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Abstract We introduce the notion of conformal walk dimension, which serves
as a bridge between elliptic and parabolic Harnack inequalities. The impor-
tance of this notion is due to the fact that, for a given strongly local, regular
symmetric Dirichlet space in which every metric ball has compact closure
(MMD space), the finiteness of the conformal walk dimension characterizes the
conjunction of the metric doubling property and the elliptic Harnack inequal-
ity. Roughly speaking, the conformal walk dimension of an MMD space is
defined as the infimum over all possible values of the walk dimension with
which the parabolic Harnack inequality can be made to hold by a time change
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of the associated diffusion and by a quasisymmetric change of the metric. We
show that the conformal walk dimension of any MMD space satisfying the
metric doubling property and the elliptic Harnack inequality is two, and pro-
vide a necessary condition for a pair of such changes to attain the infimum
defining the conformal walk dimension when it is attained by the original pair.
We also prove a necessary condition for the existence of such a pair attaining
the infimum in the setting of a self-similar Dirichlet form on a self-similar
set, and apply it to show that the infimum fails to be attained for the Vicsek
set and the N-dimensional Sierpiniski gasket with N > 3, in contrast to the
attainment for the two-dimensional Sierpifiski gasket due to Kigami (Math
Ann 340(4):781-804, 2008).
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On the conformal walk dimension

1 Introduction

What is the “best” way to parametrize a space ? This vaguely stated question is
the motivation for our work and several earlier works. By a parametrization, we
mean a bijection f : X — M between the given space X and another “model
space” M with more desirable properties. For example, the Riemann mapping
theorem (or more generally, the uniformization theorem for Riemann surfaces)
and geometric flows like the Ricci flow can be viewed as an attempt to answer
the above question. In the Riemann mapping theorem example, X is a proper
simply connected domain in C, M is the unit disk, and f is a conformal map.
In the Ricci flow example, X is a Riemannian manifold, M is a Riemannian
manifold with constant Ricci curvature, and f is a diffeomorphism. This work
aims to formulate and answer this question for spaces satisfying Harnack
inequalities. In this work, X is a space equipped with a symmetric diffusion
that satisfies the elliptic Harnack inequality, M satisfies the stronger parabolic
Harnack inequality and f is a quasisymmetry along with a time change of the
diffusion on X (quasisymmetry is an analogue of conformal maps for metric
spaces).

This paper uses quasiconformal geometry and time change of diffusion
processes to understand the relationship between elliptic and parabolic Har-
nack inequalities. The analysis using quasiconformal geometry also leads to
a natural uniformization problem for spaces satisfying the elliptic Harnack
inequality. Our results can be viewed as a bridge between analysis in smooth
and fractal spaces and also as a bridge between elliptic and parabolic Harnack
inequalities.

We informally describe the setup and results. A more precise treatment is
given in Sect. 2. The setup of this work is a metric space equipped with a
Radon measure m with full support and an m-symmetric diffusion process.
Equivalently, we consider a metric space (X, d) equipped with such m and
a strongly local, regular symmetric Dirichlet form (£, F) on L?(X, m). We
always assume that B(x,r) := Bg(x,r) == {y € X | d(x,y) < r} has
compact closure in X for any (x, r) € X x (0, co) and that X contains at least
two elements, and call (X, d, m, £, F) a metric measure Dirichlet space or
an MMD space for short. Associated to an MMD space (X, d, m,E, F) is a
non-negative self-adjoint operator £ on L>(X, m) such that the corresponding
Markov semigroup (P;);=¢ is given by P; = e~'~. The operator L is called
the generator of (X, d, m, £, F), which is an analog of the Laplace operator
in the abstract setting of MMD spaces. We refer to [24,33] for the theory of
Dirichlet forms.

We recall that this setup includes Brownian motion on a Riemannian man-
ifold, where d is the Riemannian distance function, m is the Riemannian
measure, F is the Sobolev space W12, and Ef, f) = f|Vf|2 dm, where
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V denotes the Riemannian gradient. In this case, the corresponding generator
L is the Laplace—Beltrami operator with a minus sign (so that £ is non-negative
definite). This setup also covers non-smooth settings like diffusions on fractals
including the Sierpiriski gasket and the Sierpiriski carpet. We refer the reader
to [3] for an introduction to diffusions on fractals. Random walks on graphs
can also be studied in this framework because the corresponding cable pro-
cesses share many properties with the original random walks (see [6] for this
approach).

An MMD space has an associated sheaf of harmonic and caloric functions.
Roughly speaking, harmonic and caloric functions are generalization of solu-
tions to the “Laplace equation” Ah = 0 and the “heat equation” d;u — Au = 0,
respectively. Let £ denote the generator of an MMD space (X, d, m, £, F).
Let h : U — R be a measurable function in an open set U. We say that &
is harmonic in U, if it satisfies L2 = 0 in U interpreted in a weak sense.
Similarly, we say that a space-time function u : (a, b) x U — R is caloric
in (a, b) x U if it satisfies the “heat equation” 9, + Lu = 0 interpreted in a
weak sense.

Harnack inequalities are fundamental regularity estimates that have numer-
ous applications in partial differential equations and probability theory. We
refer to [57] for a nice survey on Harnack inequality and its variants. We recall
the (scale-invariant) elliptic and parabolic Harnack inequalities. We say that an
MMD space (X, d, m, £, F) satisfies the elliptic Harnack inequality (abbre-
viated as EHI), if there exist C > 1 and § € (0, 1) such that for all x € X,
r > 0 and for any non-negative harmonic function £ on the ball B(x, r), we
have

esssuph < Cessinf h. EHI
B(x,8r) B(x,5r)

We say that an MMD space (X, d, m, £, F) satisfies the parabolic Harnack
inequality with walk dimension 8 > 0 (abbreviated as PHI()), if there exist
0<Ci <Cr<C3<Cqg<00,C5>1andé € (0,1) such that for all
x € X, r > 0 and for any non-negative bounded caloric function u# on the
space-time cylinder Q = (a, a + C4r?) x B(x,r), we have

esssupu < Csessinf u, PHI(B)
o_ O+

where O_ = (a + C1rP,a + CarP) x B(x, §r) and Oy =(a+ CyrBa +
CarP) x B(x, 8r).

We briefly review some earlier works on Harnack inequalities, referring
the reader to [57] for a more detailed survey of the literature. In a series
of celebrated works, Moser showed EHI and PHI(2) for uniformly elliptic
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divergence form operators on R" [77,78]. Cheng, Li and Yau obtained gra-
dient estimates that imply EHI and PHI(2) for Riemannian manifolds with
non-negative Ricci curvature [25,72,92]. Grigor’yan and Saloff-Coste inde-
pendently characterized PHI(2) using the volume doubling property and the
Poincaré inequality [35,82]. This characterization was extended to PHI(8) by
Barlow, Bass and Kumagai [6,7]. A similar characterization of the simpler
elliptic Harnack inequality remained open until recently [9,11,12].

Note that every harmonic function lifts to a caloric function. More precisely,
if & 1s harmonic on B(x, r), then u(z, x) = h(x) is caloric on (a, b) x B(x, r)
for all b > a. This lift inmediately shows that!

PHI(8) —> EHI, forall 8 > 0. (1.1)

However, the converse of the above implication fails. Indeed, Delmotte has
constructed an example of a space that satisfies EHI but fails to satisfy PHI(8)
forany 8 > 0[31] (see also [9]). Nevertheless, one can characterize the elliptic
Harnack inequality in terms of the parabolic Harnack inequality [9,11].

The main idea behind the characterization of EHI is to reparametrize the
space and time of the associated diffusion process so that it satisfies PHI(B)
for some B > 0. In the theory of regular symmetric Dirichlet forms the Revuz
correspondence provides a bijection between the time changes of the process
and the family of smooth measures. Roughly speaking, smooth measures are
Radon measures that do not charge any set of capacity zero. If u is a smooth
measure for an MMD space (X, d, m, £, F), then it defines a “time-changed”
Dirichlet space (X, d, u, E*, F*) as well as a “time-changed” Markov pro-
cess. We say that a measure u is admissible, if  is a smooth measure and has
full quasi-support for the Dirichlet form (£, F), which amounts to saying that
W represents a “time change” keeping the form £ essentially unchanged (see
Definitions 2.8 and 2.9). We denote the collection of admissible measures by
A(X,d,m, €, F). Next, we recall the definition of conformal gauge.

Definition 1.1 (Conformal gauge) Let (X, d) be a metric space and 6 be
another metric on X. We say that d is quasisymmetric to 0, if there exists a
homeomorphism 7 : [0, c0) — [0, 0o) such that

0(x,a) - <d(x,a)
0x.b) — "\ dx. b)

) for all triples of points x,a, b € X, x # b.

' To be precise, while for various purposes it is convenient to formulate EHI without assuming
the boundedness of non-negative harmonic functions /, we follow for simplicity the formulation
of PHI(B) in [10, Subsection 3.1] which a priori requires the boundedness of non-negative
caloric functions u, and then (1.1) is obvious only under the extra assumption of the boundedness
of h. It turns out that this extra assumption can be dropped, but the proof of this fact is non-trivial;
see Theorem 4.5 and its proof for details.
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The conformal gauge of a metric space (X, d) is defined as

JX,d):={0: X x X — [0,00) | 0 is ametric on X,
d is quasisymmetric to 6}. (1.2)

By [40, Proposition 10.6], being quasisymmetric is an equivalence relation
among metrics. That is,

de J(X,d) and J(X,0)=J(X,d) foralld € J(X,d). (1.3)

The notion of quasisymmetry is an extension of conformal map to the con-
text of metric spaces. Quasisymmetric maps on the real line were introduced by
Beurling and Ahlfors, and were studied as boundary values of quasiconformal
self-maps of the upper half-plane [14]. The above definition on general metric
spaces is due to Tukia and Viisild [90]. This is the reason behind the termi-
nology “conformal gauge”. We refer to [40,42] for expositions of the theory
of quasisymmetric maps and quasiconformal geometry on metric spaces.

To characterize the elliptic Harnack inequality, we reparametrize the
space by choosing a new metric in the conformal gauge of (X, d) and we
reparametrize time by choosing a new symmetric measure that is admissi-
ble. More precisely, given an MMD space (X, d, m, £, F) satistying EHI, we
seek to find a metric 6 € J (X, d) and a measure u € A(X,d, m, E, F) such
that the corresponding time-changed MMD space (X, 9, u, £*, F*) equipped
with the new metric 0 satisfies PHI(8) for some 8 > 0. In other words, we seek
to upgrade EHI to PHI(B) by reparametrizing space and time. This motivates
the notion of conformal walk dimension.

Definition 1.2 (Conformal walk dimension) The conformal walk dimension
dcw of an MMD space (X, d, m, £, F) is defined as

dew = inf{,B >0

thereexistu € A(X,d,m,E, F)andd € J (X, d)
such that (X, 0, u, E#, FH) satisfies PHI(B) ’

(1.4)

where inf ¢ := oo and (£#, F*) denotes the time-changed Dirichlet form on
L*(X, ).

We remark that, if (X, d, m, £, F) satisfies PHI(8), then it is easy to see
that for any o € (0, 1] the MMD space (X, d*, m, £, F) satisfies PHI(8/«)
and d* € J (X, d). This shows that it is easy to increase the walk dimension
by changing the metric to a different one in the conformal gauge, but it is
non-trivial to decrease the walk dimension. This explains the “infimum” in
(1.4). Another remark, which is based on an observation in [44, Section 1], is
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that the lower bound
dew > 2 (1.5)

is essentially known to experts; indeed, (1.5) can be obtained from the so-
called Varadhan-type Gaussian off-diagonal asymptotics of the associated
Markov semigroup due to [2, Theorem 2.7] combined with the characteri-
zation of PHI(B) for B > 1 by the volume doubling property VD and the heat
kernel estimates HKE(B) with walk dimension 8 (see Definitions 3.17, 4.1
and Theorem 4.5).2

Two natural questions arise. What is the value of d.w? When is the infimum
in (1.4) attained? The answer to the first question is given below. We assume
that our metric space (X, d) satisfies the metric doubling property, i.e., admits
N € N such that for all x € X and r > 0, the ball B(x, r) can be covered by
N balls of radii /2.

Our first main result (Theorem 2.10) is that the value of the conformal walk
dimension is always two, i.e., we always have the equality in (1.5), for any
MMD space satistying the metric doubling property and EHI . In other words,
we have the equivalence among the following three conditions, sharpening
the existing characterization of EHI (more precisely, its conjunction with the
metric doubling property):

(a) (X,d,m, &, F) satisfies the metric doubling property and EHI .
(b) dew < 00.
(C) dcw =2

The equivalence between (a) and (b) is contained in [9,11]. That (c)
implies (b) is obvious. Our contribution to the above equivalence is the proof
that (a) implies (c). Therefore our result sharpens the characterization of EHI
in [9,11]. The result that (a) implies (c) is particularly interesting on frac-
tals as we explain below. Diffusions on many regular fractals are known to
satisfy PHI(8) with 8 > 2. These are often called anomalous diffusions to
distinguish them from the classical smooth settings like the Euclidean space
where one often has Gaussian space-time scaling and PHI(2). However, by
the above equivalence one can “improve” from PHI(8) to PHI(2 + ¢) for any

2 Since (€, F) satisfies the locality assumption in [2] by its strong locality and [24, Theorem
2.4.3], we can apply [2, Theorem 2.7], which the conjunction of VD and HKE(8) with 8 € (1, 2)
would contradict in view of the finiteness of the limit in [2, Theorem 2.7] implied by [2,
Proposition 5.1] and HKE(B). Therefore the conjunction of VD and HKE(g) for 8 € (1,2)
cannot hold, hence neither can PHI(B/«) for any 8 € (0, 2) and any @ € (8/2, ) N (0, 1] by
Theorem 4.5 and thus neither can PHI(B) for any 8 € (0, 2) by the previous remark, proving
(1.5).

In Lemma 4.7, we will give an alternative proof of (1.5) based on a relatively simple result from
[80].
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& > (0 even on fractals. So this result serves as a bridge between anomalous
space-time scaling in fractals and Gaussian space-time scaling seen in smooth
settings.

It is worth mentioning that the proof that (a) implies (b) in [9,11] does not
give a universal upper bound for d,. The bound on d., obtained there depends
on the constants in EHI and could be arbitrarily large. To improve the previous
(a)-implies-(b) result to the (a)-implies-(c) result, we need a new construction
of metrics and measures.

We briefly discuss this new construction in the proof that (a) implies (c),
which we will achieve in Sect. 4. The inspiration behind our argument is
the uniformization theorem for Riemann surfaces. In the proof of the uni-
formization theorem, the Green’s function of a Riemann surface (or a subset
of the surface) plays an essential role in constructing the uniformizing map [76,
Chapter 15]. We use certain cutoff functions across annuli with small Dirichlet
energy at different scales and locations as a substitute for the Green’s func-
tion. It is helpful to think of these cutoff functions as equilibrium potentials
across annuli. Roughly speaking, the diameter of a ball under the new metric
0 € J(X,d) for our construction is proportional to the average gradient of
the equilibrium potential chosen at a suitable location and scale.

On a technical level, our proof relies heavily on the theory of Gromov hyper-
bolic spaces. We view X as the boundary of a Gromov hyperbolic space called
the hyperbolic filling. The conformal gauge of X is essentially in a bijective
correspondence to the bi-Lipschitz changes of the metric on the hyperbolic
filling. A desired bi-Lipshitz change of the metric on the hyperbolic filling is
constructed using equilibrium potentials as described above. A major ingredi-
ent in the proof is a combinatorial description of the conformal gauge due to
Carrasco Piaggio [23], which we will adapt for our purpose in Sect. 3.

Our first main result described above (Theorem 2.10) is a partial converse to
the trivial implication PHI(8) = EHI in (1.1). The equivalence between (a)
and (c) clarifies the extent to which the converse of this trivial implication holds.
Although the value of d.y, has a simple description, the following questions
remain open in general.

Problem 1.3 Given an MMD space (X, d, m, £, F) that satisfies the metric
doubling property and EHI :

(1) (Attainment problem) Determine whether the infimum in (1.4) is attained.

(2) (Gaussian uniformization problem) Describe all the pairs (6, 1) of metrics
6 € J(X,d) and measures u € A(X,d,m,E,F) such that the corre-
sponding time-changed MMD space (X, 6, u, £#, F#) satisfies PHI(2).

We describe two examples of self-similar fractals for which a positive
answer to the attainment problem is known. Kigami has shown in [62] that the
MMD space corresponding to the Brownian motion on the two-dimensional
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Sierpinski gasket attains the infimum, where p is the Kusuoka measure and
0 is the associated intrinsic metric. Further examples of admissible measures
that attain the infimum for the two-dimensional Sierpiniski gasket is described
in [52]; see Theorem 6.33 below and the references in its proof for details. In
retrospect, Kigami’s measurable Riemannian structure on the Sierpifiski gas-
ket is the first evidence towards the implication (a) = (c) in Theorem 2.10.
Another example of a fractal that attains the infimum in (1.4) is the two-
dimensional snowball described in [79]. The “snowball” fractal can be viewed
as a limit of Riemann surfaces and is a two-dimensional analog of the von Koch
snowflake. In this example, the answer to the attainment problem is obtained
by considering a limit of uniformizing maps to S* and using the conformal
invariance of Brownian motion. Our terminology “Gaussian uniformization
problem” is inspired by this example and the classical fact from [89] (see also
Proposition 2.11 and Theorem 4.5 below) that PHI(2) is equivalent to Gaussian
heat kernel estimates.

Nevertheless, the infimum in (1.4) need not be attained in general. We show
in Sect. 6.3 that the Vicsek set and the N-dimensional Sierpiriski gasket with
N > 3 fail to attain the infimum in (1.4). The examples with non-attainment
of d. rely on the following result (Theorems 6.16 and 6.54). For a “regular”
self-similar fractal, if the infimum in (1.4) is attained by a quasisymmetric
metric # and an admissible measure u, then it is possible to choose u as the
energy measure of a function that is harmonic outside a canonical boundary.
This result immediately implies the non-attainment of d., for the Vicsek set,
since the energy measure of any such harmonic function fails to have full
support. The non-attainment of d., for the N-dimensional Sierpifiski gasket
with N > 3 requires a more delicate analysis of the intrinsic metric (see
Definition 2.3) associated to the energy measure.

Next, we mention some progress towards the Gaussian uniformization prob-
lem. If (X, 0, u, EF, FH) satisfies PHI(2), then it easily follows by combining
the results in [56] and [80] (see Proposition 2.11-(a)) that the metric 6 is
bi-Lipschitz equivalent to the intrinsic metric of (X, 8, u, £#, F*) and in par-
ticular that the metric 6 is determined by the measure p up to a bi-Lipschitz
change. Therefore, in order to find a metric & € J(X,d) and a measure
u e A(X,d, m, E, F) in the Gaussian uniformization problem, it is enough
to find an appropriate measure p. Furthermore, by [56, Propositions 4.5 and
4.7], we know that any such p is a minimal energy-dominant measure, i.e.,
mutually absolutely continuous with respect to the whole family of energy
measures (see Definition 2.2), so that any two admissible measures that arise
in the Gaussian uniformization problem are mutually absolutely continuous.
We strengthen this result by showing in Sect. 5 that any two admissible mea-
sures that arise in the Gaussian uniformization problem are A, -related in
(X, d) in the sense of Muckenhoupt (Theorem 2.12). For the MMD space cor-
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responding to the Brownian motion on R", we also prove that the measures
Axo-related to the Lebesgue measure are the only ones arising in the Gaus-
sian uniformization problem for n = 1 (Theorem 5.18) but are not for n > 2
(Example 5.14).

This last result on Ao-relation between admissible measures in the Gaus-
sian uniformization problem and its proof are inspired by a similar result
for Ahlfors regular conformal dimension on Loewner spaces [42, Theorem
7.11]. The combinatorial description of conformal gauge used in the proof of
Theorem 2.10 was developed in [23] for studying Ahlfors regular conformal
dimension. Therefore, we find it appropriate to recall the definition of Ahlfors
regular conformal dimension and discuss some related questions.

Given a metric space (X, d) and a Borel measure © on X, we say that u is
p-Ahlfors regular if there exists C > 0 such that

C7'r? < w(B(x,r)) < Cr? forallx € Xandr > 0
such that B(x, r) # X.

Itis easy to verify thatif a p-Ahlfors regular Borel measure p exists on (X, d),
then the p-dimensional Hausdorff measure H?” is also p-Ahlfors regular and
the Hausdorff dimension of (X, d) is p. Therefore, the existence of a p-Ahlfors
regular measure is a property of the metric d. The Ahlfors regular conformal
dimension of a metric space (X, d) is defined as

darc(X, d) = 1nf{p >0 regular Borel measure p on (X, 0)

there exist 0 € J(X,d) and a p—Ahlfors}

(1.6)

The attainment problem for the Ahlfors regular conformal dimension of the
standard (two-dimensional) Sierpinski carpet is a well-known open question
[17, Problem 6.2]. An important motivation for studying this attainment prob-
lem is Cannon’s conjecture in geometric group theory. Cannon’s conjecture
states that every finitely generated, Gromov-hyperbolic group G whose bound-
ary (in the sense of Gromov) is homeomorphic to the 2-sphere is isomorphic
to a Kleinian group, i.e., a discrete group of Md&bius transformations on the
Riemann sphere. Bonk and Kleiner have shown that Cannon’s conjecture is
equivalent to the attainment of Ahlfors regular conformal dimension of the
boundary of such a group [17, Theorem 1.1]. Our results and proof techniques
will make it clear that there are similarities between the attainment problems
for Ahlfors regular conformal dimension and conformal walk dimension. We
hope that some of the methods we develop towards the attainment problem for
conformal walk dimension will have applications to the analogous attainment
problem for Ahlfors regular conformal dimension.
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Our work suggests that it would be useful to develop a theory of non-linear
Dirichlet forms to study Ahlfors regular conformal dimension of fractals. In
particular, Theorems 6.16 and 6.54 show that if the infimum in (1.4) is attained
on a self-similar fractal, then an optimal admissible measure can be chosen
to be the energy measure of a harmonic function. This result and its proof
suggest that one might be able to construct an optimal Ahlfors regular measure
attaining the Ahlfors regular conformal dimension as the “energy measure” of a
p-harmonic function. However, the notions of energy measure and p-harmonic
functions for non-linear Dirichlet energy remain to be developed on fractals
(non-linear Dirichlet energy can be formally viewed as [|V f|P with p # 2
and the corresponding p-harmonic functions can be viewed as minimizers of
the non-linear Dirichlet energy). There is a well-developed non-linear potential
theory in smooth settings (see [41] and references therein), but a similar theory
is yet to be developed on fractals.

Notation 1.4 Throughout this paper, we use the following notation and con-
ventions.

(a) The symbols C and D for set inclusion allow the case of the equality.

