2) implies that

Px

(
lim
t↑ζ

Xt = ∂

)
= 1 for any x ∈ X \ N0.

Consequently, we have that Px(τD < ζ) = 1 for every x ∈ D \ N0. □

The transience condition on (E ,F) can be dropped from Proposition 3.1 if we assume (E ,F)
is irreducible and Dc is of positive E-capacity. We emphasize that the transience of (E ,F) is not
assumed in the next Proposition.
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Proposition 3.2. Suppose that (E ,F) is a symmetric, irreducible, strongly local regular Dirichlet
form on L2(X ;m) and that D ⊂ X is a relatively compact open set of X so that Dc is not E-polar.
Then Px(τD < ∞) = 1 for E-q.e. x ∈ D.

Proof. Since (E ,F) is an irreducible, it is either transient or recurrent. The conclusion of the
proposition follows readily from Proposition 3.1 if (E ,F) is transient. When (E ,F) is recurrent,
the desired conclusion holds as well since Xt in fact visits X \ D infinitely often under Px for
E-q.e. x ∈ X by [CF, Theorem 3.5.6]. □

Lemma 3.3. Px(τx > 0) = 0 for every x ∈ X \ N0, where τx := inf{t ≥ 0 : Xt ̸= x}.

Proof. We have by (3.1) and (3.2) that τx < ζ Px-a.s. for every x ∈ X \N0. Clearly Xτx = x on
{0 < τx < ζ} since X is a diffusion. Let Ax := {τx > 0}. Since 1Ax = 1Ac

x
◦ θτx on {0 < τx < ζ},

we have by the strong Markov property of X that for x ∈ X \ N0,

Px(Ax) = Ex
[
PXτx (Ac

x); 0 < τx < ζ
]
= Px(Ac

x)Px(0 < τx < ζ) = (1− Px(Ax))Px(Ax).

It follows that Px(Ax) = 0. □

Let B+(X ) denote the set of non-negative Borel measurable functions on X . Denote by
{Pt; t ≥ 0} the transition semigroup of the process X; that is,

Ptf(x) = Ex[f(Xt)], x ∈ X \ N0, t > 0, f ∈ B+(X ),

with the convention that f(∂) := 0. Define the Green operator G by

Gf(x) := Ex

ˆ ∞

0
f(Xt)dt =

ˆ ∞

0
Ex[f(Xt)]dt =

ˆ ∞

0
Ptf(x)dt, x ∈ X \ N0, f ∈ B+(X ).

Lemma 3.4. By enlarging the Borel properly exceptional set N0 if necessary, there is a function
g0 ∈ L1(X ;m) that takes values in (0, 1] on X such that

Gg0(x) ≤ 1 for x ∈ X \ N0, Gg0 ∈ Fe and E(Gg0, Gg0) ≤ 1. (3.3)

Proof. By [CF, Theorems 2.1.5(i), Lemma 2.1.4(ii) and Theorem 2.1.12(i)], there is an L1(X ;m)
function g1 bounded by 1, strictly positive on X , such that Gg1 < ∞ m-a.e. on X and Gg1 ∈ Fe

with E(Gg1, Gg1) ≤ 1. Since Gg1 is excessive and hence finely continuous [CF, Theorem A.2.2],
by enlarging the properly exceptional set N0 if necessary, we may and do assume that Gg1(x) <
∞ for every x ∈ X \ N0, thanks to [CF, Theorem A.2.13(v)].

Let k ≥ 1 and set fk = g11{Gg1≤k} and Tk = inf{t ≥ 0 : Gg1(Xt) ≤ k}. Since Gg1 is finely
continuous we have Gfk(XTk

) ≤ Gg1(XTk
) ≤ k Px-a.s. on {Tk < ∞} for every x ∈ X \ N0.

Hence by the strong Markov property,

Gfk(x) = Ex1{Tk<∞}

ˆ ∞

Tk

fk(Xs)ds = Ex1{Tk<∞}Gfk(XTk
) ≤ k for x ∈ X \ N0.

Let g0 =
∑∞

k=1 k
−12−kfk + 4−11N0 . Then g0 is (0, 1]-valued on X , and

Gg0(x) ≤ 1 for every x ∈ X \ N0,
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Gg0 ∈ Fe and E(Gg0, Gg0) ≤ E(Gg1, Gg1) ≤ 1 in view of [CF, Theorem 2.1.12(i)]. □

It follows from (3.3) that for every x ∈ X \ N0, G(x, dy), defined by G(x,A) = G1A(x), is
a σ-finite Borel measure on X . By the symmetry of the process X, each Pt is a symmetric
operator in L2(X ;m). Hence

ˆ
X
g(x)Gf(x)m(dx) =

ˆ
X
f(x)Gg(x)m(dx) for f, g ∈ B+(X ). (3.4)

We introduce a function dX on a locally compact separable metric space (X , d). Define for
every x ∈ X , with the convention inf ∅ := ∞,

dX (x) = sup{r > 0 : B(x, r) is relatively compact in (X , d)}. (3.5)

Remark 3.5. (i) Let {Dk; k ≥ 1} be an increasing sequence of relatively compact open subsets
with ∪∞

k=1Dk = X . It is easy to see that for x ∈ X ,

dX (x) = lim
k→∞

inf
y∈X\Dk

d(x, y). (3.6)

(ii) Either dX is identically infinite on X or dX (x) < ∞ for every x ∈ X and |dX (x)−dX (y)| ≤
d(x, y) for every x, y ∈ X .

(iii) dX ≡ ∞ on X if and only if B(x, r) is relatively compact for every x ∈ X and every r > 0.

We call dX the distance to the boundary function for the metric space (X , d). For an open
subset D ⊂ X , we can similarly define dD on (D, d|D×D) with the locally compact separable
metric subspace (D, d|D×D) in place of (X , d); that is,

dD(x) = sup{r > 0 : B(x, r) is relatively compact in (D, dD×D)}. (3.7)

Clearly, we have
dD(x) ≤ dX (x) for any x ∈ D. (3.8)

Definition 3.6. We say condition (HC) holds if there is an E-nest {Fn;n ≥ 1} consisting of an
increasing sequence of compact subsets with N0 ⊂ X \∪nFn such that for all x0 ∈ X there exists
rx0 ∈ (0, dX (x) ∧ 1), such that if r ∈ (0, rx0) and f ∈ B+(X ) has compact support in B(x0, 2r)

c,
and satisfies 0 ≤ f ≤ cg0 for some c > 0, then Gf(x) is continuous in B(x0, r) ∩ Fn for every
n ≥ 1.

Condition (HC) is a weaker condition than the condition that bounded harmonic functions
in B(x0, 2r) are continuous in B(x0, r). We show in Example 8.3 an example of a MMD space
(X , d, E ,F ,m) such that (HC) holds but there is a bounded harmonic function in B(x0, 2r) that
is not continuous at x0 and in Example 8.4 we use the infinite product spaces studied in [BSC]
to give an example of a space which does not satisfy (HC).

Note that it follows from the definition of E-nest in Section 2, if {Fn;n ≥ 1} is an E-nest,
then so is {Kn;n ≥ 1}, where Kn = supp[1Fnm]. Thus without loss of generality, in this paper
we always assume that the E-nest in (HC) has the property that Fn = supp[1Fnm] for every
n ≥ 1. For an E-nest {Fn}, N = X \ ∪nFn is E-polar and, in particular, has zero m-measure.
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Theorem 3.7. Assume that condition (HC) holds with an E-nest {Fn}. Let N be a Borel
properly exceptional set that contains X \ ∪nFn ⊃ N0. Then for every x ∈ X \ N , G(x, dy)
is absolutely continuous with respect to m. Consequently, for every x ∈ X \ N and t > 0,
Pt(x, dy) := Px(Xt ∈ dy) is absolutely continuous with respect to m.

Proof. It follows from (3.4) that G(x,A) = 0 m-a.e. on X for every A ⊂ X with m(A) = 0
(by taking f = 1A and g = 1). Let g0 be the strictly positive function from Lemma 3.4. Fix
x0 ∈ X \ N and r ∈ (0, rx0). For j ≥ 1, let Ej = {x ∈ X : 2−j < g0(x) ≤ 21−j}. Then
the Ej form a partition of X . Let A ⊂ B(x0, 2r)

c be a Borel set with compact closure in
B(x0, 2r)

c and satisfy m(A) = 0. Since 1A∩Ej ≤ 2jg0, we have by condition (HC) that for each
k ≥ 1 the function x 7→ G(x,A ∩ Ej) is continuous and therefore zero on B(x0, r) ∩ Fk. Thus
G(x,A ∩ Ej) = 0 for every x ∈ B(x0, r) \ N . Consequently, G(x,A) =

∑∞
j=1G(x,A ∩ Ej) = 0

for every x ∈ B(x0, r) \ N . In particular, this shows that for every x0 ∈ X \ N ,

G(x0, dy) is absolutely continuous with respect to m(dy) on X \ {x0}. (3.9)

We claim that G(x0, dy) is absolutely continuous with respect to m(dy) on X . This is clearly
true if m({x0}) > 0. We thus assume m({x0}) = 0 and for t ≥ 0 define

h(x, t) := Ex

ˆ ζ

t
1{x0}(Xs) ds.

We set h(x) = h(x, 0) = (G1{x0})(x), and need to prove that h(x0) = 0.
The function h is harmonic on X \ {x0} and since m({x0}) = 0, we have by (3.4) that h = 0

m-a.e. on X . Further, by condition (HC), h(x) = 0 on X \(N∪{x0}). Thus if A = {y : h(y) > 0}
then A ⊂ N ∪ {x0}. Let T = inf{s ∈ Q ∩ [0,∞) : Xs ̸∈ A}; as N is properly exceptional and
(by Lemma 3.3) X leaves x0 immediately, we have Px0(T = 0) = 1.

Let {Ft}t≥0 be the minimum augmented admissible filtration generated by {Xt}t≥0. Let
t > 0, and set Ms = h(Xs, t− s) for s ∈ [0, t]. By the Markov property of X, for s ∈ [0, t],

Ex0

[ˆ ζ

t
1{x0}(Xr)dr

∣∣Fs

]
= EXs

ˆ ζ

t−s
1{x0}(Xr)dr = h(Xs, t− s) = Ms Px0-a.s..

Thus {Ms; s ∈ [0, t]} is a non-negative Px0-martingale that has a right continuity modification
(cf. [KS, Theorem 1.3.13]). In particular, there is Ω0 ⊂ Ω with Px0(Ω0) = 1 so that Ms(ω) is a
right continuous in s ∈ [0, t] ∩ Q for every ω ∈ Ω0. For every ω ∈ {T = 0} ∩ Ω0, there exists a
sequence sn ↓ 0, sn ∈ [0, t] ∩Q such that Xsn(ω) ̸∈ A, and thus

0 ≤ Msn(ω) = h(Xsn(ω), t− sn) ≤ h(Xsn(ω)) = 0.

Consequently we have M0(ω) = 0 Px0-a.s. Thus we have h(x0, t) = Ex0M0 = 0. It follows
then h(x0) = limt→0 h(x0, t) = 0. This together with (3.9) shows that G(x, dy) is absolutely
continuous with respect to m(dy) on X for every x ∈ X \ N . That Px(Xt ∈ dy) is absolutely
continuous with respect to m for every x ∈ X \ N and t > 0 follows immediately from [CF,
Proposition 3.1.11] or [FOT, Theorem 4.2.4]. □

With Theorem 3.7 at hand, we can deduce the following.

Theorem 3.8. Assume that condition (HC) holds with an E-nest {Fn}. Let N be a Borel
properly exceptional set that contains X \ ∪nFn ⊃ N0. Then there exists a non-negative jointly
B(0,∞)× B(X × X )-measurable function p(t, x, y) on (0,∞)× (X \ N )× (X \ N ) such that
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(i) for every f ∈ B+(X ), x ∈ X \ N and t > 0, Exf(Xt) =

ˆ
X
p(t, x, y)f(y)m(dy);

(ii) p(t, x, y) = p(t, y, x) for every x, y ∈ X \ N and t > 0;

(iii) For every t, s > 0 and x, y ∈ X \ N , p(t+ s, x, y) =

ˆ
X
p(t, x, z)p(s, z, y)m(dz).

Consequently, g(x, y) :=
´∞
0 p(t, x, y)dt, x, y ∈ X \ N , is a non-negative jointly B(X × X )-

measurable function on (X \ N )× (X \ N ) such that

(iv) Gf(x) =

ˆ
X
g(x, y)f(y)m(dy) for every x ∈ X \ N and f ∈ B+(X );

(v) g(x, y) = g(y, x) for every x, y ∈ X \ N , and x 7→ g(x, y) is X|X\N -excessive and finite
E-q.e. on X for every y ∈ X \ N .

(vi) For every y0 ∈ X \ N , x 7→ g(x, y0) is harmonic in X \ {y0}. In fact, for any open subset
U of X with y0 /∈ U , the function x 7→ g(x, y0) is regular harmonic in U .

Proof. We first show that for each x ∈ X \N and t > 0, X has a pointwisely defined transition
density function p(t, x, y). This part is almost the same as that for [BBCK, Theorem 3.1]. For
the reader’s convenience, we spell out the details here.

By Theorem 3.7, for every t > 0 and x ∈ X \ N there is a [0,∞]-valued integrable kernel
y 7→ p0(t, x, y) defined on X such that

Ex [f(Xt)] = Ptf(x) =

ˆ
X
p0(t, x, y)f(y)m(dy) for every f ∈ Bb(X ), (3.10)

where Bb(X ) denotes the set of bounded Borel measurable functions on X . We note that
p0(t, x, y) can be chosen to be jointly Borel measurable on (0,∞)×X ×X by an application of
the martingale convergence theorem (see, e.g., [GK, Proposition 5.6] with Ht(x, y) ≡ ∞). From
the semigroup property Pt+s = PtPs, we have for every t, s > 0 and x ∈ X \ N ,

p0(t+ s, x, y) =

ˆ
X
p0(t, x, z)p0(s, z, y)m(dz) for m-a.e. y ∈ X . (3.11)

Note that since Pt is symmetric, we have for each fixed t > 0,

p0(t, x, y) = p0(t, y, x) for m-a.e. (x, y) ∈ X × X . (3.12)

For every t > 0 and x, y ∈ X \ N , let s ∈ (0, t/3) and define

p(t, x, y) :=

ˆ
X
p0(s, x, w)

(ˆ
X
p0(t− 2s, w, z)p0(s, y, z)m(dz)

)
m(dw). (3.13)

Clearly, p(t, x, y) is jointly Borel measurable on (0,∞) × (X \ N ) × (X \ N ). By (3.11) and
(3.12), the above definition is independent of the choice of s ∈ (0, t/3). Clearly by (3.12) with
t− 2s in place of t and (w, z) in place of (x, y), we see that

p(t, x, y) = p(t, y, x) for every x, y ∈ X \ N . (3.14)
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By the semigroup property (3.11), (3.10) and (3.12), we have for any ϕ ≥ 0 on X and x ∈ X \N ,

Ex [ϕ(Xt)]

=

ˆ
X

(ˆ
X
p0(s, x, w)p0(t− s, w, y)m(dw)

)
ϕ(y)m(dy)

=

ˆ
X

(ˆ
X
p0(s, x, w)

(ˆ
X
p0(t− 2s, w, z)p0(s, y, z)m(dz)

)
m(dw)

)
ϕ(y)m(dy)

=

ˆ
X
p(t, x, y)ϕ(y)m(dy). (3.15)

Thus for each x ∈ X \ N , p(t, x, y) coincides with p0(t, x, y) for m-a.e. y ∈ X . For t, s > 0 and
x, y ∈ X \ N , take s0 ∈ (0, (t ∧ s)/3). We have by (3.11)-(3.13)

p(t+ s, x, y)

=

ˆ
X
p0(s0, x, w)

(ˆ
X
p0(t+ s− 2s0, w, z)p0(s0, y, z)m(dz)

)
m(dw)

=

ˆ
X 5

p0(s0, x, w)p0(t− 2s0, w, u1)p0(s0, u1, u2)p0(s0, u2, v)p0(s− 2s0, v, z)

p0(s0, y, z)m(dw)m(du1)m(du2)m(dz)m(dv)

=

ˆ
X
p(t, x, v)p(s, v, y)m(dv). (3.16)

Define g(x, y) :=
´∞
0 p(t, x, y)dt for x, y ∈ X \N . Note that g : (X \N )× (X \N ) → [0,∞] is

jointly Borel measurable. It follows from (3.15) and Fubini’s theorem that for every f ∈ B+(X ),

Gf(x) := Ex

ˆ ∞

0
f(Xs)ds =

ˆ
X
g(x, y)f(y)m(dy) for every x ∈ X \ N .

Clearly by (3.14), g(x, y) = g(y, x) for every x, y ∈ X \ N . Note that for each fixed y ∈ X \ N
and t > 0, by Fubini’s theorem and (3.16),

Ptg(·, y)(x) =
ˆ
X
p(t, x, z)g(z, y)m(dz) =

ˆ ∞

t
p(s, x, y) ds ≤ g(x, y) for every x ∈ X \ N ,

and hence t 7→ Ptg(·, y)(x) is non-increasing and limt↓0 Ptg(·, y)(x) = g(x, y). This shows that
for each fixed y ∈ X \ N , x 7→ g(x, y) is an excessive function of X|X\N . Moreover, for each
x ∈ X \N , since

´
X g(x, y)g0(y)m(dy) = Gg0(x) ≤ 1, g(x, ·) < ∞ m-a.e. and hence g(x, ·) < ∞

E-q.e. on X by [CF, Theorem A.2.13].

The proof of (vi) is similar to that for [KW, Proposition 6.2]. Let y0 ∈ X \N . Let U be an
open subset of X with y0 /∈ U , and take t1 > 0 so that U ∩B(y0, r1) = ∅. For any non-negative
f ∈ B+(X), by Fubini’s theorem and the strong Markov property of X, for each x ∈ U \N with
f
∣∣
B(y0,r1)c

≡ 0,

ˆ
B(y0,r1)

Ex [g(XτU , y)] f(y)m(dy) = Ex [(Gf)(XτU )]

= Gf(x) =

ˆ
B(y0,r1)

g(x, y)f(y)m(dy), (3.17)
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and this is finite if 0 ≤ f ≤ cg0 on X for some c > 0. Hence for each x ∈ U \ N ,

Ex [g(XτU , y)] = g(x, y) for m-a.e. y ∈ B(y0, r1).

Since y 7→ g(z, y) is X|X\N -excessive, it follows from the monotone convergence theorem, Fubini
theorem, the fine continuity of y 7→ g(z, y) (see [CF, Theorem A.2.2] or [FOT, Theorem A.2.5])
and Fatou’s lemma that

Ex [g(XτU , y0)] = lim
t↓0

Pt (Exg(XτU , ·)) (y0)

≥ lim sup
t↓0

Pt

(
g(x, ·)1B(y0,r1)

)
(y0)

≥ Ey0

[
lim inf

t↓0
g(x,Xt)1B(y0,r1)(Xt)

]
= g(x, y0).

On the other hand, the optional sampling theorem (see, e.g., [KS, Theorem 1.3.22]) implies
that Ex [g(XτU , y0)] ≤ g(x, y0) as x 7→ g(x, y0) is excessive for X|X\N and hence {g(Xt, y0)}t≥0

is a right-continuous Px-supermartingale for any x ∈ X \ N with g(x, y0) < ∞ by [CF, Proof
of Theorem A.2.2]. Thus we have Ex [g(XτU , y0)] = g(x, y0) for every x ∈ U \ N ; that is,
x 7→ g(x, y0) is regular harmonic in U . This in particular proves that x 7→ g(x, y0) is harmonic
in X \ {y0}. □

We call the function g(x, y) in Theorem 3.8 the Green function of X.

Remark 3.9. There are gaps in the proofs of the existence of a Green function in [BBK] and
[GH, Lemma 5.2]. For details of the gap in [GH], see [BM2, Remark 4.19]. The gap in [BBK] is
that it is not proven that the Green’s function is the integral kernel of the Green operator (cf.
Theorem 3.8 (iv)).

We next give a sufficient condition for (HC). The following definition is valid for any regular
Dirichlet form on X , that is, for that definition, we do not assume (E ,F) is transient.

Definition 3.10. We say that the (non-scale-invariant) elliptic Harnack inequality (Ha) holds
on X if for any ball B = B(x0, r) in X with r ∈ (0, dX (x0)∧ 1), there are constants CB > 1 and
δB ∈ (0, 1) such that for any non-negative bounded u ∈ Fe that is regular harmonic in B(x0, r),

esssupB(x0,δBr)u ≤ CB essinfB(x0,δBr)u. (3.18)

Remark 3.11. (i) If (Ha) holds, then (3.18) holds for any non-negative u ∈ Fe that is regular

harmonic in B(x0, r). This is because u(x) = Ex
[
u(XτB(x0,r)

)
]
is the increasing limit of

un(x) := Ex
[
(u ∧ n)(XτB(x0,r)

)
]
as n → ∞ E-q.e. on X , and by [CF, Theorem 3.4.8],

un ≥ 0 is a bounded function in Fe that is regular harmonic in B(x0, r); see also the proof
of Proposition 2.10(i).

(ii) Note that if property (3.18) holds for a ball B = B(x0, r) with constants CB and δB then
it holds for any larger ball B(x0, R) with constants CB and δBr/R.
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Theorem 3.12. Assume that (Ha) holds and that

λX := inf
{
E(f, f) : f ∈ F with ∥f∥L2(X ;m) = 1

}
> 0.

Then (HC) holds. Moreover, the E-nest {Fn} in (HC) can be taken so that for any compact
subset K ⊂ X and any x0 ∈ X \K, there exist some r0 > 0 with B(x0, r0) ⊂ Kc and a constant
C = C(K,x0, r0) > 0 such that for any f ∈ L1(K;m), Gf is continuous on Kc ∩ Fn for any
n ≥ 1 and

sup
x∈B(x0,r0)\N

|Gf(x)| ≤ C

ˆ
K
|f(x)|m(dx), (3.19)

where N := X \ ∪∞
n=1Fn.

Proof. Since λX > 0, by [CF, Lemma 2.1.4(ii) and Theorem 2.1.12(i)] we have Gf ∈ Fe = F ⊂
L2(X ;m) and ∥Gf∥L2 ≤ λ−1

X ∥f∥L2 for every f ∈ L2(X ;m).
Under λX > 0 and (Ha), for every x0 ∈ X , r ∈ (0, dX (x0)), and any ball B(y0, R) ⊂

X \B(x0, r), by Remark 3.11(iii) above and the same argument as that for [GH, (5.10)], we have
for any f ∈ L1(X ;m) with f = 0 on B(y0, δB(y0,R)R)c,

esssupB(x0,δr)|Gf | ≤
CB(x0,r)CB(y0,R)

λX
√
m(B(x0, δB(x0,r)r))m(B(y0, δB(y0,R)R))

∥f∥L1(X ;m). (3.20)

Observe that, in the same way as (3.17), by the strong Markov property of X, for such f ,
Gf is regular harmonic in B(x0, r); note that G|f| < ∞ E-q.e. by [CF, Proposition 2.1.3(i) and
Theorem A.2.13(v)].

Let {xk; k ≥ 1} ⊂ X be a sequence of points in X , {rk; k ≥ 1} = Q ∩ (0,∞), and

Λ :=
{
η = (xi, xj , rk, rl) : i, j, k, l ≥ 1, rk ∈ (0, dX (xi) ∧ 1), rl ∈ (0, dX (xj) ∧ 1),

and B(xi, rk) ∩B(xj , rl) = ∅
}
.

