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Parabolic Harnack Inequality Implies the Existence
of Jump Kernel

Guanhua Liu1,2 ·Mathav Murugan2

Abstract
We prove that the parabolic Harnack inequality implies the existence of jump kernel for
symmetric pure jump process. This allows us to remove a technical assumption on the jump-
ing measure in the recent characterization of the parabolic Harnack inequality for pure jump
processes by Chen, Kumagai and Wang. The key ingredients of our proof are the Lévy
system formula and estimates on the heat kernel.
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1 Introduction

The parabolic Harnack inequality is a fundamental regularity estimate for non-negative solu-
tions to the heat equation and its variants. Important applications of the parabolic Harnack
inequality are apriori Hölder regularity of solutions, the existence of heat kernel, and bounds
on the heat kernel. We refer to the survey [19] for an introduction to Harnack inequalities
and variants.

A major result on the parabolic Harnack inequality is its characterization by simpler
geometric and analytic properties. In the context of diffusions on Riemannian manifolds this
characterization was established by Grigor’yan [15] and Saloff-Coste [21] for the classical
space-time scaling (time scales like square of space). This characterization was extended
and modified to many settings including diffusions on metric measure spaces [22], nearest
neighbor walks on graphs [12], and for anomalous space time scaling [1, 2, 16] by several
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authors. A similar characterization of the parabolic Harnack inequality for jump processes
remained open until a recent breakthrough by Chen, Kumagai and Wang [9].

The purpose of this note is to show that the parabolic Harnack inequality implies the exis-
tence of the jump kernel for pure jump processes. In other words, we show that the jumping
measure is absolutely continuous with respect to the product measure μ⊗μ, where μ is the
symmetric (reference) measure for the jump process. As a consequence, we remove a tech-
nical hypothesis on the jumping measure assumed in [9] for characterizing the parabolic
Harnack inequality (see Remark 1.3).

1.1 Framework and Result

Let (M, d) be a complete, locally compact, separable metric space, and let μ be a positive
Radon measure on M with full support. Such a triple (M, d, μ) is called a metric mea-
sure space. We assume that (M, d) is unbounded; that is, supx,y∈M d(x, y) = ∞. We set
B(x, r) := {y ∈ X | d(x, y) < r} and V (x, r) = μ(B(x, r)) for x ∈ M, r ∈ (0,∞). We
assume that the measure μ satisfies the following volume doubling property Eq. VD: there
exists CD > 1 such that

V (x, 2r) ≤ CDV (x, r), for any x ∈ M, r ∈ (0,∞). (VD)

We consider a symmetric Dirichlet form (E,F) on L2(M,μ). In other words, F is a
dense linear subspace of L2(M,μ), E : F × F → R is symmetric, non-negative definite,
bilinear form that is closed (F is a Hilbert space under the inner product E1(·, ·) = E(·, ·)+
〈·, ·〉L2(M,μ)) andMarkovian (for any f ∈ F , we have ̂f := (0∨f )∧1 ∈ F and E( ̂f , ̂f ) ≤
E(f, f )). We assume that (E,F) is regular; that is, F ∩Cc(X) is dense both in (F , E1) and
in (Cc(X), ‖ · ‖sup). We assume that (E,F) is a pure jump type Dirichlet form; that is, there
exists a symmetric positive Radon measure on M × M \ diag such that

E(f, f ) =
∫

M×M\diag
(f (x) − f (y))2 J (dx, dy), for all f ∈ F ,

where diag = {(x, x) | x ∈ M} denotes the diagonal. The Radon measure J is called
the jumping measure; cf. [14, Theorem 3.2.1]. We say that the Dirichlet form (E,F) on
L2(X,μ) admits a jump kernel if J is absolutely continuous with respect to the prod-
uct measure μ ⊗ μ on M × M \ diag. If the Dirichlet form admits a jump kernel, then
the Radon-Nikodym derivative of J with respect to μ ⊗ μ is called the jump kernel.
In other words, (if it exists) the jump kernel j (·, ·) is a measurable function such that
J (dx, dy) = j (x, y)μ(dx)μ(dy). The central question of this work whether or not a pure
jump type, regular Dirichlet form admits a jump kernel.