(b) For [0, co]-valued quantities A and B, we write A < B to mean that there
exists an implicit constant C € [1, co) depending on some unimportant
parameters such that A < CB. We write A < Bif A < Band B < A.

) N:={neZ|n>0}ie,0¢N.

(d) The cardinality (the number of elements) of a set A is denoted by #A €
N U {0, oco}.

(e) Weseta Vv b :=max{a, b}, a Ab :=min{a,b},a” :=aVvO0anda™ :=
—(a N 0) for a,b € [—o0, o0], and we use the same notation also for
[—o0, oo]-valued functions and equivalence classes of them. All numerical
functions in this paper are assumed to be [—oo, oc]-valued.

(f) Let X be a non-empty set. We define 14 = ]lf e RX for A C X by
La() = 10 = { o},

(g) Foratopological space X,wesetC(X) :={f: X — R | f is continuous}
and Co(X) :={feCX)| X\ f*I(O) has compact closure in X}.

(h) Let (X, B) be a measurable space and let w, v be o-finite measures on
(X, B). We write v < © to mean that v is absolutely continuous with
respect to i, and v < p to mean that v(A) < p(A) forany A € B, or
equivalently, v < pnand dv/du <1 u-a.e.

2 Framework and results
In this section, we recall the background definitions and state our main results

for general MMD spaces. Our other main results on the attainment problem
for self-similar sets are treated separately in Sect. 6.
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2.1 Metric measure Dirichlet space and energy measure

Throughout this paper, we consider a metric space (X, d) in which B(x, r) :=
Bi(x,r) :={y € X | d(x,y) < r}is relatively compact (i.e., has compact
closure) in X for any (x,7) € X x (0, 00), and a Radon measure m on X
with full support, i.e., a Borel measure m on X which is finite on any compact
subset of X and strictly positive on any non-empty open subset of X. We always
assume that X contains at least two elements, and such a triple (X, d, m) is
referred to as a metric measure space. We set B(x,r) := Bg(x,r) := {y €
X |dx,y) <r}for(x,r) € X x (0,00) and diamy(A) := diam(A, d) :=
sup, yead(x,y) for A C X (sup@ :=0).

Furthermore let (£, F) be a symmetric Dirichlet form on L%(X, m); by
definition, F is a dense linear subspace of L?>(X,m),and £ : F x F — Risa
non-negative definite symmetric bilinear form which is closed (F is a Hilbert
space under the inner product &y := E+(, -) 2(x ) and Markovian (fTAl e
Fand E(fT AL, fT A1) < E(F, f) forany f € F). Recall that (£, F) is
called regular if F N Cc(X) is dense both in (F, &) and in (Cc(X), || - [sup)-
and that (£, F) is called strongly local if £(f, g) = 0 for any f, g € F with
supp,, [.f1, supp,,[g] compact and supp,, [ f —alx]Nsupp,,[g] = ¥ for some
a € R. Here, for a Borel measurable function f : X — [—00, 00] or an
m-equivalence class f of such functions, supp,,[ f] denotes the support of the
measure | f| dm, i.e., the smallest closed subset F' of X with fX\F|f| dm =0,
which exists since X has a countable open base for its topology; note that
supp,, [ f] coincides with the closure of X \ f ~1(0) in X if f is continuous.
The pair (X, d, m, £, F) of a metric measure space (X, d, m) and a strongly
local, regular symmetric Dirichlet form (£, F) on L*(X, m) is termed a metric
measure Dirichlet space, or an MMD space in abbreviation. We refer to [24,33]
for details of the theory of symmetric Dirichlet forms.

We next recall the definition of energy measure and some relevant notions.
Note that fg € F forany f, g € F N L®°(X, m) by [33, Theorem 1.4.2-(ii)]
and that {(—n) vV (f An)};2 | C F and lim,, . oo(—n) V (f An) = f in norm
in (F, &£1) by [33, Theorem 1.4.2-(iii)].

Definition 2.1 ([33, (3.2.13), (3.2.14) and (3.2.15)]) Let (X, d, m, &, F) be
an MMD space. The energy measure I'(f, f) of f € F associated with
(X,d,m, &, F)isdefined, first for f € FN L (X, m) as the unique ([0, co]-
valued) Borel measure on X such that

1
/X QAT(f, ) = E(F, f§) ~ 2E(%9)  forall g € F 0 CulX),
@.1)
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and then by ' (f, f)(A) :=limy—00o T ((—1) V (f An), (=n) V (f An))(A)
for each Borel subset A of X for general f € F.

Definition 2.2 ([46, Definition 2.1]) Let (X, d, m, £, F) be an MMD space.
A o -finite Borel measure v on X is called a minimal energy-dominant measure
of (&€, F) if the following two conditions are satisfied:

(i) (Domination) Forevery f € F,I'(f, f) < v.
(ii) (Minimality) If another o-finite Borel measure v’ on X satisfies condi-
tion (i) with v replaced by v/, then v < V',

Note that by [46, Lemmas 2.2, 2.3 and 2.4], a minimal energy-dominant mea-
sure of (£, F) always exists and is precisely a o -finite Borel measure v on X
such that for each Borel subset A of X, v(A) = Oifandonlyif I'(f, f)(A) =0
for all f € F. In particular, any two minimal energy-dominant measures are
mutually absolutely continuous.

Definition 2.3 Let (X, d, m, £, F) be an MMD space. We define its intrinsic
metric din: X x X — [0, oo] by

dinc(x, y) = sup{f(x) = f(V) | [ € Froc NC(X), ([, ) =m}, (2.2)

where
f is an m-equivalence class of R-valued Borel measurable
Floc := {f functions on X such that f1y = f#]lv m-a.e. for some}

f* e F for each relatively compact open subset V of X
(2.3)

and the energy measure ['(f, f) of f € Fioc associated with (X, d,m, E, F)
is defined as the unique Borel measure on X such that I'(f, f)(A) =
I'(f*, f*)(A) for any relatively compact Borel subset A of X and any V, f*
asin (2.3) with A C V; note that I'(f # f )(A) is independent of a particular
choice of such V, f# by [33, Corollary 3.2.1].

We remark that the intrinsic metric need not always be a metric. In general,
it is only a pseudo-metric; that is, diy(x, x) = O for all x € X, dint(x, y) €
[0, 0o], dint(x, ¥) = dint(y, x) for all x, y € X and din¢(x, 2) < dint(x, y) +
dint(v, z) forall x, y, z € X. A sufficient condition for when the intrinsic metric
is bi-Lipschitz equivalent to the original metric is given in Proposition 2.11. On
the other hand, [56, Theorem 2.13-(a)] gives a family of examples for which
the intrinsic metric is identically zero. In the setting of [56, Theorem 2.13-(a)],
I'(f, f) < m implies that f is identically constant. We refer the reader to [13,
Propostion 5.7] for an example which shows that the intrinsic metric could be
infinite.
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2.2 Harnack inequalities

We recall the definition of harmonic and caloric functions.

Definition 2.4 Let (X, d, m, £, F) be an MMD space and let F, denote its
extended Dirichlet space. Recall that the extended Dirichlet space F, of
(X,d,m, &, F) is defined as the space of m-equivalence classes of functions
f: X — R such that lim,_, f, = f m-ae. on X for some £-Cauchy
sequence (fy)nen in F, that the limit E(f, ) = lim,— o0 E(fn, fn) € R
exists, is independent of a choice of such ( f;,),¢cn for each f € F, and defines
an extension of & to F, x F,, and that F = F, N L? (X, m); see [24, Definition
1.1.4 and Theorem 1.1.5]. We remark that the definition of the energy measure
['(f, f) associated with (X, d, m, £, F) also extends canonically to f € F,;
see [33, p. 123 and Theorem 5.2.3].
A function h € F, is said to be £-harmonic on an open subset U of X, if

Eh, f)=0 forall f € FNCe(X) with supp,,[flCU. (24

Let I be an open interval in R. We say that a function u : I — L*(X, m)
is weakly differentiable at ty € I if for any f € L*(X,m) the function
t — (u(t), f) is differentiable at 79, where (-, -) denotes the inner product
in L2(X, m). If u is weakly differentiable at 7y, then by the uniform bounded-
ness principle, there exists a (unique) function w € L?(X, m) such that

lim
t—1o

<M f> = (w, f), forall fe L*(X,m).
— Iy
We say that the function w is the weak derivative of the function u at ¢y and
write w = u’(tp).

Let / be an open interval in R and let €2 be an open subset of X. A function
u : I — Fissaid to be caloric in I x 2 if u is weakly differentiable in the
space L?(2) atany ¢ € I, and for any f € F N Cc(R), and forany ¢ € I,

W, f)+E@, f)=0. (2.5)
Definition 2.5 (Harnack inequalities) We say thatan MMD space (X, d, m, &,
JF) satisfies the elliptic Harnack inequality (abbreviated as EHI), if there exist

C > land$é € (0, 1) such that for all x € X, r > 0 and for any & € F, that
is non-negative on B(x, r) and £-harmonic on B(x, r), we have

esssuph < Cessinf k. EHI
B(x,8r) B(x,0r)
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We say that an MMD space (X, d, m, £, F) satisfies the parabolic Harnack
inequality with walk dimension 8 (abbreviated as PHI()), if there exist 0 <
Ci<Cy<C3<Cq4<00,C5>1andé € (0,1) such that for all x € X,
r > 0 and for any non-negative bounded caloric function « on the space-time
cylinder Q = (a,a + CarP) x B(x, r), we have

esssupu < Csessinf u, PHI(B)
o_ Q+

where O_ = (a + C1rP,a + CorP) x B(x, ér) and O+ =(a+ CyrP a +
CarP) x B(x, 8r).

Remark 2.6 The formulation of EHI in Definition 2.5 above is slightly differ-
ent from that in [9, Definition 4.2-(i)], but it is easy to see from the relative
compactness in X of all balls in (X, d) and [9, Proposition 2.9-(ii)] that the
former implies the latter, so that we can freely use the implications of EHI
established in [9] under the present formulation of EHI.

2.3 Admissible measures and time-changed Dirichlet space

Given an MMD space (X,d,m, &, F) and A C X, we define its 1-capacity
as

Cap;(A) = inf{é’l(f, ) ‘ f e F, f > 1m-ae. on aneighborhood of A},
(2.6)

where & := € + (-, *) 12(x ) s defined before. For disjoint Borel sets A, B

such that B is closed and A € B® (by A € B°, we mean that A is compact
and A C B€), we define F(A, B) as the set of function ¢ € F such that ¢ = 1
in an open neighborhood of A, and supp ¢ C B€. For such sets A and B, we
define the capacity between them as

Cap(A, B) :=inf {E(f, f) | f € F(A, B)}. 2.7

Definition 2.7 (Smooth measures) Let (X, d, m, £, F) be an MMD space. A
Radon measure 1 on X, i.e., a Borel measure p on X which is finite on any
compact subset of X, is said to be smooth if u charges no set of zero capacity
(that is, (A) = O for any Borel subset A of X with Cap,(A4) = 0).

For example, the energy measure I'(f, f) of f € F, is smooth by [33,
Lemma 3.2.4]. An essential feature of a smooth Radon measure © on X is
that the p-equivalence class of each f € F, is canonically determined by
considering a quasi-continuous m-version of f, which exists by [33, Theorem
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2.1.7] and is unique g.e. (i.e., up to sets of capacity zero) by [33, Lemma 2.1.4];
see [33, Section 2.1] and [24, Sections 1.2, 1.3 and 2.3] for the definition and
basic properties of quasi-continuous functions with respect to a regular sym-
metric Dirichlet form. In what follows, we always consider a quasi-continuous
m-version of f € F,.

An increasing sequence {Fj; k > 1} of closed subsets of an MMD space
(X,d,m, &, F) is said to be a nest if |~ Fr, is v/E1-dense in F, where
Fr.:={f € F| f=0m-ae. on X\ Fi}. Recall that D C X is quasi-open
if there exists a nest {F,} such that D N F, is an open subset of F, in the
relative topology for each n € N. The complement in X of a quasi-open set
is called quasi-closed. We are interested in the class of admissible measures,
namely smooth Radon measures having full quasi-support in the sense defined
as follows.

Definition 2.8 (Full quasi-support, admissible measures; [33, (4.6.3) and
(4.6.4)]) Let (X,d,m, &, F) be an MMD space. A smooth Radon measure
w on X is said to have full quasi-support if for any quasi-closed set F' with
wW(X \ F) =0 we have Cap;(X \ F') = 0. A Borel measure 1 on X is said to
be admissible if  is a smooth Radon measure on X with full quasi-support,
and the set of admissible measures with respect to (X, d, m, £, F) is denoted
by A(X,d, m, E, F).

Definition 2.9 (Time-changed Dirichlet form) Let (X,d,m,&, F) be an
MMD space. If p is a smooth Radon measure, it defines a time change of
the process whose associated Dirichlet form is called the trace Dirichlet form
and denoted by (E#, F*) (see [33, Section 6.2] and [24, Section 5.2]). Assume
e AX,d,m,E, F). Then the trace Dirichlet form (£#, F*) is given by

Fr=F,NL*X,n) and EM(u,v) =Eu,v) foru,ve FH,
(2.8)

and (%, FM)is astrongly local, regular symmetric Dirichlet formon L?(X, 1)
by [33, Theorems 5.1.5, 6.2.1 and Exercise 3.1.1]. We also note that by [24,
Theorem 5.2.11],

AX,d,m,E, F) = AX,d, n, EH, F*). (2.9)

In probabilistic terms, (£, F*) is the Dirichlet form of the time-changed
process (, t) > Yz, () (@), where (Y;);>0 is an m-symmetric diffusion on X
whose Dirichlet form is (£, F) and 1, is the right-continuous inverse of the
positive continuous additive functional (A;);>0 of (¥;);>0 with Revuz measure
; see [33, Section 6.2] and [24, Section 5.2] for details.
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2.4 Main results

Our first main result is that the value of the conformal walk dimension is
an invariant for MMD spaces satisfying the metric doubling property and
the elliptic Harnack inequality EHI. We recall from Definition 1.2 that the
conformal walk dimension d., of an MMD space (X,d,m, &, F) is the
infimum over all 8 > 0 such that there exist an admissible measure pu €
AX,d,m, &, F)andametricd € J(X, d) such that the time-changed MMD
space (X, 0, u, EH, FH) satisfies the parabolic Harnack inequality PHI(S);
note here that (X, 0, u, E*, F*) is indeed an MMD space since, for any
(x,r) € X x (0,00), diam(By(x,r),d) < oco by 68 € J(X,d) and [40,
Proposition 10.8] and hence By (x, r) is relatively compact in X.

Theorem 2.10 (Universality of conformal walk dimension) Let (X, d, m, £, F)
be an MMD space and let d.y denote its conformal walk dimension. Then the
following are equivalent:

(a) (X,d,m,E, F) satisfies the metric doubling property and EHI .
(b) dew < 0.
(c) dew =2.

The proof of Theorem 2.10 is concluded in Sect. 4.2 after long preparations
in Sects. 3 and 4.1. We give a brief description of the proof in Sect. 2.5.

The next question is whether or not the infimum in the definition (1.4) of dcy
is attained. To this end we first describe the metric and measure. The following
result is essentially contained in [56]; see the beginning of Sect. 5.1 for the
proof.

Proposition 2.11 Let (X, d, m, £, F) be an MMD space that satisfies PHI(2).
Then the following hold:

(a) The metric d is bi-Lipschitz equivalent to the intrinsic metric dip.
(b) The symmetric measure m is a minimal energy-dominant measure.

By Proposition 2.11-(a), in order to find ametric 6 € J (X, d) and ameasure
n e A(X,d, m, E, F) in the Gaussian uniformization problem, it is enough to
find an appropriate measure u as the metric 6 is determined by the measure up
to bi-Lipschitz equivalence. This observation is useful in studying the Gaussian
uniformization problem, since constructing measures is typically easier than
constructing metrics. By Proposition 2.11-(b), any such measures are mutually
absolutely continuous. In fact, we have the following improvement, asserting
that any two measures (1, (7 attaining the infimum in the definition of d.y
are Aoo-related in the sense of Muckenhoupt (see Definition 5.5).

Theorem 2.12 Let (X,d, m, E, F) be an MMD space. Fori = 1,2, let d; €
JX,d), mij € AX,d,m,E,F) and assume that the time-changed MMD
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space (X, d;, m;, E™i, F™) satisfies PHI(2). Then the measures m| and my
are Axo-related in (X, d).

The proof of Theorem 2.12 is given in the first half of Sect. 5.2. Using
Proposition 2.11, Theorem 2.12 and sharp constants of Poincaré inequalities
in [26], we also answer in Theorem 5.18 the Gaussian uniformization problem
for the MMD space (R, d, m, £, F) corresponding to the Brownian motion
on R, by proving that any Borel measure 1 on R that is A -related to m
admits 0 € J (R, d) such that (R, 6, u, E#, F") satisfies PHI(2). This result
is not true for the MMD space (R", d, m, £, F) corresponding to the Brownian
motion on R"” with n > 2 as shown in Example 5.14, and we do not have an
exact characterization of the Borel measures on R” which are A -related to m
and admitd € J(R", d) such that (R", 6, u, E*, F*) satisfies PHI(2), except
that we give an implicit one for n = 2 in Proposition 5.16.

2.5 Outline of the proof of Theorem 2.10

As pointed out in the introduction, the equivalence between (a) and (b) is
already known. Since the implication from (c) to (b) is trivial, it suffices to
show that (b) implies (c). Hence, we may assume that (X, d, m, £, F) satisfies
PHI(y) for some y > 2.Let 8 > 2 be arbitrary. We wish to construct a metric
0 e JX,d)and u € A(X,d, m, E, F) such that the time-changed MMD
space (X, 6, u, E*, FH) satisties PHI(B).

To sketch the main ideas, we further assume that (X, d) is compact and the
diameter of (X, d) is normalized to % The non-compact case follows by the
same argument as the compact case, by considering X as a limit of compact
sets. Thanks to the known characterizations of PHI() as stated in Theorem 4.5
and the preservation of EHI between (X, d, m, £, F) and (X, 6, u, E*, F*)
as stated in Lemma 4.8, it is enough to construct a metric 6 € J (X, d) and a
measure 4 € A(X, d, m, E, F) such that

(B (x, r))xrﬁ Cap(By(x,r), By(x,2r)), forallx € X, r<diam(X,0).
(2.10)

The above estimate relating the measure p and capacity implies that p is a
smooth measure with full quasi-support and satisfies the following volume
doubling and reverse volume doubling properties (see Proposition 4.14): there
exists Cp > 0 and cp € (0, 1) such that
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p(Ba(x,2r) _
H(By(x.r) ~

B
p(Ba(x,r)) <cp, forallx € X,0 < r < diam(X, d). (2.12)
w(Bq(x,2r))

Cp, forallx € X,r > 0, and (2.11)

The estimate (2.10) along with Theorem 4.5, implies PHI(8) because volume
doubling, reverse volume doubling, and EHI are preserved by the quasisym-
metric change of the metric from d to 6.

The construction of a metric & and a measure w is a modification of [23], but
instead of the Ahlfors regularity required in [23] we need to establish (2.10).
Following [23], we construct the metric # and the measure u that satisfy (2.10)
using a multi-scale argument. This part of the argument relies on theory of
Gromov hyperbolic spaces. The basic idea behind the approach is to construct
a Gromov hyperbolic graph (called the hyperbolic filling) whose boundary
(in the sense of Gromov) corresponds to the given metric space (X, d). A
well-known result in Gromov hyperbolic spaces asserts that any metric in the
conformal gauge J (X, d) up to bi-Lipschitz equivalence can be obtained by a
bounded perturbation of edge weights on the hyperbolic filling. We recall the
basic results about Gromov hyperbolic spaces and their boundaries in Sect. 3.1.

We first sketch the construction of this hyperbolic graph, postponing a more
precise definition to Sect. 3.2. We choose a parameter ¢ > 10 and cover the
space X using a covering S, with balls of radii 2a™" such that for any two
distinct balls By(x1,2a~"), By(x2,2a ") € S,, we have B;(x1,a™"/2) N
Bg(x2,a™"/2) = ¥ (we think of these balls as ‘approximately pairwise disjoint
covering’ at scale a~"). Therefore the covering S,, corresponds to scale a™"
for all n € Nxg. In what follows, for a ball B, we denote by xp and rp the
center and radius of B. For a ball B and » > 0, we denote by A - B, the ball
By(xp, Arp).

We define a tree of vertical edges with vertex set | [, o Sn by choosing for
each ball B € S,,n > 1 a ‘parent ball’ B’ € S, such that xp is a closest
point to xp in the set {xc : C € §,,—1}. By the assumption on the diameter,
So is a singleton. The edges in this tree are called vertical edges. We choose
another parameter A > 10 to define another set of edges on [ [, S, called
horizontal edges. Two distinct balls B, B € S,, n > 0 share a horizontal edge
ifandonlyif A - BN A - B # ). The set of edges of the hyperbolic filling is
defined as the union of the sets of horizontal and vertical edges.

In our construction, the vertical edge weights play a more central role and
the values of horizontal edge weights are less important. The weight of the
vertical edge between B € S,,, B’ € S,,_ can be interpreted as the relative
diameter under the 8-metric. To describe the data required in our construction
of the metric, suppose for the moment that 6 is a metric on X with the desired
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properties, and let us define the relative diameter of B € S, n > 1 as

B) - diam(B, 6) ) 13
PB) = (B 0)’ @.13)
where B’ € S,_1 is such that there is a vertical edge between B’ and B (B’
is the parent of B in the tree of vertical edges). It turns out that the ‘relative
diameter’ in (2.13) contains enough information about 6 to reconstruct the
metric 6 (up to bi-Lipschitz equivalence). Hence we could reduce the problem
of construction of § € J (X, d) to constructing the function p(-) on [ [, Sp;
see Theorem 3.14. B

It is therefore enough to construct p(-) in (2.13). Next, we describe two key
conditions that the relative diameter p(-) defined in (2.13) must satisfy. For a
ball B € S;—1,n > 1, let us denote by I';, (B) the set of horizontal paths in S,
defined by

N eN, B; € §,foralli =0, ..., N; B; and B; 1
share a horizontal edge for alli = 0,..., N — 1,},

Iw(B) = {(B»{Lo
XBy eB,xBl,...,xB]\F] €2~B,XBN ¢2-B

The first condition on p(-) is

N
> p(B) z 1, forall (B)}Ly€T,(B)and B €S, 1,n> 1. (2.14)
i=1

The condition (2.14) is a consequence of the fact that 6 € J(X, d) and that
(X, d) is a uniformly perfect metric space. We like to think of (2.14) as a ‘no
shortcuts condition’ as it disallows the possibility of short cuts in the 8-metric
from By (x, r) to By(x, 2r)°.