Let δi,k ∈ (0, 1) be one half of the largest positive constant δB in (Ha) for the validity of the
Harnack inequality in the ball B(xi, rk) and Ci,k > 0 be the corresponding comparison constant.
We select δi,k in this way to ensure the uniformity of the constants δB when the centers and radii
of the balls are close to each other. This uniformity is needed when we do the finite covering of
such balls over each compact set K in the last step of this proof. Note that Λ is a countable
set. For each η = (xi, xj , rk, rl) ∈ Λ, let {fp, p ≥ 1} be a dense sequence in Cc(B(xj , δj,lrl))
with respect to the supremum norm chosen so that {fp}p≥1 ∩ Cc(Un) is uniformly dense in
Cc(Un) for any n ≥ 1, where {Un}n≥1 is an increasing sequence of relatively compact open
subsets of B(xj , δj,lrl) with

⋃∞
n=1 Un = B(xj , δj,lrl). Since fk ∈ L2(X ;m), Gfk ∈ F and it is

quasi-continuous by [FOT, Theorem 4.2.6]. Thus there is an E-nest {F (η)
n , n ≥ 1} consisting

of an increasing sequence of compact sets such that F
(η)
n = supp

[
1
F

(η)
n

m
]
for any n ≥ 1,

N0 ⊂ X \ ∪∞
n=1F

(η)
n and Gfp is finite and continuous on each F

(η)
n for every integer p ≥ 1; see

[CF, Lemma 1.3.1]. Let Nη := X \ ∪∞
n=1F

(η)
n , which is E-polar and in particular has zero m-

measure, and Cη :=
Ci,kCj,l

λX
√

m(B(xi,δi,krk))m(B(xj ,δj,lrl))
. Inequality (3.20) yields that, with f0 := 0,

for any k1, k2 ≥ 0,

sup
x∈B(xi,δi,krk)\Nη

|Gfk1(x)−Gfk2(x)| ≤ Cη∥fk1 − fk2∥L1(B(xj ,δj,lrl);m). (3.21)
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Since {fp, p ≥ 1} is uniformly dense in Cc(B(xj , δj,lrl) and m is a Radon measure on X , it

follows that for every f ∈ Cc(B(xj , δjrj), Gf is continuous on B(xi, δi,krk) ∩ F
(η)
n for any n ≥ 1

and
sup

x∈B(xi,δi,krk)\Nη

|Gf(x)| ≤ Cη∥f∥L1(B(xj ,δj,lrl);m). (3.22)

Let D be an open subset of B(xj , δj,lrj). Since 1D can be approximated pointwise by an
increasing sequence of non-negative continuous functions with compact support in B(xj , δj,lrj),
we have from (3.22) and the monotone convergence theorem that

sup
x∈B(xi,δi,krk)\Nη

G(x,D) ≤ Cηm(D). (3.23)

For any Borel subset A ⊂ B(xj , δj,lrj), let {Dk1 ; k1 ≥ 1} be a decreasing sequence of open
subsets of B(xj , δj,lrj) so that A ⊂ ∩k1≥1Dk1 and limk1→∞m(Dk1 \ A) = 0. By (3.23) and the
dominated convergence theorem,

sup
x∈B(xi,δi,krk)\Nη

G(x,A) ≤ lim
k1→∞

sup
x∈B(xi,δi,krk)\Nη

G(x,Dk1) ≤ lim
k1→∞

Cηm(Dk1) = Cηm(A).

The above in particular implies that for each x ∈ B(xi, δi,krk) \ Nη,

G(x, dy) is absolutely continuous with [0, Cη]-valued density

with respect to m(dy) on B(xj , δj,lrl).
(3.24)

Since {fp, p ≥ 1} ⊂ Cc(B(xj , δj,lrj)) is dense in L1(B(xj , δj,lrl);m), it follows from (3.21) and

(3.24) that Gf is continuous on B(xi, δi,krk) ∩ F
(η)
n for any n ≥ 1 and (3.22) holds for every

f ∈ L1(X ;m) with f = 0 on B(xj , δj,lrl)
c.

By [CF, Lemma 1.3.1] and its proof, by taking suitable intersections of F
(η)
nk ’s, there is an

E-nest {Fn, n ≥ 1} consisting of an increasing sequence of compact subsets of X such that
N0 ⊂ X \∪∞

n=1Fn and that for every η = (xi, xj , rk, rl) ∈ Λ, Gf is continuous on B(xi, δi,krk)∩Fn

for any n ≥ 1 and
sup

x∈B(xi,δi,krk)\N
|Gf(x)| ≤ Cη∥f∥L1(B(xj ,δj,lrl);m) (3.25)

for every f ∈ L1(X ;m) with f = 0 on B(xj , δj,lrl)
c, where N := X \ ∪nFn which is E-polar.

Let K be a compact subset of X . As {xi} is dense in X one can deduce from (3.25) by finite
covering that for any f ∈ L1(X ;m) that vanishes outside K, Gf is continuous on Kc ∩ Fn for
any n ≥ 1, and for any x0 ∈ Kc, there is some r0 > 0 with B(x0, r0) ⊂ Kc so that

sup
x∈B(x0,r0)\N

|Gf(x)| ≤ C(K,B(x0, r0))∥f∥L1(K;m).

This in particular proves that (HC) holds with the above E-nest {Fn} of compact sets. □

Under the assumption of Theorem 3.12, we have by (3.19) that for every compact subset
K ⊂ X , G(x,K) < ∞ for x ∈ (X \ N ) \K. In other words, G(x, ·)

∣∣
X\{x} is a Radon measure

on X \ {x} for any x ∈ X \ N .

Using a time change argument, we can remove the assumption of λX > 0 in Theorem 3.12.

Theorem 3.13. Assume that (Ha) holds. Then the conclusions of Theorem 3.12 hold. Conse-
quently, the conclusions of Theorems 3.7 and 3.8 hold.
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Proof. Recall that our running assumption is that the Dirichlet form (E ,F) on L2(X ;m)
(or equivalently, its associated Hunt process X) is transient. Let g0 be as in Lemma 3.4, and
µ(dx) = g0(x)m(dx). We now make a time change of X via the inverse of the positive continuous
additive functional At :=

´ t
0 g0(Xs)ds. That is, let Yt = Xτt , where τt := inf{s > 0 : As > t}.

Then Y is µ-symmetric and transient, and its extended Dirichet form is the same as that of X;
see [FOT, Theorem 6.2.1 and Corollary 6.2.1] and [CF, Corollary 5.2.12] (since µ and m are
mutually absolutely continuous). So the Dirichlet form of Y is (E ,Fe ∩ L2(X ;µ)) on L2(X ;µ).
Since Y and X share the same family of regular harmonic functions, (Ha) holds for Y . We claim
that

λY
X := inf{E(f, f) : f ∈ Fe ∩ L2(X ;µ) with ∥f∥L2(X ;µ) = 1} ≥ 1. (3.26)

Denote by G̃ the Green potential of Y , that is, for f ≥ 0 on X ,

G̃f(x) := Ex

ˆ ∞

0
f(Yt)dt = Ex

ˆ ∞

0
f(Xτt)dt.

Using the time change, we see that G̃f(x) = Ex
´∞
0 (fg0)(Xt)dt = G(fg0)(x). In particular, we

have G̃1 = Gg0 ≤ 1. Thus for u ∈ L2(X ;µ), by Cauchy-Schwarz and the symmetry of G̃ with
respect to µ, ˆ

X
(G̃u)2(x)µ(dx) ≤

ˆ
X
G̃(u2)(x)G̃1(x)µ(dx) ≤

ˆ
X
G̃(u2)(x)µ(dx)

≤
ˆ
X
u(x)2G̃1(x)µ(dx) ≤

ˆ
X
u(x)2µ(dx). (3.27)

Therefore, for any u ∈ L2(X ;µ),
´
X u(x)G̃u(x)µ(dx) ≤

´
X u(x)2µ(dx) < ∞ by (3.27). It

follows (cf. [CF, Theorem 2.1.12] or [FOT, Theorem 1.5.4]) that G̃u ∈ Fe ∩ L2(X ;µ) with
E(G̃u, G̃u) =

´
X u(x)G̃u(x)µ(dx). Hence for u ∈ Fe ∩ L2(X ;µ), we have by (3.27) and the

Cauchy-Schwarz,ˆ
X
u2(x)µ(dx) = E(G̃u, u) ≤ E(u, u)1/2E(G̃u, G̃u)1/2 ≤ E(u, u)1/2 ∥u∥L2(X ;µ).

Consequently,
∥u∥L2(X ;µ) ≤ E(u, u)1/2 for every u ∈ Fe ∩ L2(X ;µ).

This proves the claim (3.26).
For the process Y , we can take gY0 = 1 in the role of g0 for X in (3.3) as G̃1 = Gg0 ≤ 1. By

Theorem 3.12, (HC) holds for the process Y . Since G̃f = G(fg0) and an increasing sequence
of compact sets {Fn} of X is an E-nest for the process X if and only if it is an E-nest for the
process Y in view of [CF, Theorem 5.2.11], we conclude that (HC) as well as the rest of the
conclusions of Theorem 3.12 hold for the process X. □

Remark 3.14. One can see from its proof that the properly exceptional set N in the conclusion
of Theorem 3.8 in fact depends only on the properly exceptional set N1 ⊃ N0 of X for which

Px(Xt ∈ dy) is absolutely continuous with respect to m for every x ∈ X \N1 and t > 0. (3.28)

By Theorem 3.7, under condition (HC), N1 depends only on the E-nest {Fn} in the definition of
(HC). In view of the proof of Theorem 3.13, under condition (Ha), the conclusion of Theorem
3.8 holds for a properly exceptional set N that only depends on N1 in (3.28) and the properly
exceptional set in the property that Gg0 ≤ 1 E-q.e. on X .
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Remark 3.15. In Example 8.3, we will give an example of an irreducible strongly local regular
Dirichlet form for which (Ha) fails but (HC) holds. In fact, for this example, there exists a
discontinuous positive harmonic function.

4 Green functions

We now drop the hypothesis that (E ,F) is transient. Recall that dX (x) is the distance to the
boundary function on X defined in (3.5).

Definition 4.1. For a MMD space (X , d,m, E ,F), we say

(i) the (scale invariant) elliptic Harnack inequality (EHI) holds if there exist constants δH ∈
(0, 1) and CH ∈ (1,∞) so that for any x ∈ X , R ∈ (0, dX (x)), and for any nonnegative
bounded harmonic function h on a ball B(x,R), one has

ess sup
B(x,δHR)

h ≤ CH ess inf
B(x,δHR)

h; (4.1)

(ii) the (scale invariant) local elliptic Harnack inequality EHIloc if (4.1) holds for any nonneg-
ative bounded harmonic function on balls B(x,R) with 0 < R < dX (x) ∧ 1.

Remark 4.2. (i) Clearly, the EHI implies the EHIloc, and the EHIloc implies implies (Ha).

(ii) If (X , d) is a geodesic metric space and EHI or EHIloc holds for some value of δH , then the
same holds for any other δ′ ∈ (0, 1) with a constant CH(δ′).

(iii) Suppose EHIloc holds and u is a nonnegative harmonic function on a ball B(x,R) with 0 <
R < dX (x)∧1. By Proposition 2.10(ii), u is the increasing limit in B(x,R/2) of a sequence
of functions {un;n ≥ 1} that is non-negative, bounded and harmonic in B(x,R/2). It
follows that (4.1) holds for u on the ball B(x, δ′HR), where δ′H = δH/2. In other words, if
EHIloc holds, it holds for any non-negative (possibly unbounded) harmonic function.

(iv) If EHIloc holds, in view of (iii) above, iterating the condition (4.1) gives a.e. Hölder con-
tinuity of harmonic functions, and it follows that any locally bounded harmonic function
has a continuous modification [GT12, Lemma 5.2].

Let D be an open set of X . Note that if (X , d,m, E ,F) satisfies the EHIloc, then so does
(D, d,m|D, E ,FD), where (E ,FD) is the Dirichlet form for the part process XD of X killed upon
leaving D (see (2.5)). Let Ddiag denote the diagonal in D ×D. For a subset A ⊂ X , we use A
to denote its closure and ∂A its boundary.

Definition 4.3. (a) Let D be a non-empty open subset of X such that Dc is not E-polar. We
say that (E ,F) has a regular Green function on D if there exists a non-negative B(D×D)-
measurable function gD(x, y) on D ×D with the following properties:

(i) (Symmetry) gD(x, y) = gD(y, x) for all (x, y) ∈ D ×D;

(ii) (Continuity) gD(x, y) is [0,∞)-valued and jointly continuous in (x, y) ∈ D×D\Ddiag;
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(iii) (Occupation density) There is a Borel properly exceptional set ND of XD such that

Ex

ˆ τD

0
f(Xs)ds =

ˆ
D
gD(x, y)f(y)m(dy) for every x ∈ D \ ND, (4.2)

for any f ∈ B+(D);

(iv) (Excessiveness) For each y ∈ D, x 7→ gD(x, y) is XD|D\ND
-excessive, where ND is

the set given in (iii);

(v) (Harmonicity) For any fixed y ∈ D, the function x 7→ gD(x, y) is in FD\{y}
loc and for

any open subset U of D with y /∈ U , x 7→ gD(x, y) is regular harmonic in U with
respect to XD.

(vi) (Maximum principles) If x0 ∈ U ⋐ D, then

inf
U\{x0}

gD(x0, ·) = inf
∂U

gD(x0, ·), sup
D\U

gD(x0, ·) = sup
∂U

gD(x0, ·). (4.3)

We call gD(x, y) the regular Green function of (E ,F) in D.

(b) We say that (E ,F) has regular Green functions if for any non-empty open set D ⊂ X
whose complement Dc is not E-polar, (E ,F) has a regular Green function gD(x, y) on D,
where the properly exceptional set ND in (iii),(iv) can be taken to be ND = D ∩ N for a
Borel properly exceptional set N of X that is independent of D as long as D ⊂ B(x,R)
for some x ∈ X and R ∈ (0, diam(X , d)/2).

Theorem 4.4. Suppose that the MMD space (X , d,m, E ,F) and let D be a non-empty open
subset of X such that the part process XD is transient.

(i) Assume that (D, d,m|D, E ,FD) satisfies (Ha). Then (E ,FD) has a Green function gD(x, y)
in the sense that

(i.a) gD(x, y) is a non-negative jointly B(D×D)-measurable function and there is a Borel
properly exceptional set ND of XD such that

Ex

ˆ τD

0
f(Xs)ds =

ˆ
D
gD(x, y)f(y)m(dy), x ∈ D \ ND,

for any f ∈ B+(D);

(i.b) gD(x, y) = gD(y, x) for every x, y ∈ D \ND, and x 7→ gD(x, y) is X
D|D\ND

-excessive
and bounded E-q.e. on any U ⋐ D \ {y} for every y ∈ D \ ND;

(i.c) For every y0 ∈ D \ ND, x 7→ g(x, y0) is harmonic in D \ {y0}. Moreover, for any
open subset U of D with y0 /∈ U is regular harmonic in U with respect to XD.

(ii) If (D, d,m|D, E ,FD) satisfies the EHIloc, then (E ,F) has a regular Green function on D.

In particular, the above properties hold if (X , d,m, E ,F) is irreducible and D is a non-empty
open subset of X such that Dc is not E-polar

Proof. (i) The conclusion of this part follows directly from Theorem 3.13 by replacing X and X
by D and XD, and from Proposition 2.9. Denote the corresponding Borel properly exceptional
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set in Theorem 3.13 for XD by ND. The local E-q.e. boundedness of x 7→ gD(x, y) on D \ {y}
for every y ∈ D \ ND follows from (Ha), (3.19) of Theorem 3.13, [FOT, Theorem A.2.7] and
[CF, Theorem A.2.13(iv)]. Note that this ND has the property that for every x ∈ D \ ND, the
law of XD

t under Px is absolutely continuous with respect to m|D for every t > 0. This property
will be used in (4.5) as well as at the end of this proof when establishing the excessiveness of
x 7→ gD(x, y) for every y ∈ D.

(ii) Suppose now that (D, d,m|D, E ,FD) satisfies the EHIloc in (D, d). Let x0 ∈ D and
r ∈ (0, (dD(x0) ∧ 1)/2). Let u be a bounded harmonic function in B(x0, 2r) ⊂ D. Iterating the
condition (4.1) yields that there are constants c0 > 0 and β ∈ (0, 1) that depend only δH(D)
and CH(D) in (4.1) (with D in place of X ) such that

|u(x)− u(y)| ≤ c0∥u∥L∞(B(x0,2r)

(
d(x, y)

r

)β

for a.e. x, y ∈ B(x0, r). (4.4)

Since (Ha) holds on D, by (i) there is a Green function gD(x, y) in D. For each fixed y0 ∈ D\ND,
x 7→ gD(x, y0) < ∞ m-a.e. and is harmonic in D \ {y0}. It follows from (3.19) of Theorem 3.13
(of EHIloc and Remark 4.2(iii)) that x 7→ gD(x, y0) is (essentially) locally bounded in D \ {y0}.
The Hölder estimate (4.4) implies that there is a locally Hölder continuous function g̃D(·, y0) on
D\{y0} such that g̃D(x, y0) = gD(x, y0) for m-a.e. x ∈ D. Since gD(·, y0) is XD|D\ND

-excessive,

t 7→ gD(X
D
t , y0) ∈ [0,∞] is right continuous on [0,∞) Px-a.s. for every x ∈ D \ ND; see, e.g.,

[CF, Theorem A.2.2]. Since the law of XD
t under Px is absolutely continuous with respect to

m
∣∣
D

for every x ∈ D \ ND, we have for every x ∈ D \ (ND ∪ {y0}), Px-a.s.,

gD(x, y0) = lim
Q∋t→0

gD(X
D
t , y0) = lim

Q∋t→0
g̃D(X

D
t , y0) = g̃D(x, y0). (4.5)

Thus gD(x, y0) = g̃D(x, y0) for every x ∈ D \ (ND ∪ {y0}). For each y0 ∈ D \ ND, we define
g̃D(y0, y0) := gD(y0, y0). The above shows that there is a function g̃D(x, y) defined on D× (D \
ND) so that for each y0 ∈ D \ ND, x 7→ g̃D(x, y) is locally Hölder continuous on D \ {y0} and
g̃D(x, y0) = gD(x, y0) for every x ∈ D \ ND.

Since gD(x, y) is symmetric on (D \ND)× (D \ND) by (i.b), we have g̃D(x, y) = g̃D(y, x) for
every x, y ∈ D\ND. We extend the definition of g̃D(x, y) on D×(D\ND) to (D×D)\(ND×ND)
by setting g̃D(x, y) = g̃(y, x) for x ∈ D \ND and y ∈ ND. Note that y 7→ g̃D(x0, y) is continuous
in D \ {x0}. We next show that such defined g̃D(x, y) on (D × D) \ (ND × ND) is locally
jointly Hölder continuous off the diagonal and thus its definition can be continuously extended
to (ND ×ND) \ {(x, x) : x ∈ ND}.

Let x0, y0 ∈ D \ND with x0 ̸= y0. There is r ∈ (0, (ρD(x0)∧ρD(y0))/2) such that B(x0, 2r)∩
B(y0, 2r) = ∅. By the EHIloc in D, for every x ∈ B(x0, 2δH(D)r)\ND and y ∈ B(y0, 2δH(D)r)\
ND,

g̃D(x, y) ≤ CH(D)g̃D(x, y0) ≤ CH(D)2g̃D(x0, y0).

It follows from (4.4) that for x1, x2 ∈ B(x0, δH(D)r) \ ND and y1, y2 ∈ B(y0, δH(D)r) \ ND,

|g̃D(x1, y1)− g̃D(x2, y2)| ≤ |g̃D(x1, y1)− g̃D(x2, y1)|+ |g̃D(x2, y1)− g̃D(x2, y2)|

≤ CH(D)2g̃D(x0, y0)c0 (δH(D)r)−β
(
d(x1, x2)

β + d(y1, y2)
β
)
.

Consequently g̃D(x, y) can be extended continuously to B(x0, δr)×B(y0, δr) and hence to D×
D \Ddiag as a locally Hölder continuous function. Clearly, g̃D(x, y) = g̃D(y, x) for x, y ∈ D with
x ̸= y. For w ∈ ND, we define g̃D(w,w) := lim supx ̸=y∈D,x→w,y→w g̃D(x, y). In summary, we
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now have a symmetric Borel measurable function g̃D(x, y) : D ×D → [0,∞] defined on D ×D
so that g̃D(x, y) is locally Hölder continuous on (D × D) \ Ddiag, and g̃D(x, y) = gD(x, y) for
x, y ∈ D\ND. From now on, we take this refined version g̃D(x, y) for the Green function gD(x, y)
in D and drop the tilde from g̃D(x, y).

We next show that gD(x, y) is a regular Green function on D. We already have the symmetry
and continuity properties of gD(x, y). The occupation density holds for this refined gD(x, y) as
well since ND is E-polar so m(ND) = 0. Thus it remains to show the excessiveness, regular
harmonicity and maximum principle for gD(x, y) (see Definition 4.3). Suppose U is a relatively
compact open subset of D and x0 ∈ U . Let r0 > 0 be such that B(x0, r0) ⊂ U . For every
y ∈ D \ (U ∪ND) and for every r ∈ (0, r0), we have by the symmetry of gD(x, y) and the strong
Markov property of X that

ˆ
B(x0,r)

gD(x, y)m(dx) = Ey

ˆ τD

0
1B(x0,r)(Xs)ds = EyEXD

σU

ˆ τD

0
1B(x0,r)(Xs)ds

=

ˆ
B(x0,r)

EygD(x,X
D
σU

)m(dx).

Dividing both sides by m(B(x0, r)) and then taking r → 0 yields that

gD(x0, y) = Ey
[
gD(x0, X

D
σU

)
]
. (4.6)

This together with the continuity of gD on D ×D \Ddiag shows that

sup
y∈D\U

gD(x0, y) = sup
y∈∂U

gD(x0, y). (4.7)

Identity (4.6) holds with τV in place of σU for any open subset V of D with x0 /∈ V and any y ∈
V \ND by exactly the same argument. For this, we note that (4.7) along with B(x0, r0) ⋐ D \V
is used to apply dominated convergence theorem. Thus the regular harmonicity in Definition

4.3(v) holds for gD(x, y). In particular, gD(·, y) ∈ FD\{y}
loc for any y ∈ D by Proposition 2.9(iii).

For each fixed x ∈ U \ ND and any Borel measurable function f ≥ 0 on D, by the strong
Markov property of X,

ˆ
D
gD(x, y)f(y)m(dy) = Ex

ˆ τD

0
f(Xs)ds ≥

ˆ
D
Ex[gD(X

D
τU
, y)]f(y)m(dy).

Hence gD(x, y) ≥ Ex[gD(X
D
τU
, y)] for m-a.e. y ∈ D. Since for every z ∈ D, y 7→ gD(z, y) is

continuous on D \ {z}, we have by Fatou’s lemma that

gD(x, z) ≥ Ex[gD(X
D
τU
, z)] for every z ∈ U \ {x}.

Taking z = x0 and by the symmetry of gD(x, z), we get for every x ∈ U \ (ND ∪ {x0}),

gD(x0, x) ≥ Ex[gD(x0, X
D
τU
)] ≥ inf

y∈∂U
gD(x0, y).

In the last inequality, we used the fact that Px(τU < τD) = 1 due to Proposition 3.1. By the
continuity of x 7→ gD(x0, x) on D \ {x0}, we get

inf
y∈U\{x0}

gD(x0, y) = inf
y∈∂U

gD(x0, y).