Every regular Dirichlet form (E,F) on L2(M,μ) has an associated μ-symmetric Hunt
process X = {Xt, t ≥ 0,Px, x ∈ M \ N }, where N is a properly exceptional set for
(E,F); that is, μ(N ) = 0 and P

x(Xt ∈ N for some t > 0) = 0. This Hunt process is
unique up to the choice of a properly exceptional set [14, Theorems 4.2.8 and 7.2.1]. Let
Zt = (Vt , Xt ) be the associated space-time process (R × M-valued process) defined by
Vt = V0 − t . The law of the space time process s �→ Zs starting from (t, x) will be
denoted by P

(t,x). The expectation with respect to P
(t,x) is denoted by E

(t,x). We say that
A ⊂ [0, ∞) × M is nearly Borel measurable if for any Borel probability measure μ0 on
[0, ∞) × M , there are Borel measurable subsets A1, A2 such that A1 ⊂ A ⊂ A2 and sat-
isfies Pμ0(Zt ∈ A2 \ A1 for some t ≥ 0) = 0. The collection of nearly Borel measurable
subsets of [0, ∞)×M forms a σ -field, which is called nearly Borel measurable σ -field. We
recall the (probabilistic) definition of the parabolic Harnack inequality.
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Definition 1.1 We say that a nearly Borel measurable function u : [0, ∞) × M → R is
caloric on D = (a, b)×B(x0, r) for the Markov process X if there is a property exceptional
set Nu of the Markov process X such that for any relatively compact open subset U of D,
we have

u(t, x) = E
(t,x)u(ZτU

), for all (t, x) ∈ U ∩ ([0, ∞) × (M \ Nu)).

Let φ : [0, ∞) → [0, ∞) be a homeomorphism (and hence strictly increasing with
φ(0) = 0). We say that the parabolic Harnack inequality Eq. PHI(φ) holds for the process
X, if there exist constants c0 ∈ (0, 1), 0 < C1 < C2 < C3 < C4 and C5 > 1 such
that for any x0 ∈ M, t0 ≥ 0, r > 0, provided that u : R+ × M → R+ is caloric on
(t0, t0 + C4φ(r)) × B(x0, r), we always have

ess sup
(t0+C1φ(r),t0+C2φ(r))×B(x0,c0r)

u ≤ C5 ess inf
(t0+C3φ(r),t0+C4φ(r))×B(x0,c0r)

u. (PHI(φ))

The main result of our work is that the parabolic Harnack inequality implies the existence
of jump kernel.

Theorem 1.2 Let (M, d, μ) be an unbounded, complete, separable, locally compact met-
ric measure space, where μ is a Radon measure with full support on (M, d) that satisfies
the volume doubling property Eq. VD. Let (E,F) be a symmetric Dirichlet form on
L2(M,μ) of pure jump type and let X be the corresponding μ-symmetric Hunt process.
Let φ : [0, ∞) → [0, ∞) be a homeomorphism such that there exist constants Cφ ≥ 1,
β2 ≥ β1 > 0 such that

C−1
φ

(

R

r

)β1

≤ φ(R)

φ(r)
≤ Cφ

(

R

r

)β2

for all 0 < r ≤ R. (1.1)

If the process X satisfies the parabolic Harnack inequality Eq. PHI(φ), then the Dirichlet
form (E,F) on L2(M,μ) admits a jump kernel.

Remark 1.3 (a) Let J (dx, dy) denote the jumping measure for (E,F). Assume that there
is a kernel ˜J (x, dy) (in other words, x �→ ˜J (x,A) is a Borel measurable function for
any Borel set A, and that A �→ ˜J (x,A) is a Borel measure on M for any x ∈ M) such
that

J (dx, dy) = ˜J (x, dy)μ(dy). (1.2)

Theorem 1.2 was shown under the additional assumption that a kernel ˜J (x, dy) exists
and satisfies Eq. 1.2 in [9, Proposition 3.3] (see also [4, Proposition 4.7] for a similar
result and proof). This assumption can be viewed as a weaker form of the existence
of jump kernel and was assumed throughout [9]. As a consequence of Theorem 1.2,
we could remove the assumption Eq. 1.2 in the characterization of parabolic Harnack
inequality in [9].

(b) As explained in [9, Remark 1.22], the condition that the metric space is unbounded
can be relaxed. Our proof of Theorem 1.2 also extends to the case where there are non-
zero diffusion and jump parts as considered in [11]. We discuss further extensions in
Remark 2.6.

In the proof of Theorem 1.2, we consider the same caloric function used in [9, Proposition
3.3] and [4, Proposition 4.7]. However, the argument in [9] requires a Lévy system formula
(see [9, Lemma 2.11]) that relies on the assumption Eq. 1.2. To overcome the difficulty,
we use a more abstract Lévy system formula that does not rely on Eq. 1.2. The main new
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ingredient in our proof is the use of a near diagonal lower bound on the heat kernel to obtain
useful quantitative estimates on the jumping measure. In particular, we use both upper and
lower bounds on the heat kernel while the argument in [9, Proposition 3.3] uses only upper
bound on the heat kernel. We remark that the use of near diagonal lower bound can be
avoided by following the argument in [9, Proposition 3.3] with the abstract Lévy system
formula (see the alternate proof of Lemma 2.4).