The second condition arises from the estimate (2.10). For any ball B €
Sk, k = 0, by Di41(B), we denote its descendants in Sy41; that is Dy41(B)
is the set of elements B’ € Si41 such that B” and B share a vertical edge. The
second condition that p must satisfy is the following estimate:

3" p(B) Cap(B', (2- B')) S Cap(B. (2- B)),  (2.15)
B'€Dys1(B)

for all B € S and k large enough. To explain that (2.15) should hold for a
metric 6 and a measure u with the desired properties, we first observe that the
volume doubling property (2.11) implies that
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> u(B) S u(B), forall BeS.
B’€Dy+1(B)

By (2.10), 6 € J(X, d) and comparing capacity of annuli in 6 and d met-
rics on the basis of EHI [9, Lemmas 5.22 and 5.23], one obtains w(B) =
diam(B, 0)# Cap(B, (2 - B)°) for all B € S; and for all large enough k.
Combining these estimates with (2.11), we obtain (2.15). To summarize, the
conditions (2.14) and (2.15) arise from the metric and the measure, respec-
tively. It turns out that the necessary conditions (2.14) and (2.15) on p(-) are
‘almost sufficient’ to construct p; see Theorem 3.24.

We note that there is a tension between the estimates (2.14) and (2.15). On
the one hand, in order to satisfy (2.14), the function p (-) must be large enough,
whereas (2.15) imposes that p(-) cannot be too large. Next, we sketch how
to construct p that satisfies these seemingly conflicting requirements in (2.14)
and (2.15). Let B € &, u € C.(X) be such that

m(B)
A
(2.16)

u=1onBy(xp,1.1rg), u=0o0n By(xp, 1.9r)¢, E(u,u) <

Such a function exists because of (2.10) for (X, d, m, £, F) with 8 replaced
by y and a covering argument (the constants 1.1 and 1.9 are essentially
arbitrary and could be replaced by 1 + ¢ and 2 — ¢ for small enough ¢).
It is helpful to think of u as the equilibrium potential corresponding to
Cap(Bg(xp, 1.1rp), Ba(xp, 1.9rp)°). Let us define the functions up, pp :
Si+1 — [0, 00) as

1
ug(B) :=][ udm = udm,

S m(B)
pp(B"y= > |ug(B") —up(B)

B”GS[H_] ,B"~B’

’

where B” ~ B’ means that B” and B’ share a horizontal edge (or equivalently,
A-B"NA-B # (). From the definitions it is clear that up is a discrete
version of u and pp is a discrete version of the gradient of u. Using a Poincaré

inequality on (X, d, m, £, F) and the bound Cap(B’, (2 - B')°) =< mr(TB,), we
B/
obtain the following estimate (see (4.22)):

Y pe(B)’Cap(B', (2 B')) S E, u) S Cap(B, (2- B)).
B'€Dy41(B)
(2.17)
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Since ug(Bo) = 1 for any By € Si4+1 with xp, € B and ug(By) = 0 for any
By € Sk41 with xp, ¢ (2 - B)“, by the triangle inequality

N
> pp(Bi) =1, forall (B) € Tiy1(B). (2.18)
i=1

Clearly, (2.18) and (2.17) are local versions of (2.14) and (2.15) with 8 = 2,
respectively. Here, by “local version” we mean that the estimates (2.14) and
(2.15) are satisfied for a function pp dependent on B for each fixed B. To
ensure (2.14) and (2.15) for all scales and locations, we define

p(B') = sup pp(B’), forall B € Si.1, (2.19)
BeSy

where pp is defined as above at all locations and scales. This ensures (2.14)
and (2.15) at all scales with g = 2.

However, p should satisfy further additional conditions that the above con-
struction need not obey. Since 8 € J (X, d), one obtains that

p(B) 21 forall Be S, k> 1. (2.20)

However, the function p(-) defined in (2.19) need not satisfy the estimate
(2.20). This requires us to increase p further if necessary. We define the ‘diam-
eter function’

n
7(B) = ]_[ p(B;), forall B €S, (2.21)
k=0

where B; € S; foralli = 0,...,n, B, = B and there is a vertical edge
between B; and By foralli = 0,...,n — 1. If p is given by (2.13), then
clearly 7(B) = diam(B, 0)/diam(X, 0). By quasisymmetry, diam(B, ) <
diam(B’, ) whenever B and B’ share a horizontal edge. This suggests the
following condition on p:

7(B) < w(B’), whenever B and B’ share a horizontal edge, (2.22)

where 7 is defined as given in (2.21). Similarly, for constructing measure, we
need to ensure that p satisfies

n(B)? Cap(B, (2 - B)°) =< Z (B Cap(B', 2- B')"), (2.23)
B'€Dy(B)

@ Springer



On the conformal walk dimension

forall B € Sy and n > k > 0, where D,,(B) denotes the descendants of B in
S,,. The conditions (2.22) and (2.23) are rather delicate because the value of 7
can change drastically if we change p by a bounded multiplicative factor. This
is due to the fact that the multiplicative ‘errors’ in p accumulate as we move
to finer and finer scales. This suggests that we need to control the constants
very carefully.

To achieve this we need to consider 8 > 2 (instead of 8 = 2 considered
above). We choose p defined in (2.19) uniformly small by picking a function u
that satisfies (2.16) along with an additional scale invariant Hélder continuity
estimate (see (4.27), (4.28) and (4.29)). Then using

Y. pe(B) Cap(B', (2 B))
B'€Dy41(B)

2 -2
<lol? Y ps(B)H Cap(B', 2 B)) < lpllbs” Cap(B. 2 B)°),
B'€Di11(B)

we obtain enough control on the constants in (2.15) to ensure (2.20) and (2.22)
after further modification of p. By the Holder continuity estimate on u, || p|| s
can be made arbitrarily small by increasing the vertical parameter a.

3 Maetric and measure via hyperbolic filling

Given a metric space, it is often useful to view the space as the boundary of a
Gromov hyperbolic space. Such a viewpoint is prevalent but often implicit in
various multi-scale arguments in analysis and probability. Roughly speaking,
a metric space viewed simultaneously at different locations and scales has
a natural hyperbolic structure. A nice introduction to this viewpoint can be
found in [84]. This will be made precise by the notion of hyperbolic filling in
Sect. 3.2. The main tool for the construction of metric is Theorem 3.14-(a), and
the construction of measure uses Lemma 3.20. To describe the construction,
we recall the definition of hyperbolic space in the sense of Gromov.

3.1 Gromov hyperbolic spaces and their boundary
We briefly recall the basics of Gromov hyperbolic spaces and refer the reader
to [27,34,39,91] for a detailed exposition.

Let (Z, d) be a metric space. Given three points x, y, p € Z, we define the
Gromov product of x and y with respect to the base point w as

1
xY)w = E(d(x,w)er(y,w)—d(x,y))- (3.1
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By the triangle inequality, Gromov product is always non-negative. We say that
a metric space (Z, d) is 6-hyperbolic, if for any four points x, y, z, w € Z, we
have

x|2)w = X|Y)w A (Y2Dw = 4.

We say that (Z, d) is hyperbolic (or d is a hyperbolic metric), if (Z, d) is
hyperbolic for some é € [0, co). If the above condition is satisfied for a fixed
base point w € Z, and arbitrary x, y, z € Z, then (Z, d) is 2§-hyperbolic [27,
Proposition 1.2].

Next, we recall the notion of the boundary of a hyperbolic space. Let (Z, d)
be a hyperbolic space and let w € Z. A sequence of points {x;} C Z is said to
converge at infinity, if

) l_im (x,'|x]')w = OQ.
L, ]—>00
The above notion of convergence at infinity does not depend on the choice of
the base point w € Z, because by the triangle inequality |(x]y)y — (X]Y)w/| <
d(w, w).
Two sequences {x;}, {y;} that converge at infinity are said to be equivalent,
if
Jim (x;|yi)w = o0.
1—> 00
This defines an equivalence relation among all sequences that converge at
infinity. As before, is easy to check that the notion of equivalent sequences
does not depend on the choice of the base point w. The boundary dZ of (Z, d)
is defined as the set of equivalence classes of sequences converging at infinity
under the above equivalence relation. If there are multiple hyperbolic metrics
on the same set Z, to avoid confusion, we denote the boundary of (Z, d) by

d(Z, d) (see Lemma 3.13-(d)). The notion of Gromov product can be defined
on the boundary as follows: foralla, b € 0Z

(alb)y = sup {liminf(xz'Iyi)w {xitea, {yi} € b} ,
1—> 00
and similarly, fora € dZ, y € Z, we define
(aly)w = sup {lgn;gf(xily)w {xi} e a} :

The boundary 9 Z of the hyperbolic space (Z, d) carries a family of metrics.
Let w € Z be a base point. A metric p : 0Z x dZ — [0, 00) on dZ is said to
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be a visual metric with visual parameter o > 1 if there exists k1, kp > 0 such
that

ki~ P < p(a, b) < ko™ WP,

Note that visual metrics depend on the choice of the base point, and on the
visual parameter «. If a visual metric with base point w and visual parameter
o exists, then it can be chosen to be

n—1

Pa,w (@, b) := inf Za_(ai\aiﬂ)w,

i=1

where the infimum is over all finite sequences {a;}7_; C dZ,n > 2 such that
ay =a,a, =b.

Visual metrics exist as we recall now. A metric space (Z, d) is said to be
proper if all closed balls are compact. For any §-hyperbolic space (Z, d), there
exists &g > 1 (o depends only on §) such that if « € (1, «g), then there exists
a visual metric with parameter « [34, Chapitre 7], [19, Lemma 6.1]. It is well
known that quasi-isometry between almost geodesic hyperbolic spaces induces
a quasisymmetry on their boundaries (the notion of almost geodesic space is
given in Definition 3.3). Since this plays a central role in our construction of
metric, we recall the relevant definitions and results below.

We say that a map (not necessarily continuous) f : (X1,d;) — (X2, d>)
between two metric spaces is a quasi-isometry if there exists constants A, B >
0 such that

A7l (x,y) — A < da(f(x), () < Adi(x,y) + A,

for all x, y € X1, and

sup d(xz, f(X1)) = sup inf d(x2, f(x1)) < B.

x€eXr xpeXy X1€41

Definition 3.1 A distortion function is a homeomorphism of [0, co) onto
itself. Let n be a distortion function. A map f : (X, d;) — (X2, d2) between
metric spaces is said to be n-quasisymmetric, if f is a homeomorphism and

d(f(x), fl@) _ . (dl(x, a))
d(f(x), f(b)) — " \di(x,b)

3.2)

for all triples of points x, a, b € X1, x # b. We say f is a quasisymmetry if it
is n-quasisymmetric for some distortion function 1. We say that metric spaces
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(X1, dy) and (X», d») are quasisymmetric, if there exists a quasisymmetry f :
(X1, d1) = (X2, d2). We say that metrics d; and dp on X are quasisymmetric
(or, d; is quasisymmetric to dy), if the identity map Id : (X, d;) — (X, d2)
is a quasisymmetry. A quasisymmetry f : (X1,d;) — (X2,d>) is said to
be a power quasisymmetry, if there exists & > 0, A > 1 such that f is ng -
quasisymmetric, where

al/e ifo<r <1,

1) =
a3 (1) A, ifr > 1.

Recall from Definition 1.1 that the conformal gauge of a metric space (X, d)
is defined as

JX,d):={0: X x X — [0,00) | 0 is a metric on X,

d is quasisymmetric to 6}.

Bi-Lipschitz maps are the simplest examples of quasi-symmetric maps. Recall
that amap f : (X1,d|) — (X», d>) is said to be bi-Lipschitz, if there exists
C>1,

Cldi(x,y) < do(f(x), f(3) < Cdi(x,y), forallx,ye Xj.

Two metrics d,dy : X x X — [0,00) on X are said to be bi-Lipschitz
equivalent if the identity map Id : (X, d1) — (X, d») is bi-Lipschitz.

We collect a few useful facts about quasisymmetric maps.

Proposition 3.2 ([75, Lemma 1.2.18] and [40, Proposition 10,8]) Let the
identity map 1d : (X, d1) — (X, d2) be an n-quasisymmetry for some distor-
tion function n. By B;(x, r) we denote the open ball in (X, d;) with center x
and radiusr > 0, fori =1, 2.

(a) Forall A > 1,x € X,r > 0, there exists s > 0 such that
By(x,s) C Bi(x,r) C Bi(x, Ar) C Ba(x, n(A)s). (3.3)
In (3.3), s can be defined as
s =sup {0 < sp < 2diam(X, dp) : Bo(x,s2) C Bi(x,r)} (3.4
Conversely, forall A > 1,x € X, r > 0, there exists t > 0 such that

Bi(x,r) C B(x,t) C Ba(x, At) C Bi(x, Air), 3.5
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where A1 = 1(A) and 1)(t) is the distortion function given by 7(t) =
1/n_1(t_1). In (3.5), t can be defined as

At = sup {0 < rp < 2diam(X, dp) : Bo(x, Arp) C Bi(x, A1r)}.(3.6)

(b) If A C B C X such that 0 < diam(A, dy) < diam(B,d;) < oo, then
0 < diam(A, dp) < diam(B, dy) < oo and

1 diam(A, d3) 2diam(A, dy)
, <& <y (ZEMAC)) 39
) diam(B,d}) diam(B, d») diam(B, d;)
N\ diam(A.d))

Definition 3.3 A metric space (X, d) is k-almost geodesic, if for every x, y €
X and every t € [0, d(x, y)], there is some z € X with |d(x, z) —¢| < k and
|d(y,z) — (d(x,y) —t)] < k. We say that a metric space is almost geodesic if
it is k-almost geodesic for some k > 0. We recall that quasi-isometry between
almost geodesic hyperbolic spaces induces a quasisymmetry between their
boundaries.

Proposition 3.4 ([19, Theorem 6.5 and Proposition 6.3]) Let (Z,d1) and
(Z>2,d>) be two almost geodesic, &-hyperbolic metric spaces. Let f
(Z1,d1) — (Z2, dy) denote quasi-isometry.

(a) If {x;} C Z| converges at infinity, then { f (x;)} C Y converges at infinity.
If {x;} and {y;} are equivalent sequences in X converging at infinity, then
{f(x)}and { f (y;)} are also equivalent.

(b) If a € 0Z| and {x;} € a, let b € dZ, be the equivalence class of { f (x;)}.
Then of : 0Z1 — 0Z; is well-defined, and is a bijection.

(c) Let p1 € Z1 be a base pointin Z1, and let f(py) be a corresponding base
pointin Zj. Let p1, pa denote visual metrics (with not necessarily the same
visual parameter) on 0Z1,dZ> with base points py1, f(p1) respectively.
Then the induced boundary map dof : (0Zy, p1) — (0Z2, p2) is a power
quasisymmerry.

Remark 3.5 The distortion function n for the quasisymmetry df in (c) above
can be chosen to depend only on the constants associated with the quasi-
isometry f : Z1 — Z; and the constants associated with the properties of
being almost geodesic and Gromov hyperbolic for Z{, Z>.

3.2 Hyperbolic filling of a compact metric space
Given a compact metric space (X, d), one can construct an almost geodesic,

hyperbolic space whose boundary equipped with a visual metric can be iden-
tified with (X, d). We assume further that (X, d) is doubling and uniformly
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perfect. Recall that a metric space (X, d) is said to be K p-doubling if any ball
B(x, r) can be covered by K p balls of radius /2, and be doubling or satisfy
the metric doubling property if it is K p-doubling for some Kp € N. A metric
space (X, d) is said to be K p-uniformly perfect ift B(x,r) \ B(x,r/Kp) # {
for any ball B(x, r) such that X \ B(x, r) # @, and uniformly perfect if it is
K p-uniformly perfect for some Kp € (1, 00).

We recall the notion of hyperbolic filling due to Bourdon and Pajot [20],
based on a similar construction due to Elek [32]. We recall the definition in
[23]. Let (X, d) be a compact, doubling, uniformly perfect, metric space. For
aball B = B(x,r)and ¢ > 0, by @ - B we denote the ball B(x, ar). It is
possible that balls with different centers and/or radii denote the same set. For
this reason, we adopt the convention that a ball B comes with a predetermined
center and radius denoted by xp and rp respectively. We fix two parameter
a > 8 and A > 3. The parameters a and A are respectively called the vertical
and horizontal parameters of the hyperbolic filling. For each n > 0, let S,
denote a finite covering of X by open balls such that for all B € S, there
exists a center xg € X such that

B = B(xg,2a™"), (3.8)
and for any distinct pair B # B’ in S, we have
B(xp,a "/2) N B(xp,a "/2) = 0. (3.9)
We assume that
So = {X} (3.10)

is a singleton (by scaling the metric if necessary). We remark that the assump-
tion (3.10) is just for convenience. For arbitrary (but finite) diameter, we choose
ng € Z such thata™" > diam(X, d) > a~"°~!. For the general compact case
we replace 0 with ng, so that we have coverings S, for all kK > ng such that Sy
is a covering by ‘almost’ pairwise disjoint balls of radii roughly a ¥ as given
in (3.8) and (3.9).

We construct a graph whose vertex setis S = [ [}2, S,. Next, we construct
a tree structure of vertical edges on S. For each n > 0, we partition S,
into pairwise disjoint sets {7,,(B) : B € S,} indexed by &,,, with S,11 =
[pes, Tn(B) satisfying the following property:

if B € T,,(B) for some B € S, B’ € S,;1, thend(xp/, A,)) =d(xp/, xB),
G.11)
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where A, = {xp : B € S,} denotes the set of centers of the balls in S,,.
In other words, if B’ € T, (B), then xg € A, is a minimizer to the distance
between xp' and A,. Since such a minimizer always exists, there exists a
(not necessarily unique) partition {7,,(B) : B € S,} of S;,41 for all n > 0.
We call the elements of T,,(B) as the children of B. From now on, let us fix
one such partition {7,(B) : B € S,} for each n > (. We say that there exist
a vertical edge between two sets B, B’ € S, if there exists n > 0 such that
either B € S, B € S,+1 N Ty(B) or B € S,11, B € Sy+1 N T, (B'); in
other words, one of them is a child of the other. Note that the vertical edges
form a tree on the vertex set S, with base point (or root) w, where So = {w}.
The unique path from the base point to a vertex B € S denotes the genealogy
g(B). More precisely, we define the genealogy g(B) as (B) as

(B), if B € Sy,
g(B): (BO»Bl’,Bn)’ 1fB=Bn€Sn»nZI,and
Bi—H € T(B,'),fOI’i =0,...,n—1.

In the above definition, if 0 < i < n, we denote the vertex B; € S; by g(B);. If
B € S,,and [ > n, we define D;(B) as the descendants of B in the generation
l

Dy(B) :={B' € 8, : g(B'), = B}. (3.12)

For B € S, we denote U;>,4+1D;(B) by D(B) which are the descendants of
B.

Using the horizontal parameter A > 3, we define another family of edges
on the vertex set S call the horizontal edges. We say B ~ B’ if there exists
n > O such that B, B € S, and A - BN A - B’ # (. We say that there is a
horizontal edge between B, B’ € S, if B ~ B’ and they are distinct (so as to
avoid self-loops).

Definition 3.6 (Hyperbolic filling) Let S; = (S, E) denote the graph with
vertices in & and whose edges E are obtained by the taking the union of
horizontal and vertical edges. With a slight abuse of notation, we often view
Sy as ametric space equipped with the (combinatorial) graph distance, which
we denote by Ds : S X § — Zx¢. The metric space Sy = (S, Ds) is almost
geodesic and hyperbolic [20, Proposition 2.1]. The metric space Sy is said to
be a hyperbolic filling of (X, d).

We refer to Sect. 3.3 for a construction of hyperbolic filling. Note that the
hyperbolic filling is not unique as we make an arbitrary choice of covering.
Even if the covering is fixed, the choice of children 7, (B) is not necessar-
ily unique. Nevertheless, any two hyperbolic fillings (with possibly different
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parameters) of a metric space are quasi-isometric to each other [20, Corollaire
2.4].

We fix the base point of S; tobe w € S, where {w} = Sp. We now define a
map p : X — 98, that identifies X with the boundary of S; as follows. For
each x € X, choose a sequence {B;} with x € B; € §;,i € N. Then it is easy
to see that the sequence {B;} converges at infinity. Let p(x) € 0S5, denote the
equivalence class containing {B;}.

The map p is a bijection and its inverse p~! : 9S; — X can be
described as follows. For any a € 0S4, and for any {B;} € a, the cor-
responding sequence of centers {xBl.} is a convergent sequence in X, and
the limit is p~'(a) = lim;_ oo xp,. The map p~! is well-defined; that is,
if {B;} and {Bl’ } are equivalent sequences that converge at infinity, then
lim; o0 xp, = lim; 00 X /.

We summarize the propé:rties of the hyperbolic filling S; and its boundary
0S5, as follows:

Proposition 3.7 ([20, Proposition 2.1]) Let (X, d) denote a compact, dou-
bling, uniformly perfect metric space. Let Sg denote a hyperbolic filling with
vertical parameter a > 1, and horizontal parameter A > 3. Then Sy is almost
geodesic Gromov hyperbolic space. The map p : X — 9S8, is a homeomor-
phism between X and 0S,. If we choose the base point w € Sy as the unique
vertex in Sy, then there exists K > 1 such that

Kl @O < dx. y) < Ka=P@IPO

forallx,y e X.

By the above proposition we can recover the metric space (X, d) from its
hyperbolic filling S; with horizontal parameter A and vertical parameter a
(up to bi-Lipschitz equivalence) as the boundary 95, equipped with a visual
metric with base point w and visual parameter a. There is a minor gap in
[20] as pointed out in [18, Section 4] and [15]. We remark that the horizontal
parameter A was chosen to be 1 in [20]. If A = 1, then the hyperbolic filling
need not be Gromov hyperbolic [15, Example 8.8]. As pointed out in [18], if
A > 1 such problems do not arise.

For technical reasons following [23, (2.8)], we will often assume that

A>32, a=>24(AV Kp), (3.13)

where K p is such that (X, d) is K p-uniformly perfect.
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3.3 Construction of hyperbolic fillings

Since the metric spaces we deal with need not be compact, we need a suitable
substitute for hyperbolic fillings. To circumvent this difficulty, we view the
metric space as an increasing union of compact spaces and construct a sequence
of hyperbolic fillings. Quasisymmetric maps and doubling measures have nice
compactness properties that persist under such limits.

We recall the notion of net in a metric space.

Definition 3.8 Let (X, d) be a metric space and let ¢ > 0. A subset N of X is
called an e-net in (X, d) if the following two conditions are satisfied:

1. (Separation) N is e-separated in (X, d),i.e.,d(x,y) > eforanyx,y € N
with x # y.
2. (Maximality) If N C M C X and M is e-separated in (X, d),then M = N.

In the lemma below, we recall a standard construction of hyperbolic filling
and some of its properties.