25



This together with (4.7) establishes the maximum principle for gD(x, y).
We now show that for every y ∈ D, x 7→ gD(x, y) is X

D|D\ND
-excessive. Note that ND is a

properly exceptional set for XD. By (i.b), the above property holds for every y ∈ D \ ND. For
y ∈ ND, let yn ∈ D \ ND so that yn → y as n → ∞. Let x ∈ D \ ND. Observe that since y
is E-polar, m({y}) = 0. As mentioned earlier, the law of XD

t under Px is absolutely continuous
with respect to m for every t > 0. Thus by the local Hölder continuity of gD on D ×D \Ddiag

and Fatou’s lemma, for every t > 0,

Exg(XD
t , y) ≤ lim inf

n→∞
ExgD(X

D
t , yn) ≤ lim inf

n→∞
gD(x, yn) = gD(x, y). (4.8)

On the other hand, since Px(limt→0X
D
t = x) = 1 and x ̸= y, we have by Fatou’s lemma again,

gD(x, y) = Ex
[
lim
t→0

gD(X
D
t , y)

]
≤ lim inf

t→0
ExgD(X

D
t , y).

This together with (4.8) proves that x 7→ gD(x, y) is X
D|D\ND

-excessive for every y ∈ ND and
hence for every y ∈ D. This completes the proof that gD(x, y) is a regular Green function on
D. This concludes the proof of (i) and (ii).

Finally, if (E ,F) is irreducible and Dc is not E-polar, the regular Dirichlet form (E ,FD) on
L2(D;m|D) is transient by Proposition 2.1. □

The following property on the consistency of exceptional sets follows readily from Remark
3.14. This observation will be used to choose a common properly exception set as required in
Definition 4.3.

Lemma 4.5. Suppose that (X , d,m, E ,F) is irreducible and satisfies the EHIloc. Let D1, D2 be
open subsets of X such that X \D2 is non-E-polar and D1 ⊂ D2, and let ND2 be a Borel properly
exceptional set of XD2 in Theorem 4.4(i). Then we can choose ND2 ∩D1 as the Borel properly
exceptional set ND1 in Theorem 4.4(i) for D = D1.

Theorem 4.6. Suppose that (X , d,m, E ,F) is irreducible and satisfies the EHIloc. Then (E ,F)
has regular Green functions. Moreover, the Borel properly exceptional set N of X in the defi-
nition of regular Green functions for (E ,F) in Definition 4.3(b) has the property that for each
x ∈ X \ N and every t > 0, Px(Xt ∈ dy) is absolutely continuous with respect to m(dy).

Proof. Since (X , d,m, E ,F) satisfies the EHIloc, every locally bounded harmonic function is
locally Hölder continuous, and (D, d,m|D, E ,FD) satisfies the EHIloc for every non-empty open
subset D of X whose complement Dc is not E-polar. The existence of regular Green functions
follow directly from Proposition 2.1 and Theorem 4.4(ii) if we can show that there is a common
properly exceptional set N of X, independent of D, so that (4.2) of Definition 4.3 for the regular
Green function gD(x, y) on D hold for all x ∈ D \ N .

We first show the existence of a common properly exceptional set N . Let X0 be a dense
countable subset of X , let {(xn, rn)}∞n=1 be an enumeration of X0 × ((0, diam(X , d)/2) ∩Q),
and set Dn = B(xn, rn) for each n ≥ 1. Then for any n ≥ 1, since X \ Dn ̸= ∅ and hence is
non-E-polar, we can take a Borel properly exceptional set N ′

Dn
of XDn as in Theorem 4.4(i) for

D = Dn. Next, choose a Borel properly exceptional set N ′ of X so that
⋃∞

n=1N ′
Dn

⊂ N ′. Then

for any n ≥ 1, we can take N ′ ∩Dn as a properly exceptional set NDn of XDn as in Theorem
4.4(i) for D = Dn. Let D be an open subset of X such that D ⊂ B(x,R) for some x ∈ X and
R ∈ (0, diam(X , d)/2). Then D ⊂ Dn for some n = nD ≥ 1 and therefore by Lemma 4.5 and the
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definition of N ′ above, we can take (N ′ ∩Dn) ∩D = N ′ ∩D as the Borel properly exceptional
set ND of XD in Theorem 4.4(i) for D. This concludes the proof that (E ,F) has regular Green
functions.

It remains to verify the absolute continuity of Px(Xt ∈ dy) with respect to m for all x in the
complement of an exceptional set. To this end, fix some D1 = B(x0, r) with r = diam(X , d)/2
and let D2 = B(x0, r/2)

c
, which are non-empty open subsets of X with D1 ∪D2 = X . Define

τ0 = 0, τ1 := τD1 = inf{t > 0 : Xt /∈ D1}, τ2 := τD2 ◦ θτ1 = inf{t > τ1 : Xt /∈ D2}, and for k ≥ 1,

τ2k+1 := τD1 ◦ θτ2k and τ2k+2 := τD2 ◦ θτ2k+1
.

Then for every α > 0, x ∈ X \ N ′ and Borel measurable function f ≥ 0 on X ,

Gαf(x) := Ex

ˆ ∞

0
e−αtf(Xt)dt

=
∞∑
k=0

Ex

ˆ τ2k+1

τ2k

e−αtf(Xt)dt+

∞∑
k=0

Ex

ˆ τ2k+2

τ2k+1

e−αtf(Xt)dt

=
∞∑
k=0

Ex

[
e−ατ2kEXτ2k

ˆ ∞

0
e−αtf(XD1

s )ds; τ2k < ζ

]

+
∞∑
k=0

Ex

[
e−ατ2k+1EXτ2k+1

ˆ ∞

0
e−αtf(XD2

s )ds; τ2k+1 < ζ

]
.

By Theorem 3.13 applied to part processes XD1 and XD2 , respectively, there is a properly
exceptional set N ⊃ N ′ of X so that Gα(x, dy) ≪ m(dx) for every x ∈ X \ N . We then
conclude by [CF, Proposition 3.1.11] that Px(Xt ∈ dy) ≪ m(dy) for every x ∈ X \ N . □

We next give a sufficient condition for a strongly local MMD space (X , d,m, E ,F) to be
irreducible. First we present a characterization of irreducibility for such a Dirichlet form,
which in fact holds also for any strongly local quasi-regular Dirichlet forms by using quasi-
homeomorphism. See [CF, Theorem 5.2.16] for a characterization of irreducible recurrent Dirich-
let forms.

Theorem 4.7. Let (E ,F) be a strongly local regular Dirichlet form on L2(X ;m). Then the
following are equivalent.

(i) (E ,F) is irreducible;

(ii) If u ∈ Floc having E(u, u) = 0, then u is constant E-q.e. on X .

(iii) If u ∈ Floc ∩ L∞(X ;m) having E(u, u) = 0, then u is constant E-q.e. on X .

Proof. (i) ⇒ (ii): Suppose u ∈ Floc and E(u, u) = 0. Let {Uk; k ≥ 1} be an increasing sequence
of relatively compact open subsets whose union is X . Then for each k ≥ 1, there is some uk ∈ F
so that uk = u m-a.e. on Uk. By Fukushima’s decomposition (2.6),

uk(Xt)− uk(X0) = Muk
t +Nuk

t , t ≥ 0,Px-a.s. for E-q.e. x ∈ X ,

where Muk is a martingale additive functional of X having finite energy and Nuk is a continuous
additive functional of X having zero energy. Since µ⟨uk⟩(Uk) = µ⟨u⟩(Uk) = 0, we have Muk

t = 0
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for every t ∈ [0, τUk
) Px-a.s. for E-q.e. x ∈ X by [FOT, Theorems 5.2.3, 5.1.5 and (5.1.22)] (and

the optional sampling theorem [KS, Problem 1.3.24(i)] applied to (Muk)2 − ⟨Muk⟩) and

E(uk, φ) = 0 for every φ ∈ F ∩ Cc(Uk).

The last display implies by [FOT, Theorem 5.4.1] that Nuk
t = 0 for every t ∈ [0, τUk

) Px-a.s. for
E-q.e. x ∈ X . Consequently, we have for each k ≥ 1 that for E-q.e. x ∈ X , Px-a.s.

u(Xt)− u(X0) = uk(Xt)− uk(X0) = 0 for everyt ∈ [0, τUk
).

As limk→∞ τUk
= ζ, we have for quasi-every x ∈ X , Px-a.s.,

u(Xt) = u(X0) for every t ∈ [0, ζ). (4.9)

For a ∈ R, define Aa = {x ∈ X : u(x) > a}. In view of (4.9), Pt1Aa ≤ 1Aa m-a.e. on X .
Hence by the irreducibility of (E ,F), either m(Aa) = 0 or m(X \Aa) = 0. This proves that u is
constant m-a.e. and hence E-q.e. on X by [CF, Theorem 1.3.7].

(ii) ⇒ (iii) is trivial.

(iii) ⇒ (i): Were the Dirichlet form (E ,F) on L2(X ;m) not irreducible, there would exist a
Borel set A with m(A) > 0 and m(Ac) > 0 such that 1Au ∈ F for any u ∈ F and (2.1) holds.
In particular, both 1A and 1Ac are in Floc, and (2.1) with 1Au,1Acv in place of u, v yields

E(1Au, 1Acv) = 0 for every u, v ∈ F .

This together with (2.8) gives that for any bounded u, v ∈ F ,
ˆ
X
v(x)µ⟨1Au⟩(dx) = 2E(1Au, 1Auv)− E(1Au2, v)

= 2E(u, (1Av)u)− E(u2, 1Av)

=

ˆ
X
(1Av)(x)µ⟨u⟩(dx).

This yields
µ⟨1Au⟩(dx) = 1A(x)µ⟨u⟩(dx). (4.10)

Let {Uk; k ≥ 1} be an increasing sequence of relatively compact open subsets whose union is X
and uk ∈ F ∩ Cc(X ) be such that uk = 1 on Uk. We have by (4.10) and Proposition 2.3(ii),(i)
that

µ⟨1A⟩(Uk) = µ⟨1Auk⟩(Uk) = µ⟨uk⟩(Uk ∩A) = 0 for each k ≥ 1,

and so

E(1A, 1A) =
1

2
µ⟨1A⟩(X ) = 0.

Since 1A, which is in Floc and bounded, is not constant m-a.e. on X this is a contradiction, and
proves that the Dirichlet form (E ,F) on L2(X ;m) is irreducible. □

Theorem 4.7 in particular implies that irreducibility is invariant under form-bounded per-
turbations in the following sense. If (X , d,m, E ,F) and (X , d, µ, E ′,F ′) are two strongly local
regular MMD spaces such that the Radon measure µ does not change E-polar sets and has full
quasi support on X , F ∩ Cc(X ) = F ′ ∩ Cc(X ) and there is a constant C ≥ 1 so that

C−1E(u, u) ≤ E ′(u, u) ≤ CE(u, u) for u ∈ F ∩ Cc(X ), (4.11)
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then (E ,F) on L2(X ,m) is irreducible if and only if so is (E ′,F ′) on L2(X , µ). Note that, by
[CF, Corollary 5.2.12], the condition that µ is a smooth measure of (X , d,m, E ,F) with full
quasi support on X ensures that two extended Dirichlet spaces coincide. By [LJ, Proposition
1.5.5(b)], (4.11) implies that

C−1µ⟨u⟩ ≤ µ′
⟨u⟩ ≤ Cµ⟨u⟩ on X for any u ∈ Fe = F ′

e. (4.12)

Theorem 4.8. Suppose that (X , d) is connected. If a MMD space (X , d,m, E ,F) satisfies (Ha)
and any bounded function that is harmonic in each ball B(x0, r) with r ∈ (0, dX (x0)) has a
continuous modification there, then (X , d,m, E ,F) is irreducible.

Proof. (i) We first show that for any relatively compact open subset U ⊂ X with U ̸= X ,

Px(τU < ∞) = 1 for q.e. x ∈ U. (4.13)

Indeed, since ∂U is compact, there is some φ ∈ F ∩Cc(X ) so that φ = 1 in a neighborhood of U .
By the strong locality of (E ,F), φ is E-harmonic in U . Define h(x) := Ex[φ(XτU )]. By [FOT,
Theorems A.2.6(i), 4.1.3 and 4.2.1(ii)], h = φ E-q.e. on U c. In particular, there is a properly
exceptional set N so that for every x ∈ U \ N ,

h(XτU ) = φ(XτU ) = 1 Px-a.s. on {τU < ∞}. (4.14)

Moreover, h ∈ Fe is E-quasi-continuous on X and E-harmonic in U by [CF, Theorem 3.4.8] or
[FOT, Theorem 4.6.5]. Consequently, f := φ − h is a bounded E-quasi continuous element in
Fe that is E-harmonic in U and vanishes E-q.e. on U c. Therefore E(f, f) = 0. By [Che, Lemma
2.2], there is a properly exceptional set N1 ⊃ N of X so that

Px(f(Xt) = f(X0) for every t ≥ 0) = 1 for every x ∈ X \ N1. (4.15)

Note that for x ∈ U \ N1, h(x) = Ex[φ(XτU )] = Px(τU < ∞). For x ∈ U \ N1 having
h(x) = Px(τU < ∞) > 0, we have by (4.14) and (4.15) that

h(x) = h(X0) = h(XτU ) = 1 Px-a.s. on {τU < ∞}.

This proves that h takes values either 0 or 1 E-q.e. everywhere on U . Consequently, f = φ− h
takes values either 0 or 1 E-q.e. everywhere on U and hence on X . Since f is bounded E-quasi-
continuous and E-harmonic on X due to E(f, f) = 0, it is harmonic on X on Proposition 2.9(i).
Hence by the assumption of the theorem, it has a continuous m-modification f̃ which takes
values either 0 or 1. Since (X , d) is connected and U ̸= X , f̃ = 0 on X . It follows that f = 0
and hence h = 1 E-q.e. on U . This establishes the claim (4.13).

(ii) Suppose u ∈ Floc∩L∞(X ;m) and E(u, u) = 0. By the proof of (i) ⇒ (ii) part of Theorem
4.7, we know that (4.9) holds Px-a.s. for E-q.e. x ∈ X , and in particular that u is harmonic on
X . By the assumption of the theorem, u has a continuous version, which we still denote it by
u. Since (E ,F) is strongly local, 1 ∈ Floc and E(1, 1) = 0. Let x0 be an arbitrary point in X
and denote u(x0) by a0. Then u− a0 ∈ Floc and µ⟨u−a0⟩ = µ⟨u⟩ by Proposition 2.3(ii). Thus

E(u− a0, u− a0) =
1

2
µ⟨u−a0⟩(X ) =

1

2
µ⟨u⟩(X ) = E(u, u) = 0.
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Let v = |u− a0|. By [CF, Theorem 4.3.10], v ∈ Floc and E(v, v) = 0. By (4.13) and Proposition
2.9(ii), v is regular harmonic in B(x0, r) for any r ∈ (0, dX (x0)). Since v(x0) = 0, by (Ha) and
the continuity of v, we have v(x) = 0 on B(x0, r) for some r ∈ (0, dX (x0)); that is, u(x) = u(x0)
on B(x0, r) for some r ∈ (0, dX (x0)). This shows that for any constant a ∈ R, both Aa :=
{x ∈ X : u(x) > a} and its complement Ac

a = {x ∈ X : u(x) ≤ a} are open subsets of X . If
u is not a constant, then there is a constant a so that neither Aa nor Ac

a is empty. This would
contradict the assumption that (X , d) is connected. So u must be constant. This establishes the
irreducibility of (X , d,m, E ,F) by Theorem 4.7. □

Combining Theorem 4.8 with Theorem 4.6 shows that if (X , d) is connected and (X , d,m, E ,F)
satisfies the EHIloc, then (E ,F) has regular Green functions.

5 Implications of EHI

Recall the definition of metric doubling from Definition 1.1. We introduce a few related proper-
ties. For a metric space (X , d) and A ⊂ X , we set diam(A) = supx,y∈A d(x, y). For x ∈ X , R > 0,

we denote by B(x,R) := {y ∈ X : d(x, y) ≤ R} the closed ball centered at x of radius R. The
following definition of relative K ball connectedness is adapted from [GH, Definition 5.5].

Definition 5.1. (i) Let K > 1. A metric space (X , d) is relatively K ball connected if for
each ε ∈ (0, 1) there exists an integer N = NX (ε) ≥ 1 such that if x0 ∈ X , R > 0 and
x, y ∈ B(x0, R) then there exists a chain of balls B(zi, εR) for i = 0, . . . , N such that
z0 = x, zN = y, B(zi, εR) ⊂ B(x0,KR) for each i = 0, . . . , N and d(zi−1, zi) < εR for
1 ≤ i ≤ N . We write NX for the integer NX (ε) with ε = 1/4. We say also that (X , d)
satisfies the property RBC(K). We say that (X , d) is relatively ball connected if there
exists K > 1 such that (X , d) is relatively K ball connected.

(ii) A metric space (X , d) is said to be uniformly perfect, if there exists C > 1 such that if
x ∈ X , r > 0 and B(x, r)c ̸= ∅ then B(x, r) \B(x, r/C) ̸= ∅.

(iii) A metric space (X , d) is said be L-linearly connected (for some L > 1), if for all x, y ∈ X ,
there exists a connected compact set J such that x, y ∈ J and diam(J) ≤ Ld(x, y).

(iv) A distortion function is a homeomorphism of [0,∞) onto itself. Let η be a distortion func-
tion. A map f : (X1, d1) → (X2, d2) between metric spaces is said to be η-quasisymmetric
or an η-quasisymmetry, if f is a homeomorphism and

d2(f(x), f(a))

d2(f(x), f(b))
≤ η

(
d1(x, a)

d1(x, b)

)
for all triples of points x, a, b ∈ X1, x ̸= b. We say f is a quasisymmetry if it is η-
quasisymmetric for some distortion function η. We say that metric spaces (X1, d1) and
(X2, d2) are quasisymmetric, if there exists a quasisymmetry f : (X1, d1) → (X2, d2). We
say that metrics d1 and d2 on X are quasisymmetric (or, d1 is quasisymmetric to d2), if
the identity map Id : (X , d1) → (X , d2) is a quasisymmetry.

(v) We say a metric space (X , d) is quasi-arc connected, if there exists a distortion function
η : [0,∞) → [0,∞) such that for all pairs of distinct points x, y ∈ X , there exists a subset
J ⊂ X and an η-quasisymmetry γ : [0, 1] → J such that γ(0) = x and γ(1) = y. Here J is
endowed with the metric d and [0, 1] has the Euclidean metric.
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The following lemma clarifies some relationships between these conditions.

Lemma 5.2. Let (X , d) be a complete metric space.

(a) Assume that (X , d) is relatively K ball connected. Then there exists L > 1, such that for
all x, y ∈ X , there exists a continuous map γ : [0, 1] → X such that γ(0) = x, γ(1) = y, and
diam(γ([0, 1])) ≤ Ld(x, y). In particular, (X , d) is L-linearly connected.

(b) If (X , d) is connected then it is uniformly perfect.

(c) If (X , d) is relatively ball connected and satisfies metric doubling, then (X , d) is quasi-arc
connected.

(d) If (X , d) is quasi-arc connected, then (X , d) is relatively ball connected.

(e) Assume that (X , d) is relatively K ball connected. If ρ is a metric on X quasisymmetric
to d, then (X , ρ) is also relatively ball connected. In other words, the property of being
relatively ball connected is a quasisymmetry invariant.

Proof. (a) Fix ε ∈ (0, 1) and let K,N = NX (ε) be the constants of relative ball connectivity.
Let x, y ∈ X be a pair of distinct points. For each k ∈ N, we define γk : [0, 1] → X as follows.

Let z
(1)
0 , z

(1)
1 , . . . , z

(1)
N be a sequence of points in B(x,Kd(x, y)) such that d(z

(1)
i , z

(1)
i+1) < εd(x, y),

with z
(1)
0 = x, z

(1)
N = y. Let γ1 : [0, 1] → X be a piecewise constant function on intervals defined

by

γ1(t) = z
(1)
i for all i = 0, 1, . . . , N − 1 and for all i/N ≤ t < (i+ 1)/N

and γ1(1) = y. Similarly, for all i = 0, . . . , N − 1, we choose z
(2)
j ∈ B(z

(1)
i ,Kϵd(x, y)), j =

iN, iN + 1, . . . , iN +N such that z
(2)
iN = z

(1)
i , z

(2)
iN+N = z

(1)
i+1, d(z

(2)
j , z

(2)
j+1) < ε2d(x, y) and set

γ2(t) = z
(2)
j for all i = 0, 1, . . . , N2 − 1 and for all i/N2 ≤ t < (i+ 1)/N2,

with γ2(1) = y. We similarly define γk : [0, 1] → X a piecewise constant function on intervals
[j/Nk, (j + 1)/Nk), j = 0, 1, . . . , Nk − 1. Since for all t ∈ [0, 1], d(γk(t), γk+1(t)) < Kεkd(x, y),
the sequence {γk(t), k ∈ N} is Cauchy, and hence converges to say γ(t) ∈ X . This defines a
function γ : [0, 1] → X . Note that

d(x, γ(t)) ≤
∞∑
k=0

Kεkd(x, y) = Kd(x, y)/(1− ε).

If |t1 − t2| ≤ 1
Nk for some k ∈ N, we have

d(γ(t1), γ(t2)) ≤ d(γk(t1), γ(t1)) + d(γk(t2), γ(t2)) + d(γk(t1), γk(t2))

≤ 2

( ∞∑
l=k

Kεld(x, y)

)
+ εkd(x, y)

≤ (2K(1− ϵ)−1 + 1)εkd(x, y),

which implies the continuity of γ.
This shows that the image J = γ([0, 1]) is a compact, connected set and x, y ∈ J with

diam(J) ≤ Ld(x, y), where L = 2K/(1− ε). Therefore (X , d) is L-linearly connected.
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(b) Let B(x, r) be a ball such that B(x, r)c ̸= ∅ and let C > 1. Then B(x, r)c and B(x, r/C)
are non-empty disjoint closed sets. Since (X , d) is connected, B(x, r) \B(x, r/C) ̸= ∅.
(c) By part (a), (X , d) is linearly connected. By Tukia’s theorem ([Mac, Corollary 1.2] and [TV,
Theorem 4.9]), (X , d) is quasi-arc connected.
(d) Let η be the distortion function corresponding to quasi-arc connectedness. Define K =
1 + η(1). Let x, y ∈ B(x0, R), x ̸= y and γ : [0, 1] → J be an η-quasisymmetry such that
γ(0) = x, γ(1) = y. For all t ∈ [0, 1],

d(x, γ(t)) ≤ η(t)d(x, y) ≤ η(1)d(x, y).

Let ε ∈ (0, 1) be arbitrary. Let N ∈ N be such that 2η(2/N)η(1) < ε and define zi = γ(i/N)
for i = 0, 1, . . . , N . By η-quasisymmetry, we have

d(zi, zi+1) ≤ η(2/N)d(zi, w) ≤ η(2/N)η(1)d(x, y) ≤ 2η(2/N)η(1)R < εR,

where w = x if i ≥ N/2 and w = y otherwise. This implies that (X , d) is relatively K ball
connected, where K = 2(1 + η(1)).
(e) Let Id : (X , d) → (X , ρ) be an η-quasisymmetry, where (X , d) is relatively K ball connected.
Let ε ∈ (0, 1) and let x, y ∈ X , x ̸= y be arbitrary. Choose ε′ ∈ (0, 1) such that

η(2ε′) (η(K) + 1) < ε.