Notation Throughout this paper, we use the following notations and conventions.

(a) For a measurable function f ≥ 0 and a measure μ, by f · μ, we denote the measure
A �→ ∫

A
f dμ.

(b) For a measure μ and a function f , the integral
∫

f dμ is denoted by 〈μ, f 〉.
(c) The notation A � B for quantities A and B indicates the existence of an implicit

constant C ≥ 1 depending on some inessential parameters such that A ≤ CB. We
write A � B, if A � B and B � A.

2 Proof

The proof of Theorem 1.2 relies on two key ingredients. The ingredients are bounds on
the heat kernel and a Lévy system formula, which we recall in Section 2.1 and Section 2.2
respectively. After these preliminaries, we present the proof of Theorem 1.2 in Section 2.3.

2.1 Heat Kernel

We recall the notion of heat kernel. Let (M, d, μ) be a metric measure space and let (E,F)

be a regular Dirichlet form on L2(M,μ). Let (Xt , t ≥ 0,Px, x ∈ M \ N ) be the corre-
sponding μ-symmetric Hunt process, whereN is a properly exceptional set for (E,F). Let
{Pt } note the corresponding Markov semigroup [14, Theorem 1.4.1]. The heat kernel asso-
ciated with the Markov semigroup {Pt } (if it exists) is a family of measurable functions
p(t, ·, ·) : M × M �→ [0, ∞) for every t > 0, such that

Ptf (x) =
∫

p(t, x, y)f (y) μ(dy), for all f ∈ L2(M, μ), t > 0 and x ∈ M , (2.1)

p(t, x, y) = p(t, y, x), for all x, y ∈ M and t > 0, (2.2)

p(t + s, x, y) =
∫

p(s, x, y)p(t, y, z) μ(dy), for all t, s > 0 and x, y ∈ M . (2.3)

For an open set B, let XB denote the μ-symmetric Hunt process on B obtained from X

killed upon exiting B [8, Theorems 3.3.8 and 3.3.9]; that is,

XB(t) =
{

X(t) for t < τB ,

� for t ≥ τB

,

where � denotes the cemetery state and τB = inf {s > 0 | Xt /∈ B} denote the exit time of
B. Let

{

P B
t

}

denote the Markov semigroup on L2(B,μ). The heat kernel associated with
the Markov semigroup

{

P B
t

}

(if it exists) is denoted by pB(t, ·, ·). We recall the existence
and bounds on the heat kernels for X and XB from [9].
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Proposition 2.1 [9, Propositions 3.1 and 3.2] Let (M, d, μ) be an unbounded, complete,
separable, locally compact metric measure space, where μ is a Radon measure with full
support on (M, d) that satisfies the volume doubling property Eq. VD. Let (E,F) be a
symmetric Dirichlet form on L2(M,μ) of pure jump type and let X be the corresponding
μ-symmetric Hunt process. Let φ : [0, ∞) → [0, ∞) be a homeomorphism such that there
exist constants Cφ ≥ 1, β2 ≥ β1 > 0 satisfying Eq. 1.1. Assume further that X satisfies the
parabolic Harnack inequality Eq. PHI(φ). Then

(a) The process X has a continuous heat kernel p : (0, ∞) × M × M → [0, ∞) that
satisfies the following upper bound. There exist a constant CU > 0 and a properly
exceptional setN for X such that,

pt (x, y) ≤ CU

V (x, φ−1(t))
, for all x, y ∈ M \ N and for all t > 0, (UHKD(φ))

(b) For every ball B = B(x0, r), let XB denote the process obtained from X killed upon
exiting B. Then XB has a heat kernel pB : (0,∞) × B × B → [0, ∞) and satisfies
the following lower bound: there exist cL > 0, δN ∈ (0, 1) and a properly exceptional
setN for X such that for any x0 ∈ M, r > 0, 0 < t ≤ φ(δNr) and B = B(x0, r),

p
B(x0,r)
t (x, y) ≥ cL

V (x0, φ−1(t))
, for all x, y ∈ B(x0, δNφ−1(t)) \ N . (NDL(φ))

Remark 2.2 (a) We remark that the proofs of [9, Propositions 3.1 and 3.2] do not rely on
the assumption Eq. 1.2 or the reverse volume doubling property.