Lemma 3.9 (Cf. [23, Lemma 2.2] and [50, Theorem 2.1]) Let (X, d) be a
complete, K p-uniformly perfect, K p-doubling metric space such that either
diam(X, d) = % oroo. Leta > 8 and let xo € X. Let Nog be a 1-net in (X, d)
such that xo € No. Define inductively the sets Ny for k € N such that

Ni_1 C Ng, and Ny is a *-net in (X,d), forallk e N, .

For k < 0 and k € 7Z, we define N to be a a k-net in (Ng+1,d) such that
xg € N forall k € 7 (Note that Ny need not be a K-netin (X, d) fork < 0).
For each x € Ny and k € Z, we pick a predecessor y € Ny_1 such that y is a
closest point to x in Ni_1 (by making a choice if there is more than one closest
point); that is y € Ni_1 satisfies

d(x,y) = min d(x,2).

ZENE_1

Forany x € N, k € Z, we denote its predecessor as defined above by P (x) €
Ni_1.

(a) Forall k € Z, and for any two distinct points x, y € N, we have
B(x,a */2)N B(y,a*/2) = 0. (3.14)
We have the following covering property:

Uren, B(x,a™) =X, forallk >0, (3.15)
Uren B, 1 —a Y la™) = X, forallk € Z. (3.16)
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In particular, if diam(X, d) = % the coverings S, = {B(y, (1—aH!

a ™| yeN, } for all n > 0 is a covering that satisfies (3.8) and (3.9).
Foranyn > 0 and forany B = B(xp,a™") € S, the sets

T,(B) = {B(y,a™""") | y € Nis1such that xg = P(y)}

Sforms a partition of S,+1 as required by (3.11).
(b) Let a, A satisfy (3.13). Let y < Ny be such that

B(y,(1—a H7la™* N B(P(y),a™*/3) # 0.

Then for any z € Niqi such that d(y,z) < 2(1 —a=H~la %=1 e
have P(y) = P(z). (In other words, y corresponds to the center of a
non-peripheral ball in Si41 as given in Definition 3.23).

(c) Letk € Zandy € Ng. Let Di(y) denote the set of descendants of y defined
by

Di(y) = {y} U {z € N, | such that 1 > k and P'*(z) = y} .(3.17)

Then

B(y,(1—a H'a® 5D 2By, 27 —(a— 1 Ha™).
(3.18)

The space Dy (y) with the restricted metric d is K %-doubling and K-
uniformly perfect, where K’P =2aKp(l—a H 1 t=—@-1H L

Proof (a) The properties (3.14) and (3.15) follow from the separation and max-
imality properties of the a —%-net Ny in X respectively. We use the notation
Pk(y) denote the k-predecessor of y (for example, Pz(y) = P(P(y))).To
show (3.16), by (3.15) it suffices to consider the case k < 0. By (3.15), for
any y € X thereexists yg € Ng suchthatd(yg, y) < 1.Define y; = P_l(y)
for all [ < 0. Since d(y;, yi+1) < a~! foralll < 0, we have

k
d(ye, y) <d(yo, ) + Y, d(y, yig1)
[=—1
k
<Y a'l=-aHhlaF-ah < -aHla"
=0
(3.19)
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(b)

(c)

Since y € X is arbitrary and y; € Ng, we have (3.16).
By the triangle inequality, we have

d(z, P(y)) =d(z,y) +d(y, P(y))

< @A+ D1 —a Y gkl p —4k

a

W | =

<a %2 (by (3.13))

By (3.15) and d(z, P(y)) < a_k/2, we conclude that P(z) = P(y).
By (3.15) and triangle inequality, we have

d(y,z) = a*k/Z, for all z € Ni4+1 \ D(y) and for all y € Np.
(3.20)

By (3.19), we have
D) C B(z,(1 —a H7la™* 1), forallz € Nipr.  (3.21)

Since |J,,c N, D(w) is dense and closed (by the doubling property), we
have

| Dw)=x. forallleZ. (3.22)

weN;

Combining (3.20), (3.21), (3.22) and using triangle inequality, we obtain
(3.18).

Next, we show that D(y) is K p-doubling. More generally, we show that
any subset Y C X is Klz)—doubling. Let B(x,r)NY,x €Y be an arbitrary
ballin Y. Since (X, d) is Kp-doubling, the ball B(x, r) can be covered by
N balls B(xj, r/4),i =1,..., N,where N > K%. If Bx;,r/4)NY #0,
we choose y; € B(xj,r/4) NY, so that B(x;,r/4) C B(y;,r/2). Hence
all such balls B(y;, r/2) NY cover B(x,r)NY.

Let B(x,r) N D(y) be an arbitrary ball in D(y) such that x € D(y) and
B(x,r) N D(y) # D(y). Let n € Z be the unique integer such that

A—aH a7 <r<@—-abHlat,

Since D(y) = Uzen,np(y)D(2) for all n > k, by (3.18), there exists
z € D(y) N Ny, such that

dz,x) <1 —a Hla™ <1 (3.23)
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Since (X, d) is K p-uniformly perfect, and using (3.18) and B(z, Q-
(a — 1)"Ha™") # X, there exists w € D(y) such that

2 1—(0—1) 1) la >dw,z) > —(2 1—(61—1) l)a
’ - KP ’

We consider two cases, depending on whether or not d(z, x) < %a‘”. If
d(z,y) > 4a™", then

1 r
dzx)>~a">—— " 3.25
red@x) zsa S e (5.23)

On the other hand, if d(z, x) < %a‘”, then

dw,x)Vvd(z,x) <d(z,w)+d(z,x)

1
<Q'—@-DHhla "+ a"<a " <

2

Hence by (3.24), if d(z, x) < $a~", we have

dw,x)Vvd(z,x) > %d(w,z) > i(Z_1 —(a — 1)_1)a_"

r
= 2aKp(l—a ) 1@ —(@=DH T

(3.26)

By (3.25) and (3.26), D(y) is 2aKp(1 —a~H7'Q7' — (@ — D~ H~L-
uniformly perfect.
O

Definition 3.10 (Extended hyperbolic filling) Let (X, d) be a complete, K p-
uniformly perfect doubling metric space such that either diam(X, d) = % or
oo.Leta > 8,1 > 32 be constants that satisfy (3.13). Let xo € X and consider
the sets Ni, k € Z as defined in Lemma 3.9. Define

S = {B(x, 2a7%) 1 x € Nk} . keZ

For any k € Z and for any pair of distinct balls B, B’ € Sy, we say that there is
a horizontal edge between B and B’ (denoted as B ~ B’) if and only if A - BN
A-B' # ). Forany k € Zandforany B(x,2a"%) € Sk, B(y,2a*"1) € Siy1,
we say that there is a vertical edge between B(x,2a~%) and B(y, 2a—*1),
if x is the predecessor of y (as defined in Lemma 3.9). We define a graph
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(V, E) with vertex set V = [ [, ., Sk and the edge set E defined by the union
of horizontal and vertical edges. This graph is called the extended hyperbolic
filling of (X, d) with horizonal parameter A and vertical parameter a.

If (X, d) is compact, the subgraph of the extended hyperbolic filling induced
by S = [ l;e7., Sk forms a hyperbolic filling as given in Definition 3.6.

On the other hand, if (X, d) is non-compact, we view X as an increasing
limit of compact spaces D;(xg) as [ — —oo, where Dy (xg) is as defined in
(3.17). Forany k,l € Z,1 <0,k > [, we define

St =B, 247 N Ditwo) : x € Ne N Di(xo)]

We define a graph with vertex set S’ = > IkeZ S,l(, whose edges are the union
of horizonal and vertical edges. In this case, the vertical edges are defined using
predecessor relation as above and the horizontal edges are defined with respect
to the space Dj(xp). Thatis B N D;(xo), B’ N D;(xg) € S,lc share a horizontal
edge if and only if & - BN A - B' N D;(xp) # @. This graph with vertex set
S! can be viewed as a hyperbolic filling of the compact space D;(xo). In the
non-compact case, we think of the sequence of hyperbolic fillings defined with
vertex set S’ as ‘converging’ to the extended hyperbolic filling defined above
asl — —oo.

3.4 Combinatorial description of the conformal gauge

The purpose of this section is to recall a combinatorial description of the
conformal gauge essentially due to M. Carrasco Piaggo [23]. In this section, we
fix acompact, doubling, uniformly perfect metric space (X, d) and a hyperbolic
filling Sy = (S, Ds) with horizontal parameter A > 8 and vertical parameter
a > 1 that satisfies (3.10).

Propositions 3.4 and 3.7 suggest the following strategy to construct metrics
that are in the conformal gauge of (X, d). By changing the metric of the
hyperbolic filling S; to another metric that is almost geodesic and bi-Lipschitz
(in particular, quasi-isometric), every visual metric of its boundary is changed
to a metric in the conformal gauge of (X, d). Perhaps surprisingly, all metrics
in the conformal gauge can be obtained in this manner (up to a bi-Lipschitz
map) as explained in Theorem 3.14.

The change of metric in a hyperbolic filling is done using a weight function
p:S — (0, 1) onits vertex set. We define

nB)= [] o). (3.27)

B'eg(B)
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A pathy = {B,-}lN: | in Sy is a sequence of vertices such that there is an edge
between B; and B;4 foralli = 1,..., N — 1. In this case, we say that y is
a path from Bp to By. A path is said to be simple, if no two vertices in the
path are the same. A path is said to be horizontal (resp. vertical), if all the
edges in the path are horizontal (resp. vertical). We define the p-length of a
path y = {Bi}]L, by

N
Ly(y) =Y m(Bi), (3.28)
i=1

where 7 is as defined in (3.27). For points x, y € X and n € N, the set of
paths I';,(x, y) is defined as

y is a path from By to By, x € By, (3.29)
Y € Bi, Bi € Sp, B € Sy o

Tu(x,y) = {y = {Bi}\_,

We remark that a path y € I',(x, y) need not be a horizontal path. For two
distinct points x, y € X and o > 2, we define

mg(x,y) =max{k: BeS,x€a-B,yea- B},
cox,y)={BeS,:k=myx,y),x€ea-B,ye€a- B},
w(cy(x,y)) = 5 mazx 7 (B). (3.30)

ecy(x,y)

Assumption 3.11 A weight function p : § — (0, 1) may satisfy some of the
following hypotheses:

(H1) (Quasi-isometry) There exist 0 < n— < n4 < lsothatn_ < p(B) <
n4 forall B € S.

(H2) (Gromov product) There exists a constant Ko > 1 such that for all
B, B’ € S with B ~ B’ € S, we have

7 (B) < Ko (B'),

where 7 is as defined in (3.27).

(H3) (Visual parameter) There exists « € [2, A/4] and a constant K| > 1
such that for any pair of points x, y € X, there exists ng > 1 such that
if n > ng and y is a path in [',,(x, y), then

Ly(y) = K 'm(ca(x, y)),

where I';(x, y), L,, m(cqo(x, y)) are as defined in (3.29), (3.28), and
(3.30) respectively.
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The following observation concerns the stability of the above assumption
under ‘finite perturbations’.

Remark 3.12 Let p, p' : S — (0, 1) be two different weight functions such
thattheset { B € S : p(B) # p'(B)} isfinite. Thenif p satisfies the hypotheses
(H1), (H2), and (H3), then so does p’ (with possibly different constants).

The weight function p can be used to define a metric on S that is bi-Lipschitz
equivalent to Ds as we recall below. We summarize the properties of the metric
below.

Lemma 3.13 ([23, Lemma 2.3 and Proposition 2.4]) Let (X, d) be a compact,
doubling, uniformly perfect metric space with diam(X, d) = %, and let S =
(S, Ds) denote a hyperbolic filling with parameters X, a satisfying (3.13) and
(3.10). Let p : S — (0, 1) be a weight function that satisfies (H1) and (H2).
Then there exists a metric D, on S such that:

(a) D, is bi-Lipschitz equivalent to Dg, that is there exists A > 1 such that
A 'Ds(B, B) < D,(B, B") < ADs(B, B'), forall B,B € S;

(b) any simple vertical path y = {B;}
satisfies

n
i=

| joining B € S, and B" € S,y

n—1

D,(B.B')=Y_D,(Bi. Bi11) =
i=1

I
B 0 |

log

(c) (S, D) is almost geodesic and Gromov hyperbolic.

(d) The identity map 1d : (S, Ds) — (S, D,) induces the identity map on
their boundaries as described in Proposition 3.4. That is, a sequence {B;}
converges at infinity in (S, Dg) if and only if it converges at infinity in
(S, D,), and any two sequences that converge at infinity in (S, Ds) are
equivalent if and only if they are equivalent in (S, D,). In particular, the
bijection p : X — 9(S, Dg) described before Proposition 3.4 can be
viewed as a bijection p : X — 9(S, D,) by composing with the induced
identity map above.

(e) Assume in addition that (H3) is also satisfied. Let (-|-) , denote the Gromov
product on (S, D,) with base point w € Sy extended to its boundary.
Define 6~p :9(S, Dp) x 9(S, Dy) — [0, 00) as

n—1
Bp(p(x). p(y)) = inf Y e~ PEDIPC1)y (3.31)

i=1
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where the infimum is over all finite sequence of points {x;}_, in X such
thatn € N, x; = x, and x,, = y. Then ép is a visual metric on (S, D)
with visual parameter e. Moreover, there exists K > 1 such that

K_le_(ﬁ(x)|ﬁ(y))p < ép (p(x), p(y)) < Ke—(ﬁ(x)lﬁ(y))p ,
K~ (ea(x, 1)) < 6,(p(x), () < K7 (ca(x, 1))
Proof (Sketch of the proof) We briefly recall the construction of the metric D,,.
Let E denote the edge set of the hyperbolic filling and let n_, 14, Ko denote the

constants in hypotheses (H1), and (H2). Define a function £, : E — (0, 00)
as

‘log 7;((12’)) ’ if e = (B’, B) is vertical.

0.0 {2max{—10g(n+), —log(n-), log(Kp)}, if eis ahorizontal edge,
ple) =

Then the distance D, : S x & — [0, 00) is defined as

N-1
Dy(B, B) = inf > tp(en,

i=l

where the infimum is taken over all paths y = {B; }lN= | Where N varies over N,
B = B, By = B’ and ¢; = (B;, B;y) is anedge foreachi = 1,..., N — 1.

Part (a) is immediate from the definition of D,. Part (b) and (c) are proved
in [23, Lemma 2.3]. Part (d) follows from (a), (¢) and Proposition 3.4. Part (e)
follows from [23, Proposition 2.4]. O

The following theorem provides a combinatorial description of the confor-
mal gauge J (X, d). In [23, Theorem 1.1], Carrasco Piaggio has provided a
combinatorial description of the Ahlfors regular conformal gauge

JAR(X, d) = {0 € J(X, d) | an Ahlfors regular measure p on (X, 6) exists}.

In [23, Theorem 1.1] the hypotheses (H1), (H2), (H3) correspond to a com-
binatorial description of 7 (X, d), whereas the hypothesis (H4) corresponds
to the existence of an Ahlfors regular measure. This theorem is essentially
contained in [23].

Theorem 3.14 (Cf. [23, Theorem 1.1]) Let (X, d) be a compact, doubling,
uniformly perfect metric space.

(a) Let S5 = (S, Ds) denote a hyperbolic filling with parameters A, a sat-
isfying (3.13) and (3.10). Let p : S — (0,1) be a weight function
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that satisfies the conditions (H1), (H2), and (H3). Define the metric
0p: X x X —[0,00) as

0p(x,y) = 0, (p(x), p(y)) forx,y € X, (3.32)

where ép is as defined in (3.31). Then 0, satisfies the following properties:
(i) 0, € J(X,d); that is 0, is quasisymmetric to d.
(ii) there exists C > 0 such that

Clm(calx, ) < 0,(x, ) < Cr(ealx, y)), (3.33)

where o is the constant in (H3). Furthermore, there exists K > 1 such
that

K_ln(B) <diam(B,60,) < Kn(B) forallBe S. (3.34)

(iii) 6, is a visual metric of the hyperbolic space (S, D,) constructed in
Lemma 3.13 in the following sense: there exists C > 0 such that

C—lep(x’ y) < e—(ﬁ(x)\ﬁ(y))p < C@p(x’ ),

where p : X — 0(S, D,) is the bijection described in Lemma 3.13-(d),
and (-|-), denotes the Gromov product (extended to the boundary) on
the hyperbolic space (S, D,) with base point w € Sy.

(iv) The distortion function n of the power quasisymmetry 1d : (X,d) —
(X, 0) can be chosen to depend only on the constants in (H1), (H2),
and (H3).

(b) Conversely, let 0 € J (X, d) be any metric in the conformal gauge. Then
there exists a hyperbolic filling Sq = (S, Ds) of (X, d) with horizontal
parameter X, vertical parameter a, and a weight function p : S — (0, 1)
that satisfies the hypotheses (H1), (H2), (H3), and such that the metric 6,
defined in (3.32) is bi-Lipschitz equivalent to 6.

Proof We begin with the proof of (b).
(b) Let Id : (X,d) — (X,0) be an n-quasisymmetry for some distortion
function 7.

The definition of the weight function p in [23] uses an Ahlfors regular
measure. Since there is no such measure available in our setting, the following
definition is more suited for our purposes. We normalize the metric 8, so that
diam(X, 0) = 1 We will define the weight function p : § — (0, 1) so that

(B) = diamyg(B),
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for all B € S, where S is a hyperbolic filling of (X, d) with parameters 1, a.
Fix any A > 32. The vertical parameter @ > 1 will be determined later in the
proof. Hence we define p : S — (0, 1) as

1 if Be S,

P(B) =12 dium (B) .
W?B)n—l) if B ESn,nZ 1.

First, we show (H2). Let B ~ B’ with B, B’ € S,,. Then choose y € A - BN
A - B'. By triangle inequality,

B C By(xp,2a™") C Ba(y, (A +2)a™"), B’ C Ba(y, (A +2)a™").

By uniform perfectness, and triangle inequality, for any r < %, r/Kp <
diamg(B;(x, r)) < 2r. Therefore by (3.7), we obtain

1 - diamg (B)
2n(4(A +2)Kp) — diamg(Bg(y, (A +2)a™")

)= nBKp/(A+2)).

Since the same inequality holds with B replaced with B’, we have (H2) with
constant

Ko =2n(4(M +2)Kp)n@BKp/(A+2)),

that depends only on the distortion function 5, the constant Kp of uniform
perfectness, and the horizontal parameter XA (in particular, does not depend on
the vertical parameter a).

Next, we show (H1), which again relies on (3.7). We will choose a >
2(A+1) large enough so that 4y = % in (H1). Clearly this choice works when
B € Sy.If B=3S,,n > 1, and by denoting B’ = g(B),_1, we have x3 € B'.
For n > 2, we write (the case n = 1 is easier and left to the reader)

_ diamg (B) _ diamg(B) diamgy((4a) - B)
~ diamp(B’)  diamg((4a) - B)  diamg(B’)

p(B)

Each of the terms can be estimated (from above and below) using (3.7), since
by the triangle inequality and d(xp, xp’) < 2a"*! we have B C (4a) - B,
and (4a) - B D B(xp,2a ") D B’. Hence, we obtain

2 diamy (B) diamy ((4a) - B)
p(B) = 2n (diamd((4a)-B)> ( diamy (B') )

<21 (Kp/a)n (16K p)
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diamy((4a) - B) diamg(B) \1™
p(B) = [2’7 <—diamd(B) ) 1 (zdiamd<<4a> : B))]

> [2n (8Kp)n 2Kp/a)]™".

First we choose a large enough so that 2 (Kp/a) n(16Kp) < % and (3.13)

are satisfied. We set n— = [2n (8Kp) n (2Kp/a)]_1. Hence we obtain (H1).
For (H3), we once again use (3.7), to see that 7w (B) = diamg(B) is compa-
rable to diamg (A - B) for all B € S. More precisely, we have

diamg (B) < diamg (A - B) < 25(2AK p) diamg (B)

for all B € S. For any path y = {B;}/_, € I';(x,y), we choose points
Xi €A-BiNA-Biy1,i=1,...,m—1,x90=x,x, =y so that

m—1 m

0(x,y) < D 0(xi, xiy1) < Y diamg(h - By)

i=0 i=1

< Zdiamg(B,-) =20(2AKp)L,(¥). (3.35)
i=1

Fixing « = 2, and let C € ca(x, y) such that w(ca(x,y)) = 7w (C). Let
m = my(x,y). Let B € ;41 be such that x € B. By definition of mj(x, y),
y ¢ 2 - B. Therefore d(x, y) > d(xp,y) —d(xp, x) > a1, By (3.7), and
m(ca(x,y)) < diamg(2 - C) we have

diamy (2 - C)
(ca(x, y)) < 2n Ay 0(x,y)
<2y <agfl,;:nl ) 6(r,y) =20Bw(, ). (336)

Combining (3.35) and (3.36) yields (H3) with o = 2.
(a) This part is essentially contained in [23]. The hypotheses (H1) and (H2)
are used to construct a metric D, on S as given in Lemma 3.13. If 6, were
defined using (3.32), it clearly satisfies the symmetry 6,(x, y) = 6,(y, x),
and triangle inequality. The role of (H3) is to show that 6,(x, y) is at least
e~ (PPN, (up to a constant factor) as explained in Lemma 3.13-(e). The
fact that 6, is quasisymmetric to d follows from Lemma 3.13, Propositions 3.7
and 3.4-(c). The statement about the dependence of distortion function n on
the constants follow from Remark 3.5.

The estimate (3.34) is also implicitly contained in [23] and is a consequence
of (3.33). Choose x,y € B such that d(x, y) > diam(B, d)/2. Since 1d :
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(X,d) — (X, 0,) is an n-quasisymmetry, by (3.7), there exists C; > 0 such
that

0,(x,y) < diam(B, 0,) < C10,(x,y).

Since d(x, y) > diam(B)/2, B is at a bounded distance in (S, Ds) from any
set C € c4(x, y). Combining these estimates along with (3.33) and (3.7), we
obtain

diam(B, 0,) < 0,(x, y) < w(ca(x, y)).

3.5 Construction of measure using the hyperbolic filling

As in Sect. 3.2, we fix a compact, doubling, uniformly perfect metric space
(X, d) with diam(X, d) = %, and a hyperbolic filling S; = (S, Ds) with
horizontal parameter A and vertical parameter a that satisfy (3.13).

Definition 3.15 (gentle function) Let C: & — (0,00) and K > 1. We say
that C is K -gentle if
K~'C(B) <C(B) < KC(B),

whenever there is an edge between B and B’. We say that C: S — (0, 00)
is gentle if it is K-gentle for some K > 1. The notion of K-gentle function
extends to any function f: V — (0, 00) on a graph G = (V, E). In other
words, we say that a function f: V — (0, oo) is K-gentle if log f is (log K)-
Lipschitz with respect to the graph distance metric.