Choose points z0, z1, . . . , zN such that z0 = x, zN = y,B(zi, ε
′d(x, y)) ⊂ B(x,Kd(x, y)) and

d(zi, zi+1) < ε′d(x, y), where N = N(X ,d)(ε
′) is the constant associated with the relative ball

connected property of (X , d). For any i = 0, 1, . . . , N − 1, let w ∈ {x, y} be such that d(zi, w) =
max(d(zi, x), d(zi, y)). Since d(x, y)/2 ≤ d(zi, w), we obtain

ρ(zi, zi+1) ≤ η(d(zi, zi+1)/d(zi, w))ρ(zi, w) ≤ η(2ε′)(ρ(x, zi) + ρ(x, y))

≤ η(2ε′) (η(K) + 1) ρ(x, y) < ερ(x, y).

Since ρ(x, zi) ≤ η(K)ρ(x, y), (X , ρ) is relatively Kρ ball connected, where Kρ = 2 + 2η(K). □

Remark 5.3. See [GH, Definition 5.5] for the definition of relatively (ε,K) ball connected. It is
immediate that if (X , d) is relatively K ball connected then it is relatively (ε,K) ball connected
for any ε ∈ (0, 1). Conversely it is straightforward to show that if for some ε ∈ (0, 1), K > 1
(X , d) is relatively (ε,K) ball connected then it is relatively K ′ ball connected with K ′ = 1+ K

1−ε .

The main result of this section is the following.

Theorem 5.4. Let (X , d) be a metric space such that B(x, r) is compact for all x ∈ X and
r > 0. Assume that (X , d,m, E ,F) is a MMD space that satisfies the EHI. The following are
equivalent:
(a) (X , d) is relatively K ball connected for some K > 1.
(b) (X , d) satisfies metric doubling.
(c) (X , d) is quasi-arc connected.

Proof. (b) ⇒ (a). This follows by the argument in [GH, Proposition 5.6]: for any K > 1 + δ−1
H

we obtain relative K-ball connectedness. (The hypothesis of volume doubling there is only
used to obtain metric doubling). Note that this implication requires EHI only for [0, 1]-valued
h ∈ F ∩ Cc(X ).
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(c) ⇒ (a), (a) + (b) ⇒ (c) (and so (b) ⇒ (c)) are proved in Lemma 5.2.
The proof of (a) ⇒ (b) needs more preparation and will be given after Lemma 5.17. □

For the proof of (a) ⇒ (b) in Theorem 5.4, we follow [BM1, Section 3]; however it was
assumed there that the metric d was geodesic, and some changes are needed to handle the case
when we only have that (X , d) is relatively K ball connected. We now outline these changes.

Definition 5.5. We say that (X , d,m, E ,F) satisfies the condition (HG) if (X , d,m, E ,F) has
regular Green functions and there exist constants CG,KG > 0 such that for any x0 ∈ X , R > 0
and open set D in X with B(x0,KGR) ⊂ D and Dc non-E-polar

sup
y2∈D\B(x0,R)

gD(x0, y2) ≤ CG inf
y1∈B(x0,R)\{x0}

gD(x0, y1). (5.1)

Assumption 5.6. Throughout the remainder of this section except for Lemma 5.16, we assume
that (X , d) is a metric space such that B(x, r) is compact for all x ∈ X , r > 0 and that (X , d)
is relatively K ball connected for some K ≥ 2. Furthermore we assume that the MMD space
(X , d,m, E ,F) satisfies the (scale invariant) EHI with constants CH , δH .

Recall that by Lemma 5.2(a), a complete metric space (X , d) that is relatively K ball con-
nected is connected. Thus under Assumption 5.6, (X , d,m, E ,F) is irreducible by Theorem 4.8
and has regular Green functions by Theorem 4.6. By the maximum principle (4.3) for the regular
Green function gD in Theorem 4.4(ii), we have for any B = B(x0, R) ⋐ D,

sup
D\B

gD(x0, ·) = sup
∂B

gD(x0, ·), inf
B\{x0}

gD(x0, ·) = inf
∂B

gD(x0, ·). (5.2)

Proposition 5.7. Let (X , d,m, E ,F) be a MMD space that satisfies Assumption 5.6. Then (HG)
holds with constants CG,KG for KG = 2K + 1, where CG depends only on CH , δH ,KG, NX .

Proof. This follows from the proof of [GH, Lemma 5.7]. (The statement of the result in [GH]
has stronger hypotheses, but these are only used to obtain the existence and regularity of the
Green function, and to prove that (X , d) is relatively (ε,K) ball connected for some ε ∈ (0, 1)
and K > 1.) □

Under Assumption 5.6, (E ,F) has regular Green functions by Theorems 4.8 and 4.6, and
(HG) holds with constant KG = 2K + 1 and CG > 1 by Proposition 5.7.

Corollary 5.8. (See [BM1, Corollary 3.2].) Let (X , d,m, E ,F) be a MMD space that satisfies
Assumption 5.6. Let K1 = K + 1. For any δ ∈ (0, 1/2], there exists a positive constant C that
depends only on δ and the constants in Assumption 5.6 such that the following holds: for any
open set D in X whose complement Dc is non-E-polar and for any B(x0,K1R) ⊂ D,

gD(x0, x) ≤ CgD(x0, y) for x, y ∈ B(x0, R) \B(x0, δR).

Proof. Let x, y ∈ B(x0, R) \ B(x0, δR). Let ε = δδH/(1 + δH); we have ε < δ/2. We connect
y to x0 by a chain of balls B(zi, εR), i = 0, 1, . . . N , with the properties given in Definition
5.1(i) of relatively K ball connected. Let i0 be the first integer such that d(zi0 , x0) < δR. With
the definition of ε given above, gD(x0, ·) is harmonic on B(zi, εR/δH) for i = 0, . . . , i0 − 1, and
so we can use the EHI to deduce that gD(x0, zi0) ≤ CN

H gD(x0, y). Finally by (HG) we have
gD(x0, x) ≤ CGgD(x0, zi0). □
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Lemma 5.9. (See [BM1, Lemma 3.3].) Let (X , d,m, E ,F) be a MMD space that satisfies
Assumption 5.6. Let K2 = 2K + 3. There exists C0 > 1 that depends only on the constants
in Assumption 5.6 such that the following holds: Let x0 ∈ X , R > 0 and let B(x0,K2R) ⊂ D,
where D is an open set in X such that Dc is non-E-polar. Then if x1, x2, y1, y2 ∈ B(x0, R) with
d(xj , yj) ≥ R/4, then

gD(x1, y1) ≤ C0gD(x2, y2). (5.3)

Proof. Note that for any four numbers ai ∈ [0, R), 1 ≤ i ≤ 4,∣∣(0, R) \ ∪4
i=1[ai − (R/9), ai + (R/9)]

∣∣ ≥ R− (8R/9) = R/9 > 0

so there is some a0 ∈ (0, R) so that |a0 − ai| > R/9 for all 1 ≤ i ≤ 4. As d(x0, ·) is continuous
and by the RBC(K) property and Lemma 5.2(a), B(x0, R) contains a connected path from
x0 to B(x0, R)c, we have {d(x0, x) : x ∈ B(x0, R)} = [0, R). Thus there is a0 ∈ (0, R) so
that |a0 − d(x0, w)| > R/9 for w ∈ {x1, x2, y1, y2}. Let z ∈ B(x0, R) having d(x0, z) = a0.
Now applying Corollary 5.8 to the balls B(x1, 2R), B(z, 2R) and B(x2, 2R) with δ = 1/18
consecutively, we get by the symmetry of the Green function gD(x, y) that

gD(x1, y1) ≤ CgD(x1, z) ≤ C2gD(x2, z) ≤ C3gD(x2, y2).

This establishes the lemma by taking C0 = C3. □

As in [BM1], we define for an open set D ⊂ X with non-E-polar complement:

gD(x, r) = inf
y∈∂B(x,r)

gD(x, y) provided B(x, r) ⊂ D,

CapD(A) = inf{E(f, f) : f ∈ (Fe)
D, f ≥ 1 E-q.e. on A}, A ⊂ D,

where (Fe)
D = {u ∈ Fe : u = 0 E − q.e. on X \D}. By noting that (Fe)

D is equal to
the extended Dirichlet space of (E ,FD) [CF, Theorem 3.4.9], we set FD

e := (Fe)
D. We call

CapD(A) the relative capacity of A in D. The maximum principle (4.3) implies that gD(x, r)
is non-increasing in r, and an easy application of (HG) gives that if y ∈ ∂B(x, r) and B(x, r) ∪
B(y,KGr) ⊂ D then

gD(x, r) ≤ CGgD(y, r). (5.4)

Given Proposition 5.7 the proof of the next Lemma is the same as in [BM1, Lemma 3.5].

Lemma 5.10. Let (X , d,m, E ,F) be a MMD space that satisfies Assumption 5.6. There is a
constant CG > 0 depending only on the constants in Assumption 5.6 such that for any open set
D whose complement Dc is non-E-polar and for any B(x0,KGr) ⊂ D where KG = 2K + 1,

gD(x0, r) ≤ CapD(B(x0, r))
−1 ≤ CGgD(x0, r). (5.5)

Remark 5.11. For any x ∈ X , 0 < R < diam(X , d)/2, the complement of ballB(x,R)c is non-E-
polar. This is because by the triangle inequality, there exist z ∈ X and 0 < r < diam(X , d)/2−R
so that B(z, r) ⊂ B(x,R)c. Since m has full support, m (B(x,R)c) ≥ m(B(z, r)) > 0 and thus
B(x,R)c has positive capacity.
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Lemma 5.12. (See [GH, Lemmas 7.1 and 7.4] and [GNY, Lemma 2.5]) Let (X , d,m, E ,F) be
a MMD space that satisfies Assumption 5.6. There exists C such that for any sufficiently large
A > 1, and for any ball B(x, r), n ∈ N with Anr < diam(X , d)/A, denoting Bk = B(x,Akr), we
have

n−1∑
i=0

CapBi+1
(Bi)

−1 ≤ CapBn
(B0)

−1 ≤ C
n−1∑
i=0

CapBi+1
(Bi)

−1.

Proof. The upper bound is contained in [GH, Lemmas 7.1 and 7.4]. The upper bound in [GH]
is stated under the additional volume doubling property assumption but the proof only uses the
properties of the regular Green functions and (HG). Also, the constant C can be chosen to be
CG for any A ≥ KG, where CG,KG are as given in Definition 5.5.

The lower bound is a general fact that does not require the EHI – see [GNY, Lemma 2.5]. □

Lemma 5.13. Let (X , d,m, E ,F) be a MMD space that satisfies Assumption 5.6. Let B =
B(x0, R) ⊂ X , and B1 = B(x1, R/(8K3)) with x1 ∈ B(x0, R/(4K3)), where K3 = K + 2 and
K is as given in Assumption 5.6. There exists p0 > 0 depending only on the constants in
Assumption 5.6 such that

Py(σB1 < τB) ≥ p0 > 0 for E-q.e. y ∈ B(x0, R/(2K3)). (5.6)

Proof. We consider two cases.
(i) Suppose B(x0, R)c is non-E-polar. By the maximum principle it is enough to prove this

for y ∈ ∂B(x0, R/(2K3)). The argument, which uses Corollary 5.8, is the same as in [BM1,
Lemma 3.7].

(ii) Now suppose B(x0, R)c is E-polar. By Remark 5.11, R ≥ diam(X , d)/2 and diam(X , d) <
∞. If R > 8K3 diam(X , d), then B1 = X and (5.6) is obviously true. Therefore, it suffices to
consider the case when R ≤ 8K3 diam(X , d) < ∞.

Let x0 ∈ X , x1 ∈ B(x0, R/(4K3)), y ∈ B(x0, R/(2K3)). Let ε = 1/(130K2
3 ) and let

B(zi,
εR
4K ), 0 ≤ i ≤ N := NX (ε) be a chain of balls with z0 = y, zN = x1, B(zi,

εR
4K ) ⊂ B(x0, R/4)

for all each i and d(zi−1, zi) < εR/(4K) for 1 ≤ i ≤ N as in Definition 5.1(i) with R/(4K) in
place of R there. Since 8K3εR ≤ 64K2

3εdiam(X , d) < diam(X , d)/2, by Case 1 and Remark
5.11, we have

Pw(σB(zi,εR) < τB(zi−1,8K3εR)) ≥ p0 for E-q.e. w ∈ B(zi−1, 4εR).

Since B(zi, 8K3εR) ⊂ B(x0, R/2) for all i, using the strong Markov property, we conclude that

Pw(σB1 < τB) ≥ pN0 > 0 for E-q.e. w ∈ B(y, 4ϵR).

Since B(x0, R/(2K3)) is covered by a countable family of balls B(y, 4ϵR), y ∈ B(x0, R/(2K3)),
by replacing p0 by pN0 , we obtain (5.6) in the second case as well. □

Remark 5.14. (i) In [BM1, Lemma 3.7], the corresponding result held for y ∈ B(x0, 7R/8);
we cannot expect that here, since such a point y might not be connected to B1 by a path
inside B.
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(ii) Let Bi = B(zi, εR), 0 ≤ i ≤ n be a chain of balls as in Definition 5.1(i). Using this Lemma
we have for each i

Py(σB(zi,εR) < τB(zi−1,8K3εR)) ≥ p0 for E-q.e. y ∈ B(zi−1, 4εR).

Thus if
D = ∪n

i=0B(zi, 8K3εR),

then
Py(σBn < τD) ≥ pn0 for E-q.e. y ∈ B(z0, 4εR). (5.7)

Corollary 5.15. (See [BM1, Corollary 3.8]). Let (X , d,m, E ,F) be an MMD space that satisfies
Assumption 5.6. Let B(x,R) ⊂ D, where D is an open set in X and Dc is non-E-polar. There
exist positive constants c and θ that depend only on the constants in Assumption 5.6 such that
if 0 < s < r < R/(K + 1) then

gD(x, r)

gD(x, s)
≥ c
(s
r

)θ
. (5.8)

Proof. This follows easily from Corollary 5.8. □

The following Lemma is used to regularize chains of balls obtained by using the RBC(K)
property.

Lemma 5.16. Suppose that (X , d) is a metric space satisfying the RBC(K) property. Let
d(x, y) < R, ε ∈ (0, 1) and εR < r < R. There exists a chain of balls B(zi, εR), 0 ≤ i ≤ n with
the following properties:
(i) z0 = x, zn = y and d(zi−1, zi) < εR for 1 ≤ i ≤ n;
(ii) B(zi, εR) ⊂ B(x,KR) for 0 ≤ i ≤ n;
(iii) If j = max{i : zi ∈ B(x, r)} then B(zi, εR) ⊂ B(x,Kr) for 0 ≤ i ≤ j;
(iv) n ≤ NX (ε) +NX (εR/r).

Proof. By the RBC(K) property there exists a chain of balls B(wi, εR), 0 ≤ i ≤ m1 connecting
x and y and satisfying the conditions of Definition 5.1(i) with x0 = x. Let k = max{i : wi ∈
B(x, r)}. By the RBC(K) property for x and wk, and with ε replaced by ε′ = εR/r, there exists
a chain B(w′

i, εR), 0 ≤ i ≤ m2 with B(w′
i, εR) ⊂ B(x,Kr). Joining the paths w′

0, . . . , w
′
m2

and
wk+1, . . . wm1 gives a path (zi) which satisfies the conditions (i)–(iv). □

Lemma 5.17. Let (X , d,m, E ,F) be a MMD space that satisfies Assumption 5.6. There exists
an integer N ≥ 1 that depends only on the constants in Assumption 5.6 such that if x0 ∈ X ,
R > 0 and B(zi, R/8), 1 ≤ i ≤ m, are disjoint balls with zi ∈ B(x0, R) \ B(x0, R/2), then
m ≤ N .

Proof. This lemma corresponds to [BM1, Lemma 3.10]. In [BM1] the metric d on X is assumed
to be a geodesic distance, and the proof in [BM1] uses this property quite strongly. The proof
here is much longer since we only have the weaker property that (X , d) is relatively K ball
connected.

Let (zk, 1 ≤ k ≤ m) satisfy the hypotheses of the Lemma, and write Bk = B(zk, R/8).
Choose ε = 1/(720K2), and let n = NX (ε) +NX (24Kε). For each k we use Lemma 5.16 with
r = R/(24K) to find a chain of balls B(wki, εR) with 0 ≤ i ≤ n connecting zk to x0. Note that
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by taking wki = x0 for large i if necessary, we can assume that all the chains have length n. We
set lk = max{i : wki ∈ B(zk, R/(24K))}, and write z′k = wklk .

We now find a subset I of the balls Bi such that the chain (wik, 0 ≤ k ≤ n) associated with
one ball does not hit any other ball with index in I.

For 1 ≤ i, j ≤ m set aij = 1 if {wik, 1 ≤ k ≤ n} ∩ Bj ̸= ∅, and let aij = 0 otherwise.
Let bj =

∑
i aij . Since each wik is in at most one ball Bj , we have

∑
j aij ≤ n, and hence∑

j bj =
∑

i

∑
j aij ≤ mn. Thus if J = {j : bj ≤ 2n} then |J | ≥ m/2.

We now consider the collection of balls (Bi, i ∈ J), and relabel them B1, . . . , Bm1 where
m1 = |J | ≥ m/2. We now start with the ball B1, and remove from the collection of balls
B2, . . . , Bm1 any ball Bj such that either a1j = 1 or aj1 = 1. Since 1 ∈ J and a11 = 1, less
than 3n balls are removed. Set j1 = 1. Let j2 be the smallest label of a ball which has not been
removed; we now repeat the procedure above with this ball, and remove any ball Bi such that
i > j2 and aj2i+aij2 ≥ 1. We continue until there are no balls left, and write I = {jk, 1 ≤ k ≤ m′}
for the set of balls which are retained. Since at each step we remove at most 3n − 1 balls, we
have 3nm′ ≥ 1

2m.
By the construction above we have that

wik ̸∈ ∪j∈I\{i}Bj for i ∈ I, k = 0, . . . , n.

For i ∈ I set B′
i = B(zi, εR), Ai = B(z′i, εR), and let

D = B(x0, 2KR) \ ∪i∈IB
′
i.

We now claim that for i ∈ I

Py(σB′
i
< τBi) ≥ pn0 for E-q.e. y ∈ 4Ai := B(z′i, 4εR), (5.9)

Py(σAi < τD) ≥ pn0 for E-q.e. y ∈ B(x0, 4εR). (5.10)

Both these inequalities follow by chaining the bound in Lemma 5.13, as in Remark 5.14(ii),
along a sequence of balls. For (5.9) we use the sequence B(wij , εR), 0 ≤ j ≤ li (starting at j = li
and ending at j = 0), and for (5.10) we use B(wij , εR), li ≤ j ≤ n. (We start at j = n and end
at j = li.)

The remainder of the proof is as in [BM1, Lemma 3.10]. Let Fi = {σAi < τD}, and

Y =
∑
i∈I

1Fi

be the number of distinct balls Ai hit by (Xt, 0 ≤ t ≤ τD). The bound (5.9) implies that if X
hits Ai then with probability at least pn0 it leaves D before it hits any other ball Aj with j ̸= i.
Thus Y is stochastically dominated by a geometric r.v. with mean p−n

0 , and so

EyY ≤ p−n
0 for E-q.e. y ∈ B(x0, 4ϵR).

However, by (5.10) we also have

EyY =
∑
i∈I

Py(Fi) ≥ |I|pn0 = m′pn0 for E-q.e. y ∈ B(x0, 4εR).

Since m′ ≥ m
6n as given above, it follows that m ≤ 6np−2n

0 . □

Now we can finish the proof of Theorem 5.4 by giving the
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Proof of (a) ⇒ (b) in Theorem 5.4. (i) Suppose that a metric space (X , d) has the property
that there is an integer N ′ ≥ 1, so that any ball B(x,R) contains at most N ′ points that are
at distance of at least R/2. Given any ball B(x,R) ⊂ X , take z1 ∈ B(x,R), z2 ∈ B(x,R) \
B(z1, R/2), and for k ≥ 3, zk ∈ B(x,R) \ ∪k−1

j=1B(zj , R/2) if the set is non-empty. By the
assumption, we can only proceed this procedure up to some number k0 no larger than N ′.
Clearly ∪k0

j=1B(zj , R/2) ⊃ B(x,R). Thus (X , d) is metric doubling. Conversely, suppose (X , d)
is metric doubling with positive integer N ≥ 2 in Definition 1.1. For any ball B(x,R), by
applying the definition of (MD) to B(x,R) and to balls with radius R/2, and then with radius
R/4 (to guarantee x1, . . . , xN3 ∈ B(x,R)) there are N3 points x1, . . . , xN3 in B(x,R) so that
∪N3

j=1B(xj , R/4) ⊃ B(x,R). Suppose {z1, . . . , zn} are n points in B(x,R) that are at distance

of at least R/2, then |{z1, . . . , zn} ∩B(xk, R/4)| ≤ 1 for any 1 ≤ k ≤ N3. Thus n ≤ N3. This
proves that a metric space (X , d) is (MD) if and only if there is some constant N ′ so that any
ball B(x,R) contains at most N ′ points that are at distance of at least R/2 from each other.

(ii) Now let N ≥ 1 be the integer in Lemma 5.17. Let x0 ∈ X , R > 0, and let zi ∈ B(x0, R),
1 ≤ i ≤ n, with the property that the balls B(zi, R/8) are disjoint. By Lemma 5.17 applied first
to B(x0, R) and then to B(x0, R/2), there are at most 2N of the zi in B(x0, R) \ B(x0, R/4).
Using the relative K-ball connectivity of X , we can find x1 such that R/2 ≤ d(x0, x1) < 3R/4
(here we assume without loss of generality that B(x0, R/2) ̸= X ; otherwise we can cover B(x0, R)
with B(x0, R/2)). Thus B(x0, R/4) ⊂ B(x1, R) \ B(x1, R/4). So by Lemma 5.17 applied to
B(x1, R), there are at most 2N points zi in B(x0, R/4). Consequently, n ≤ 4N . This proves
that (X , d) is (MD) in view of its equivalent characterization given in (i). □

We need to compare the Green functions in two concentric balls.

Lemma 5.18. (See [BM1, Lemma 3.12].) Let (X , d,m, E ,F) be a MMD space that satisfies
Assumption 5.6. There exists a constant C1 that depends only on the constants in Assumption
5.6 such that if B = B(x0, R), 2B = B(x0, 2R) and B(x0, (2 + 1/(128K2))R)c is non-empty,
then

g2B(x, y) ≤ C1gB(x, y) for x, y ∈ B(x0, R/(8K)), x ̸= y.

Proof. Let a1 = 1/(8K), a2 = 1/(4K), a3 = 1/(2K), ε = 1/(128K2) and Bi = B(x0, aiR). Let
p1 > 0. Suppose that there exist an open set D with B2 ⊂ D ⊂ B and a Borel set A ⊂ X such
that

Px(XτD ∈ A) ≥ p1, for E-q.e. x ∈ B2, (5.11)

Pw(τ2B < σB2) ≥ p1 for E-q.e. w ∈ A. (5.12)

Let y ∈ B1. Let x1 = x1(y) ∈ ∂B2 be chosen to maximize g2B(x
′, y) for x′ ∈ ∂B2. Write

h(w) = Pw(τ2B < σB2). Then by the strong Markov property at τD, σB2 and the occupation
density formula (4.2), for E-q.e. z ∈ D \ {y}

g2B(z, y) = gD(z, y) + Ezg2B(XτD , y) ≤ gB(z, y) + Ez
[
EXτD [1{σB2

<τ2B}g2B(XσB2
, y)]

]
≤ gB(z, y) + Ez(1− h(XτD))g2B(x1, y).