(b) Using a standard parabolic Hölder regularity estimate (see [5, Corollary 4.5 and
Lemma 4.6]), we may assume that (t, x, y) �→ pt (x, y) is continuous on (0, ∞)×M×
M . Similarly, for any ball B(x0, r), we may assume that (t, x, y) �→ p

B(x0,r)
t (x, y)

is continuous in (0, ∞) × B(x0, r) × B(x0, r). In particular, we may assume that the
exceptional setN in the estimates Eqs. UHKD(φ) and NDL(φ) is the empty set.

2.2 Lévy System Formula

In this section, we collect some useful facts on the Lévy system formula and positive
continuous additive functionals.

Consider a μ-symmetric Hunt process X = {�,M, Xt , t ≥ 0,Px}, where N is a prop-
erly exceptional set for (E,F) on L2(X,μ) and (�,M,Px). For any measure ν on M , we
denote by P

ν the measure Pν(A) = ∫

M
P

x(A) dν(x). Any function f on M is extended to
M∂ := M ∪ {�} by setting f (�) = 0, where � denotes the cemetery state. The set M∂

as a topological space is the one point compactification of M . Let (Mt )0≤t≤∞ denote the
minimum augmented admissible filtration on �.

A collection of random variables A := {As : � → R+|s ∈ R+}, is called a positive
continuous additive functional (for short, a PCAF), if it satisfies the following conditions:

(i) At(·) is (Mt )-measurable,
(ii) there exist a set � ∈ M∞ and an exceptional setN ⊂ M for X such that Px(�) = 1

for all x ∈ M \ N and θt� ⊂ � for all t > 0, where θt denotes the shift map on �.
(iii) For any ω ∈ �, t �→ At(ω) is continuous, non-negative with A0(ω) = 0, At(ω) =

Aζ(ω)(ω) for t ≥ ζ(ω), and At+s(ω) = At(ω) + As(θtω) for any s, t ≥ 0. Here ζ(·)
denotes the life time of the process.
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The sets � and N are referred to as a defining set and exceptional set of the PCAF At

respectively. IfN can be taken to the empty set, then we say that At is a PCAF in the strict
sense.

A measure ν is called the Revuz measure of the PCAF A, if and only if for any non-
negative Borel functions h and f ,

E
h·μ

(∫ t

0
f (Xs(ω)) dAs(ω)

)

=
∫ t

0
〈f · ν, Psh〉 ds, (2.4)

where Ps denotes the Markov semigroup corresponding to the Hunt process. By [14, Theo-
rem 5.1.4], the Revuz measure ν is uniquely determined by A and does not charge any set
of zero capacity. In particular,

ν(N ) = 0, for any properly exceptional setN . (2.5)

Every Hunt process has a Lévy system (N,H) [8, Appendix A.3.4]. Recall that a pair
(N,H) is a Lévy sytem for the Hunt process X if N(x, dy) is a kernel on M∂ equipped
with the Borel σ -field and H is a PCAF in the strict sense satisfying the following property:
for any non-negative Borel function F : M∂ × M∂ → [0, ∞) such that F(x, x) = 0 for all
x ∈ M∂ , we have

E
z

[

∑

s≤t

F (Xs−, Xs)

]

= E
z

[∫ t

0

∫

M

F(Xs, y)N(Xs, dy)dHs

]

. (2.6)

The property in Eq. 2.6 called the Lévy system formula and admits the following general-
ization. By [8, (A.3.33)], for any non-negative Borel function g on (0, ∞), any z ∈ M∂ , any
(Mt )-stopping time T , and any non-negative Borel function F : M∂ × M∂ → [0, ∞) such
that F(x, x) = 0 for all x ∈ M∂ , we have

E
z

⎡

⎣

∑

0<s≤T

g(s)F (Xs−, Xs)

⎤

⎦ = E
z

[∫ T

0
g(s)

∫

M

F(Xs, y)N(Xs, dy)dHs

]

. (2.7)

By [14, (5.3.6) and Theorem 5.3.1], we know if ν is the Revuz measure of H , then

J (dx, dy) = 1

2
N(x, dy)ν(dx). (2.8)

Lemma 2.3 [8, Proposition 4.1.10] Let H be a PCAF for the process (Xt ) and let ν be
the corresponding Revuz measure. For any open set D the process (Ht∧τD

) is a PCAF for
the process XD killed upon exiting D and its Revuz measure is νD(·) = ν(D ∩ ·), where
τD = inf {t > 0 : Xt /∈ D}. In particular, we have

E
h·μ

(∫ τD∧t

0
f (Xs) dHs

)

=
∫ t

0
〈f · νD, P D

s h〉 ds, (2.9)

for all non-negative measurable functions f, h : D → [0, ∞), where P D
s denotes the

Markov semigroup corresponding to the XD .