We sometimes need to distinguish between the horizontal and vertical edges
(see Theorem 3.24). We say that C: S — (0, 00) is (K, Ky)-gentle if

K, 'C(B") <C(B) < KiC(B'),
whenever B and B’ share a horizontal edge, and
K, 'C(B) = C(B) < K,C(B)),

whenever B and B’ share a vertical edge. Therefore every (K, K,)-gentle
function is (K, VvV K, )-gentle.

Given a hyperbolic filling S, we need to approximate a ball B(x, r) by a
ball in the filling S. We introduce this notion in the following definition.
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Definition 3.16 Let (X, d) be adoubling metric space. Let (S, Dgs) be ahyper-
bolic filling of (X, d) with parameters a, A that satisfy (3.13) as constructed
in Lemma 3.9-(a). By Lemma 3.9-(a), given a ball B(x, r) # X, there exists
n € Z and B € S, such that

207"V <r <2a™", and d(xp,x) <2a". (3.37)
We define
As(B(x,r)) ={B €S8 :n€Z=pand B € S, satisfy (3.37)} . (3.38)

We remark that if B, B’ € As(B(x,r)),thenx € BN B’ # ( and hence B
and B’ share a horizontal edge.

Often, the measures in this work will satisfy the following volume doubling
and reverse volume doubling properties.

Definition 3.17 (Volume doubling and Reverse volume doubling properties)
Let (X, d) be a metric space and let u be a Borel measure on X.

(a) We say that u satisfies the volume doubling property VD, or w is a doubling
measure on (X, d), or (X, d, n) is VD, if there exists Cp € (1, 0co) such
that

0 < u(Bx,2r)) <Cpu(B(x,r)) <oco forallx € X,r € (0, 00).
VD

(b) We say that u satisfies the reverse volume doubling property RVD, or
(X, d, ) is RVD, if there exist Cq, Cy € (1, 00), o € (0, 00) such that

u(B(x, R) = C'! (?) p(B(x,r)) RVD

forallx € X,0 <r < R < diamy(X)/C>.

Remark 3.18 We recall the following connections between the doubling and
uniform perfectness properties of a metric space (X, d) and the volume dou-
bling and reverse volume doubling properties.

(a) If p satisfies VD on (X, d), then (X, d) is a doubling metric space.
Conversely, every complete doubling metric space admits a measure that
satisfies VD [40, Theorem 13.3]. The constant 2 in the definition of VD is
essentially arbitrary, as VD implies

H(B&, R) _

R o
—_CD(—> ,forallxe X,0 < r < R, where « =log, Cp.
u(B(x,r)) r

(3.39)
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(b) Let u be a measure that satisfies VD on (X, d). Then u satisfies RVD if
and only if (X, d) is uniformly perfect [40, Exercise 13.1].

We introduce a hypothesis on a weight function p : S — (0, 0o) that plays
an important role in the construction of a measure.

Assumption 3.19 LetC : S — (0, 0o) be a gentle function, and let 8 > 0. A
weight function p : § — (0, 1) is said to be (8, C)-compatible if there exists
K> > 1 such that forall B € S,,,, and n > m,

K;'m(B)C(B) < Y w(BYC(B) < Kam(B)C(B),
B'€D,(B)

where D, (B) denotes the descendants of B of generation n as defined in (3.12).

The above assumption is similar to (H4) in [23]. The following lemma is
an analogue of [23, Lemma 2.7].

Lemma 3.20 Let (S, Ds) be a hyperbolic filling of a doubling, K p-uniformly
perfect, compact metric space (X, d) as given in Lemma 3.9-(a). Let p : § —
(0, 1) be a weight function that satisfies (H1) and (H2). LetC : S — (0, 00)
be a gentle function, and let § > 0, such that p is (8, S)-compatible. For
n > 0, denote

n =Y w(B)YC(B)Sy,,
BeS,

where 8y, denotes the Dirac measure at xp. Let 1 be any weak* subsequen-
tial limit of . Then there exists C1 > 1 such that, for all x € X,r <
diam(X, d)/2, and for all B € As(B(x,r)), we have

Ci'm(B)PC(B) < n((B(x.r)) < Cim(B)PC(B). (3.40)

where As is as given in Definition 3.16. Furthermore, | satisfies VD on (X, d).

Proof (Sketch of the proof) We only sketch the proof and skip the details as it
follows from almost the same argument as [23, Lemma 2.7].

Letx € X,r < diam(X)/2,B € As(B(x,r)) and B = B(xp,2a™ ™).
Choose By € S;42 such that x € By = B(xp,, 2a"m72), By [23, (2.10)],
the centers of all the descendants of By belong to B(x,r /2). This along with
(B, C)-compatibility implies that

1(B(x, 1)) = n(B(x,r/2))
> liminf i, ({xc : € € Du(B1)})
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(since B(x,7r/2) D {xc : C € Dy(B1)})
> lim inf Z 7w (B"PC(B)

n—o0
B'eD, (By)

2 n(B)PC(By) Z n(B)’C(B)
(by (B, C)-compatibility and gentleness of C).

By the argument in [23, proof of Lemma 2.7], for any B’ € S,,n > m
satisfying xgr € B(x,r + a~™), we have g(B’), ~ g(B1)m, where Bj is
as defined above. For the upper bound, for any B’ € S,,n > m such that
xg € B(x,r +a~™), we have that g(B’),, ~ B. Therefore, we estimate

w(B(x,r)) < w(B(x,r +a™™))
< limsup u,(B(x,r +a= ™))

n—oo

< Y > mBYes)
C~g(B1)m B'€D,(C)
S D) mOFfe).

ng(Bl)m

Since C ~ g(B1),;, and B ~ g(B1)n,, by gentleness of C, we have C(C) =
C(B).By (H2), we have 7 (C) =< m(B). Furthermore, by doubling the number
of such C € §,, such that C ~ g(B1),, is bounded by a constant that depends
only on the parameters of the filling. Combining these estimates, we obtain
the desired upper bound w(B(x,r)) < 7w (B)PC(B). This completes the proof
of (3.40).

The conclusion that p satisfies VD follows from (3.40) and the gentleness
of C. O

In the following proposition, we express the measure in Lemma 3.20 using
the metric in Theorem 3.14-(a).

Proposition 3.21 Let (X, d) be a compact, doubling, uniformly perfect metric
space. Let (S, Ds) be a hyperbolic filling with parameters X, a satisfying
(3.13), (3.10) as given in Lemma 3.9-(a). Let C : S — (0, 00) be a gentle
Sfunction and let B > 0. Let p : C — (0, 1) be a weight function that satisfies
(H1), (H2), (H3), and (B, C)-compatibility. Let 0 = 6, € J(X,d) denote
the metric in Theorem 3.14-(a) and |1 denote the measure on X constructed in
Lemma 3.20. Then, there exist C1 > 1 such that

CrirfeB) < w(Bo(x, ) < Cirfe(B), (3.41)
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forall x € X,r < diam(X, 0), B € As(Bgy(x, s)), where s is the largest
number in [0, 2 diam(X, d)] such that Bs(x,s) C Bg(x,r) (as defined in
(3.4)) and As(By(x, s)) is as given in Definition 3.16.

Proof By an easy covering argument using the metric doubling property, it
suffices to consider the case r < diam(X, 6)/2, so that Bg(x,r) # X.

Letx € X,0 < r < diam(X, 0)/2 and let s = sup{s; > 0 : Bi(x, s;) C
Bg(x,r)}. By Lemma 3.20, u satisfies VD in (X, d). By (3.3) and in (3.39),
w satisfies VD in (X, ) and there exists C» > 1 such that

Cy ' w(Ba(x, 5)) < ju(Bo(x,r)) < Cap(Ba(x, 5)). (3.42)

By (3.3), there exists A; > 1suchthat Bg(x,r) C A;-Band B C Bg(x, Ar)
forall B € As(B4(x, s)). Hence by (3.7) and uniform perfectness, there exists
C3 > 1 such that

C;lr < diam(B, 0) < Csr, forall B € As(B;(x,s)). (3.43)

By (3.34), (3.42), and (3.43), we obtain (3.41). O

3.6 Simplified hypotheses for construction of metric and measure

The goal of this section is to present an analogue of [23, Theorem 1.2] that will
be used in the construction of metric measure space. Some of the main ideas
in the proof of [23, Theorem 1.2] are inspired by the ‘weight-loss program’ of
Keith and Laakso [58, §5.2].

We continue to consider a compact, doubling, uniformly perfect metric
space (X, d), and a hyperbolic filling S; = (S, Ds) with horizontal parameter
A > 8 and vertical parameter a > 1 that satisfy (3.10). We consider 8 > 0,
C : S — (0, co) such thatC is gentle. Theorem 3.24 provides simpler sufficient
conditions (S1), (S2) that allows us to construct a weight function that satisfies
(H1), (H2), (H3), and is (8, C)-compatible. To state the sufficient conditions,
we recall the following definition.

Definition 3.22 For B € Sk, k > 0, we define I'y11 (B) as the set of horizontal
paths y = {B;}¥ |, N > 2 such that B; € Sgyy foralli = 1,..., N,
B;i ~ Biyyforalli =1,...,N—1,xp € B,xpy, ¢2-B,andxp, €2-B
foralli=1,...,N — 1.

We introduce a subadditive estimate based on [11, Proposition 3.15].

Definition 3.23 We say that B € Sk, k > 1 is non-peripheral if every
horizontal neighbour of B descends from the same parent. More precisely,
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B € Sk, k > 1 is non-peripheral if
B ~ B’ implies that g(B)x_1 = g(B')i_1.
By N we denote the set of all non-peripheral vertices in S. We say that a
function C : § — (0, co) satisfies (E) if it obeys the following estimate:
(E) there exists § € (0, 1) such that

CBY<(1-8 Y  CB)

B'e NNDy+1(B)

forall B € Si, k> 1.
In particular, the condition (E) implies NNDy11(B) # Wforallk > 1, B € S.

The following result is an analogue of [23, Theorem 1.2].

Theorem 3.24 Let (X, d) be a compact, K p-doubling, K p-uniformly perfect
metric space and let 8 > 0. Consider a hyperbolic filling Sg = (S, Ds) with
horizontal parameter A > 8 and vertical parameter a > 1 that satisfies (3.10).
LetC : S — (0,00) be a (Kj,, Ky)-gentle function that satisfies (E). Then,
there exists no € (0, 1) that depends only on B, Kp, Ky, A (but not on the
vertical constants a, K, or uniform perfectness constant K p) such that the
following is true. If there exists a functiono : S — [O, }1) that satisfies:

(S1) forall B€ Sk, k>0,ify ={B;: 1 <i < N}isapathinT+(B) (as
given in Definition 3.22), then

N
Y oB) =1,
i=1

(S2) and forall k > 0, and all B € S, we have

Y o(BYC(B) < noC(B),
B'€Dy41(B)

then there exists a weight function p : S — (0, 1) that satisfies (H1), (H2),
(H3), and is (8, C)-compatible.

We recall some results from [23] that goes into the proof of Theorem 3.24.
Let p : S — (0, 00) be a function, we define p* : S — (0, 00) as

0¥(B) = é?i‘}; p(B), forBeS.
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We recall that B ~ B’ if there exists k > 0 such that B, B’ € Sy and (A - B) N
(A-B)Y#£0.Ify = {Bi}f\’:1 is a horizontal path, we define
N—1
Lu(y, p) = Y p*(Bj)) A p*(Bj1).
j=I

Proposition 3.25 ([23, Proposition 2.9]) Let (X, d) be a compact, doubling,
and uniformly perfect metric space. Let S be a hyperbolic filling with param-
eters a and M satisfying (3.13). Assume that p : S — (0, 1) satisfies (H1),
(H2), and also the condition

(H3’) forallk > 1,all B € Sy and all y € Tyy1(B), it holds that Ly (y, p) >
1.

Then the function p also satisfies (H3).

[23, Propostion 2.9] also assumes an additional assumption (H4) which was
not used in the proof. In [23], the condition (H3") was stated for £ > 0 but it
is equivalent to the above condition because I'1(B) = @ for B € Sy.

Lemma 3.26 ([23, Lemma 2.13]) Suppose we have a function g : Sy —
(0, 00) such that

1 B
VB~ B cS, L <TB _
K = 70(B)

K,

where K > 1 is a constant. Suppose that we have a function 7wy : Sgy+1 —
(0, 00) which satisfies the following property:

mo(A) _

VB € Siy1, A € Sy withd(xp, x4) < 4a X and 1 < <
71(B)

Define 1 : Sp11 — (0, 00) as
A / / 1 /
T (B) =m(B") Vv (Emax {7‘[1(3) :B~B }) .

Then, for all B~ B’ € Si+1, we have

The following is a slight modification of [23, Lemma 2.14].
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Lemma 3.27 (Cf. [23, Lemma 2.14]) Let G = (V, E) be a graph whose
vertices have degree bounded by D. Let C : V — (0, 00) be K-gentle; that
is,

C(z
(@)

K< < K, whenever there is an edge between z and 7.

Q

Let T be a family of paths in G and let B > 0. Suppose that T : V — (0, 00)
is a function satisfying

N—1
Y (1) = 1, forall paths y = {z;}]_, €T. (3.44)
i=1
Define T : 'V — (0, 00) as
T(x) =2max{t(y) : y € Va(x)},

where Vo (x) denotes the set of all vertices whose graph distance from x is less
than or equal to 2. Then T satisfies

N-1
Z T%(zi) AT5(zix1) = 1 for all paths y = {z,'}fvzl erl,
i=1

where T¥(x) = min {7 (y) : y ~ x}, and such that

Y F@Ffek) < 2P DK t()fC). (3.45)

zeV zeV

Proof As shown in [23, Lemma 2.14] the function 7 satisfies (3.44).
Since C is K-gentle and sup,..y [V2(x)] < D2, we obtain

Y imfew <28 Y r@few)

xeV xeV zeVa(x)
<26K7Y" 3 r@fc=2P) ] Y r@fce)
xeV zeVa(x) zeX xeV(z)
<2PK*D*) "r()fC2).
zeX

O
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Proof of Theorem 3.24 Let Dy, be such that

Dy, Z,S{;glgne%),i‘{B/ESk : B' ~ B} (3.46)

By K p-doubling, Dy and can be chosen to depend only on A and K p [40, Exer-
cise 10.17]. Similarly, the number of children can be bounded by a constant
D, that depends only on a and K p with

D, > sup max |Diy1(B)|. (3.47)
k>0 BeSi

Take ng € (0, 1) be a constant which will be fixed later, and set

1
1=k, D) A

Leto : S — [0, }1) satisfy (S1) and (S2). Define t = o Vv n_. Then

Yo wsYesy<s Y eBYCB) + 1’ DiKC(B)
B'€Dy+1(B) B'€Dy+1(B)
< 2noC(B).

For B € S define V x(B) = {B/ € Sy :3AB” € S; suchthat B ~ B” ~ B}.
Then by Lemma 3.27, the function

T(B) =2max {t(B") : B' € V,x(B)}, forall B € S
satisfies (H3’) and

> wshfew) <2kip; Y w(BYeB)
B'€Dyy1(B) B’€Dy+1(B)
< 2P K2D2noC(B), (3.48)

for all B € S;.
We construct p : S — (0, 1) satisfying
(1) p > 7. In particular p satisfies (H3”) and p(B) > n_ forall B € S.
(2) (H2) with constant K, where K = nil.
(3) p(B) < max {f(B/) B~ B}. In particular, 6(B) < % forall B € S.

We briefly recall the construction in [23]. Set p(w) = %, where w € Sp. Note

that T < % < 1 (since n— < % and o < }‘). We construct p inductively on Sk.
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Suppose we have constructed p; fori = 1, ..., k. We construct pg4 using
Lemma 3.26. We denote

k
mo(A) = [ ] Ai(g(A)) for A € S and,
i=0
71(B) = 7(B)mo(g(B);) for B € St

By the induction hypothesis along with Lemma 3.26, we obtain a function

71+ Sjr1 — (0, 00) that satisfies K 171 (B) < #1(B) < K#1(B’) for all
B ~ B’ € Sj;1. Wedefine p : Sj11 — (0, 00) as

. 71(B)
B)y=——"—.
Pk+1(B) 0@ (B)))

Carrasco Piaggio’s proof of [23, Theorem 1.2] shows that p satisfies proper-
ties (1), (2), and (3) above. For any B € S, k > 0, using (3.48) we estimate

Y. ABHCe®B)
B’€Dy+1

< > Y #B"C(B) (by property (3) above)

B'€Dy41(B) B'~B'

<K, Y, 6 Y #B"cs

B'e€Dy41(B) B'~B'

<KwDy Y. Y. #(B"PC(B")( B"~ B implies g(B"); ~ B)
C~B B"€Dy4+1(C)

< 2P K} Dine D C(C) < 2P K} DinoC(B). (3.49)
C~B

Now choose 1
B+1 -3 13 1

so that (3.49) yields

Z p(BHPC(B) < %C(B) forall B € S, k > 0. (3.51)

B’€Dy 41

Note from (3.50) that no depends only on 8, Kj, Kp, A but not on constants
K,,a,Kp.
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Next, we modify o so that it becomes (8, C)-compatible. For each B €
Sk, k > 0, we choose wg > 0 such that

wp V p(B") if B € Dy1(B) NN,

B) = 3.52
PEY=1 5w if B € Dyyp1(B) \ N (52
satisfies
> pB)YeB)=coB). (3.53)
B'€Dy41(B)

The existence of an wg € (0, c0) that satisfies (3.53) follows from the inter-
mediate value theorem. In particular, we use (3.51), the continuity of the map

wp> Y (wpVpBNCBY+ Y HBYCB),
B'e€Dy1 1NN B'€Dy+1\N

along with the fact that Dy N N is non-empty. The equality (3.53) implies
that p is (8, C)-compatible since

Z 7 (BYPc(B) = m(B)PC(B)
B'eD,(B)

for all B € S; and for all n > k.

It remains to show that p satisfies (H1), (H2) and (H3). We start by verifying
(H1). Clearly p(B) > p(B) > n— for all B € Sk. On the other hand, (E)
implies that wp < (1 — 8)1/8, since

Yo B = Y pBYCB)=CB)

B'€Dyy1 (B)N B'eDy11(B)

1-8 Y B

B'e€Dy11(B)NN

A

This combined with o < JT and property (3) of p implies that
n- <pB)<1/2)v1-8P
By setting . = (1/2) v (1 — 8)!/# € (0, 1), we obtain (H1).

Since p > p, p satisfies (H3”). Therefore by Proposition 3.25 it suffices to
show (H2). Let B ~ B’ € Sk, k > 1. We consider two cases.
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Case 1: g(B)k—1 = g(B')i_i. Then ;;gg)) = % which thanks to (H1)
satisfies

Case 2: g(B)k—1 # g(B')r_1. Let n > 0 be the maximal integer such that
g(B), = g(B"),.Inthis case fori =n +1,...,k, we have g(B); ~ g(B');.
Hence fori =n+2,...,k, g(B); and g(B’); must both be peripheral (belong
to N¢). Therefore

7(B)  p(g(B)ys1) ﬁ p(g(B))  p(g(B)ui1) ﬁ p(g(B))

7(B)  p@B)rn) A 0(@(B))  p(@(Bhur)) L1 5(e(B))
_ p(g(B)nt1) 7(B) p(g(B)n+1)
p(8(B)n+1) 7 (B') p(8(B)n+1)
By combining property (2) of p to estimate % andn_ < p < p <1 for
the remaining terms, we obtain
< =(B) =< 17:3.
~ (B
Combining the two cases, we obtain (H2) with constant Ko = n:3. O

Remark 3.28 One of the key differences between the construction in [23] and
our work is the proof of Theorem 3.24. In the construction in [23], a similar
modification as defined in (3.52) was done but A/ was chosen to be a singleton
set. However, that choice does not work in our context because we need to
ensure that wg < ny, where ny € (0, 1). This is because C(B’) can be strictly
smaller than C(B). The construction in [23] can be interpreted as the particular
case C(B) = 1 for all B € S. The requirement n4 € (0, 1) is the motivation
behind the notion of non-peripheral vertices and the enhanced subadditive
estimate (E).

The following ‘patching lemma’ allows us to combine functions that satisfy
local versions of (S1) and (S2) into a global one. This is an adaptation of the
construction in [23, pp. 533-534].

Lemma 3.29 (Patching lemma) Let S denote a hyperbolic filling of a K p-
doubling, uniformly perfect, compact metric space, and let ,n; > 0. Let
Si = (S, Ds) be a hyperbolic filling with horizontal parameter . > 8 and
vertical parameter a > 1 that satisfies (3.10). Let C : S — (0, 00) be a
(Kp, Ky)-gentle function. Assume that for all B € Si,k > 1, there exists
op : Sk+1 — [0, %‘) such that
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(a) if we set Vg = {B’ €Sky1:BN3-B# @}, then og(B’) = 0 for all
B’ € Sy \ Va.
(b) for any path y = {B,~}lN:1 € 'r+1(B), we have

N
Y op(B) =1,
i=1

(c) and } pics,,, op(B")PC(B) < mC(B).

Leto : S — [0, JT) be defined as
o(B") = max {o4(B) : A € S}

forall B' € Sgy1 and forallk > 1, and o (B") = 0 forall B’ € Sy US). Then
there exists C329 > 1 that depends only on K p, Ky, such that o satisfies (S1)
and the estimate

> oB)PC(B') < CaomC(B).
B'€Di11(B)

Proof Forany pathy = {B;}_; € Ty41(B), B € S, wehave ) | 0(B;) >
ZlNzl op(B;) > 1. Therefore o satisfies (S1).
For any B € Si+1, we have

Y eBYeB)= > max{oa(B) :AeS}C(B)
B'€Di11(B) B'€Dy41(B)

> ) oaB)YCB)

B'€Djs1(B) A:B'eVy

Yo ) eaBHfes)

A:VpNVa#0 B'€Vy

Y. mC(A)

A:VpNV 4 #£0
Z mC(A) (- VgNVy4#0 = A~ B)
A:A~B

> mKiC(B) < DyKymC(B),
A:A~B

IA

A

IA

IA

A

where Dj, is chosen as (3.46). |
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4 Universality of the conformal walk dimension
4.1 Consequences of Harnack inequalities

In this subsection, we recall some previous results concerning the elliptic and
parabolic Harnack inequalities. We start with recalling the definition of the
heat kernel and its sub-Gaussian estimates.

Definition 4.1 (HKE(B)) Let (X,d,m,&,F) be an MMD space, and let
{Pr};-0 denote its associated Markov semigroup. A family {p;},. of non-
negative Borel measurable functions on X x X is called the heat kernel of
(X,d,m, &, F), if p; is the integral kernel of the operator P; for any ¢ > 0,
that is, for any r > 0 and for any f € LZ(X, m),

P f(x) = /Xpt(x, V) f(y)dm(y) form-ae.x € X.