Using (5.11) and (5.12), for E-q.e. z ∈ B2 \ {y} we have

gB(z, y) + g2B(x1, y)− g2B(z, y) ≥ g2B(x1, y)Ezh(XτD) ≥ g2B(x1, y)p
2
1.
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Letting z → x1 yields
gB(x1, y) ≥ g2B(x1, y)p

2
1.

Then if x ∈ B1 \ {y},

g2B(x, y) = gB2(x, y) + Exg2B(Xτ2B , y) ≤ gB(x, y) + g2B(x1, y)

≤ gB(x, y) + p−2
1 gB(x1, y).

The first equality above only holds for E-q.e. x ∈ B1\{y} but g2B(x, y) ≤ gB(x, y)+p−2
1 gB(x1, y)

follows for any x ∈ B1 \ {y} by continuity.
Let x′1 be the point in ∂B2 which minimizes gB(x

′, y). By the maximum principle (4.3),
gB(x, y) ≥ gB(x

′
1, y). We now apply Corollary 5.8 to the ball B(y, a1R + a2R) to deduce

that gB(x1, y) ≤ cgB(x
′
1, y). Combining this with the inequalities above we obtain the bound

g2B(x, y) ≤ CgB(x, y). (Note that the constant C only depends on p1 and the constants in
Corollary 5.8; it does not depend on y.)

It remains to find p1 > 0 such that there exist sets D and A satisfying (5.11) and (5.12).
Let y0 ∈ ∂B(x0, (2 + ε)R). By Lemma 5.16 there exists a sequence x0 = z0, . . . , zn = y0 with
d(zi−1, zi) < ϵR for 1 ≤ i ≤ n such that if j = max{i : zi ∈ B3} then B(zi, εR) ⊂ B(x0,Ka3R)

for 0 ≤ i ≤ j. Write B′
i = B(zi, εR). Now let D = B \B′

j , and A = B′
j .

We will use Remark 5.14(ii) repeatedly to obtain (5.12). If i ≥ j then B(zi, 8K3εR)∩B2 = ∅.
So we can chain along the sequence of balls Bj , . . . Bn to obtain (5.12) with p1 = pn0 .

If 0 ≤ i ≤ j then d(x0, zi) ≤ Ka3R and so B(zi, 8εK3R) ⊂ B(x0,Ka3R + 8εK3R) ⊂ B.
Hence, chaining along this sequence we obtain

Px(XτD ∈ A) ≥ pj0 for E-q.e. x ∈ B′
0.

To complete the proof of (5.11) we need to extend this estimate to x ∈ B2.
Let x2 ∈ B2. Then there exists a chain of balls B(wj , εR), 0 ≤ j ≤ k with w0 = x2, wk = x0,

d(wj−1, wj) < εR for 1 ≤ j ≤ k, and with B(wj , εR) ⊂ B(x0,Ka2R). Since B(wj , 8εK3R) ⊂ B,
we deduce that

Px(σB′
0
< τB) ≥ pk0, for E-q.e. x ∈ B(x2, εR).

By letting x2 run over a countable dense subset of B2, it follows that

Px(XτD ∈ A) ≥ pk+n
0 for E-q.e. x ∈ B2.

Since k and n only depend on the constants NX (ε), this completes the proof of (5.11). □

The following corollary is a direct consequence of Lemmas 5.10 and 5.18 and Remark 5.11.

Corollary 5.19. (See [BM1, Corollary 3.13].) Let (X , d,m, E ,F) be a MMD space that satisfies
Assumption 5.6. There exists C1 that depends only on the constants in Assumption 5.6 such
that for all A > 8K and for all 0 < r < diam(X , d)/(6A), x ∈ X ,

CapB(x,2Ar)(B(x, r)) ≤ CapB(x,Ar)(B(x, r)) ≤ C1CapB(x,2Ar)(B(x, r)). (5.13)

In the following, notations f ≍ g, f ≲ g and f ≳ g mean that there are positive constants
c1, c2 so that c1g ≤ f ≤ c2g, f ≤ c2g and f ≥ c1g, respectively, on the common domain of
definition of f and g.
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Lemma 5.20. (See [BM1, Lemma 3.14].) Let (X , d,m, E ,F) be a MMD space that satisfies
Assumption 5.6.

(a) Let D be an open set in X such that Dc is non-E-polar. Let x ∈ X and r > 0 be such that
B(x,C0r) ⊂ D, where C0 = 2K + 3. There exists a constant C1 > 0 such that

C−1
1 CapD(B(y, r)) ≤ CapD(B(x, r)) ≤ C1CapD(B(y, r)) for y ∈ B(x, r).

(b) Let A > 8K. There exists a constant C2 > 0 such that

CapB(x,Ar)(B(x, r)) ≤ C2CapB(y,Ar)(B(y, r))

for x ∈ X , y ∈ B(x,A1r), 0 < r < diam(X , d)/(6A).

(c) Let A > 8K and A1 > 0. There exists a constant C3 > 0 such that

CapB(x,Ar)(B(x, r)) ≤ C3CapB(y,Ar)(B(y, r))

for x ∈ X , y ∈ B(x,A1r), 0 < r < diam(X , d)/(6A). Here the constants C1, C2, C3 depend
only on A1 and the constants in Assumption 5.6.

Proof. (a) As in the proof of Lemma 5.9, choose z ∈ B(x, r) such that min(d(z, x), d(z, y)) ≥ r/4.
By Corollary 5.8 and Lemma 5.10, CapD(B(x, r)) ≍ gD(x, z)

−1 and CapD(B(y, r)) ≍ gD(y, z)
−1.

The conclusion now follows from Lemma 5.9.
(b) By Corollary 5.19 and part(a), we have

CapB(x,Ar)(B(x, r)) ≲ CapB(x,2Ar)(B(x, r)) ≍ CapB(x,2Ar)(B(y, r)).

Since B(y,Ar) ⊂ B(x, 2Ar), we have CapB(x,2Ar)(B(y, r)) ≤ CapB(y,Ar)(B(y, r)).
(c) The case A1 ≤ 1 follows from (b). For A1 > 1, by the RBC(K) condition there exists N such
that x, y ∈ X with d(x, y) < A1r, can be connected by a sequence of points x0 = x, x1, . . . , xN =
y with d(xi−1, xi) < r for 1 ≤ i ≤ N , where N depends only on A1 and the constants in RBC(K)
condition. By applying (b) repeatedly, we obtain (c) with C3 = CN

2 , where C2 is the constant
in (b). □

Proposition 5.21. (See [BM1, Proposition 3.15]) Let (X , d,m, E ,F) be a MMD space that
satisfies Assumption 5.6. Let D ⊂ X be an open set such that Dc is non-E-polar and let
B(x0, 2KR) ⊂ D. Let b ≥ 24. Let F ⊂ B(x0, R), and suppose there exist disjoint Borel subsets
{Qi, 1 ≤ i ≤ n} of X with n ≥ 2 such that

F = ∪n
i=1Qi

and for each i, there exists zi ∈ X so that B(zi, R/b) ⊂ Qi. Then there exists δ =
δ(δH , b, CH ,K) > 0 such that

CapD(F ) ≤ (1− δ)

n∑
i=1

CapD(Qi).
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Proof. The proof is similar to that of [BM1, Proposition 3.15]. The only difference is that we use
RBC(K) condition and a chaining argument using the EHI along with Lemma 5.13 to obtain
the lower bound on the equilibrium potentials hi for CapD(Qi).

The proof in [BM1, Proposition 3.15] uses the fact that the 0-order equilibrium measure
νDB of any B ⊂ D with CapD(B) < ∞ for the part Dirichlet form (E ,FD) on D satisfies
νDB (D) = CapD(B). Since this is mentioned in [CF, FOT] under the additional assumption that
B is compact, we provide further details on how to verify this equality for an arbitrary set B.
Let eDB denote the 0-order equilibrium potential of B for (E ,FD), so that E(eDB , u) =

´
D u dνDB

for any u ∈ FD
e by [FOT, Theorem 2.2.5]. Then by [FOT, the 0-order version of Theorem

2.1.5], CapD(B) = E(eDB , eDB ) =
´
D eDB dνDB ,

´
D φ(1 − eDB ) dν

D
B = E(eDB , φ(1 − eDB )) = 0 for any

φ ∈ F ∩ Cc(X ) with φ
∣∣
X\D = 0, hence

´
D(1 − eDB ) dν

D
B = 0, namely eDB = 1 νDB -a.e., and thus

CapD(B) =
´
D eDB dνDB = νDB (D). □

The following lemma is an extension of Corollary 5.19.

Lemma 5.22. Let (X , d,m, E ,F) be a MMD space that satisfies Assumption 5.6. Let 1 < A1 ≤
A2 < ∞. There exists a positive constant C2 that depends only on A1, A2 and the constants in
Assumption 5.6 such that for all x ∈ X , 0 < r < diam(X , d)/(6(A2 ∨ (9K))),

CapB(x,A2r)(B(x, r)) ≤ CapB(x,A1r)(B(x, r)) ≤ C2CapB(x,A2r)(B(x, r)).

Proof. The estimate CapB(x,A2r)(B(x, r)) ≤ CapB(x,A1r)(B(x, r)) follows from domain mono-
tonicity. For the other estimate, by domain monotonicity we may assume A2 > 8K.

Choose A3 > 8K so that A2/A3 < A1−1. Then B(y,A2r/A3) ⊂ B(x,A1r) for all y ∈ B(x, r).
By the metric doubling property, there exists N ∈ N (depending only on A3 and the constant
associated with metric doubling) such that y1, . . . , yN ∈ B(x, r) and ∪N

i=1B(yi, r/A3) ⊃ B(x, r).
By considering the function e = max1≤i≤N ei where ei is the equilibrium potential corresponding
to CapB(yi,A2r/A3)(B(yi, r/A3)), we obtain

CapB(x,A1r)(B(x, r)) ≤
N∑
i=1

CapB(yi,A2r/A3)(B(yi, r/A3)).

As yi ∈ B(x, r) = B(x,A3(r/A3)), by Lemma 5.20(c), we obtain

CapB(yi,A2r/A3)(B(yi, r/A3)) ≍ CapB(x,A2r/A3)(B(x, r/A3)),

for all x ∈ X , r < diam(X , d)/(6A2/A3), and i = 1, . . . , N . By Corollary 5.19 and domain
monotonicity, we have

CapB(x,A2r/A3)(B(x, r/A3)) ≍ CapB(x,A2r)(B(x, r/A3)) ≤ CapB(x,A2r)(B(x, r)),

for all x ∈ X , r < diam(X , d)/(6A2). We obtain the desired bound

CapB(x,A1r)(B(x, r)) ≲ CapB(x,A2r)(B(x, r))

by combining the above three estimates. □

The following lemma is used to compare capacities at different scales.
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Lemma 5.23. Let (X , d,m, E ,F) be a MMD space that satisfies Assumption 5.6. Let A > 1.
There exist constants C2 > 1 and γ > 0 that depend only on A ∧ (8K) and the constants in
Assumption 5.6 such that for all x ∈ X and 0 < s ≤ r < diam(X , d)/(6(A ∨ (9K))), we have

C−1
2

(r
s

)−γ
CapB(x,As)(B(x, s)) ≤ CapB(x,Ar)(B(x, r)) ≤ C2

(r
s

)γ
CapB(x,As)(B(x, s)).

Proof. By Lemma 5.22, we may assume without loss of generality that A > 8K. By Remark
5.11, Corollary 5.15, Lemma 5.10 and domain monotonicity, we have

CapB(x,Ar)(B(x, r)) ≍ gB(x,Ar)(x, r)
−1 ≲

(r
s

)θ
gB(x,Ar)(x, s)

−1 ≲
(r
s

)θ
CapB(x,As)(B(x, s))

for all x ∈ X , 0 < s ≤ r < diam(X ,d)
2A , where θ > 0 is as given in Corollary 5.15.

For the reverse inequality, we use Corollary 5.19 repeatedly and domain monotonicity to
obtain

CapB(x,As)(B(x, s)) ≲
(r
s

)θ1
CapB(x,Ar)(B(x, s)) ≤

(r
s

)θ1
CapB(x,Ar)(B(x, r)),

for all x ∈ X , 0 < s ≤ r < diam(X ,d)
6A , where θ1 = log2C1 > 0, where C1 is as given in Corollary

5.19. Setting γ = max(θ, θ1), we obtain the desired conclusion. □

6 Good doubling measures

As in [BM1, Section 4] we now use the argument of Volberg and Konyagin [VK] to construct a
new measure µ such that (X , d, µ) satisfies volume doubling; that is, there is a constant c > 1
so that µ(B(x, 2r)) ≤ c µ(B(x, r)) for all x ∈ X and r > 0. We need further that µ relates
well with capacities – see Definition 6.2 below. One key difference from [BM1] is that we do
not assume bounded geometry condition on the original MMD space (X , d,m, E ,F). Another
difference from [BM1] is that we do not have any cutoff at small length scales. This means that
µ need not be absolutely continuous with respect to m, and it is not a priori clear that µ is a
smooth measure having full quasi support on X . This property is established in Proposition 6.16
of this section. The key inputs from the previous section are inequalities controlling capacities
Corollary 5.19, Lemma 5.20, Proposition 5.21, and Lemma 5.23.

6.1 Construction of a doubling measure

In this section, we often make the following assumption.

Assumption 6.1. We assume that (X , d) is a metric space such that B(x, r) is compact for all
x ∈ X and r > 0, and such that (X , d) satisfies one (and hence all) of the equivalent conditions
in Theorem 5.4. Furthermore, we assume that the MMD space (X , d,m, E ,F) satisfies (scale
invariant) EHI with constants CH , δH .

The following definition is a simplification of [BM1, Definition 4.1]: we do not require absolute
continuity with respect to the reference measure m. We do not require the volume doubling
property for the measure ν either – this will follow from Lemma 6.3.
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Definition 6.2. Let (X , d,m, E ,F) be a MMD space that satisfies Assumption 6.1. Let D
be a Borel subset of X . Let C0 ∈ (1,∞), 0 < β1 ≤ β2 and let A ∈ [21/3,∞). Let I =
(0, A−4 diam(D)). We say a Borel measure ν on D is (C0, A, β1, β2)-capacity good if for all
x ∈ D and s1, s2 ∈ I with s1 < s2, 0 < ν(B(x, s1)) ≤ ν(B(x, s2)) < ∞ and

C−1
0

(
s2
s1

)β1

≤
ν(B(x, s2)) CapB(x,As1)(B(x, s1))

ν(B(x, s1)) CapB(x,As2)(B(x, s2))
≤ C0

(
s2
s1

)β2

. (6.1)

Since ν is locally finite, any capacity good measure ν is a Radon measure on D, if D is open in
X .

Under Assumption 6.1, we observe by Corollary 5.19 that the second inequality in (6.1) of
Definition 6.2 implies the volume doubling property for ν.

Lemma 6.3. Let (X , d,m, E ,F) be a MMD space that satisfies Assumption 6.1. Let ν be a
(C0, A, β1, β2)-capacity good measure on X . Then it satisfies the volume doubling property.

Proof. If diam(X , d) = ∞, then the volume doubling property follows from Lemma 5.23 and
domain monotonicity of capacity, since CapB(x,As)(B(x, s)) and CapB(x,2As)(B(x, 2s)) are com-
parable.

In the case diam(X , d) < ∞, we view X as the closure of the ball B(x0, 2 diam(X , d)) and use
Lemma 5.23 to obtain the volume doubling property for balls B(x, s) with s ≲ diam(X , d). The
volume doubling property for larger balls follows from a covering argument, the metric doubling
property and the fact that infx∈X ν(B(x, s)) ≳ ν(B(x0, s)) for s = 1

3A
−4 diam(X , d) and any

x0 ∈ X by RBC(K). □

The following is the main result of this section.

Theorem 6.4 (Construction of a doubling measure). Let (X , d,m, E ,F) be a MMD space that
satisfies Assumption 6.1. Then there exist constants C0 > 1, A > 1, 0 < β1 ≤ β2 and a Borel
measure µ on X which is (C0, A, β1, β2)-capacity good.

The proof of Theorem 6.4 requires a preparation of a few results. We begin by adapting the
argument in [VK] to construct a measure with the desired properties on a family of compact
sets. We then follow [LuS] and obtain µ as a weak∗ limit of measures defined on an increasing
family of compact sets.

The proof uses a family of generalized dyadic cubes, which provide a family of nested parti-
tions of a space. Such a decomposition of space was introduced by Christ [Chr, Theorem 11].
The following is a slight modification of the construction in [KRS, Theorem 2.1]. Since the
requirements (g) and (h) are new, we provide some details.

Lemma 6.5. Let (X , d) be a complete metric space satisfying metric doubling and RBC(K)
property. Let x0 ∈ X and A ≥ 8. Then there exists a collection {Qk,i : k ∈ Z, i ∈ Ik ⊂ Z+} of
Borel sets satisfying the following properties:

(a) X = ∪i∈IkQk,i for all k ∈ Z, and Qk,i ∩Qk,j = ∅ for all k ∈ Z and i, j ∈ Ik with i ̸= j.

(b) If m ≤ n and i ∈ In, j ∈ Im, then either Qn,i ∩Qm,j = ∅ or Qn,i ⊂ Qm,j.

(c) For every k ∈ Z and i ∈ Ik, there exists xk,i ∈ Qk,i such that

B(xk,i, cAA
−k) ⊂ Qk,i ⊂ B(xk,i, CAA−k),

where cA = 1
2 − 1

A−1 and CA = A
A−1 .
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(d) The sets Nk = {xk,i : i ∈ Ik}, where xk,i are as defined in (c), are increasing in k and
x0 ∈ Nk for all k ∈ Z; that is Nk ⊂ Nk+1 for all k ∈ Z and x0 ∈ ∩k∈ZNk.

(e) Properties (a), (b) and (c) define a partial order ≺ on I = {(k, i) : k ∈ Z, i ∈ Ik} by inclu-
sion, where (k, i) ≺ (m, j) if and only if k ≥ m and Qk,i ⊂ Qm,j.

(f) There exists CM = CM (A) > 0 such that, for all k ∈ Z and for all xk,i ∈ Nk, the ‘successors’

Sk(xk,i) = {xk+1,j : (k + 1, j) ≺ (k, i)}

satisfy
|Sk(xk,i)| ≤ CM for all k ∈ Z, i ∈ Ik. (6.2)

Furthermore, we have d(xk,i, y) < A−k for all y ∈ Sk(xk,i).

(g) Let
k0 = inf {k ∈ Z : |Ik| > 1} , (6.3)

where |Ik| denotes the cardinality of Ik. Then k0 ∈ Z ∪ {−∞} satisfies

cAA
−k0 ≤ diam(X , d) ≤ 2CAA

1−k0 . (6.4)

For all k ≥ k0, k ∈ Z and i ∈ Ik, we have |Sk(xk,i)| ≥ 2.

(h) For all k ∈ Z, 0 ∈ Ik, Qk,0 is compact and xk,0 = x0.

Proof. The sets Qk,j , k ∈ Z, j ∈ Ik are referred to as ‘generalized dyadic cubes’. We follow the
construction in [KRS] with a minor modification so as to ensure the property (h).

We choose N0 ⊂ X such that x0 ∈ N0 and N0 = {x0,i : i ∈ I0} is a maximal subset of X such
that d(x0,i, x0,j) ≥ 1 for all i ̸= j with i, j ∈ I0. For k > 0, we define Nk = {xk,i : i ∈ Ik} as a
maximal subset of X such that Nk−1 ⊂ Nk and d(xk,i, xk,j) ≥ A−k for all distinct xk,i, xk,j ∈ Nk.
For k < 0, we define Nk = {xk,i : i ∈ Ik} as a maximal set such that x0 ∈ Nk ⊂ Nk+1, and
d(xk,i, xk,j) ≥ A−k for all distinct xk,i, xk,j ∈ Nk.

We label the indices Ik such that 0 ∈ Ik and xk,0 = x0 for all k ∈ Z. For each (k, i) ∈ Z×Z+

with i ∈ Ik, we pick an element (k − 1, j) ∈ Z× Z+ with j ∈ Ik−1 such that

d(xk,i, xk−1,j) = min
l∈Ik−1

d(xk,i, xk−1,l).

We define ≺ as the smallest partial order that contains the relations (k, i) ≺ (k − 1, j) for all
(k, i) ∈ Z× Z+ with i ∈ Ik, where (k − 1, j) ∈ Z× Z+ with j ∈ Ik−1 is chosen as above.

We relabel the indices I0 of N0 such that 0 ∈ I0 remains unchanged and

l1 < l2 for all k < 0, l1 ∈ {i ∈ I0 : (0, i) ≺ (k, 0)} and l2 ∈ I0 \ {i ∈ I0 : (0, i) ≺ (k, 0)}. (6.5)

This relabeling exists since {i ∈ I0 : (0, i) ≺ (k, 0)}) is finite for all k < 0 (by the doubling
property) and (k, 0) ≺ (k − 1, 0) for all k ≤ 0.

Define the sets Q0,i as

Q0,i = {xl,k : (l, k) ≺ (0, i)} \
⋃

j<i,j∈I0

Q0,j .
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For k < 0, we define the sets Qk,i inductively as

Qk,i =
⋃

(k+1,j)≺(k,i)

Qk+1,j ,

whereas for k > 0, we define

Qk,i = Qk−1,i′ ∩ {xl,j : (l, j) ≺ (k, i)} \
⋃

j<i,j∈Ik

Qk,j , where (k, i) ≺ (k − 1, i′).

Properties (a)-(e) are contained in [KRS, Theorem 2.1]; (f) is immediate from the above con-
struction and metric doubling.
(g) The estimate |Sk(xk,i)| ≥ 2 relies on the following consequence of RBC(K) (see Lemma
5.2(a)): r ≤ diam(B(x, r)) ≤ 2r for all B(x, r) ̸= X . Since 2CA/cA = 4A/(A − 3) < A for all
A ≥ 8, we have

diam(Qk,i) ≥ cAA
−k > 2CAA

−k−1 ≥ diam(Qk+1,j) for all k ≥ k0, k ∈ Z.

Hence Qk,i ̸= Qk+1,j for all k ≥ k0, i ∈ Ik, j ∈ Ik+1, and therefore |Sk(xk,i)| ≥ 2 for all k ≥ k0.
Clearly by (c), diam(X , d) = ∞ if and only if k0 = −∞. If k0 ∈ Z, the estimate (6.4) follows

from B(x0, cAA
−k0) ⊂ Qk0,0 ⊊ X = Qk0−1,0 ⊂ B(x0, CAA−k0+1).

(h) By (6.5), Qk,0 is closed for all k ∈ Z, since Qk,0 = {xl,j : (l, j) ≺ (k, 0)}. By (c) and (MD),
Qk,0 is compact for all k ∈ Z. □

We fix a family
{Qk,i : k ∈ Z, i ∈ Ik ⊂ Z+} ,

of generalized dyadic cubes as given by Lemma 6.5, and define the nets Nk and successors Sk(x)
as in the lemma.

Definition 6.6. We define the predecessor Pk(x) of x ∈ Nk to be the unique element of Nk−1

such that x ∈ Sk−1(Pk(x)). Note that for x ∈ Nk, Sk(x) ⊂ Nk+1 whereas Pk(x) ∈ Nk−1. For
x ∈ X , we denote by Qk(x) the unique Qk,i such that x ∈ Qk,i.