2.3 Existence of Jump Kernel

The following estimate on the jumping measure plays a crucial role in the proof of Theorem
1.2. This estimate can be viewed as an integrated version of the condition (UJS) considered
in [9, Definition 1.18].
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Lemma 2.4 Under the assumptions of Theorem 1.2, there exist δ ∈ (0, 1), CJ > 0 such
that for any pair of balls Bi = B(xi, ri), i = 1, 2 with d(x1, x2) > r1 + r2 and for any ball
B ′ = B(x′, r ′) ⊂ B(x1, δr1) such that r ′ ≤ δr1, we have the estimate

J (B ′ × B2) ≤ CJ

μ(B ′)
μ(B1)

J (B1 × B2).

Proof Let c0 ∈ (0, 1), C1, C2, C3, C4 > 0, C5 > 1 denote the constants in Eq. PHI(φ).
Let Bi = B(xi, ri), i = 1, 2 be balls such that r1 + r2 < d(x1, x2). Set fh(t, z) =
1(Cφ(r)−h,Cφ(r))(t)1B2(z), where C = (C1 + C2)/2 and h ∈ (0, Cφ(r)). Then

uh(t, x) =
{

E
x[fh

(

t − τB1 , XτB1

)

; τB1 ≤ t] if x ∈ M \ N , t > 0

0 if x ∈ N , t > 0,
(2.10)

is caloric in (0, ∞)×B1, whereN is an exceptional set for the corresponding Hunt process
X and τB1 = inf {t > 0 | Xt /∈ B1} denote the exit time from B1. By Remark 2.2, we may
assume that the heat kernel corresponding to the process killed upon exiting B1 given by
(t, x, y) �→ p

B1
t (x, y) is continuous in (0, ∞) × B1 × B1.

We choose a Lévy system (N,H) for the process X. Let ν denote the Revuz measure of
H , where H is a PCAF in the strict sense. Set g(x) = N(x,B2).

For any t > Cφ(r), for quasi-every x ∈ B1, for any h ∈ (0, Cφ(r)), and for any
s1 ∈ (0, t − Cφ(r))), we have

uh(t, x) = E
x

⎡

⎣

∑

s≤τB1

1(t−Cφ(r),t−Cφ(r)+h)(s)1B2(y)

⎤

⎦

= E
x

[∫ τB1

0

∫

M

1(t−Cφ(r),t−Cφ(r)+h)(s)1B2(y) N(Xs, dy) dHs

]

(by Eq. 2.7)

= E
x

[

∫ (t−Cφ(r)+h)∧τB1

(t−Cφ(r))∧τB1

N(Xs, B2) dHs

]

= E
x

[

∫ (t−Cφ(r)+h)∧τB1

(t−Cφ(r))∧τB1

g(Xs) dHs

]

= E
p

B1
s1 (x,·)·μ

[

∫ (t−Cφ(r)+h−s1)∧τB1

(t−Cφ(r)−s1)∧τB1

g(Xs) dHs

]

(by Markov property)

=
∫ t−Cφ(r)+h−s1

t−Cφ(r)−s1

〈g · νB1 , P
B1
s pB1

s1
(x, ·)〉 ds (by Eq. 2.9)

=
∫ t−Cφ(r)+h−s1

t−Cφ(r)−s1

〈g · νB1 , p
B1
s+s1

(x, ·)〉 ds (by Eq. 2.1 and Eq. 2.3)

=
∫ t−Cφ(r)+h

t−Cφ(r)

∫

B1

pB1
s (x, w)N(w,B2) ν(dw) ds (since g(·) = N(·, B2))

= 2
∫ t−Cφ(r)+h

t−Cφ(r)

∫

B1

pB1
s (x, w)J (dw,B2) ds (by Eq. 2.8). (2.11)

By Proposition 2.1 and Remark 2.2(b), we have that

ũh(t, x) := 2
∫ t−Cφ(r)+h

t−Cφ(r)

∫

B1

pB1
s (x, w)J (dw,B2) ds is continuous in (Cφ(r),∞) × B1.

(2.12)
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By Eq. 1.1, we choose A > 1 and κ ∈ (0, 1) such that

φ(Ar) > 2φ(r), and φ(κr) < (C2 − C1)φ(r)/2 for all r > 0. (2.13)

Let δN ∈ (0, 1) denote the constant in Eq. NDL(φ). For any ball B ′ = B(x′, r ′) ⊂ B1 such

that B
(

x′, Aδ−1
N r ′

)

⊂ B1, we have

pB1
s (x′, w) ≥ p

B
(

x′,Aδ−1
N r ′

)

s (x′, w) � 1

V (x′, r ′)
, for all s ∈ [φ(r ′), 2φ(r ′)] and w ∈ B(x′, r ′).