Let B € (1, 00). We say that (X, d, m, £, F) satisfies the heat kernel estimates
HKE(S) with walk dimension 8, if there exist C1, c1,¢2,8 € (0,00) and a
heat kernel {p;},. such that for any > 0,

C d(x, y)? ﬂ%)
xX,y) < —— —exp| —c¢ (—) form-a.e.x,y € X,
pi(x,y) m(B(x. 11/7)) p( 1 ; y

4.1)
2

————— form-ae.x,y € X withd(x, y) < stl/B,

pr(x,y) >
4.2)

The following condition is the key to establishing the parabolic Harnack
inequality in the presence of the elliptic Harnack inequality.

Definition 4.2 (Capacity estimate) Let 8 € (1, oo). We say that an MMD
space (X,d,m, £, F) satisfies the capacity estimate cap(f) if there exist
C1, Ay, A> > 1 such that for all R € (0, diam(X, d)/Az),x € X

_1m(B(x, R))

m(B(x, R))
Cl Rﬁ —F. C

< Cap(B(x, R), B(x, A|R)) < C} 7P

ap(B)

Poincaré and cutoff Sobolev inequalties are important functional inequalties
for obtaining the stability of Harnack inequalties, which we recall below.

Definition 4.3 Let (X, d, m, £, F) be an MMD space and let 8 € (1, 00).

(1) Wesay that (X, d, m, £, F) satisfies the Poincaré inequality P1(8), if there
exist constants C > QO and A > 1 such thatforall x € X, R € (0, c0) and
feF,
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/ (f = faer)?dm < CRP / dr(f. f).  PI(B)
B(x,R) B(x,AR)

where fB(va) = m fB(x,R) fdm.
(i) Let By C B> be open subsets of X. We say that ¢ € F is a cutoff function
for By C B2 if0 < ¢ < 1m-a.e.,,p = 1 m-a.e. on By and supp,,[¢] C B.
(iii) We say that (X, d, m, £, F) satisfies the cutoff Sobolev inequality CS(B),
if there exist Cq, Ca, C3, 1 > 0 and A > 1 such that the following holds.
Forall x € X, R > 0 with By = B(x, R), By = B(x, AR), there exists a
cutoff function ¢ € F N C(X) for By C By such that for any u € F,

C
/uzdl“(w,fp) SCl/ F(u,u)+—2/ u>dm, CS(B)
X B>\ B; RF B\ By

and such that the following scale invariant Holder continuity estimate

holds:
d(x1,x2)\"
lp(x1) —e(x2)] = C3 —R (4.3)

for all xq, xp € X.
(iv) We say that (X, d, m, £, F) satisfies the weak cutoff Sobolev inequality
CSyweak (B), if CS(B) with “p € F N C(X)” replaced by “¢p € F” and with

the Holder continuity estimate (4.3) dropped holds.

The following lemma shows that, under the above Poincaré and cutoff
Sobolev inequalities, the extended Dirichlet space F, is contained in the space
Floc as defined in (2.3) of functions locally in the domain F of the Dirichlet
form (&, F).

Lemma 4.4 Let (X,d, m, E, F) be an MMD space that satisfies P1(B1) and
CSweak (B2) for some B1, B2 € (1, 00). Then F, C Floc.

Proof Let g € F,. Then there exists an £-Cauchy sequence {g,}, C F such
that g, converges to g m-a.e. Let B = B(x, R) be any ball. By the Poincaré
inequality PI(B;) the sequence g, — (gn)p is L*(B, m)-Cauchy. Since g,
converges to g m-a.e. and g, — (gn)p is L?(B, m)-Cauchy, we have that
lim,_ ~(gn)B = gp and that g, converges to g in L2(B, m).

Let A > 1 be as in CSyeak (B2) and let ¢ be a cutoff function for B =
B(x,R) C B(x, AR) as in CSyeak(B2). By [33, Theorem 2.1.7] we may
assume that g, is bounded, so that g,¢ € F by [33, Theorem 1.4.2-(ii)]. Noting
that <p2 < 1q.e. by [33, Lemma 2.1.4], by the Leibniz rule [33, Lemma 3.2.5]
and the Cauchy—Schwarz inequality [33, Lemma 5.6.1] for I'(-, -), we obtain
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1
55((.0(&1 — &m)> 9(&n — &m))

<E&n—8&m> 8 — &m) + / (gn — gm)*dT (9, @),
X

which together with CSyeax (B2) for u = g, — g, and the previous paragraph
with B(x, AR) in place of B = B(x, R) shows that g,,¢ is a Cauchy sequence
in (F, &) converging in L?(X, m) to g¢. Thus g € F by the completeness
of (F, &1), and since g = g in B and B = B(x, R) is an arbitrary ball in
(X, d), we conclude that g € Fiqc. O

We record the following theorem which relates the elliptic and parabolic
Harnack inequalities. The equivalence of (a), (b) and (c) is due to Grigor’yan
and Telcs [38, Theorem 3.1] in the context of random walks on graphs. This was
later extended to the MMD space setting by several authors. The equivalence
between (a) and (d) is due to Barlow and Bass [6] for random walks on graphs
and was extended to the current setting in [7].

Theorem 4.5 Let (X,d,m,E, F) be an MMD space and let § € (1, 00).
Then the following are equivalent:

(a) (X,d,m,E,F) satisfies PHI(B).

(b) (X,d,m,E, F) satisfies VD, EHI and cap(p).

(c) (X,d,m, &, F) satisfies VD and HKE(p).

(d) (X,d,m,E, F) satisfies VD, PI(B) and CS(p).

(e) (X,d,m, &, F) satisfies VD, PI(B) and CSyeak (B).

Moreover, if (X, d, m, £, F) satisfies any one of (a), (b), (c), (d) and (e), then
(X, d) is arcwise connected and uniformly perfect and (X, d, m) is RVD.

Proof First, by Remark 2.6, [36, Proposition 5.6] and [9, Lemma 5.2-(c),(b)]
(see also [9, Proof of Theorem 5.4, (b) = (a)]), (b) implies that (X, d) is
arcwise connected and uniformly perfect and that (X, d, m) is RVD. Then
since (b) and RVD together imply (c) by [37, Theorem 1.2], it follows that (b)
implies (c). Next, (c) implies (a) by [10, Theorem 3.1], CS(8) by [7, Section
31,2 PI(B) by [37, Proof of Theorem 1.2] or [73, Proof of Theorem 3.2] (see
also [56, Remark 2.9-(b)]), and thus (d). It is obvious that (d) implies (e). Con-
versely, since the conjunction of VD and PI(8) implies RVD by [80, Corollary
2.3] and Remark 3.18-(b), it follows from [37, Theorem 1.1] along with [11,
Proposition 5.11 and Remark 5.12] that (e) implies (b); in [37, Theorem 1.1]
the condition EHI is stated and proved only for & € F, but by using Lemma 4.4

3 We note that the proof of the Holder continuity estimate of the resolvent kernel stated in [7,
Lemma 3.3], from which (4.3) follows, has a gap which has been resolved in the arXiv version.
The proof of CS(B) in [7, Section 3] works also in the compact setting with minor modifications
and it does not use the assumption that the metric d is geodesic.
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and the relative compactness in X of all balls in (X, d) we obtain our version
of EHI in Definition 2.5, where h € F,.

It remains to prove that (a) implies (c). Since the conjunction of VD and
PHI(B) implies HKE () by [10, Theorem 3.1] (see also [73, Proof of Theorem
3.2]), it suffices to show that PHI(8) implies VD.

The implication from PHI(B) to VD follows from [10, Theorem 3.2]
under the additional assumption that the metric d is geodesic. However, this
additional assumption is not necessary and we modify the proof in [10] as
follows. By [10, Lemma 4.6], there exists a heat kernel p;(x, y) such that
(t,x,y) = p:(x,y)is continuous on (0, 00) x X x X. By [10, (4.52)], there
exists ¢y, ¢o > 0 such that

(&)
sup  pi(x,y)>

I3
————exp <—CL) forall xoe X, r>0,t>0.
X,YyEB(x0,r) m(B(xp, 1)) rb

4.4)

Let0 < C; < Cy < (C3 < (4,6 € (0,1) and C5 > 1 denote the constants

. _ G3+C
in PHI(B). Define K = C?+C3 € (1, 00).

Let xo € X, r > 0 be arbitrary. Fix t > 0 such that t = (C1 4 C2)6 Prf /2.
Using (4.4), we choose y € B(xp,r) such that SUP, ¢ B(xo.r) pr(x,y) >

Loy P (— ). By PHI(B), we obtain

r

-1
Cs

cot
2m(Bo, 1) T <_r_ﬂ> for some y € B(xo.r). (4.5)

Pkt(x0,y) >

By PHI(B) for the caloric function (¢,z) + p;(xg,z) on the cylinder
0, Cs6~PrPy x B(x,871r1), where ri > O satisfies (C1 +C2)8#rf /2 = K1
(or equivalently, r; = K /By and (4.5), we obtain

)
Cs7c

7) > ————exp _at for all z € B(xo, Kl/ﬂr).
~ 2m(B(xo, 1)) rb

(4.6)

pkzt(xo’

Using [y px2,(x0,2) m(dz) < 1andt = (C; + C2)8 #rP /2 and (4.6), there
exists Cg > 1 such that

B ’Kl/ﬂ
m( (x() r)) S C6’ fOI‘ all -xO (S er > 0'
m(B(XO,V))

By iterating the above estimate [ log2/log K] times, we obtain the volume
doubling property VD. O
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Remark 4.6 Theorem 4.5 can be generalized to the case where the space-time
scaling function W (r) = r# is replaced with a homeomorphism W : [0, co) —
[0, co) satisfying the following estimates: there exist Cy, 81, B2 € (0, co) with
1 < B1 < B2 such that

1 R B \I’(R) R B2
Ci |\ — < <Ci|— forallr, R € (0, 00) withr < R.
r W (r) r

The generalized version of the relevant properties like PHI(8) and cap(g) for
such space-time scale functions can be found in [10,37].

Combining Theorem 4.5 with the main result of [80], we have the following
alternative proof that PHI(8) cannot hold for 8 € (0, 2) and thereby that (1.5)
holds.

Lemma 4.7 If 8 > 0 and an MMD space (X, d, m, £, F) satisfies PHI(B),
then B > 2.

Proof Assume to the contrary that 8 < 2, so that p := d#/? would be a metric
on X and (X, p, m, £, F) would satisty PHI(2). For ¢ > 0, we define the
&-chain metric as

N—1

de(x,y) = inf Y d(xi, xi11),
i=0
where the infimum is taken over all finite collection of points {x,-}lN: 0o CX,N €
N, such that xg = x, xy = yand d(x;, xj+1) < eforalli =0,1,..., N — 1.
We define p. (x, y) analogously for any x, y € X. Then since (X, p, m, E, F)

would satisfy cap(2) and PI(2) by Theorem 4.5, it follows from [80, Theorem
1.6 and Remark 1.7(a)] that there would exist C > 0 such that

Pe(x,y) < Cp(x,y) forallx,y € X ande > 0. 4.7)

On the other hand, since d(x;, x;4+1) < € is equivalent to p (x;, xj+1) < eP/2,
we would have

d(x,y) <ds(x,y) <& P2pos(x,y) forallx,ye Xande > 0. (4.8)
Combining (4.7) and (4.8), we would obtain

d(x,y) = Ce'PPp(x, y) = Ce'PRd(x, y)P?
for all x,y € X and ¢ > 0, and letting ¢ | 0 would yield diam(X, d) = 0,

which would contradict our standing assumption that X contains at least two
elements. O
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We next collect some properties of EHI in relation to time changes and
quasisymmetric changes of the metric. The following lemma was observed
first by Jun Kigami and taught through [65] to the authors of [11] and of the
present paper.

Lemma 4.8 ([65], cf. [11, Lemma 5.3]) Ler (X,d,m, &, F) be an MMD
space, let uw € A(X,d,m,E, F) and let 6 € J(X,d). Then (X,d, m,E, F)
satisfies EHI if and only if (X, 0, u, EH, F*) satisfies EHL

Proof ((F)e, EM) = (Fe, €) by [24, Corollary 5.2.12], F* N Ce(X) = Fo N
C(X) = F N Ce(X) by (2.8) and the equality F, N L2(X, m) = F from [24,
Theorem 1.1.5-(iii)], and therefore for each open subset U of X we have

{h € (F®) | his E*-harmonic on U} = {h € F, | h is E-harmonic on U}.
4.9)

Note also that by [24, Theorem 5.2.11] we have the following (see [33, Section
2.1] and [24, Sections 1.2, 1.3 and 2.3] for the definition and basic properties
of quasi-continuous functions):

(i) A subset N of X has 1-capacity zero with respect to (X, d, m, £, F), i.e.,
satisfies Cap; (N) = 0, if and only if N has 1-capacity zero with respect to
(X, 0, u, E*, F*). In other words, the notion of holding g.e., i.e., holding
outside a set of 1-capacity zero, withrespectto (X, d, m, £, F) is equivalent
to that with respect to (X, 9, u, E#, FH).

(i1) Afunctionu : X\ N — [—oo, oo] defined g.e. on X, where N is a subset of
X with Cap(N) = 0, is quasi-continuous with respect to (X, d, m, £, F)
if and only if u is quasi-continuous with respect to (X, 6, u, E*, FH).

Now choose a distortion function n so that Id : (X,0) — (X, d) is an
n-quasisymmetry, and suppose that (X, d, m, £, F) satisfies EHI with the con-
stants C > 1 and 6 € (0, 1). Let Bs(x, r) and By (x, r) denote open balls of
radius r centered at x in (X, d) and (X, 0), respectively. Letx € X,r > 0, and
let h € (F*), = F, be E#-harmonic on By (x, r) and satisfy 7 > 0 u-a.e. on
Bg(x, r), where we consider only quasi-continuous m-versions of 1 € F, with
respect to (X, d, m, £, F). Then h is £-harmonic on By (x, r) by (4.9), h > 0
g.e. on By(x,r) by [33, Lemma 2.1.4] applied to (X, 6, u, E#, F"), hence
h > 0m-a.e.on By(x,r), and By(x,8'r) C By(x,8t) C By(x,t) C By(x,7)
forsomet > O0by (3.5) with8'r inplace of r and A = 8~ where s’ := n_l 8).
Thus we obtain

m-esssup h < C - m-essinf h (4.10)
By (x,8'r) By(x,8'r)
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by EHI for (X, d, m, £, F) applied to B;(x, t) and i. On the other hand, we
also have

m-essinf h < h(y) < m-esssup h,
Bg(x,(S’r) Bg(x,&’r)

first for m-a.e. y € Byg(x, §'r), then for q.e. y € By(x, 8'r) by [33, Lemma
2.1.4] and hence for u-a.e. y € By(x,8'r), and therefore from (4.10) we
conclude that

h(y) < m-esssup h
Bg(x,8'r)

< C -m-essinf h < Ch(z) forpu-ae.y,z € By(x,8'r),
By (x,8'r)

proving EHI for (X, 6, u, E#, F*). The converse implication from EHI for
(X, 0, u, E*, F*) to EHI for (X, d, m, £, F) is proved in exactly the same
way by noting that Id : (X,d) — (X, 6) is an 7j-quasisymmetry with the
distortion function 7 given by 7i(¢) := 1/n~'(t71). O

As mentioned in the introduction, Delmotte has constructed a space that
satisfies EHI but fails to satisfy VD and hence fails to satisfy PHI(8) for any
B > 0[31]; see also [9, Example 8.4] for a similar construction. Nevertheless,
it is possible to obtain PHI(B) after a time change and a change of the metric.
We recall the characterization of EHI in [9,11].

Theorem 4.9 ([9,11]) Let (X,d, m, E, F) be an MMD space. Then the fol-
lowing are equivalent:

(a) (X,d,m,E, F) satisfies the metric doubling property and EHI .

(b) There existy > 2, u € AX,d,m,E,F) and 6 € J (X, d) such that the
time-changed MMD space (X, 0, u, E*, FH) satisfies PHI(y). In other
words, d.y < 00.

Moreover; either of these two conditions implies that (X, d) is arcwise con-
nected and uniformly perfect.

Proof The implication from (a) to (b) follows from Remark 2.6, [9, Theorems
5.4 and 7.9] and Theorem 4.5. On the other hand, if (b) holds, then we see from
Theorem 4.5 and Remark 3.18-(a) that (X, 6) is arcwise connected, uniformly
perfect and doubling and that (X, 6, u, E#, F) satisfies EHI, and therefore
the same hold also for (X, d) and (X, d, m, €, F) by [40, Theorem 10.18] and
Lemma 4.8, completing the proof. |

The following elementary lemma is used to verify that the function defined
in (4.11) on a hyperbolic filling is gentle and satisfies the enhanced subadditive
estimate (E).
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Lemma 4.10 Let (X, d, m) be a metric measure space that satisfies VD and
let y > 0. For any ball B(x, r), we define

m(B(x,r))
rv '

C(B(x,r)) = 4.11)

(a) Let A > 1. There exists C1 > 0 (that depends only on the constant of VD

and A) such that for any x, y € X satisfying B(x, Ar) N B(y, Ar) # 0, we
have

C(B(x,r)) = CiC(B(y,r)).

(b) Let a > 1. There exists Co > 1 (that depends only on the constant of VD,
y and )\.) such that for any x,y € X satisfying y € B(x, r), we have

Cy'C(B(y. r/a)) < C(B(x,r)) < C2C(B(y, r/a)).

(c) There exists C3 > 1 such that the following estimate holds: for all a >
L,xeX,r>0andzy,..., 2z, k € Nsuchthatd(z;, z;) > r/(2a) for all

1 <i < j <k and satisfying UfleB(zi, r/a) D B(x,r/6), we have that

k
C(B(x.r)) < C3a™" Y _C(B(z.7/a)). (4.12)

i=1
Proof We denote m(B(x, r)) by V(x, r) in this proof.

(a) Let Cp € (1, 00) denote the constant associated with VD and let o =
log, Cp, so that by (3.39) we have

V(x, R) R\*
<Cpl|l—) , foral0<r <Randx € X. (4.13)
Vix,r) r

Letz € B(x, Aar)NB(y, Ar).Byusing B(x,r) C B(z, A+1)r), B(z,r) C
B(y, (A + 1)r) and (4.13), we obtain

V@, r) V@, 4+ Dr) < CpOo+ D*V(z,r) < CHG+ D™V (y, ).
(b) Since B(x,r) C B(y,2r) and B(y,r/a) C B(x,2r), by (4.13) we have

V(x,r) < V(y,2r) < CpRa)*V(y,r/a),
V(y,r/a) < V(x,2r) < CpVi(x,r).
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Therefore
C(B(x,r))<Cp2%a®"7C(B(y,r/a)), C(B(y,r/a))<Cpa”C(B(x,r)).

(c) By VD and U*_, B(z;, r/a) D B(x,r/3), we have

k
V(x.r) < ChV(x.7/8) < Cp Y V(xi.r/a).
i=1
Dividing both sides by r”, we obtain (4.12) with C3 = C ?).
O
The elliptic Harnack inequality implies that the capacities across annuli with
similar locations and scales are comparable as we recall below.

Lemma 4.11 ([9, Lemmas 5.22 and 5.23]) Let (X,d,m, &, F) be an MMD

space that satisfies the metric doubling property and EHI. Then for any
A1, Ay > 1, there exist C1,Cy > 1 and y > 0 such that for all x, € X,
and forany 0 < s < r < diam(X, d)/C},, we have

Cz_l (r)—V - Cap(B(x,r), B(x, A>r)°) <C <r>y.

s/ = Cap(B(x,s), B(x, Ais)¥) — ~\s

Proof This follows immediately from Remark 2.6 and [9, Theorem 5.4, Lem-
mas 5.22 and 5.23]. m|

Using this lemma, we obtain the following comparison of capacity across
annuli under a quasisymmetric change of metric.

Proposition 4.12 Let (X, d, m, £, F) be an MMD space that satisfies PHI(y),
wherey > 2. Let0 € J(X,d)anda > 1. Thenthere exists C, A > 0 such that
the following property holds. For any x,X € X,0 < r < diam(X, 0)/A,s >
0, n € Z such that

s =sup{0 <t <2diam(X,d) : Bg(x,t) C Bg(x,r)}, 4.14)
and
207"V <5 <247, d(X, x) < 2a7",

we have

_ym(Bq(¥,2a™™) ¢ m(Bg(X,2a""))
1 [2a—n]y < Cap(Bg(x,r), Bo(x,2r)) < C [Za_”]y

(4.15)

C
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Proof By Theorem 4.5, (X, d) satisfies doubling, uniformly perfect metric
space. By Proposition 3.2, there exists A, Az, Az > 1 such that for all x €
X,0 <r <diam(X, 0),

Ba(x,s)CBg(x,r) CBg(x, A1s) CBq(s,2A15) C By(x, Aor) C Bg(x, Azs),
(4.16)

where s > 0 is as defined in (4.14). If By (x, A3s) # X in (4.16), we have

Cap(B4(x, s), By(x, A3s)) < Cap(Bg(x,r), By(x, Ayr)°)
< Cap(By(x, A1s), By(x,2A15)). (4.17)

By Lemma 4.11, Proposition 3.2-(b), and Theorem 4.5, there exist C1, A > 1
such that forall x € X,0 < r < diam(X, 6)/A, we have

C
1o Cap(By(x, r), By(x,2r)°) <cy 4.18)
— Cap(By(x,s), Bg(x, A3s)¢) —

and

m(Bg(x,s))

By(x,
Cl—lw < Cap(Bg(x, s), Bi(x, A3S)C) < Cq y
s N

(4.19)

where s > 0 is as given in (4.14). By (4.18), (4.19) and VD , we obtain (4.15).
O

We will use Theorem 3.24 to construct metrics. The following proposition
plays a central role in constructing a function on the hyperbolic filling that
satisfies the hypotheses (S1) and (S2) in Theorem 3.24.