Let k0 ∈ Z ∪ {−∞} be as defined in (6.3). For k ∈ Z with k ≥ k0 + 2, denote by ck(x) the
relative capacity

ck(x) = CapB(x,A−k+1)(Qk(x)). (6.6)

The following lemma provides useful estimates on ck. Note that if k ≥ k0 + 2, then

A−k+1 ≤ A−k0−1 ≤ c−1
A A−1 diam(X , d) =

2(A− 1)

(A− 3)A
diam(X , d).

Lemma 6.7 (Relative capacity estimates for generalized dyadic cubes). Let (X , d,m, E ,F) be
a MMD space that satisfies Assumption 6.1. There exists A0 ≥ 8 such that the following hold.

(a) For all A ≥ A0, there exists C1 > 0 such that for all k ≥ k0+2, x, y ∈ X with d(x, y) ≤ 4A−k,
we have

C−1
1 ck(y) ≤ ck(x) ≤ C1ck(y). (6.7)

(b) For all A ≥ A0, there exists C1 = C1(A) > 0 such that for all k ≥ k0 + 2, x ∈ Nk and
y ∈ Sk(x), we have

C−1
1 ck(x) ≤ ck+1(y) ≤ C1ck(x). (6.8)
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(c) For all A ≥ A0, there exists C1 = C1(A) > 0 such that for all x ∈ X and s < diam(X , d)/A4,

C−1
1 ck(x) ≤ CapB(x,As)(B(x, s)) ≤ C1ck(x) (6.9)

where k ∈ Z is the unique integer such that A−k ≤ s < A−k+1.

Proof. We use domain monotonicity of capacity along with Corollary 5.19, Lemma 5.20(c) and
Lemma 5.23 to show first (6.9) with s = A−k for all k ≥ k0+2 and x ∈ X (with C1 independent
of A) and then use Lemma 5.20(c) and Lemma 5.23 to obtain the above estimates. For (c), note
that A−k ≤ s < diam(X , d)/A4 ≤ 2CAA

−k0−3 < A−k0−2 implies k ≥ k0 + 3. □

We record one more estimate regarding the subadditivity of ck, which will play an essential
role in ensuring (6.1) and follows from Proposition 5.21 and domain monotonicity of capacity.

Lemma 6.8. ([BM1, Lemma 4.6]) Let (X , d,m, E ,F) be a MMD space that satisfies Assumption
6.1. There exists A0 ≥ 8 such that the following holds: for all A ≥ A0 there exists δ = δ(A) ∈
(0, 1) such that for all k ∈ Z, k ≥ k0 + 2 and for all x ∈ Nk, we have

ck(x) ≤ (1− δ)
∑

y∈Sk(x)

ck+1(y).

Henceforth, we fix an A ≥ 8 large enough such that the conclusions of Lemmas 6.7 and 6.8
hold.

We need the following modification of [VK, Lemma, p. 631], which was stated in [BM1,
Lemma 4.7] without a proof. For the reader’s convenience, we provide its full proof below.

Lemma 6.9. Let (X , d,m, E ,F) be a MMD space that satisfies Assumption 6.1. Let ck(·),
k ≥ k0 + 2, k ∈ Z denote the capacities of the corresponding generalized dyadic cubes as defined
in (6.6). There exists C > 1 satisfying the following. Let k ≥ k0 + 2, k ∈ Z, and let µk be a
probability measure on Nk such that

µk(e
′)

ck(e′)
≤ C2µk(e

′′)

ck(e′′)
for all e′, e′′ ∈ Nk with d(e′, e′′) ≤ 4A−k. (6.10)

Then there exists a probability measure µk+1 on Nk+1 such that the following hold.

(1) For all g′, g′′ ∈ Nk+1 with d(g′, g′′) ≤ 4A−k−1 we have

µk+1(g
′)

ck+1(g′)
≤ C2µk+1(g

′′)

ck+1(g′′)
. (6.11)

(2) Let δ ∈ (0, 1) be the constant in Lemma 6.8. For all points e ∈ Nk and g ∈ Sk(e),

C−1µk(e)

ck(e)
≤ µk+1(g)

ck+1(g)
≤ (1− δ)

µk(e)

ck(e)
. (6.12)

(3) The construction of the measure µk+1 from the measure µk can be regarded as the transfer
of masses from the points of Nk to those of Nk+1, with no mass transferred over a distance
greater than (1 + 4/A)A−k.
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Proof. By the metric doubling property

sup
k∈Z

sup
x∈Nk

|Sk(x)| = S < ∞, (6.13)

where Sk(x) is as defined in Lemma 6.5(f). We choose

C = C1S,

where C1 is chosen such that (6.7), (6.8) and (6.9) hold. Let k ≥ k0 + 2, k ∈ Z, and let µk be
any probability measure on Nk such that (6.10) holds.

The transfer of mass is accomplished in two steps. In the first step we distribute the mass
µk(e) to all its successors Sk(e) such that the mass of g ∈ Sk(e) is proportional to ck+1(g); that
is

f0(g) =
ck+1(g)∑

g′∈Sk(e)
ck+1(g′)

µk(e),

for all e ∈ Nk and g ∈ Sk(e).
By (6.13), Lemma 6.7 and Lemma 6.8, we have

C−1µk(e)

ck(e)
≤ f0(g)

ck+1(g)
≤ (1− δ)

µk(e)

ck(e)
, (6.14)

for all points e ∈ Nk and g ∈ Sk(e). If the measure f0 on Nk+1 satisfies condition (1) of the
Lemma, we set µk+1 = f0. This is the desired measure. Condition (2) is satisfied by (6.14), and
(3) is obviously satisfied by Lemma 6.5(f). The second step is not necessary in this case.

But if f0 does not satisfy condition (1) of the Lemma, then we proceed as follows at the second
step. Let p1, . . . , pT be the indexed pairs of points {g′, g′′} with g′, g′′ ∈ Nk+1 and 0 < d(g′, g′′) ≤
4A−k−1. Take the pair p1 = {g′1, g′′1}. If

f0(g′1)
ck+1(g

′
1)

≤ C2 f0(g′′1 )
ck+1(g

′′
1 )

and
f0(g′′1 )

ck+1(g
′′
1 )

≤ C2 f0(g′1)
ck+1(g

′
1)
, then

we set f1 = f0. Assume one of the inequalities is violated, say
f0(g′1)

ck+1(g
′
1)

> C2 f0(g′′1 )
ck+1(g

′′
1 )
. Then we

construct a measure f1 from f0 such that

f1(g
′
1) = f0(g

′
1)− α1,

f1(g
′′
1) = f0(g

′′
1) + α1,

f1(g) = f0(g), g ̸= g′1, g
′′
1 ,

where α1 > 0 is chosen such that

α1

(
C2

ck+1(g
′′
1)

+
1

ck+1(g
′
1)

)
=

f0(g
′
1)

ck+1(g
′
1)

− C2 f0(g
′′
1)

ck+1(g
′′
1)

.

It is clear that
f1(g′1)

ck+1(g
′
1)

= C2 f1(g′′1 )
ck+1(g

′′
1 )
.

The next step is the construction of a measure f2 from f1 in exactly the same way that f1 was
constructed from f0. Here we consider the pair p2. A measure f3 is next constructed from f2
and so on. We claim that µk+1 = fT is the desired measure in the lemma. If X is non-compact,
µk+1(g) := limj→∞ fj(g), g ∈ Nk+1 (the existence of this limit is an easy consequence of the
metric doubling property).

We first verify that for all e ∈ Nk, for all g ∈ Sk(e) and for all s = 0, 1, . . . , T , we have

C−1µk(e)

ck(e)
≤ fs(g)

ck+1(g)
≤ (1− δ)

µk(e)

ck(e)
. (6.15)
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By (6.14), it is clear that (6.15) holds for s = 0. We now show (6.15) by induction. Suppose (6.15)
holds for s = j, we will verify it for s = j +1. Let pj+1 = {g′, g′′}, e′ = Pk+1(g

′), e′′ = Pk+1(g
′′).

If fj = fj+1, there is nothing to prove. But if fj+1 ̸= fj , then assume, say, that

fj(g
′)

ck+1(g′)
> C2 fj(g

′′)

ck+1(g′′)
. (6.16)

By (6.16) and the construction, we have

fj+1(g
′) < fj(g

′), fj+1(g
′′) > fj(g

′′). (6.17)

Therefore by the induction hypothesis (6.15) for s = j and (6.17), we have

fj+1(g
′)

ck+1(g′)
≤ (1− δ)

µk(e
′)

ck(e′)
,

fj+1(g
′′)

ck+1(g′′)
≥ C−1µk(e

′)

ck(e′)
.

Therefore it suffices to verify that

fj+1(g
′)

ck+1(g′)
≥ C−1µk(e

′)

ck(e′)
,

fj+1(g
′′)

ck+1(g′′)
≤ (1− δ)

µk(e
′′)

ck(e′′)
. (6.18)

Suppose the first inequality in (6.18) fails to be true, then by construction, (6.17) and the
induction hypothesis (6.15) for s = j, we have

C−1µk(e
′)

ck(e′)
>

fj+1(g
′)

ck+1(g′)
= C2 fj+1(g

′′)

ck+1(g′′)
> C2 fj(g

′′)

ck+1(g′′)
≥ C

µk(e
′′)

ck(e′′)
, (6.19)

which implies µk(e
′)

ck(e′)
> C2 µk(e

′′)
ck(e′′)

. However µk(e
′)

ck(e′)
≤ C2 µk(e

′′)
ck(e′′)

, by the assumption on µk, since

d(e′, e′′) ≤ d(e′, g′) + d(g′, g′′) + d(e′′, g′′) ≤ 2A−k + 4A−k−1 ≤ 4A−k.

This proves the first inequality in (6.18). The proof of the second inequality in (6.18) is similar.

Indeed, assume to the contrary that
fj+1(g

′′)
ck+1(g′′)

> (1− δ)µk(e
′′)

ck(e′′)
; then we have

(1− δ)
µk(e

′)

ck(e′)
≥ fj(g

′)

ck+1(g′)
>

fj+1(g
′)

ck+1(g′)
= C2 fj+1(g

′′)

ck+1(g′′)
> C2(1− δ)

µk(e
′′)

ck(e′′)
, (6.20)

which again implies µk(e
′)

ck(e′)
> C2 µk(e

′′)
ck(e′′)

. Therefore (6.15) follows by induction. In particular,

µk+1 = fT satisfies condition (2) of the lemma.
We now verify condition (1) for µk+1 = fT . For this, it suffices to prove the following

assertion: if

C−2 fj(g
′′)

ck+1(g′′)
≤ fj(g

′)

ck+1(g′)
≤ C2 fj(g

′′)

ck+1(g′′)
(6.21)

holds for a pair of points g′, g′′ ∈ Nk+1 such that 0 < d(g′, g′′) ≤ 4A−k−1, then the same
inequalities hold when fj is replaced by fj+1.

We now prove this. If pj+1 = {g′, g′′}, then fj+1 = fj and there is nothing to prove.
If {g′, g′′} ∩ pj+1 = ∅, then again there is nothing to prove. Let pj+1 = {g1, g2}. Without
loss of generality, we assume pj+1 ∩ {g′, g′′} = {g1} where g1 = g′′ and fj(g

′′)/ck+1(g
′′) >

C2fj(g2)/ck+1(g2). Then

fj+1(g
′′)

ck+1(g′′)
= C2 fj+1(g2)

ck+1(g2)
, fj+1(g

′′) < fj(g
′′), fj+1(g

′) = fj(g
′). (6.22)

48



Therefore, only the second inequality in (6.21) can fail for fj+1. Suppose that this happens,
that is

fj+1(g
′)

ck+1(g′)
> C2 fj+1(g

′′)

ck+1(g′′)
. (6.23)

Let e′ = Pk+1(g
′) and e2 = Pk+1(g2). Then by (6.23), (6.22) and (6.15)

(1− δ)
µk(e

′)

ck(e′)
≥ fj+1(g

′)

ck+1(g′)
> C2 fj+1(g

′′)

ck+1(g′′)
= C4 fj+1(g2)

ck+1(g2)
≥ C3µk(e2)

ck(e2)
, (6.24)

which implies that µk(e
′)

ck(e′)
> C2 µk(e2)

ck(e2)
. However since d(e′, e2) ≤ d(e′, g′) + d(g′, g′′) + d(g1, g2) +

d(g2, e2) ≤ 2(A−k + 4A−k−1) ≤ 4A−k, we have a contradiction and hence (6.23) is false. This
shows (6.21) for the case fj(g

′′)/ck+1(g
′′) > C2fj(g2)/ck+1(g2). The case fj(g

′′)/ck+1(g
′′) <

C−2fj(g2)/ck+1(g2) is analyzed similarly and therefore the assertion given by (6.21) is proved.
It remains to observe that this assertion proves condition (1) of the lemma for the measure
µk+1 = fT . Along the path from f0 to fT , we “correct” the measure at all pairs of points where
condition (1) is violated, and the assertion given by (6.21) shows that once a pair is corrected,
it remains corrected when further changes are made.

It remains to verify condition (3). Note that by Lemma 6.5(f), there was a mass transfer
over a distance of at most A−k while passing from µk to f0. Therefore it suffices to verify that
while passing from f0 to fT = µk+1 there is a transfer over a distance of at most 4A−k−1.

We will now verify this. It suffices to verify that there are no pairs pl = {g1, g2}, pn = {g2, g3},
l, n ∈ Z ∩ [1, T ], l ̸= n, such that some mass is transferred from g1 to g2 (in the transition from
fl−1 to fl) and some mass is transferred from g2 to g3 (in the transition from fn−1 to fn).
Assume the opposite. First note that the assertion given by (6.21) can be modified as follows.
If the second inequality in (6.21) is true for fj it remains true for fj+1. The same argument
as before goes through. Using this modified version of the assertion, and the assumption that
there are mass transfers from g1 to g2 and from g2 to g3, we have

f0(g1)

ck+1(g1)
> C2 f0(g2)

ck+1(g2)
,

f0(g2)

ck+1(g2)
> C2 f0(g3)

ck+1(g3)
. (6.25)

If e1 = Pk+1(g1), e3 = Pk+1(g3), then

d(e1, e3) ≤ d(e1, g1) + d(g1, g2) + d(g2, g3) + d(g3, e3) ≤ 2(A−k + 4A−k−1) ≤ 4A−k.

Consequently by assumption, µk(e1)/ck(e1) ≤ C2µk(e3)/ck(e3). However the inequalities (6.25)
and (6.15) imply the opposite inequality µk(e1)/ck(e1) > C2µk(e3)/ck(e3). We have arrived at
the desired contradiction and the proof of the lemma is complete. □

Remark 6.10. Lemma 6.9 and its proof above remain valid, if Nk is replaced by any Mk ⊂ Nk

and Nk+1 by Mk+1 =
⋃

y∈Mk
Sk(y).

We now adapt the method in [VK] to construct the doubling measure.

Proposition 6.11 (Measure in a cube). Let (X , d,m, E ,F) be a MMD space that satisfies
Assumption 6.1. There exist constants C0 > 1, A ≥ 8 and 0 < β1 ≤ β2 such that for any integer
l ≥ k0 − 1, there exists a (C0, A, β1, β2)-capacity good measure ν = νl on Ql,0.
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Proof. Choose A ≥ 8 large enough such that the conclusions of Lemmas 6.7 and 6.8 hold. Set
Mk = Nk ∩Ql,0 for k ≥ l + 3, so that Mk+1 =

⋃
y∈Mk

Sk(y) (cf. Remark 6.10). Let µl+3 be the
probability measure on Ml+3 such that µl+3 is proportional to cl+3; that is

µl+3(x) =
cl+3(x)∑

y∈Ml+3
cl+3(y)

, for all x ∈ Ml+3.

We use Lemma 6.9 and Remark 6.10 to inductively construct probability measures µk on Mk

for all k ≥ l+3. We define the measure ν = νl as a weak (sub-sequential) limit of the measures
µk as k → ∞ (the existence of such a limit follows from the compactness of Ql,0). We claim that

ν is (C0, A, β1, β2)-capacity good for some C0, β1, β2 > 0. (6.26)

For each x ∈ Ql,0 and k ≥ l+3, let ex,k ∈ Mk be the unique point in Mk such that ex,k ∈ Qk(x),
so that by Lemma 6.5(c),

d(x, ex,k) ≤ CAA
−k.

If s < A−4 diam(Ql,0) ≤ A−42CAA
−l ≤ A−l−3, then s < A−l−3. In order to show (6.26), we

prove the following two-sided estimate on measure of balls: there exists C2 ≥ 1 such that

C−1
2 µn(ex,n) ≤ ν(B(x, s) ∩Ql,0) ≤ C2µn(ex,n), for all x ∈ Ql,0, s < A−l−3, (6.27)

where n is the unique integer such that A−n−1 ≤ s < A−n.
Note that, by Lemma 6.9(3) the mass from e ∈ Mk travels a distance of at most

(1 + 4A−1)
∞∑
l=k

A−l = C3A
−k, where C3 := (1 + 4A−1)(1−A−1)−1 ≤ 12

7 . (6.28)

Therefore, none of the mass outside Mn ∩B(x, (1 + C3)A
−n) falls in B(x, s), and therefore

ν(B(x, s)) ≤ µn

(
Mn ∩B(x, (1 + C3)A

−n)
)

for all x ∈ Ql,0, s ∈ (0, A−l−3). (6.29)

By the triangle inequality, if e ∈ Mn ∩B(x, (1 + C3)A
−n), then

d(e, ex,n) ≤ d(e, x) + d(x, ex,n) ≤ (1 + C3)A
−n + CAA

−n ≤ 4A−n.

Therefore by (6.29), (6.10), (6.7), and the metric doubling property, we obtain the upper bound
ν(B(x, s)) ≲ µn(ex,n) in (6.27).

For the lower bound in (6.27), using (6.28), we have that for all x ∈ Ql,0 and for all s < A−l−3

with A−n−1 ≤ s < A−n, n ∈ Z, the mass from ex,n+2 travels a distance of at most C3A
−n−2 ≤

12
7 A

−n−2 from ex,n+2. Since d(x, ex,n+2) ≤ CAA
−n−2 ≤ 8

7A
−n−2, we have that the mass from

ex,n+2 stays within

B(x, 3A−n−2) ⊂ B(x,
3

A
s) ⊂ B(x, s/2).

Therefore
ν(B(x, s)) ≥ µn+2(ex,n+2). (6.30)

By (6.12) and (6.8), we obtain that µn+2(ex,n+2) and µn(Pn+1(Pn+2(ex,n+2))) are comparable,
where Pn+1, Pn+2 denote the predecessor as given in Definition 6.6. By the triangle inequality,
we obtain that d(ex,n, Pn+1(Pn+2(ex,n+2))) ≤ 4A−n, and therefore by (6.7) and (6.10), we obtain
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that µn(Pn+1(Pn+2(ex,n+2))) and µn(ex,n) are comparable. Combining the above with (6.30),
we obtain the lower bound ν(B(x, s)) ≳ µn(ex,n) in (6.27). This completes the proof of (6.27).

Next, we obtain (6.26) from (6.27). Let 0 < s1 < s2 < A−4 diam(Ql,0). Let n1, n2 ∈ Z be
such that A−ni−1 ≤ si < A−ni for i = 1, 2. For x ∈ Ql,0, let xni ∈ Mni be the unique point in
Mni such that xni ∈ Qni(x). By (6.27) and Lemma 6.7(a),(b),(c), we have

ν(B(x, s2)) CapB(x,As1)(B(x, s1))

ν(B(x, s1)) CapB(x,As2)(B(x, s2))
≍ µn2(xn2)cn1(x)

µn1(xn1)cn2(x)
≍ µn2(xn2)cn1(xn1)

µn1(xn1)cn2(xn2)
.

Next, by using Lemma 6.9(2), we obtain

(1− δ)n2−n1 ≲
ν(B(x, s2)) CapB(x,As1)(B(x, s1))

ν(B(x, s1)) CapB(x,As2)(B(x, s2))
≍ µn2(xn2)cn1(xn1)

µn1(xn1)cn2(xn2)
≲ Cn1−n2

4 ,

where C4 > 1 is the constant C in Lemma 6.9 and δ ∈ (0, 1) is as in Lemma 6.8. The desired
estimate (6.26) follows by setting β1 = − log(1− δ)/ logA and β2 = logC4/ logA. □

We are now in the position to give the

Proof of Theorem 6.4. The compact case follows by choosing l = k0 − 1 in Proposition 6.11.
It suffices to consider the non-compact case. For l ≤ −1, l ∈ Z let νl be the measure given by

Proposition 6.11 on Ql,0, and choose an > 0 so that

alνl(B(x0, 1)) = 1, for all l ∈ Z, l < 0.

A compactness argument similar to that in [LuS] yields the existence of a measure ν which is a
sub-sequential weak* limit of the sequence of measures alνl as l → −∞, bounded on compacts,
such that it is (C0, A, β1, β2)-capacity good. □

6.2 A criterion for smoothness of measure

In this section, we will provide a useful sufficient condition for a doubling measure to be smooth.
The definition of a smooth measure is given in Definition 2.4.

The following lemma follows immediately from [CF, Theorem 3.3.8] or [FOT, Theorem 4.4.3]
and the countable subadditivity for capacities.

Lemma 6.12. Let (X , d, µ, E ,F) be a MMD space. Let {Bi : i ∈ I} be a countable family of
open balls such that ∪i∈IBi = X . Let U ⊂ X . Then U has zero capacity for (E ,F) if and only
if Ui := U ∩Bi has zero capacity for the part Dirichlet form (EBi ,FBi) for all i ∈ I.

Proposition 6.13. Let (X , d,m, E ,F) be a MMD space that satisfies Assumption 6.1. Let µ be
a (C0, A, β1, β2)-capacity good measure on X for some C0, A > 1 and 0 < β1 ≤ β2. Then µ is a
smooth Radon measure on X .

Proof. By Theorems 4.8 and 4.6, (E ,F) has regular Green functions. Let A denote the constant
in Lemma 5.12. Using Lemma 5.22, we may assume that (6.1) holds with this A. Let B =
B(x0, r) denote any ball such that r < diam(X , d)/A4. For x ∈ X , s < diam(X , d)/A4, we set

Ψ(x, s) = µ(B(x,s))
CapB(x,As)(B(x,s)) .
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We will show that x 7→
´
B gB(x, y)µ(dy) is bounded uniformly inB. Note that

´
B gB(x, y)µ(dy)

is well defined for every x ∈ B in view of the definition (see Definition 4.3) of regular Green
function on B. By Lemma 6.3, the measure µ satisfies the reverse volume doubling property
(RVD) [Hei, Exercise 13.1]: that is there exist c0 ∈ (0, 1), α ∈ (0,∞) such that

µ(B(x,R)) ≥ c0

(
R

r

)α

µ(B(x, r)), for all x ∈ X , 0 < r ≤ R < diam(X , d). (6.31)

In particular by letting r → 0 in the above equation, we obtain µ({x}) = 0 for all x ∈ X .
Fix x ∈ B and set Bi = B(x,A1−ir), Ai = Bi \Bi+1 for i ∈ N≥0.