(2.14)
We use Eqs. NDL(φ), 1.1 and VD to obtain the above estimate. Set

δ := min

(

c0, κ,
(

Aδ−1
N + 1

)−1
)

. (2.15)

The constant δ ∈ (0, 1) is chosen so that for any ball B ′ = B(x′, r ′) ⊂ B(x1, δr1) with
r ′ ≤ δr1, we have

(Cφ(r) + φ(r ′), x′) ∈ (C1φ(r), C2φ(r)) × B(x1, c0r1), and B
(

x′, Aδ−1
N r ′) ⊂ B(x1, r1).

(2.16)
For any ball B(x′, r ′) ⊂ B(x1, δr1) with r ′ ≤ δr1, we have

ess sup
B(x1,c0r1)×(C1φ(r),C2φ(r))

uφ(r ′)(t, x) ≥ ũφ(r ′)
(

Cφ(r) + φ(r ′), x′) (by Eq. 2.11, Eq. 2.12, and Eq. 2.16)

= 2
∫ 2φ(r ′)

φ(r ′)

∫

B1

pB1
s (x,w) J (dw,B2) ds (by Eq. 2.12)

� φ(r ′) J (B(x′, r ′) × B2)

μ(B(x′, r ′))
(by Eq. 2.14 and Eq. 2.16). (2.17)

Set C′ = (C3 + C4)/2. For any r ′ ≤ δr1, we have

ess inf
B(x1,c0r1)×(C1φ(r),C2φ(r))

uφ(r ′)(t, x) ≤ ũφ(r ′)
(

C′φ(r), x1
)

(by Eq. 2.11 and Eq. 2.12)

≤
∫ (C′−C)φ(r)+φ(r ′)

(C′−C)φ(r)

∫

B1

ps(x, w) J (dw, B2) ds (pB1 ≤ p)

� φ(r ′) J (B1 × B2)

μ(B1)
(by Eqs. UHKD(φ), VD, and 1.1). (2.18)

The conclusion follows from Eqs. 2.17, 2.18 and PHI(φ).
Alternate proof of Lemma 2.4. We sketch an alternate argument due to Z.-Q. Chen [7].

This alternate proof follows from modifying the argument in [9, Proof of Proposition 3.3]
by replacing the use of the Lévy system formula with a more abstract one J (dx, dy) =
N(x, dy)ν(dx) as done in this work. The advantage of the alternate argument is that it
avoids the use of the near diagonal lower bound Eq. NDL(φ) directly.

By Eq. 2.9, we obtain that

lim
h↓0E

μ

[

1

h

∫ τD∧h

0
f (Xs) dHs

]

=
∫

D

f (x)ν(dx).

We use this expression in the proof of Proposition 3.3 in [9], where f (x) = N(x,B2). By
dividing [9, (3.13)] by h on both sides, and letting h → 0 we can obtain the conclusion
of Lemma 2.4 (this is eight lines below equation (3.13) in [11] but using a less abstract
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Lévy system formula). The notation ε1, ε in [9] corresponds to r ′ and r2 respectively in our
notation.

Proof of Theorem 1.2. Assume to the contrary that J is not absolutely continuous with
respect to μ⊗μ on (M×M)\dM , where dM = {(x, x) : x ∈ M} denotes the diagonal inM .

Let ρ be the metric on M × M defined by ρ((x1, y1), (x2, y2)) =
max(d(x1, x2), d(y1, y2)). It is easy to verify that the product measure μ ⊗ μ satisfies the
volume doubling property Eq. VD on the product space (M×M,ρ). For (x1, x2) ∈ M×M ,
let Bρ((x1, x2), r) denote the open ball of radius r in the metric ρ centered at (x1, x2).

By the inner regularity of J , there exists a compact subset K of (M × M) \ dM such
that J (K) > 0 and μ ⊗ μ(K) = 0. Let δ > 0 be the constant in the statement of
Lemma 2.4. By the compactness of K , we can cover K with finitely many sets of the form
{B(x, δd(x, y/4)) × B(y, δd(x, y)/4) : (x, y) ∈ K}. Therefore, there exists (x, y) ∈ K

such that ˜K = K ∩ [B(x, δd(x, y/4)) × B(y, δd(x, y)/4)] satisfies J (˜K) > 0 and
(μ ⊗ μ)(˜K) = 0.