Proposition 4.13 Let (X, d, m, £, F) be an MMD space that satisfies PHI(y)
for some y > 2 and let . > 1. There exist constants A,C1,Cy > 1,7 > 0
(that depend only on A and the constants associated with PHI(y)) such that
foranya > 1,x € X,0 < r < diam(X, d)/A, and for any collection of balls
B = {B(yi,r/a) :i € I} such that U;c; B(y;, r/a) = X and {B(y;, r/(4a))}
is pairwise disjoint, there exists a function o: B — [0, 00) that obeys the
following properties (note that o depends on x € X,r > 0):
(S1°) for any sequence of balls y = {B; : 1 <i < N} in B such that xp, €
B(x,r),xpy & B(x,2r)andA-B;NA-Bjy # W foralli =1,..., N—
1, we have

N
> oB) =1, (4.20)
i=1
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and
o(B) =0, foranyball B € B such that xg ¢ B(x,2r). (4.21)

(S82°) o: B — (0, 00) satisfies the following estimates

Z (B)? m(B) _ . m(Bx,r)) 4.22)
vray = '
BeB

and
supo(B) < Cra™". (4.23)
BeB

In particular, for any B > 2, we have

_ B(x,
Z (B )/3 < CIC/ZS 2a—(ﬂ—2)r7w. (4.24)
r

BeB

Proof For a functionu € F N C(X) and B € B, we define its ‘discretization’
ug: B — Ras

1
ug(B) = ]i udm = W /B udm, (4.25)

and its ‘discrete gradient’ o, : B — [0, 00)

ou(B) = > lug(B") — up(B)|. (4.26)

B’eB:A-B'NA-B£D

Our construction of o is the discrete gradient o, of a well chosen function u.
In particular, we choose a function u € F N C.(X) that satisfies the following
properties: there exists C3 > 1, > 0 (that depends only on the constant
associated with PHI(y)) such that for all x € X, r < diam(X, d)/A, we have

u=1onB(x,1.1r)and u =0 on B(x, 1.9r), (4.27)
B(x,
E(u,u) < Csw, (4.28)
r
d(y, K
lu(y) —u(z)| < C3< 8 Z)> forall y, z € X. (4.29)
r

The existence of a function u € F N C.(X) satisfying the above properties
follows from the cutoff Sobolev inequality CS(8), Theorem 4.5 and a standard
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covering argument as we recall below. By Theorem 4.5 we have that m is a
doubling measure on (X, d) and hence (X, d) is a K p-doubling metric space
for some Kp > 1. Therefore there exists Np € N thatdepends only on K p and
Yi,---» YNp € B(x, L1r) such that UM B(y;, 7/10) D B(x, 1.1r). By the
construction of cutoff functions in [7, Section 3], there exists C4 > 0, > 0
such that foreachi = 1, ..., Np satisfies

¢i = 1on B(y;,r/10), ¢; =0on B(y;,r/5)",
m(B(y;, r/10))

rY ’

d(y, z)
r

E(pi, ¢i) < Cy4

n
|¢i()’)—¢i(Z)ISC4( ) forall y,z € X.

By choosing u = maxj<;<n, ¢; and using the above estimates along with

triangle inequality, £(u, u) < Z;V:Dl E(pi, 9i), lu(y) —u(z)] < maxi<i<n,
|¢i (y) — ¢i(z2)|, we obtain the desired properties (4.27), (4.28) and (4.29).

Let us show that the function o = o, as defined by (4.25) and (4.26) satisfies
the desired conditions (S1’) and (S2’). To this end, we note the following
properties of ugz: B — R:

uqg(B(xp,r/a)) =1 forany xp € B(x,r/10)
(since B(xp,r/a) C B(x, 1.1r)),
ug(B(y,r/a)) =0 foranyy € X suchthatd(y,y’) <2ir/a,
where y' € B(x, 2r)*(B(y, r/a) C B(x, 1.9r)¢
because (21 + 1)r/a < 0.1r by (3.13)),

N N—-1
Y ou(B) = Y lua(Bi) — ua(Bit1)| = lua(B1) — ua(By)|

i=1 i=1

for any sequence of balls By,..., By € Bsuchthat A - B;NA- Biy1 # 0
foralli = 1,..., N — 1. The above equations immediately imply (4.20) and
4.21).

Since the balls B(y;, r/(4a)),i € I are disjoint, by doubling property of
(X, d), there exists Cs > 1 that depends only on A and the doubling constant
(but not on a) such that

#{B' €eB:A-BNi-B #¢} <Cs, foralBeB.  (4.30)
For any two balls B, B’ € Bsuchthat A - BN A - B # (J, by (4.29) we have

|ua(B) — uq(B"| < sup  u(y) —u@)| < C3Q2( + 1))"a"".(4.31)
v,2<2(A+D)r/a
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Combining (4.26), (4.30) and (4.31), we obtain (4.23) for o = o,,.

It remains to show that 0 = o, satisfies (4.23). To this end, we recall the
following Poincaré inequality PI(y) implied by PHI(y) and Theorem 4.5:
there exist Cp, A > 1 such that

! 2
2m(B(y.s)) - dm(z)d
2m(B(y, S)) /B(Y,s) /B(y,s)(f(Z) f(w)) m(z) m(w)

_ /B U dm = Crs? / dr(f, f), (432)
y,s

B(y,As)

forany f € F,y € X, s > 0.On the basis of (4.32), the following comparison
estimate between discrete and continuous energies is standard [6,28]. Similar
to §3.2, for any two balls B, B’ € Bby B’ ~ B we meanthat A- BNA-B’ # (.
We obtain (4.22) by the following estimates:

5 o2y 8

BeB (r/a)V
(B)
< lua(B') — ua(B)| =
B,B/GXB,:B/~B (r/a)r

(by (4.30) and the Cauchy-Schwarz inequality)
! 2
S Y @ fy ), w0 - ue e anc)

B,B'eB,B'~
(by Jensen’s inequality)

1
< - . )
N ggm((zx +1)- B)(r/a)Y /B/(MH).B(M(y) u(2))? dm(y) dm(2)

(by VD)
<@+ / dU(u,u)  (by (4.32))
BeB AQr+1)-B
S E(u, u)
(since (X, d) is K p-doubling, we have Z Toartra) s S 1
BeS,
B(x,
< M (by (4.28)).
.
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Finally, (4.24) follows from (4.22), (4.23), and

-2
S o@D < (o) Yo

=7 rfa) T \pes = ey
O

The following proposition provides a convenient sufficient condition for a
measure (4 to be smooth and have full quasi-support.

Proposition 4.14 Let (X, d, m, £, F) be an MMD space that satisfies PHI(y)
for some y > 2 andlet € J(X,d). Let B > 2 and p be a Borel measure
on X that satisfies the following estimate: there exist C1, A > 1 such that for
anyx € X, 0 <r < diam(X, 0)/A, we have

n(Bg(x, 1))

B )
i BT Cap By, ), By, 200 < €y
B B
Then u € A(X,d,m, &, F), i.e., u is a smooth Radon measure on X with full

quasi-support. Furthermore (X, 0, ) is VD and RVD .

Proof By Theorem 4.5 and [11, Lemma 5.3] (see also Lemma 4.8 above), the
MMD space (X, 6, m, £, F) satisfies EHI and (X, d) is a doubling, uniformly
perfect metric space, so that (X, 6) is also doubling and uniformly perfect by
[40, Theorem 10.18 and Exercise 11.2]. The volume doubling property VD of
u in (X, ) follows from Remark 2.6, Lemma 4.11 and [9, Lemma 6.3], and
the RVD property of u in (X, ) follows from VD of (X, 6, u), the uniform
perfectness of (X, #) and Remark 3.18-(b). That u is a smooth Radon measure
on X follows from Remark 2.6 and [9, Proposition 6.13], and i has full quasi-
support by Remark 2.6 and [9, Theorem 5.4 and Proposition 6.16]. O

4.2 Completion of the proof of Theorem 2.10

Now we are in the stage of completing the proof of our first main theorem
(Theorem 2.10).

Proof of Theorem 2.10 By Theorem 4.9, it suffices to show that (a) implies (c).
By Lemma 4.7, it suffices to show that d.,y, < 2. To this end, we fix an
arbitrary f > 2. We shall construct a metric 8 € J (X, d) and a measure u €
A(X,d,m, £, F) such that the time-changed MMD space (X, 0, u, E*, FH)
satisfies PHI(B).

By Theorem 4.9, (1.3), (2.9), and by changing the metric and measure if
necessary, we may assume that (X, d, m, £, F) satisfies PHI(y) for some
y > 2. By Theorem 4.5, (X, d, m, £, F) satisfies VD, RVD, EHI and cap(y).
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If (X, d) is bounded, we scale the metric so that diam(X, d) = % By com-
pleteness and the metric doubling property, we recall that (X, d) is compact
[40, Definition 10.15 and Exercise 10.17].

Fix A > 32 and let a be an arbitrary constant that satisfies (3.13). The
choice of a will be made later in the proof. Let xo € X. Let S = [ [;c7_, Sk
denote the vertex set of the hyperbolic filling as defined in Definition 3.10,
where S; = {B(x, 2a"‘) X € Nk}, where Ng, k € Z is a sequence of ak-
separated sets such that Ny C N4 and xg € Ni for all k € Z (recall from
Lemma 3.9 this is a hyperbolic filling in the sense of Definition 3.6).

We define a function C : [ [, Sk — (0, 00) on the extended hyperbolic
filling by

m(B(x,2a=*))
Qa=fyr
for any k € Z and for any B(x, 2678 € &.
(4.33)

C(B(x,2a %) =

Let us verify that C is gentle and satisfies the enhanced subadditivity property
(E). By Lemma 4.10-(a),(b), there exist K, K, such that K, depends only on
a and the constant associated with VD, K depends only on A and the constant
associated with VD such that

C(B1) < KyC(Bz), whenever By and B, share a horizontal edge,
C(B1) < KyC(B), whenever By and B; share a vertical edge.  (4.34)

Recall that for every ball B € S, k € 7Z, there exists an unique ball g(B)y_1 €
Sk—1 such that there is a vertical edge between g(B)y—;. Note that is B ~ B’
and B, B’ € Sy41, then by (3.13), we have d(xp, xp/) < 26a k-1 < ll—za_k.
We denote the set of all non-peripheral elements of | [,., Sk by AV as given
in Definition 3.23. Hence if C = g(B)r and d(x¢c, xp) < %(201_1‘) +2q k1,
thend(xc,xp) < 37" +2a71+127ha=* < Ja~* and hence B € N This
along with Lemma 4.10-(c) imply that, there exists C1 > 0 such that

C(B) < Cia™" Z C(B), forall Be S, keZ. (4.35)
B'eNNDy1(B)

By (4.34) and (4.35), we conclude that C is gentle and satisfies the enhanced
subadditivity property (E).

For k € Z and B € &, let 'y 1(B) denote the set of horizontal paths
y = {B,-}fV:1 , N > 2 as given in Definition 3.22. If diam(X, d) = %, we note
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that 'y (B) = @ for all k < 0. If diam(X, d) = %, we assume that

a>2A, (4.36)

where A is the constant in Proposition 4.13. If either k € Z, diam(X, d) = oo

orifk € N, diam(X, d) = %, for any B € Sk, we define op : Sgr1 — (0, 00)

as the function defined in Proposition 4.13, that satisfies

N
Y op(B) =1, forany {Bi}/_ € I'i11(B).
i=1

Otherwise if diam(X, d) = % and £ > 0, we simply define op : Sgy1 —
[0, 00) as op = O for all B € &. For any k € Z and for any B € &, we
define

o(B) = max oc(B), foranyk € Z, B € &. (4.37)
CeSk—1

Evidently, by Proposition 4.13, we have

N
ZO’(B,‘) > 1, forany {B,-}lN:1 € I't4+1(B) and for any k € Z, B € Sk.
i=1

(4.38)

In the compact case, the above statement is vacuously true for £ < 0. By
Proposition 4.13 and the argument in Lemma 3.29, there exist C», n > 0 such
that

Y oB)PC(B) < CraPPC(B), foranyk € Z, B € S,
B'€Dy41(B)
(4.39)

where Dy 1(B) denote the set of descendants of B in S (that is, Dy41(B)
is the set of elements in S 1(B) that share a vertical edge with B).
We consider two cases.

Case 1: (X, d) is bounded. Let S = [[;., Sk denote the vertex set of the
hyperbolic filling. In this case by (4.35), we can ensure the enhanced sub-
additivity estimate (E) by choosing a large enough. Similarly by (4.38) and
(4.39), the function o defined above satisfies the hypotheses (S1) and (S2) of
Theorem 3.24 for all large enough a. Therefore by Theorems 3.24 and 3.14,
and Proposition 3.21, there exist a metric 8 € J (X, d) and a measure u on X
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that satisfies the following estimate: there exists C3z > 0 such that
C3'rPC(B) < u(By(x. 1)) < C3rPC(B) (4.40)

for all x € X,r < diam(X,0), B € As(By(x,s)), where s is the largest
number in (0, 2diam(X, d)] such that B;(x,s) C Bg(x,r) (as defined in
(3.4)) and As(By(x, s)) is as given in Definition 3.16. Combining (4.40) and
Proposition 4.12, we see that there exist Aj, C4 > 0 such that

L (Bg(x, 1)) u(By(x,r))
— —_—,

C, 3 < Cap(Bg(x,r), Bg(x,2r)°) < C4 py:

(4.41)

forany x € X,0 < r < diam(X, d)/A;. By (4.41) and Proposition 4.14,
weAX,d,m,EF),(X,0,u, EH, FH) satisfies VD, RVD and cap(f), and
by Lemma 4.8 it also satisfies EHI.

Thus by Theorem 4.5 the MMD space (X, 0, u, E¥, F*) satisfies PHI(S).
Since 8 > 2 is arbitrary, we conclude that the conformal walk dimension is
two.

Case 2: (X, d) is unbounded.

The approach in the unbounded case is to construct metrics and measures
on an increasing sequence of compact sets that cover X, and to take suitable
sub-sequential limit. Let xg € X be the point such that xg € Ny forall k € Z
as given in Definition 3.10. We consider the sequence of subsets

Xy = D_,(x0), foranyn e N, (4.42)

where D_,, (xp) is as defined in (3.17). By Lemma 3.9-(c), X,, is compact and
satisfies

B(xo, 7' =@ —1)"Ha") Cc X, € B(xo, 1 —a"H7'a"). (4.43)
For any k > —n, we define

s = {B(x, 207"y N X, 1 x € NN D_n(m)} :

By Lemma 3.9, S™ := Hiezks—n S,E") is a hyperbolic filling of the compact
space with the same vertical edges induced from the extended hyperbolic
filling. Similarly, BN X,, BN X, € S,E") share a horizontal edge if and only
if (A-BNX,)N(-B NX, #@. We define C, : S™ — (0, 00), 0, :
S™ — [0, 00) as

Ch(BN Xy) =C(B), on(BNX,) =0(B),
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forany B € B € | [;~_, Sk, where C is as given in (4.33) and o is a s given in
(4.37). Similar to the compact case, by choosinga > 1 large enough, by (4.35),
we obtain the enhanced subadditivity estimate (E) for C,, uniformly over n (that
is, the constant § in associated with (E) does not depend on n) Similarly, by
increasing a is necessary, and by (4.38) and (4.39), the function o, defined
above satisfies the hypotheses (S1) and (S2) of Theorem 3.24 uniformly in n
(that is, the constant 7g in associated with (S2) does not depend on n).

Similar to the compact case, by Theorems 3.24 and 3.14, there exist metrics
6, € J(Xy,d)foreachn € N, and a distortion function  : [0, co) — [0, c0)
such that the identity map

Id: (X,,d) = (X,,0,) is an n-quasisymmetry for each n € N. (4.44)

By Proposition 3.21, there exist measures i, on X, for each n € N, constant
Cs5 > 0 such that

'rPCy(B) < 11a(Bg, (x, 1)) < CsrPCy(B), (4.45)

for all x € X,,r < diam(X,,0), B € As(By(x, s)), where s is the largest
number in [0, 2 diam(X,,, d)] such that B;(x, s) N X,, C Bg(x, r) (as defined
in (3.4)) and As(Bg(x, s) N X},) is as given in Definition 3.16 corresponding
to the hyperbolic filling S™ of X,,.

Next, normalize the metrics and measures by choosing a pair of sequences

Bn» vn > 0 such that ,, = B, hn = Vnlin satisfy
diam(By(x0, 1), 0,) = 1, i, (Ba(0, 1)) = 1. (4.46)

By (4.43) and (3.13), we note that B(xg, 1) C X, foralln € N.

We choose p € X suchthatd(xg, p) = % Sinceld : (X,,d) — (X,,,@\n) is
an-quasisymmetry, by comparing the ratio of the diameter of the sets {x¢, p} C
X1 in the metrics d and 6, using (3.7), there exists Cy,, , > 1 such that

Cyly <Ouo.p) < Cyl,. foralln e N.

X0, X0, p’

On (X, ¥) Oy (x0.X)
We estimate 0, (x,y) /0 (x0, p) by writing it as TN Foe 0 B0 ) o)

quasisymmetry to estimate each of the factors and their reciprocals. This yields
the following estimate: for any x, y € X, n € N, there exists Cy , > 1 (Cx y
depends only on d(xg, x), d(x, y) and n) such that

and using n-

Cx_y < 9 x,y)<C for all n € N such that {x, y} C X,,. (4.47)

Xy’

By a similar computation, for any (x, y) € X x X and for any ¢ > 0, there
exists § > 0 such that for any (x’, y') € X x X withd(x, x") vd(y,y') <3,
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we have
160 (x, ¥) = Bu (X", )| < O, x) + Gu(r, ¥) < &, (4.48)

for all n € N such that x,x’,y,y € X,. By (4.48), (4.47) and Arzela-
Ascoli theorem on the product space X, x X, equipped with the product
metric doo ((x, ), (x', ¥")) = d(x,x") v d(y, y’), the sequence of functions
O, m > n,hasa subsequence that converges uniformly to a metric 6 in X,,. By
adiagonalization argument, we obtain a subsequence of {é; in € N}, that con-
verges uniformly in compact subsets of X x X. The limit metric 6 € J (X, d)
and Id : (X, d) — (X, @) is an p-quasisymmetry.

The measures /i, constructed using Lemma 3.20 are uniformly doubling in
the following sense: there exists Cp > 1 such that foralln e N, x € X,,,0 <
r < diam(X,, é\n), we have

fin (Bg, (x,2r))

— ——— =(p.

i (Bg, (x, 1))

By the argument in [74, Theorem 1], by a further diagonalization argument
using weak*-compactness of {ii,, : m > n} on X, for all n € N, we obtain a
measure 1 on X. By (4.45) and Proposition 4.12, there exist constants Cg >
1, A» > 1 such that

1 (Bg(x, 1))

wu(Bo(x,r))
rP ’

Cy < Cap(By(x, ), Bg(x,2r)°) < C4 5
p

(4.49)

for any x € X,r > 0. The remainder of the proof is exactly same as the
compact case. Hence, we conclude that the conformal walk dimension is two.
O

5 The attainment and Gaussian uniformization problems

In this section, we introduce the attainment problem for the conformal walk
dimension and the Gaussian uniformization problem. Then we discuss partial
progress towards them.

Let (X,d, m, &, F) be an MMD space that satisfies the metric doubling
property and EHI. Recall that the Gaussian uniformization problem ask for a
description of all metrics 6 € J(X, d) and measures u € A(X,d, m, &, F)
such that the corresponding time-changed MMD space (X, 0, u, E#, F*) sat-
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isfies PHI(2). For any 8 > 0, we define

nweAX,d,m,E, F), there exists 0 € J(X, d)
such that (X, 0, u, E*, FH) satisfies PHI(B) ’

S.D

Gpg(X,d,m, €, f):z{,u

We define the set of Gaussian admissible measures as
GgX,d,m,E,F) =GX,d,m,E,F). (5.2)
By Theorem 2.10, we have

Gg(X,d,m,E, F) = forany B < 2, and
Gp(X,d,m,E, F) # () forany B > 2.

This raises the following questions:

1. Attainment problem: Is G(X,d, m, £, F) # (7 Or equivalently, is the
infimum in (1.4) attained?

2. Gaussian uniformization problem: Describe all measures in the set
g X,d,m,E,F).

By Proposition 2.11-(a), the Gaussian admissible measures can be described
as

. peAX,d,mE F),d e TX d),
GX,d,m, & F) = {“ (X.d",. 11 €%, F*) satisfies PHI(2) ,(3:3)

where di‘flt denotes the intrinsic metric of the MMD space (X, d, u, E*, F*)
(recall Definition 2.3).

In this section, we prove Theorem 2.12 and discuss its consequences for
the Gaussian uniformization problem. In particular, Theorem 2.12 shows that
any two measures (11, 42 € G(X,d, m,E, F) must be Ay-related in (X, d)

(provided such measures exist).

5.1 Consequences of PHI(2)

We begin with the proof of Proposition 2.11, which is essentially contained
in [56, Section 4]. This states that any measure on G(X, d, m, £, F) must be
a minimal energy-dominant measure and that the metric must be bi-Lipschitz
equivalent to the intrinsic metric of the time-changed MMD space.

Proof of Proposition 2.11 By PHI(2) and Theorem 4.5, we have VD and all
of the equivalent conditions in [37, Theorem 1.2].
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(a) We use [80, Theorem 1.6 and Remark 1.7-(a)] and [56, Proposition 4.8] to
obtain (a).
(b) This follows from [56, Propositions 4.5 and 4.7].

O

Definition 5.1 Let (X, d) be a metric space and let u: X — R. We define the
pointwise Lipschitz constant Lipu(x) of u at x € X as

Lipu(x) := lim sup W’

and Lip(X) denotes the collection of all functions u: X — R with

e WO
Lip(X) ‘= —
PO X, yEX, x#Y d(x,y)

When it is necessary, we also write Lip as Lip, to specify the metric d.

We recall the notion of upper gradient and its variants. We refer the reader
to [40,43] for a comprehensive account.

Definition 5.2 Let (X, d, m) be a metric measure space and letu: X — R be
a Borel measurable function. A non-negative Borel measurable function g is
called an upper gradient” if

lu(x) —u(y)| S/gds,

14

for every rectifiable curve y between x and y. A non-negative Borel measurable
function g is called a p-weak upper gradient of u with p € [1, c0) if

|u(x) —u(y)| S/gds,

14

for all y € et \ o, where x and y are the endpoints of y, I'rec; denotes the
collection of non-constant compact rectifiable curves and I'g has p-modulus
zero in the sense that

o P p: X — [0, o], p is Borel measurable, _0
infy 1017, x) [, pds > 1forall y €Ty =0

We denote by N7 (X) the collection of functions u € L”(X) that have a
p-weak upper gradient g € LP(X), and define lullyioxy = llullrx) +

4 This notion is called very weak gradient in [42]. Our terminology is borrowed from [43].
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infg gl (x), Where g is taken over all p-weak upper gradients of u. We

denote by NIL’CP (X) the class of functions u € sz)c(X ) that have a p-weak
upper gradient that belongs to L”(B) for each ball B. If necessary, we denote
the spaces N7 (X) and Nllo’cp (X)by N“P(X,d, m)and Nllo’cp (X, d, m) respec-
tively.

Definition 5.3 We say that (X, d, m) supports a (1, p)-Poincaré inequality
with p € [1, 0c0) if there exists constants K > 1, C > 0 such that for all
u € Lip(X),x € Xandr > 0,

1/p
][ lu—uper|dm < Cr [][ (Lip(u))? dm] ,
B(x,r) B(x,Kr)

where f, f dm denotes ﬁ Jo fdmandup(, ) = fB(x,r) u dm. Itis known
that (X, d, m) supports a (1, p)-Poincaré inequality if and only if there exists
constants K > 1, C > 0 such that for every function u that is integrable on
balls and for any upper gradient g of u in X, x € X andr > 0,

1/p
][ {u—ug(x,,)‘dm <Cr [][ gpdm] ,
B(x,r) B(x,Kr)

where u p(x r) is as above [43, Theorem 8.4.2].