ˆ
B
gB(x, y)µ(dy) ≤

ˆ
B
gB(x,Ar)(x, y)µ(dy) (by domain monotonicity)

=
∞∑
i=0

ˆ
B∩Ai

gB(x,Ar)(x, y)µ(dy) (since µ({x}) = 0 by (RVD))

≲
∞∑
i=0

ˆ
B∩Ai

CapB0
(Bi+1)

−1 µ(dy) (by (HG), (4.3), Lemma 5.10)

≲
∞∑
i=0

ˆ
B∩Ai

i∑
j=0

CapBj
(Bj+1)

−1 µ(dy) (by Lemma 5.12)

≲
∞∑
j=0

CapBj
(Bj+1)

−1
∞∑
i=j

ˆ
B∩Ai

dµ ≲
∞∑
j=0

CapBj
(Bj+1)

−1µ(Bj)

≲
∞∑
j=0

Ψ(x,A−jr) ≲ Ψ(x0, r) (by (6.1), Lemmas 6.3 and 5.20(b)). (6.32)

We claim that µ|B is a smooth measure on B. Suppose not. Then there is a compact subset
K ⊂ B which is EB-polar (which is equivalent to being E-polar) so that µ(K) > 0. Let
h(x) :=

´
K gB(x, y)µ(dy). By (6.32), h(x) is bounded on B. By Lemma 5.10 and the maximum

principle (4.3), gB(x, y) > 0 for x ∈ B and y ∈ K with 0 < d(x, y) < r1 for some r1 > 0. Thus
{x ∈ B : h(x) > 0} has positive E-capacity. On the other hand, by the analog of (4.6) mentioned
after (4.7), (6.32) and Fubini’s theorem, h(x) =

´
K gB(x, y)µ(dy) is regular harmonic in U with

respect to XB for any open subset U of B with K∩U = ∅ and thus a bounded harmonic function
in B \K. Since K is E-polar, h is bounded harmonic in B. Let {Dn;n ≥ 1} be an increasing
sequence of relatively compact open subsets of B that increases to B and satisfies K ⊂ D1. By
Remark 2.7 and Proposition 3.2, h(x) = Ex[h(XτDn

)] for E-q.e. x ∈ Dn. Hence for E-q.e. x ∈ B,

h(x) = lim
n→∞

Ex[h(XτDn
)] = lim

n→∞

ˆ
K
ExgB(XτDn

, y)µ(dy). (6.33)

For every y0 ∈ B, x 7→ gB(x, y0) is X
B|B\NB

-excessive, where NB is a Borel properly exceptional

set for XB appearing in Definition 4.3(iv) for gB. Thus t 7→ gB(X
B
t , y0) is a non-negative Px-

supermartingale for x ∈ B \ NB, and consequently, limn→∞ gB(XτDn
, y0) exists Px-a.s. By the

maximum principle (4.3), EHI and Hölder estimate (4.4), Px-a.s. limn→∞ gB(XτDn
, y) exists in

R for any y ∈ B(y0, r2) and is uniformly Hölder continuous in y ∈ B(y0, r2) for some r2 > 0. For
any bounded compactly supported Borel function φ ≥ 0 on B, by the strong Markov property
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and the bounded convergence theorem.

lim
n→∞

Ex

ˆ
B
gB(XτDn

, y)φ(y)m(dy) = lim
n→∞

Ex

[ˆ τB

0
φ(Xs) ds ◦ θτDn

]
= lim

n→∞
Ex

ˆ τB

τDn

φ(Xs)ds = 0.

Thus by Fatou’s lemma and the Hölder regularity mentioned above, we conclude that

lim
n→∞

gB(XτDn
, y0) = 0 for every y0 ∈ B Px-a.s.

Observe that {gB(XτDn
, y);n ≥ 1, y ∈ K} are uniformly bounded random variables by the

maximum principle (4.3). Thus we conclude from (6.33) by the bounded convergence theorem
that

h(x) =

ˆ
K
Ex
[
lim
n→∞

gB(XτDn
, y)
]
µ(dy) = 0 for E-q.e. x ∈ B \ NB.

This contradicts the fact that {x ∈ B : h(x) > 0} has positive E-capacity. We have thus proved
that µ is a smooth Radon measure. □

A smooth measure µ on X uniquely determines a positive continuous additive functional
Aµ = {Aµ

t ; t ≥ 0} of X. It can be used to define a time-changed process Yt := Xτt , where

τt := inf{r > 0 : Aµ
r > t}.

Let S(µ) denote the quasi support of µ (see Definition 2.5) and F be the topological support of
µ. Clearly S(µ) ⊂ F E-q.e. and µ(F \S(µ)) = 0. Suppose µ is a smooth Radon measure. Then
the time-changed process Y , after possibly modification on a Borel properly exceptional set for
X, is a µ-symmetric Hunt process on F and its associated Dirichlet form (Eµ,Fµ) on L2(F ;µ)
is regular. Moreover,

Fµ =
{
ϕ ∈ L2(F, µ) : ϕ = u µ-a.e. for some u ∈ Fe

}
,

Eµ(ϕ, ϕ) = E(HS(µ)u,HS(µ)u), for ϕ ∈ Fµ, and an arbitrary u ∈ Fe with ϕ = u µ-a.e.,

(6.34)

where Fe is the extended Dirichlet space of (X , d,m, E ,F) and HS(µ)u(x) = Exu(XσS(µ)
) for

x ∈ X . See [CF, Theorem 5.2.13] or [FOT, Theorem 5.1.5 and Theorem 6.2.1]. The Dirichlet
form (Eµ,Fµ) is called the trace Dirichlet form of (E ,F) on L2(F ;µ). If µ has full quasi support,
then Fµ

e = Fe by [CF, Corollary 5.2.12] and (6.34) can be simplified to

Fµ = Fe ∩ L2(X ;µ), Eµ(u, u) = E(u, u) for all u ∈ Fe. (6.35)

Remark 6.14. The above mentioned properties for time-changed processes and Dirichlet forms
in fact hold for any smooth measure µ rather than just smooth Radon measures except that
the time-changed process is a right process instead of being a Hunt process on F and the trace
Dirichlet form (Eµ,Fµ) is quasi-regular on L2(S(µ);µ) instead of being regular on L2(F ;µ). See
[CF, Theorem 5.2.7].

Recall the definition of quasi support of a smooth measure from Definition 2.5. In this work,
we are interested in smooth measures with full quasi support as defined below.
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Definition 6.15 (Admissible smooth measures). Let (X , d,m, E ,F) be a MMD space. We say
that a smooth Radon measure µ on X is admissible if µ has full quasi support. In particular,
the time-changed Dirichlet form is given by (6.35).

Proposition 6.16. Let (X , d,m, E ,F) be a MMD space that satisfies Assumption 6.1. Let µ be a
(C0, A, β1, β2)-capacity good (hence smooth) measure on X for some C0, A > 1 and 0 < β1 ≤ β2.
Then µ is admissible.

Proof. Let N be a Borel properly exceptional set for the Hunt process X associated with the
regular Dirichlet form (E ,F) on L2(X ;m) so that the conclusion of Theorem 4.6 holds. Denote
by S(µ) a quasi support of µ. As discussed in [BK, Proposition 2.6], it suffices to show that

Px(σS(µ) = 0) = 1 for quasi every x ∈ X . (6.36)

For the reader’s convenience, we recall why (6.36) implies that µ has full quasi support. By [FOT,
Theorem 4.6.1(i)] we may assume that S(µ)c is nearly Borel and finely open, by adjusting S(µ)
on a set of capacity zero. Then since S(µ)c is nearly Borel and finely open, for any x ∈ S(µ)c\N
we have Px(σS(µ) > 0) = 1, which by (6.36) implies that S(µ)c has capacity zero.

Note that (X , d,m, E ,F) is irreducible by Theorem 4.8. Applying Lemma 3.3 to the part
process XB(x0,R0) of X killed upon leaving a ball B(x0, R0) whose complement has positive
capacity, we have Px(τx = 0) = 1 for E-q.e. x ∈ B(x0, R0). By applying Lemma 3.3 to countably
many such balls B(x0, R0), we conclude that

Px(τx = 0) = 1 E-q.e. x ∈ X . (6.37)

Fix any x ∈ X \ N that satisfies (6.37). Let t > 0 and ϵ > 0 be arbitrary. By (6.37), we have

Px(T < t) > 1− ε, for E-q.e. x ∈ X , where T = τB(x,r), (6.38)

for some r = r(x, t, ϵ) > 0. By decreasing r = r(x, t, ε) if necessary, we may assume that
0 < r < diam(X , d)/A4, where A is the constant in capacity good condition. Since we will use
Lemma 5.10, by increasing A if necessary we assume that A ≥ 2K +1, where K is the constant
in Assumption 5.6. This increase in A is possible due to Lemma 5.22. Fixing r = r(x, t, ε) as
above, we define

K1 = B(x,A−1r) ∩ S(µ).

We show that there exists a constant c0 ∈ (0, 1) that depends only on the constants associated
with Assumption 6.1, and capacity good condition such that

Px(σK1 < T ) ≥ c0. (6.39)

Let e denote the equilibrium measure for K1 such that e(K1) = CapB(K1), where B = B(x, r).
To prove (6.39), we observe that

Pz(σK1 < τB) =

ˆ
K1

gB(z, y) e(dy) for E-q.e. z ∈ B. (6.40)

To obtain (6.40), we use [FOT, Theorem 4.3.3 and the 0-order version of Exercise 4.2.2] to con-
clude that both sides of (6.40) are quasi-continuous versions of the 0-order equilibrium potential
for K1 with respect to the part Dirichlet form on B. We would like to use (6.40) for z = x, but
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x could belong to the E-polar set associated with (6.40). To this end, we note that both sides
of (6.40) are XB|B\N -excessive from [CF, Lemma A.2.4(ii)] and Theorem 4.6 respectively. By
the absolute continuity property of X|X\N from Theorem 4.6 and [CF, Theorem A.2.17(iii)], we
conclude that

Pz(σK1 < τB) =

ˆ
K1

gB(z, y) e(dy) for every z ∈ B \ N . (6.41)

It is crucial that the properly exceptional set N does not depend on B. By (6.41) and (4.3),

Px(σK1 < T ) =

ˆ
K1

gB(x, y) e(dy) ≥ gB(x,A
−1r) CapB(K1). (6.42)

By (6.32), (6.1) and Lemma 5.10, there exists C1 > 0 such that,

ˆ
B(x,r/A)

gB(y, z)µ(dz) ≤ C1gB(x, r/A)µ(B(x, r/A)) for all y ∈ B(x, r). (6.43)

Since µ(S(µ)c) = 0, we obtain
µ(K1) = µ

(
B(x,A−1r)

)
. (6.44)

We recall the following inequality for capacity: for any Radon measure ν onB with
´
B gB(·, z) ν(dz) ≤

1 E-q.e. on B and ν(B \K1) = 0,

ν(K1) ≤ CapB(K1).

See [FOT, p.441, Solution to Exercise 2.2.2] and note also [FOT, Exercise 4.2.2]. By considering
the measure ν(·) = µ(K1 ∩ ·)/(C1gB(x, r/A)µ(B(x, r/A))), (6.43) and the above inequality, we
obtain

CapB(K1)
−1 ≤ ν(K1)

−1 = C1gB(x, r/A)µ(B(x, r/A))/µ(K1)

≲ gB(x, r/A) (by (6.44)). (6.45)

Combining (6.42) and (6.45) establishes the claim (6.39). Choosing ε = c0/2, we obtain

Px(σS(µ) ≤ t) ≥ Px(σK1 < T )− Px(T ≥ t) (since {σK1 < T} ⊂
{
σS(µ) ≤ t

}
∪ {T ≥ t})

> c0 − ε = 1
2c0 (by (6.38) and (6.39)).

Since t > 0 is arbitrary, the Blumenthal 0-1 law [CF, Lemma A.2.5] gives Px(σS(µ) = 0) = 1. □

7 Quasisymmetry and stability

Although the assumption that all MMD spaces are strongly local is in force in this section, we
remark that Lemma 7.1 and Lemma 7.5(a) in fact hold for general Dirichlet forms as well.

The following is a straightforward consequence of the definition of quasisymmetry.

Lemma 7.1. ([BM1, Lemma 5.3]) Let (X , d1, µ, E ,Fµ) be a MMD space and let d2 be a metric
on X quasisymmetric to d1. If (X , d2, µ, E ,Fµ) satisfies the EHI, then so does (X , d1, µ, E ,Fµ).

The next definition is a slight modification of [BM1, Definition 5.4], the change being made
so that it applies to both compact and non-compact spaces.
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Definition 7.2. We say that a function Ψ : X × [0,∞) → [0,∞) on a metric space (X , d) is a
regular scale function if Ψ(x, 0) = 0 for all x ∈ X and there exist constants C1, β1, β2 > 0 such
that, for all x, y ∈ X and finite 0 < s ≤ r ≤ diam(X , d), we have with R := d(x, y), Ψ(y, s) > 0
and

C−1
1

( r

R ∨ r

)β2
(R ∨ r

s

)β1

≤ Ψ(x, r)

Ψ(y, s)
≤ C1

( r

R ∨ r

)β1
(R ∨ r

s

)β2

. (7.1)

Given a regular scale function Ψ on (X , d), we now define a metric dΨ. This is proved as in
[BM1] – the proof there still works when diam(X , d) < ∞.

Proposition 7.3. ([BM1, Proposition 5.7]) Let Ψ be a regular scale function on a metric space
(X , d). There exists a metric dΨ : X × X → [0,∞) satisfying the following properties:

(a) There exist C, β > 0 such that for all x, y ∈ X ,

C−1Ψ(x, d(x, y)) ≤ dΨ(x, y)
β ≤ CΨ(x, d(x, y)). (7.2)

(b) d and dΨ are quasisymmetric.

(c) Assume in addition that (X , d) (or equivalently (X , dΨ)) is uniformly perfect. Fix A > 1.
Let BΨ and B denote metric balls in (X , dΨ) and (X , d) respectively. If x ∈ X and r, s > 0
satisfy, either BΨ(x, s) ⊂ B(x, r) ⊂ BΨ(x,As) ⊊ X or B(x, r) ⊂ BΨ(x, s) ⊂ B(x,Ar) ⊊ X ,
then there is a constant C1 > 1 (which does not depend on x ∈ X , r > 0, s > 0) such that

C−1
1 sβ ≤ Ψ(x, r) ≤ C1s

β, (7.3)

where β > 0 is as given in (7.2).

We now introduce Poincaré, cutoff energy inequalities, and capacity bounds with respect to
a regular scale function Ψ on (X , d). This is again a slight modification of [BM1, Definitions 5.8
and 5.13], so as to include both bounded and unbounded spaces. Recall that a cutoff function φ
for B1 ⊂ B2 is any function φ ∈ Fµ such that 0 ≤ φ ≤ 1 in X , φ ≡ 1 in an open neighbourhood
of B1, and suppφ ⊂ B2. Recall also that µ⟨f⟩ is the energy measure of f ∈ Fµ; see Section 2.

Definition 7.4. Let Ψ be a regular scale function on (X , d), and (X , d, µ, E ,Fµ) a MMD space.

(i) We say that (X , d, µ, E ,Fµ) satisfies the Poincaré inequality PI(Ψ), if there exist constants
C,A1, A2 ≥ 1 such that for all x ∈ X , R ∈ (0, diam(X , d)/A2) and f ∈ Fµ, µ(B(x,R)) < ∞
and ˆ

B(x,R)
(f − f)2 dµ ≤ CΨ(x,R)µ⟨f⟩(B(x,A1R)), PI(Ψ)

where f = 1
µ(B(x,R))

´
B(x,R) f dµ.

(ii)We say that (X , d, µ, E ,Fµ) satisfies the cutoff energy inequality CS(Ψ), if there exist
C1, C2 > 0, A1, A2 > 1 such that the following holds. For all R ∈ (0, diam(X , d)/A2),
x ∈ X with B1 = B(x,R) and B2 = B(x,A1R), there exists a cutoff function φ for
B1 ⊂ B2 such that for any u ∈ Fµ ∩ L∞,

ˆ
X
u2dµ⟨φ⟩ ≤ C1µ⟨u⟩(B2 \B1) +

C2

Ψ(x,R)

ˆ
B2\B1

u2 dµ. CS(Ψ)
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(iii) We say that (X , d, µ, E ,Fµ) satisfies the capacity estimate cap(Ψ) if there exist positive
constants C1, A1, A2 > 1 such that for all R ∈ (0,diam(X , d)/A2) and x ∈ X

C−1
1

µ(B(x,R))

Ψ(x,R)
≤ CapB(x,A1R) (B(x,R)) ≤ C1

µ(B(x,R))

Ψ(x,R)
. cap(Ψ)

If Ψ(r) = rβ, we denote PI(Ψ),CS(Ψ), cap(Ψ) by PI(β),CS(β), cap(β) respectively.

The following lemma shows that the Poincaré and cutoff energy inequalities take a much
simpler form with respect to the metric dΨ.

Lemma 7.5. ([BM1, Lemma 5.9]) Let (X , d, µ, E ,Fµ) be a uniformly perfect MMD space and
let Ψ be a regular scale function. Let dΨ be the metric constructed in Proposition 7.3 with β > 0
as given in (7.2). Then

(a) (X , d, µ, E ,Fµ) satisfies PI(Ψ) if and only if (X , dΨ, µ, E ,Fµ) satisfies PI(β).

(b) (X , d, µ, E ,Fµ) satisfies CS(Ψ) if and only if (X , dΨ, µ, E ,Fµ) satisfies CS(β).

The following comparison of annuli follows readily from the definition.

Lemma 7.6. ([MT, Lemma 1.2.18]) Let the identity map Id : (X , d1) → (X , d2) be an η-
quasisymmetry for some distortion function η. Then for all A > 1, x ∈ X , r > 0, there exists
s > 0 such that, with Bi denoting balls in (X , di)

B2(x, s) ⊂ B1(x, r) ⊂ B1(x,Ar) ⊂ B2(x, η(A)s). (7.4)

In (7.4), s can be defined as

s = sup {0 ≤ s2 < 2 diam(X , d1) : B2(x, s2) ⊂ B1(x, r)}

Moreover, for all A > 1, x ∈ X and r > 0, there exists t > 0 such that

B1(x, r) ⊂ B2(x, t) ⊂ B2(x,At) ⊂ B1(x,A1r), (7.5)

where A1 = 1/η−1(A−1). In (7.5), t can be defined as

t = A−1 sup {0 ≤ r2 < 2Adiam(X , d2) : B2(x,Ar2) ⊂ B1(x,A1r)} .

The following is an analogue of Lemma 7.5 for the capacity estimate cap(Ψ).

Lemma 7.7. Let (X , d, µ, E ,Fµ) be a MMD space that satisfies the EHI and let Ψ be a regular
scale function. Suppose that (X , d) is complete and that µ satisfies the volume doubling property
on (X , d). Let dΨ be the metric constructed in Proposition 7.3 with β > 0 as given in (7.2).
Then (X , d, µ, E ,Fµ) satisfies cap(Ψ) if and only if (X , dΨ, µ, E ,Fµ) satisfies cap(β).

Proof. Let B and BΨ denote balls in the metrics d and dΨ respectively. By Lemma 7.1,
(X , dΨ, µ, E ,Fµ) also satisfies the EHI. Let the identity map Id : (X , dΨ) → (X , d) be an η-
quasisymmetry. Note that µ satisfies the volume doubling property with respect to the metrics
d and dΨ.

Let (X , d, µ, E ,Fµ) satisfy cap(Ψ). Set A1 = η(2) and choose ε ∈ (0, 12 ] so that η(4ε) ≤ 1
2A1

.
By Lemma 5.22, we may assume that

CapB(x,A1r)(B(x, r)) ≍ µ(B(x, r))

Ψ(x, r)
, for all x ∈ X , 0 < r ≲ diam(X , d). (7.6)
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By Lemma 7.6 and Proposition 7.3(c), for all x ∈ X , 0 < s < ε diam(X , dΨ), there exists
r > 0 such that B(x, r) ⊂ BΨ(x, s) ⊂ BΨ(x, 2s) ⊂ B(x, η(2)r) and sβ ≍ Ψ(x, r). Note that
B(x, η(2)r) ̸= X , since r ≤ diam(BΨ(x, s), d) < η(4ε) diam(X , d) by [Hei, Proposition 10.8]. By
the volume doubling property µ(B(x, r)) ≍ µ(BΨ(x, s)). By domain monotonicity and (7.6), we
have

CapBΨ(x,2s)(BΨ(x, s)) ≥ CapB(x,A1r)(B(x, r)) ≍ µ(B(x, r))

Ψ(x, r)
≍ µ(BΨ(x, s))

sβ
, (7.7)

for all x ∈ X , 0 < s ≲ diam(X , dΨ).
Set A2 = 1/η−1(A−1

1 ). By Lemma 7.6 and Proposition 7.3(c), for all x ∈ X , s ∈
(0, (2A2)

−1 diam(X , dΨ)), there exists r > 0 such that BΨ(x, s) ⊂ B(x, r) ⊂ B(x,A1r) ⊂
BΨ(x,A2s) ̸= X and Ψ(x, r) ≍ sβ. By the volume doubling property, µ(B(x, r)) ≍ µ(BΨ(x, s)).
By Lemma 5.22, [Hei, Proposition 10.8], domain monotonicity and (7.6), we have

CapBΨ(x,2s)(BΨ(x, s)) ≍ CapBΨ(x,A2s)(BΨ(x, s))

≤ CapB(x,A1r)(B(x, r)) ≍ µ(B(x, r))

Ψ(x, r)
≍ µ(BΨ(x, s))

sβ
(7.8)

for all x ∈ X , 0 < s ≲ diam(X , dΨ). By (7.7) and (7.8), (X , dΨ, µ, E ,Fµ) satisfies cap(β).
The converse follows from a similar argument. □

We will now apply these results in the context of a change of measure on a MMD space.
Let (X , d,m, E ,F) be a MMD space which satisfies the EHI and one (and hence all) of the
three equivalent conditions in Theorem 5.4. Let (E ,Fe) be its corresponding extended Dirichlet
space, and µ be the measure constructed in Theorem 6.4. By Propositions 6.13 and 6.16, µ is a
positive Radon measure charging no set of capacity zero and possessing full quasi-support. Let
(Eµ,Fµ) denote the time-changed Dirichlet space with respect to µ as defined in (6.34). We
have Fµ = Fe ∩ L2(X , µ), Eµ(f, f) = E(f, f) for all f ∈ Fµ, and Fµ

e = Fe (cf. [CF, Theorem
5.2.2, (5.2.17) and Corollary 5.2.12]). Moreover, the Dirichlet form (Eµ,Fµ) on L2(X ;µ) shares
the same quasi notions as the original Dirichlet form (E ,F) on L2(X ;m); see [CF, Theorem
5.2.11].

Theorem 7.8. Let (X , d) be complete and metric doubling. Suppose that (X , d,m, E ,F) is
a MMD space which satisfies the EHI. Let µ be a (C0, A, β1, β2)-capacity good measure with
A ≥ 21/4. Denote D = diam(X , d). Then the function Ψ : X × [0,∞) → [0,∞) defined by
Ψ(x, 0) = 0 and

Ψ(x, r) =


µ(B(x,r))

CapB(x,r/A4)(B(x,r/A5))
if 0 < r < D,

µ(B(x,D))
CapB(x,D/A4)(B(x,D/A5))

if r ≥ D and D < ∞,
(7.9)

is a regular scale function on (X , d). Furthermore, the MMD space (X , d, µ, E ,Fµ) satisfies the
Poincaré inequality PI(Ψ), the cutoff energy inequality CS(Ψ) and the capacity estimate cap(Ψ).