By the regularity of μ ⊗ μ, for any ε > 0, there exists an open set Kε ⊂
B(x, δd(x, y/4)) × B(y, δd(x, y)/4), ˜K ⊂ Kε such that μ ⊗ μ(Kε) < ε. By the 5B-
covering lemma [18, Theorem 1.2], there exists balls Bρ((xi, yi), ρi) ⊂ Kε, i ∈ I such that
ρi ≤ δd(xi, yi)/4 for all i ∈ I ,

⋃

i∈I Bρ((xi, yi), ρi) = Kε and Bρ((xi, yi), ρi)/5), i ∈ I

are pairwise disjoint. Hence, we have

J (˜K) ≤ J (Kε) ≤
∑

i∈I

J (Bρ((xi , yi), ρi)) =
∑

i∈I

J (B((xi , ρi) × B(yi, ρi)))

�
∑

i∈I

μ(B((xi , ρi))

μ(B(x, d(x, y)/4)
J (B(x, d(x, y)/4) × B(yi, ρi)) (by Lemma 2.4)

�
∑

i∈I

μ(B((xi , ρi))μ(B((yi , ρi))

μ(B(x, d(x, y)/4)μ(B(y, d(x, y)/4))
J (B(x, d(x, y)/4) × B(y, d(x, y)/4))

(by Lemma 2.4 and symmetry of J )

� J (B(x, d(x, y)/4) × B(y, d(x, y)/4))

μ(B(x, d(x, y)/4)μ(B(y, d(x, y)/4))

∑

i∈I

(μ ⊗ μ)(Bρ((xi , yi), ρi/5)) (by Eq. VD)

� J (B(x, d(x, y)/4) × B(y, d(x, y)/4))

μ(B(x, d(x, y)/4)μ(B(y, d(x, y)/4)
(μ ⊗ μ)(Kε)

(since Bρ((xi , yi), ρi/5), i ∈ I are pairwise disjoint and
⋃

i∈I Bρ((xi , yi), ρi) = Kε )

� ε
J (B(x, d(x, y)/4) × B(y, d(x, y)/4))

μ(B(x, d(x, y)/4)μ(B(y, d(x, y)/4)
(since (μ ⊗ μ)(Kε) < ε).

By letting ε ↓ 0, we obtain J (˜K) = 0, a contradiction.

Remark 2.5 Consider the μ-symmetric process on R
n whose generator is Lf =

∑n
i=1(−∂iif )α/2 where α ∈ (0, 2). Let d be the Euclidean metric and μ denote the

Lebesgue measure. In this case the jumping measure is singular with respect to the prod-
uct μ × μ. It is known that such a jump process fails the elliptic Harnack inequality and
parabolic Harnack inequality [6, Section 3] for any n ≥ 2 and α ∈ (0, 2). More generally,
one could consider jump processes whose jumping measure is comparable to that of this
example. Our main result provides a new proof that parabolic Harnack inequality does not
hold in such examples. We refer to [20] for sharp heat kernel bounds of such jump pro-
cesses with singular jumping measure. For n = 2 and α ∈ [1, 2) such examples satisfy the
heat kernel upper bound Eq. UHKD(φ) and near diagonal lower bound Eq. NDL(φ) but
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fail to satisfy Eq. PHI(φ). Therefore, we can not weaken the hypothesis in Theorem 1.2 by
replacing Eq. PHI(φ) with heat kernel bounds Eqs. UHKD(φ) and NDL(φ).

In this example the upper bound Eq. UHKD(φ) directly follows from [20, Theorem 1.1]
with φ(r) = rα . Since the near diagonal lower bound is not contained in [20], we sketch
the argument below.

For the remainder of the argument we assume that n = 2 and α ∈ [1, 2). Let B =
B(x0, r) be a ball in X with x0 ∈ X, r > 0 and let τ denote the exit time from B. Let
δN ∈ (0, 1/2) be a constant whose value will be determined later in the argument. Let
pt (·, ·), pB

t (·, ·) denote the heat kernel of the process and the process killed upon exiting
B respectively. We recall that the heat kernel (t, x, y) �→ pt (x, y) exists and is continuous
[23]. Following [17, Lemma 3.7], we use the Dynkin-Hunt formula

pB
t (x, y) = pt (x, y) − E

x[pt (Xτ , y)1{τ≤t}] ≥ pt (x, y) − sup
0<s≤t

sup
z∈Bc

ps(z, y). (2.19)

By [20, Theorem 1.1], there exists C > 0 such that

C−1t−n/α�n
i=1

(

1 ∧ t1/α

|xi − yi|
)1+α

≤ pt (x, y) ≤ Ct−n/α�n
i=1

(

1 ∧ t1/α

|xi − yi|
)1+α

,

(2.20)
for all t > 0, x, y ∈ R

n. If x, y ∈ B(x0, δN t1/α), then d(x, y) ≤ 2δN t1/α and therefore
|xi − yi| ≤ 2δN t1/α < t1/α for each i = 1, 2, . . . , n. Hence by Eq. 2.20, we have the lower
bound

pt (x, y) ≥ C−1t−n/α for all x, y ∈ B
(

x0, δN t1/α
)

. (2.21)

On the other hand, for all z ∈ Bc, y ∈ B(x0, δNr), 0 < t < φ(δNr) = (δNr)α , we have

d(y, z) ≥ d(x0, z) − d(x0, y) ≥ r − δN t1/α ≥
(

δ−1
N − δN

)

t1/α .