Proof. By volume doubling (Lemma 6.3) and Lemma 5.20(c), there exists C2 > 0 such that for
all finite 0 < r ≤ D and for all x, y ∈ X with d(x, y) ≤ r, we have

C−1
2 Ψ(x, r) ≤ Ψ(y, r) ≤ C2Ψ(x, r). (7.10)

58



Let x, y ∈ X and set R := d(x, y). If R ≤ r the inequalities in (7.1) are immediate from (6.1)
and (7.10). If s ≤ r < R, then writing

Ψ(x, r)

Ψ(y, s)
=

Ψ(x, r)

Ψ(x,R)
.
Ψ(y,R)

Ψ(y, s)
.
Ψ(x,R)

Ψ(y,R)
,

and bounding each of the three terms on the right using (6.1) and (7.10) give (7.1). Thus Ψ is
a regular scale function.

By Lemma 5.23, the MMD space (X , d, µ, E ,Fµ) satisfies cap(Ψ).
Let dΨ and β > 0 be as given by Proposition 7.3. By Lemma 7.7, the MMD space

(X , dΨ, µ, E ,Fµ) satisfies cap(β). By Lemma 7.1 and Proposition 7.3(b), (X , dΨ, µ, E ,Fµ) sat-
isfies the EHI.

By Lemma 5.2 the space (X , dΨ) is uniformly perfect, and hence the measure µ on (X , dΨ)
satisfies the reverse volume doubling property (RVD) as defined in (6.31) [Hei, Exercise 13.1].

Therefore by [GHL, Theorem 1.2], since (X , dΨ, µ, E ,Fµ) satisfies the EHI and cap(β), it
satisfies PI(β) and CS(β). We now conclude using Lemma 7.5. □

The following gives equivalent characterization of the EHI for a MMD space (X , d,m, E ,F).

Theorem 7.9. Let (X , d) be a complete, metric doubling, connected metric space with a strongly
local regular Dirichlet form (E ,F) on L2(X ;m). The following are equivalent:

(a) (X , d,m, E ,F) satisfies the EHI.

(b) There exist an admissible smooth doubling Radon measure µ on (X , d) and a regular scale
function Ψ such that the time-changed MMD space (X , d, µ, E ,Fµ) satisfies the Poincaré
inequality PI(Ψ) and the cutoff energy inequality CS(Ψ).

(c) There exist an admissible smooth doubling Radon measure µ on (X , d), a metric dΨ on X that
is quasisymmetric to d, and β > 0, such that the time-changed MMD space (X , dΨ, µ, E ,Fµ)
satisfies Poincaré inequality PI(β) and the cutoff energy inequality CS(β).

Proof. (a) ⇒(b) This is immediate from Lemma 6.3, Propositions 6.13, 6.16, Theorems 6.4 and
7.8.

(b)⇒(c) By Lemma 5.2(b), (X , d) is uniformly perfect. Let dΨ and β > 0 be as given by
Proposition 7.3. Quasisymmetry of dΨ follows from Proposition 7.3(b). Then PI(β) and CS(β)
for (X , dΨ, µ, E ,Fµ) follow from Lemma 7.5.

(c)⇒(a) By Lemma 5.2(b), (X , dΨ) is uniformly perfect. Thus µ satisfies the reverse volume
doubling property (6.31) [Hei, Exercise 13.1]. Since (X , d) is metric doubling, so is (X , dΨ)
[Hei, Theorem 10.18]. So by [BM1, Proposition 5.11 and Remark 5.12], we obtain the condition
(Gcap≤)β in [GHL]. Then by the implication (Gcap≤)β plus PI(β) to the EHI in [GHL, Theorem
1.1], we obtain the EHI for (X , dΨ, µ, E ,Fµ). Since dΨ and d are quasisymmetric, the desired
EHI follows from Lemma 7.1. □

Remark 7.10. (i) Note that conditions (b) and (c) in the Theorem above do not include
the requirement that (X , d,m, E ,F) satisfies the conditions (HC) or (Ha) introduced in
Section 3. (It would be undesirable to include (Ha) or (HC), since we do not know if they
are stable.) Thus (b) or (c) does not immediately give the existence of Green’s functions;
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however the existence of regular Green functions does follow from the implications (b), (c)
⇒ (a) and Theorems 4.8 and 4.6.

The proof in [GHL] that (Gcap≤)β plus PI(β) implies the EHI does not require the existence
of Green’s functions.

(ii) The result that (a) implies (c) in Theorem 7.9 can be sharpened as follows. If (X , d,m, E ,F)
satisfies the EHI then for any β > 2 there exists a metric dΨ on X that is quasisymmetric to
d, and an admissible smooth doubling Radon measure µ such that the time-changed MMD
space (X , dΨ, µ, E ,Fµ) satisfies Poincaré inequality PI(β) and the cutoff energy inequality
CS(β). The condition β > 2 is sharp in the sense that any β in property (c) necessarily
satisfies β ≥ 2 and there are examples for which β = 2 is not possible. These results are
contained in [KM].

Proof of Theorem 1.3. The condition that E(f, f) ≍ E ′(f, f) for all f ∈ F implies that the
associated energy measures satisfy µ⟨f⟩ ≍ µ′

⟨f⟩; see (4.12). Hence the condition (b) in Theorem

7.9 holds for E ′ by Theorems 5.4 and 7.9, and therefore the implication (b) ⇒ (a) in Theorem
7.9 implies that the EHI holds for E ′. □

The following is an extension of Theorem 1.3, where the symmetrizing measures for the
Dirichlet forms may be different.

Theorem 7.11. Let (X , d) be a complete, doubling metric space, and let m be a Radon measure
on X with full support. Let (E ,F) be a strongly local regular Dirichlet form on L2(X ;m). Suppose
that (X , d,m, E ,F) satisfies the EHI. Let µ be a smooth Radon measure of (X , d,m, E ,F) with
full quasi support on X , and (E ′,F ′) be another strongly local regular Dirichlet form on L2(X ;µ)
such that F ∩ Cc(X ) = F ′ ∩ Cc(X ) and

C−1E(f, f) ≤ E ′(f, f) ≤ CE(f, f) for all f ∈ F ∩ Cc(X ) (7.11)

for some C ≥ 1. Then (X , d, µ, E ′,F ′) satisfies the EHI.

Proof. LetX be the Hunt process associated with the regular Dirichlet form (E ,F) on L2(X ;m).
Since µ is a smooth Radon measure with full quasi-support, its associated positive continuous
additive functional At is strictly increasing up to the lifetime of X. Thus its time-changed
process Yt := Xτt , with τt := inf{r > 0 : Ar > t}, has the same family of harmonic functions as
that of X. To see this, first note by Proposition 2.10 it suffices to show that Yt and Xt have the
same family of bounded harmonic functions which in turn follows from Proposition 2.9.

By (6.35), the Dirichlet form (Eµ,Fµ) of the time-changed process Y is regular on L2(X ;µ)
and has the property that Fµ = Fe∩L2(X ;µ), Fµ

e = Fe and Eµ = E on Fe. Moreover, (Eµ,Fµ)
is strongly local and satisfies the EHI. Since F = Fe ∩ L2(X ;m) and both m and µ are Radon,
we have by (6.35) that

F ∩ Cc(X ) = (Fe ∩ L2(X ;m)) ∩ Cc(X ) = (Fµ
e ∩ L2(X ;µ)) ∩ Cc(X ) = Fµ ∩ Cc(X ).

Since F ′ ∩ Cc(X ) = Fµ ∩ Cc(X ) is dense in F ′ and Fµ with respect to the Hilbert norms
√

E ′
1

and
√

Eµ
1 , respectively, where

E ′
1(u, u) := E ′(u, u) +

ˆ
X
u(x)2µ(dx) and Eµ

1 (u, u) := Eµ(u, u) +

ˆ
X
u(x)2µ(dx),
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we have by (7.11) that F ′ = Fµ and

C−1Eµ(f, f) ≤ E ′(f, f) ≤ CEµ(f, f) for all f ∈ Fµ.

The desired conclusion of the theorem now follows from Theorem 1.3 applied to the MMD space
(X , d, µ, Eµ,Fµ). □

Remark 7.12. The stability results of this paper, Theorem 1.3 and Theorem 7.11, hold for
the EHIloc as well. We now indicate the needed modifications. All of the results of Section 5
extend easily under the assumption EHIloc except that the conclusions only hold for balls of
small enough radii. The main difference is in the construction of the measures νl in Proposition
6.11. Instead of the initial condition on Ml+3 for the inductive construction using Lemma 6.9,
we set the initial condition on M1 to the uniform probability measure on M1, where M1 is as
given in the generalized dyadic decomposition of Ql,0. Then the weak* subsequential limit as
in the proof of Theorem 6.4 will be a capacity good measure (only at small enough scales using
the same argument). However, this property is enough so that our construction gives a smooth
measure with full quasi support. All the results used in Section 7 (for example, [GHL, Theorem
1.2]) will also admit local versions. As noted in [GT12, Remark 4.6], [GT12, Proof of Theorem
4.2] cannot be localized, but [GK, Theorems 6.2 and 7.3] give a localization of it. Although
there is no clear reference in the literature for these results, a careful reading of the proofs in
the literature shows that these local versions do hold, with essentially the same proof.

8 Examples

Example 8.1. The following example uses the instability of the Liouville property given in
Lyons [Lyo] to show that without some regularity of the metric the EHI is not stable.

We begin by describing briefly Lyons’ example. Let Γ = (VΓ, EΓ) be the free group with
two generators a and b, and let V = VΓ × {0, 1}. Lyons constructed two sets of symmetric

conductances {a(i)xy , x, y ∈ V}, i = 1, 2, on V such that if Ei = {(x, y) : a
(i)
xy > 0} then E1 =

E2. Denote EG = E1 = E2, and let G = (V, EG) be the associated graph. The two sets of
conductances have the following additional properties:

(0) G = (V, EG) is connected.

(1) For each x ∈ V, 4 ≤
∣∣{y : a

(i)
xy > 0}

∣∣ ≤ 8, so the graph G has uniformly bounded vertex
degrees.

(2) There exists p0 ∈ (0, 1) so that a
(i)
xy ∈ {0}∪[p0, 1] for all x, y, i = 1, 2. Thus the conductances

a
(i)
xy are uniformly bounded above and below on the graph G.

Define the quadratic forms, for f : V → R,

E(i)(f, f) = 1
2

∑
x∈V

∑
y∈V

a(i)xy(f(y)− f(x))2, i = 1, 2. (8.1)

In view of (2) above we have

p0E(1)(f, f) ≤ E(2)(f, f) ≤ p−1
0 E(1)(f, f) for any function f on V. (8.2)
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Let d be the graph distance on V and m be the measure on V which assigns mass 1 to each
vertex x. In view of [Bar17, Proposition 1.21(c)], (E(i),F) is a symmetric regular Dirichlet form
on L2(V,m) for i = 1, 2, where F := L2(V,m).

Recall that we say that the strong Liouville property (SLP) holds (for a MMD space) if
every non-negative harmonic function is constant, and the Liouville property (LP) holds if every

bounded harmonic function is constant. Lyons constructed {a(i)xy} for i = 1, 2 so that the SLP
holds for the MMD space (V, d,m, E(1),F) while the LP fails for the MMD (V, d,m, E(2),F).
Thus Lyons’ example shows that neither SLP nor LP are stable.

Let (X , d̃) be the cable system for the graph G: each edge e ∈ EG is replaced by a copy of
[0, 1] – see for example [V] for details of the construction. Let µ be the measure which assigns a
copy of Lebesgue measure to each cable. The metric d̃ is the unique length metric on X which
equals Euclidean distance on each cable. Write (Ẽ(i), F̃) for the (regular and strongly local)
Dirichlet forms on X associated with the cable system. (For further details of this construction
see [V, BM1].)

Now let d′(x, y) = 1 ∧ d̃(x, y) for x, y ∈ X , and write B′(x, r) for balls with respect to the
metric d′. Then (X , d′) is locally compact and complete, and (X , d′, µ, Ẽ(i), F̃), i = 1, 2, are
MMD spaces. Note that (MD) fails for this space. The instability of the SLP and LP for the
graph G extends to the cable systems, so that the MMD space (X , d′, µ, Ẽ(1), F̃) satisfies the
SLP while (X , d′, µ, Ẽ(2), F̃) fails to satisfy the LP.

We now consider the EHI for balls B′(x, r/2) ⊂ B′(x, r). Note first that if r ≤ 2 then
since each vertex of V has between 4 and 8 neighbours, the EHI follows from the local Harnack
inequality for both (X , d′, µ, Ẽ(1), F̃) and (X , d′, µ, Ẽ(2), F̃). If r > 2 then B′(x, r) = B′(x, r/2) =
X , and so if h is positive and E(1)-harmonic on B′(x, r) then h is constant, and thus the EHI
holds for the MMD space (X , d′, µ, Ẽ(1), F̃). On the other hand, as the LP fails for E(2) there
exists a non-constant bounded E(2)-harmonic function h on X , which we can normalize so that
infX h = 0, supX h = 1. It is thus clear that the EHI for the MMD space (X , d′, µ, Ẽ(2), F̃) fails
for every ball B′(x, δr) ⊂ B′(x, r) with δ ∈ (0, 1) and r > 1/δ.

Remark 8.2. It would be interesting to have an example of a strongly local MMD space that
does not have (MD) property for which EHI fails to be stable but for which all balls are relatively
compact. It does not seem easy to modify the example above to give this.

Example 8.3. We give an example of a strongly local irreducible MMD space where harmonic
functions may be discontinuous and (Ha) fails. However the condition (HC) does hold. The
space consists of three parts: the closure of a domain in R2, the standard Sierpinski gasket, and
a line segment. Let X1 be the compact Sierpinski gasket, with vertices z1 = (0, 0), z2 = (1, 0)

and z3 = (12 ,
√
3
2 ), X2 = [0, 1]× (−1, 0], a unit square with the bottom [0, 1]×{−1} removed, and

let X3 be a smooth curve outside X1 ∪ X2 that connects the vertex z3 of the Sierpinski gasket
with the point z4 = (1,−1/2) at the middle of the right side of the square X2. We identify X3

with a closed line segment of length l > 1.
Let X = X1 ∪ X2 ∪ X3. For x, y ∈ X let d(x, y) be the (Euclidean) length of the shortest

curve in X connecting x and y. Clearly, (X , d) is a locally compact separable metric space. Let
m1 be the measure on X1 which assigns mass 3−n to each triangle of side 2−n, and for j = 2, 3,
let mj be Lebesgue measure on Xj . Let m be the measure on X such that m|Xi = mi for each
i. Clearly, m is a finite measure on X .

Let (E(1),F (1)) be the strongly local Dirichlet form on L2(X1,m1) associated with the stan-
dard diffusion on the Sierpinski gasket – see [Kig, Chapter 3]. Let (E(2),F (2)) be the Dirichlet
form associated with the reflected Brownian motion on X2 killed upon hitting the horizontal line
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segment [0, 1]×{−1}. Let (E(3),F (3)) be the Dirichlet form associated with Brownian motion on
X3, with reflection at the two endpoints. Since (E(1),F (1)) and (E(3),F (3)) are resistance forms
on X1 and X3, every E(i)-quasi-continuous mi-version of elements in F (i) is Hölder continuous
on Xi for i = 1, 3. Following [Kum] we can construct a strongly local regular Dirichlet form
(E ,F) on L2(X ,m) such that {f |Xi : f ∈ F} = F (i) for i = 1, 2, 3.

Let X = {Xt, t ≥ 0;Px, x ∈ X} be the diffusion process associated with the regular Dirichlet
form (E ,F) on L2(X ;m). The diffusion X is transient due to the killing on the line {x2 = −1}.
This process behaves as follows:

(i) when Xt is inside X1, it behaves like Brownian motion on the Sierpinski gasket X1 until it
reaches the vertex z3 or the bottom X1 ∩ X2;

(ii) whenXt is inside X2, it behaves like two-dimensional Brownian motion in X2, with reflection
on the two lines X2 ∩ {x1 = 0} and X2 ∩ {x1 = 1}, and killing on X2 ∩ {x2 = −1}.

(iv) when Xt is at the vertex z3, it immediately enters both X1 \ X3 and X3 \ X1. When Xt is
at a point y ∈ X1 ∩X2, it immediately enters both X1 \X2 and X2 \X1. When Xt is at z4,
it is reflected into X3.

The unique point z4 ∈ X2 ∩ X3 is polar for reflected Brownian motion in X2, so the process
X starting from X2 \ {z4} can only enter X3 through the Sierpinski gasket X1 via vertex z3.

For any r ∈ (0, 1/2), let u ∈ F be a bounded function so that u = 1 on B(z4, r/2)
c ∩ X2 and

u = 0 on B(z4, r/2)
c ∩ X3. Define h(x) = Ex[u(XτB(z4,r)

], which is a bounded function in Fe

and is regular harmonic in B(z4, r). Observe that h(x) = Px(XτB(z4,r)
∈ X2) for x ∈ B(z4, r)

with h(x) = 1 for x ∈ B(z4, r) ∩ X2 \ {z4} and h(x) = 0 on B(z4, r) ∩ X3. Thus h does not
satisfy the non-scale-invariant Harnack inequality. In other words, (Ha) fails for this strongly
local Dirichlet form (E ,F). Let

Dk =
{
x = (x1, x2) ∈ X2 : 0 < |x− z4| < 8−k or x2 < 8−k − 1

}
and set Fk = X \Dk. It is straightforward to verify that (Fk) is an E-nest consisting of compact
sets with ∪∞

k=1Fk = X .
Denote by ζ the lifetime of X. It is not hard to see that Exζ is bounded on X . So there

is a small constant c0 > 0 so that for g0 = c0, Gg0(x) = c0 Exζ ≤ 1 on X , Gg0 ∈ Fe with
E(Gg0, Gg0) =

´
X g0(x)Gg0(x)m(dx) ≤ 1. We now verify (HC). We begin by specifying the

function rx0 . If x0 is in exactly one of the sets Xi, i = 1, 2, 3, then choose rx0 small enough
so that B(x0, 2rx0) is contained in that Xi. The remaining possibilities are that x0 ∈ X1 ∩ X2,
x0 = z3 or x0 = z4, and in these cases we take rx0 = 1

7 . Now let r < rx0 , and let f ∈ B+(X )
have compact support in B(x0, 2r)

c, and satisfy 0 ≤ f ≤ cg0 for some c > 0. We have

Gf(x) = Ex[Gf(XτB(x0,2r)
)] for x ∈ B(x0, r).

Now let x0 ∈ X . If for some i we have B(x0, 2rx0) ⊂ Xi, then the continuity of Gf on B(x0, r)
follows exactly as for the space Xi. Next suppose that x0 ∈ X1 ∩ X2. Since Gf ∈ F and is E-
quasi-continuous on X , Gf |X1 ∈ F (1) and is E(1)-quasi-continuous. So Gf is Hölder continuous
on X1∩B(x0, r) and, in particular, is continuous on the the line segment L = X1∩X2∩B(x0, 2r).
So Gf is harmonic in B(x0, 2r)\X1 and is continuous on L. For x ∈ B(x0, r)∩X2, by the strong
Markov property of X,

Gf(x) = Ex[Gf(XτB(x0,2r)∩X2
)] = Ex[Gf(YτB(x0,2r)∩X2

)],
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where Y is the normally reflected Brownian motion in the rectangle [0, 1] × [−1, 1]. Note that
Y is a Feller process having strong Feller property and has two-sided short time Gaussian type
heat kernel estimates on [0, 1]× [−1, 1], and the open set (0, 1]× [−1, 0) satisfies the exterior cone
condition for every boundary point on (0, 1]×{0}. Thus every point on (0, 1]×{0} is regular for
[0, 1]× [0, 1] with respect to the reflected Brownian motion Y . It follows that Gf is continuous
in B(x0, r) ∩ X2, and therefore in B(x0, r)

If x0 = z3 then Gf is continuous on X1 ∪ X3, and so is continuous on B(x0, r). Finally let
x0 = z4. Then B(z4, 2r) ∩ Fk consists of two disjoint components, a part annulus A1 contained
in X2 and the set A2 = {y ∈ X3 : 0 ≤ d(z4, y) < 2r}. As above, we have that Gf is continuous
on each component Ai and so is continuous on B(z4, r) ∩ Fk. Thus X satisfies (HC).

Let
h(x) = Px(Tz3 < ∞}.

Then since X can only leave X3 via the point x3, we have h|X3 ≡ 1. On the other hand the
symmetry of X2 implies that Px(TX1 < ∞) ≃ 1

2 for points x ∈ X2 \ {z4} close to z4, and thus h
is not continuous at z4.

Note further that the point z4 is of positive capacity and (E ,F) is irreducible. On the
other hand, the part Dirichlet form (E ,FB(z4,r)) on L2(B(z4, r),m|B(z4,r)) is not irreducible
for any r ∈ (0, 1/2]; the space B(z4, r), which is connected, has two disjoint invariant sets
B(z4, r) ∩ (X2 \ {z4}) and B(z4, r) ∩ X3 for the part process XB(z4,r) of X killed upon leaving
B(z4, r). Thus this example also shows that a strongly local regular Dirichlet form does not
need to be irreducible even though the underlying metric space is connected.

Example 8.4. We now show that the spaces studied in [BSC] provide an example of a MMD
space which fails the condition (HC). Let rk ∈ (0, 1) be chosen so that (rk) is strictly decreasing
and

∞∑
1

e−t/r2k = +∞ for all t ≥ 0.

Let Sk be a circle of radius rk, andmk be Lebesgue measure on Sk normalized so thatmk(Sk) = 1.
Set X =

∏∞
k=1 Sk, and m = ⊗∞

1 mk. Since each Sk is compact, the space X is compact and
therefore locally compact. Let dk be the usual metric on Sk, and define a metric d on X by
taking d(x, y) = supk{dk(xk, yk)}: this metric induces the product topology on X . For k ∈ N
let W (k) be independent Brownian motions on Sk and set W = (W (1),W (2), · · · ) ∈ X . Then
W is a conservative symmetric Hunt process with invariant measure m. Its associated Dirichlet
form (E ,F) is strongly local and regular on L2(X ,m). For more details of this construction see
[BSC]. There exist heat kernel measures ht(x, ·) such that for any f ∈ C(X ),

Exf(Wt) =

ˆ
ht(x, dy)f(y).

By Theorem 1.2 of [BSC] the measure ht(x, ·) is singular with respect to m for all x ∈ X and
t ≥ 0; thus W does not have a regular transition density withy respect to m. The process W
is recurrent, but we can define a transient process by choosing a point z1 ∈ S1 and killing W
when W (1) hits z1. Write W for this killed process, and (E ,F) for the associated Dirichlet form.
If ht(x, ·) = Px(W ∈ ·) then ht ≤ ht and thus is also singular with respect to m. The condition
(HC) must fail for (E ,F), since otherwise by Theorem 3.8 W would have a transition density
with respect to m. We note that this space has infinite Assoud dimension and therefore fails to
satisfy metric doubling.
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Example 8.5. To give a concrete example of an irreducible strongly local MMD space that fits
the setting of Theorem 1.3 but fails to satisfy the local regularity of [BM1, Assumption 2.5(i)]
in the compact setting, consider X to be the join of the Vicsek tree (compact) with the unit
interval [0, 1], where the symmetrizing measure m is given by the Hausdorff measure on each of
the pieces. The space X satisfies the relatively ball connected condition. We take (E ,F) to be
the strongly local regular Dirichlet form on L2(X ;m) obtained by combining the Dirichlet form
associated with Brownian motion on (0, 1] with the Dirichlet form associated with the diffusion
on the Vicsek tree, in a similar fashion to the previous example. The argument in [De2] can be
adapted to show that this example satisfies the EHI. This example is essentially due to Delmotte
[De2].
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