Hence for any such y, z as above, there exists i ∈ {1, . . . , n} such that
|yi − zi| ≥ 2−1/2

(

δ−1
N − δN

)

t1/α .

We choose δN ∈ (0, 1/2) small enough so that 2−1/2
(

δ−1
N − δN

)

≤ 1. Therefore for any

0 < s < t, z ∈ Bc, y ∈ B(x0, δNr), 0 < t < φ(δNr) = (δNr)α we have the upper bound

ps(y, z) ≤ Cs−n/α�n
i=1

(

1 ∧ s1/α

|yi − zi|
)1+α

≤ Cs−n/α

⎛

⎝1 ∧ s1/α

2−1/2
(

δ−1
N − δN

)

t1/α

⎞

⎠

1+α

≤ Cs−n/α

⎛

⎝

s1/α

2−1/2
(

δ−1
N − δN

)

t1/α

⎞

⎠

1+α

≤ Ct−n/α
(

2−1/2
(

δ−1
N − δN

)

t1/α
)−1−α

. (2.22)

In the last line above, we used the fact that 1 + α − n ≥ 0 and s ≤ t . Combining Eqs. 2.19,
2.21 and 2.22, we obtain

p
B(x0,r)
t (x, y) ≥

(

C−1 − C
(

2−1/2(δ−1
N − δN)t1/α

)−1−α
)

t−n/α . (2.23)

By choosing δN small enough so that

C−1 − C
(

2−1/2
(

δ−1
N − δN

)

t1/α
)−1−α ≥ (2C)−1,
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Equation 2.22 implies Eq. NDL(φ).

Remark 2.6 We discuss further extensions of Theorem 1.2.

(a) Theorem 1.2 generalizes under the weaker assumption that the parabolic Harnack
inequality Eq. PHI(φ) still holds true under small enough scales r ≤ r0 for some
r0 > 0. We outline the modifications needed in the proof of Theorem 1.2 under this
assumption. In this case Eqs. UHKD(φ), NDL(φ), and Lemma 2.4 hold only for small
enough scales r < cr0 for some c, r0 > 0 and small enough times t < cφ(r0).
In the proof of Theorem 1.2, we cover the compact set K with sets of the form
Bρ((xi, yi), ρi)/5) with ρi ≤ δ(min(cr0, d(xi, yi))/4 instead of ρi ≤ δd(xi, yi)/4.
After these changes, the same argument yields the existence of jump kernel.

In a similar vein, we could consider a version of the parabolic Harnack inequality
where the constant C5 in Definition 1.1 depends on r > 0, say C5(r). Such a non-scale
invariant version of parabolic Harnack inequality was considered in [3] for certain
jump processes on R

n. In this case, the argument of Lemma 2.4 gives a constant CJ

that depends on r ′, r1, r2. In the proof of Theorem 1.2, the compactness of K implies
that

0 < inf
(x,y)∈K

d(x, y) ≤ sup
(x,y)∈K

d(x, y) < ∞.

By making the sets slightly smaller if necessary, we may also assume the above prop-
erty with K replaced by Kε uniformly for all ε > 0. That is, there exist 0 < r1 < r2 <

∞ such that

0 < r1 < inf
(x,y)∈Kε

d(x, y) ≤ sup
(x,y)∈Kε

d(x, y) < r2 < ∞, for all ε > 0.

If we further assume that

sup
r1<r<r2

C5(r) < ∞ for any 0 < r1 < r2 < ∞,

then the proof of Theorem 1.2 also extends to this non-scale invariant generalization.
(b) It is an interesting direction to further relax the assumption of parabolic Harnack

inequality to obtain the existence of jump kernel. For example, a weaker variant of the
parabolic Harnack inequality is studied in [13]. The authors do not know if this weaker
version of parabolic Harnack inequality suffices to imply the existence of jump ker-
nel or other similar properties. The weak Harnack inequality in [13] is closed related
to Lp mean value inequalities considered in [10] and is sufficient to imply parabolic
Hölder regularity.
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