We need the following self-improvement of Poincaré inequality.

Proposition 5.4 Let (X,d, m, E, F) be an MMD space that satisfies PHI(2).
Then we have the following:

(a) (Cf. [69, Theorem 2.2]) F = N'2(X) with equivalent norms, Lip(X) N
C.(X) is dense in F and Fioc = Nﬁ)’cz(X)-

(b) (Cf.[59, Theorem 1.0.1]) (X, d, m) satisfies (1, p)-Poincaré inequality for
some p € [1,2).

Proof (a) Let din; denote the intrinsic metric corresponding to the MMD space
PHI(2). Since VD and PI(2) are preserved under a bi-Lipschitz change of the
metric (cf. [43, Lemma 8.3.18]), by Proposition 2.11-(a), the MMD space
(X, dint, m, £, F) also satisfies VD and PI(2). Therefore by [69, Theorem

221, F = NY2(X, dine, m) with equivalent norms and Lip, (X) N Cc(X)
is dense in F and Fjoc = NIIO’C2 (X, dint, m). Since d and djp; are bi-Lipschitz

equivalent, Lip; (X) = Lip,(X) and Lip,(«) is comparable to Lip; (u);
that is there exists C > 0 such that
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C ™' Lip, () (x) <Lipy_ (u)(x) <C Lipy(u)(x) forall x € X, u € Lip,(X).
(5.4)

(b) By (a), [59, Proposition 2.1] and [43, Lemma 8.3.18], (X, d, m) satisfies
the (1, 2)-Poincaré inequality. By the self-improving property of [59, Theorem
1.0.1], (X, d, m) satisfies (1, p)-Poincaré inequality for some p € [1,2). O

5.2 A..-weights and the Gaussian uniformization problem

Definition 5.5 (A-relation) Let (X, d, m) be a complete metric measure
space such that m is a doubling measure. Let m’ be another doubling Borel
measure on X. Then m’ is said to be Ao-related to m if for each ¢ > 0 there
exists § > 0 such that

m(E) < 8m(B) implies m'(E) < em'(B)

whenever E is a measurable subset of a ball B. Evidently, if m’ is Ao-related
to m, then m’ is absolutely continuous with respect to m, so that dm’ = w dm
for some nonnegative locally integrable weight function w. It turns out that
being Aso-related is a symmetric relation among doubling measures; that is,
if m" is Ao-related to m, then m is Aoo-related to m’ [86, Chapter I].
Consider the following reverse Holder inequality: there is a locally m-
integrable function w in X together with constants C > 1 and p > 1 such that

dm’ = wdm and
1/p
(][ w? dm) < C][ wdm (5.5)
B B

whenever B is a ball in (X, d). It is well known that a doubling measure m' is
Axo-related to m if and only if m’ is non-zero and the reverse Holder inequality
(5.5) is satisfied [86, Chapter I].

The Aso-relation among doubling measures is preserved under quasisym-
metric change of metric as we show below.

Lemma 5.6 Letd;, d» two quasisymmetric metrics on X such that the metrics
dy, dy are uniformly perfect. Let m, my be two doubling Borel measures with
respect to dy such that m| and my are Ao-related with respect to the metric
dy. Then my and my are Ao-related with respect to d.

Proof Let B;(x,r) denote the open ball in metric d; for i = 1,2. By [75,
Lemma 1.2.18], there exists C > 0 such that the following holds: for each
x € X,r >0andi € {1, 2}, there exists s > 0 such that
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B3_;(x, C_ls) C Bi(x,r) € B3_;(x,Cs), forallx e X,r > 0. (5.6)

Note that since m and m; are doubling with respect to dj, they are also
doubling on (X, d»). Therefore, there exists C; > 0 such that

i(Bi(x,C
Mfcl, forallx € X,r >0,andi, j € {1,2}. (5.7)
mi(Bj(x,r))

Since m and my are Ayo-relatedin (X, dy), wehavem, < m1,dmy = wdm,
where w > 0is a Borel measurable function that satisfies the following reverse
Holder inequality: there exists Cg > 1, p > 1 such that

1/p
(][ w”dml) SCR][ wdmy, forallx € X,r > 0.
Bi(x,r) B (x,r)

(5.8)

For all x € X, r > 0, we estimate

1/p 1/p 1/p
(][ wpdml) < <][ wpdml) ( mi(Bi(x, Cs)) )
Bo(x,r) ~ \JBi(x,Cs) m1(B;(x, C~1s))

(by (5.6))

< CRclz/pf wdm; (by (5.8) and (5.7))
B1(x,Cs)

L apma(Bi(x, Cs))
= R (Bi(x. Co))
2/pm2(Bi(x, Cs))
< CrC; i BaGr)) (by (5.6))
-1
icRC;l/me(Bl(x’C 5))
mi(Ba(x,r))
- CRCf/pmz(BZ(x’r))
my(Ba(x,r))

< CRCT/”][ wdmy, (sincedmy = wdmy).
By (x,r)

(by dmy = wdmy)

(by (5.7))

(by (5.6))

O

Let f: (X1,d1) — (X2,d>2) be a homeomorphism between two metric
spaces. For all x € X, r > 0, we define

. Ly(x,r)
Ly(x,r)=sup{da(f(x), f(y)) :di(x,y) <r}, Ly(x)=limsup I

r—0
5.9
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For ¢ > 0, we define

£(x) = sup Ly&n) (5.10)

O<r<e r
Clearly, L y decreases as ¢ decreases and

12{3 L?(x) = Lys(x), forall x € X.

Lemma 5.7 ([42, Lemma 7.16]) Let f: (X(,d;) — (X2,d>) be a n-
quasisymmetry. Let xo € X and 0 < R < diam(X, dy),. There is a constant
C (that depends only on 1) such that for all ¢ > 0, the function CL? is an
upper gradient of the function u(x) = da(f(x), f(x0)) in B(xg, R).

We introduce the notion of C-approximation to compare balls in different
metrics.

Definition 5.8 Let d; and d; be two metrics on X such that the identity map
Id : (X,d1) — (X, d>) is a n-quasisymmetry. Let C > 1 be a constant. We
say that a ball By, (x2, r2) is a C-approximation of By, (x1, rq) if
di(x1,x2) < Cri,  dy(x1,x2) <Cr
By, (x2, C™'r)) C Byy(x2.12) C By (x2, Cry),
Bay(x1, C™'r2) C By, (x1.71) C Bay(x1, Cr2)

By the same argument as Proposition 4.12, we obtain the following com-
parison of capacities.

Lemma 5.9 Let (X,d;,m;, &, F;),i = 1,2, be two MMD spaces that satisfy
PHI(2) such that the identity map Id: (X, d1) — (X, d») is a quasisymmetry.
Let Bi(x,r) denote a open ball of radius r and center x, for i = 1,2. Let
Cy>1and Ay, Ay > 1. There exists Cp, A3 > 1 such that

Cap(B(x1,r1), Bi(x1, A1r1)) < C Cap(Ba(x2, r2), B2(x2, A2r2)°)
for all balls B1(x1, r1) and B>(x2, r2) such that ri < diam(X, dy)/A3,rp <
diam(X, d»)/ A3 and that B1(x1, r1) is a C1-approximation of By(x2, r2).
The following is an analogue of [42, Lemma 7.19]

Lemma 5.10 Let (X, d;, m;, E, F, N Lz(m,-)), i = 1,2 be two MMD spaces
that satisfy PHI(2) and are time changes of each other with full quasi-support.
Let the identity map f: (X, d;) — (X, d») be an n-quasisymmetry. Then the
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function Lgf defined in (5.10) is in weak L? for any ¢ < R /10 and for any ball

By, (x0, R), R < diam(X, dy). Furthermore, there exists C > 1 such that L'“}
satisfies the estimate

m ({x € By (xo, R) : L (x) > t}) < Ct™%my (Byy (x0, B)), (5.11)

forallt > 0,0 < R < diam(X, dy),xo € X. Here C > 1 depends only
on 1 and the constants associated with the MMD spaces (X, d;, m;, E, F, N
L*(m)),i =1,2.

Proof Let E; denote the set
E, = {x € By (x0, R) : L (x) > z} .

Then by the 5B-covering lemma [40, Theorem 1.2] there exists a countable
collection of disjoint balls B; = By, (x;,r;),i € I suchthat0 <r; <e,

Ly(xi,ri) -
ri

(5.12)
and

E; C U;5B; C 2B.

Note that the metrics di, d» are uniformly perfect by Proposition 2.11-(a).
Define

B[ := Bg, (xi, Ly (x;, r))/n(1)).

Roughly speaking, the balls B/ in d>-metric approximate the balls B; in the d;-
metric for eachi € I. More precisely, since f is a n-quasisymmetry and d, d»
are uniformly perfect, there exists C > 1 such that B; is a C-approximation
of B/ forall i € I.In particular,

C'BlCBiCCB], C''B;C B/ CCB, foralliel. (513)

Since (X, d;, ma, E, F, N L%(m;)),i = 1,2 satisfies PHI(2), there exist
A, A> > 1 such that

m1(B;)
r2

Cap(B;, (A1B;)°) <
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On the conformal walk dimension

Cap(BL. (A1) = 2B oaier (5.14)
p 10 2 1 - Lf(xl,r,)z ° °
Furthermore, by (5.13) and Lemma 5.9, we have
Cap(B;, (A1B;)°) =< Cap(B;, (A2B})) foralli € I. (5.15)

We combine the above estimates, to obtain (5.11) as follows:

mi(E;) <Y mi(5Bi) S Y mi(By) (by VD of (X.di,my))

S Z”lz Cap(Bi, (A1B;)") (by (5.14))

4

St Ly(xi.ri)* Cap(Bi. (A1 B)°) (by (5.12)

1

s Z Ly (xi, r;)* Cap(B/, (A2B))) (by (5.15))
St ma(B)) (by (5.14)

St72) ma(CT'B)) (by VD of (X, da, m2))
i
St72 my(B;) (since C7'B] C By)
i
< t7%my (By, (x0. 2R))
(since B;’s are disjoint and U; B; C By, (x0, 2R))
< t72my (Ba, (x0. R))  (by VD of (X, dy, my)).

The claimed dependence of the constant C in (5.11) follows from the above
argument. O

Corollary 5.11 ([42, Corollary 7.21]) Let (X, d;, m;, E, F, N L2(mp)),i =
1, 2 be two MMD spaces that satisfy the assumptions of Lemma 5.10. Let L‘;
denote the function defined in (5.10). Forall s € [1,2) and xg € X,0 < ¢ <
R/10, R < diam(X, d,), the function L% is in L*(Bg, (xo, R), m1) with

f
</Bd1 (x0.R)

where C only depends only on s,  and the constants associated with the two
MMD spaces. By letting ¢ |, 0, a similar statement is true for L .

1/s
s
L dml) < Cmi(B(xo, RN my (B(xo, R)'*,
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Proof of Theorem 2.12 By Proposition 2.11-(b), both m| and m, are minimal
energy dominant measures. Therefore, m| and m, are mutually absolute con-
tinuous. By Proposition 2.11-(a), both d; and d> are bi-Lipschitz equivalent
to intrinsic metrics, and therefore by Lemma 5.6, we may assume that d; and
d; are intrinsic metrics with respect to the symmetric measures m| and m»
respectively.

Let f: (X,d1) — (X,d>) denote the identity map, which is an 7n-
quasisymmetry. Then by the Lebesgue—Radon—Nikodym theorem, the volume
derivative

1 r ) = tim "2 (B0 2 )

5.16
r10 my (Bg, (x, 1)) ©-10

exists and is finite for m-almost every x € X. Since my <« mj, we have
dmy = wydmy;thatis my(E) = fE w ¢ dmy for all measurable sets E.

Since (X, d;, m;, £, F N L*(m;)) satisfies PHI(2) for i = 1, 2, there exists
constants Ay, Ay, C1, C; such that

72

m; (Bdi (x, r))’

for all x € X, r < diam(X,d;)/C;,i = 1,2. Similar to (5.13), there
exists C > 1 such that for all r < diam(X,d;), x € X, By, (x,r) is a C-
approximation of By, (x, L ¢(x, r)). That is, for all r < diam(X, dy), x € X,
By, (x, 1),

Cap(By, (x,r), Bg;(x, Air)°) < (5.17)

Ba,(x, C™'Ly(x, 7)) C Bay(x,7) C Bay(x, CLf(x, 7)),
By, (x, C_lr) C By, (x, Ly(x,r)) C By (x,Cr). (5.18)

By (5.18), the n-quasisymmetry of f, and the same argument as Proposition
4.12, there exists C3 > 1 such that

Cap(By, (x, 1), Bay (x, Ayr)°)
= Cap(Ba,(x, Ly(x,7)), Bg,(x, AsL ¢(x, 1)), (5.19)

forall x € X, r < diam(X, d1)/C3). Combining (5.17) and (5.19) shows that

Ly(x,r)*> _ ma(Bay(x,Ly(x,7)) _ ma(Ba(x, 1))

5 = = , (5.20)
r mi(Bg, (x,1)) m1(Ba, (x,7))
forall x € X, r < diam(X, d;). Therefore
mr(x) < Lf(x)2 for almost every x € X. (5.21)
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On the conformal walk dimension

Let p € [1, 2) be the constant in Proposition 5.4-(b) so that (X, dy, m) satisfies
(1, p)-Poincaré inequality. We shall show that L ¢ satisfies the reverse Holder
inequality

1/p

1/2
][ sz dm; <C ][ L? dm; , (5.22)
By, (x0,r) By, (x0.r)

for all xg € X,r < diam(X, dy). Then by Gehring’s lemma [42, Lemma
7.3], Holder inequality and (5.22), we obtain the following reverse Holder
inequality for the function  ¢: there exists ¢ > 0 such that

1/(1+¢)
][ pite dm SC][ pgdmy,
By, (x0.r) Ba, (x0,r)

for all xg € X, r < diam(X, d;). By the equivalence between reverse Holder
inequality and Ao-relation as explained in Definition 5.5, it suffices to show
(5.22).

Since (X, di, m1) satisfies the (1, p)-Poincaré inequality, by Lemma 5.7
C Lgf is an upper gradient of u(x) = da(x, xo) in By, (xo, ). Therefore by the

Poincaré inequality we have
1/p
dmy Sr ][ (L';)p dm )
Bg, (x0.r)

]idl (x0.K~1r)

We let ¢ | 0 and use Corollary 5.11 and the dominated convergence theorem

to obtain
1/p
][ dmy <r ][ ‘Lf‘pdml .
Ba, (x0,K~!r) Ba, (x0,r)
(5.23)

By the uniform perfectness of (X, d;) and the volume doubling property, there
exists K such that m (B(xo, K~'r)\ B(xo, Kl_lK_lr)) > m1(B(xo, 1)).
Using the quasisymmetry of f, we obtain

U—Upy (xo.K~'r)

U—UBy (x0.K~'r)

qul(xo,K—lr) :]i « Kilr)dZ(x»XO)ml(dx)
4y (X0,

1

> —— dr(x, xo) my(dx)
m1(Ba, (X0, 7)) JB(xo,K~1r)\B(xo, K7 ' K~17)
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m (B(xo, K=\ B(xo, Kl_lK_lr)>

>
~ Lyxo.r) m1(B(x0, 7))

> Cy'Ly(xo, 1),
because
Ly(xo,7) < da(x, x0) forallx € B(xo, K~'r)\ B(xo, K; 'K~'r)

by the quasisymmetry of f and the uniform perfectness of (X, d;). For suffi-
ciently small § > 0, we similarly have

u(x) = da(x, x0) < n(8K2)L f(x0,7) < 2C1)"'L p(x0,7)

for all x € B(xg, 8K ~'r). Consequently, using the above estimates and the
volume doubling property, we obtain

]id, (x0.K~1r)
Z f
Bdl (x0,6K~1r)

2 Ly(xo, 7). (5.24)

u — qul (xO,K_lr) dm1

dm

U—Upy (xo.K~'r)

It follows from the above estimates that

12
][ L%« dmy
Bq, (x0,r)

1/2
< (f iy dm1> (by (521))
Bdl (x0,7)

< [ m2(Ba, (x0, 7))

m3 (Ba, (x0, 7))

< Lo, 1)
r

~

1/
) (since dmy = Ly dmy)
(by (5.20))

I/p
< ][ |Ls|” dm, (by (5.24) and (5.23)).
Bg, (x0.r)

This completes the proof of (5.22), and therefore of Theorem 2.12. O
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Let (X, d, m, E, F) be an MMD space that satisfies EHI, where (X, d) is a
doubling metric space. If u € G(X, d, m, £, F), then by Theorem 2.12

G X,d,m,E,F) C{m:is Axo-related to u} . (5.25)

One might ask if the inclusion in (5.25) is strict. For the Brownian motion on
R", the above inclusion is strict if and only if n > 2 (see Theorem 5.18 and
Example 5.14). We need the definition of a maximal semi-metric.

Definition 5.12 A function r: X x X — [0, 00) is said to be a semi-metric,
if it satisfies all the properties of a metric except possibly the property that
r(x,y) = 0implies x = y.

Let h: X x X — [0, 00) be an arbitrary function. Then there exists a
unique maximal semi-metric dj: X x X — [0, co) such that dy(x,y) <
h(x,y) forall x,y € X [22, Lemma 3.1.23]. We call d}, the maxi@al semi-
metric induced by h. Equivalently, dj, can be defined as follows. Let i (x, y) =
min(h(x, y), h(y, x)). Then

N—1
dp(x,y) =inf { Y R xip) N eNxg=x,xy =y{. (526)
i=0

We provide a necessary condition for a measure to be in G(X, d, m, £, F).
Using this necessary condition, below we obtain examples for which the inclu-
sion (5.25) is strict.

Lemma 5.13 Let (X, d, m, £, F) satisfy PHI(y) for some y > 2. Let n €
G(X,d,m, &, F). Define

hix,y) = \/M(Bd(x’ dlx, y))d(x, y)y’ forany x,y € X withx # y,

m(Bg(x,d(x,y)))
(5.27)

and h(x,x) = 0 for any x € X. Let dj, denote the maximal semi-metric
induced by h. Then there exists C > 0 such that

h(x,y) <Cdy(x,y) forallx,y € X.

Proof Let 6 € J(X, d) be such that the MMD space (X, 6, u, E#, F*) sat-
isfies PHI(2). It suffices to show the existence of C; > 0 such that

C;19(x, V) <h(x,y) <Ci0(x,y) forallx,ye X. (5.28)
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In particular, due to the triangle inequality for 6, (5.28) implies a similar
inequality with i (x, y) replaced by dj, (x, y), which immediately implies that
h is comparable to dj,.

By Theorem 4.5, m and u satisfy VD on (X, d) and (X, 0). By using Propo-
sition 3.2 and VD, there exists C» > 0 such that

Cy ' (Bo(x, 0(x, ) < u(Ba(x, d(x, y)) < Copu(Bo(x, 0(x, y))) (5.29)

for all x,y € X, where x # y. By an argument similar to the proof of
Proposition 4.12 using Lemma 4.11 and Proposition 3.2, there exist C3, A > 0
such that

_ Cap(By(x. 60, 9)). Bp(x. 206G, 7)) _ (o (539

co!
3~ Cap(By(x,d(x,y)), By(x,2d(x, y))¢) ~

forany pairx, y € X suchthatO < 6(x, y) < diam(X, 8)/A. By Theorem4.5,
Lemma 4.11 and Proposition 3.2 and by increasing A if necessary, there exists
C4 > 0 such that

1 1 (Bo(x, 0(x,)))

Cap(By(x, 0(x, ), Bo(x,20(x, y))) = C;

0 y)?
B, ,0(x,
Cap(Bs (x, 0(x, ), Bo(x, 20(x, y))©) = ¢ APLL IV =5 5y
6(x, y)
and
Cap(By(x, d(x, ), Ba(x, 2d(x, y))°) = C;l’"(B‘;(x’ dx. 7))
(x, y)Y
Cap(By(x, d(x, y)), Ba(x, 2d(x, y))) < c4m(B”;(x’ Ay (530
(x, y)Y

for any pair x, y € X such that 0 < 6(x,y) < diam(X, 8)/A. Combining
(5.29), (5.30), (5.31) and (5.32) shows that there exists C5 > 0O such that

C5'0(x.y) < h(x,y) < CsO(x, y), (5.33)

for all x,y € X such that 0 < 6(x,y) < diam(X, 6)/A. Since (X, 0) is
uniformly perfect, by replacing y with a closer point y, and using (5.33) and
VD, we obtain (5.28). |

Example 5.14 Let n > 2 and let (X, d, m, £, F) denote the Dirichlet form
corresponding to Brownian motion on R”. If w(x) = |x1|’, wherer € R, x =
(x1,...,Xxp), then wdm is Ao-related to m if and only if ¢+ > —1 [83, p. 222,
Example (¢)]. If t > 0,x = (0,...,0),y = (0,...,0, 1) and 4 is as given
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in (5.27) with y = 2, then using (5.26) it is easy to check that dj,(x, y) = 0.
This can be seen by choosing equally spaced points x, . . ., X, on the straight
line joining x and y and letting n — oo in (5.26). Therefore, by Lemma 5.13
we obtain

wdme{u : nis Ax-related tom}\G(X,d, m,E, F), foranyn>2,¢t>0.

In other words, the inclusion in (5.25) is strict for the Brownian motion on
R" n > 2.

The above example and Lemma 5.13 illustrate that if a measure is too small
in the neighborhood of a curve, then it will fail to be in G(X, d, m, &, F).
As we will see in Sect. 6.3.2 below, a similar (but more subtle) phenomenon
happens in the higher-dimensional Sierpifiski gaskets.

We recall the definition of strong A..-weights on R” introduced by David
and Semmes in [29] and show its relevance to the Gaussian uniformization
problem for the Brownian motion on R?. The following definition is a slight
reformulation of the one in [29] and the equivalence between the two defini-
tions follows from [83, Lemma 3.1].

Definition 5.15 Let d, m denote the Euclidean metric and Lebesgue measure
on R”, respectively. Let u = w dm be A -related to m. Define

1
hx. y) = (1(Bey)) "
where B, , is the Euclidean ball with center z = (x + y)/2 and radius

d(x,y)/2. Let dj, denote the maximal semi-metric induced by /. We say that
W is strong Ao-related to m, if there exists C > 0 such that

dp(x,y) > C 'h(x,y), forallx,yeR".

The following relates the Gaussian uniformization problem in R? in terms
of strong A-weights.

Proposition 5.16 Let (X, d, m, £, F) denote the MMD space corresponding
to the Brownian motion on R?. Then

g X,d,m,E, F) = {u : uis strong Axy-related to m} . (5.34)
Proof By Lemma 5.13 and Theorem 2.12, we have the inclusion
g X,d,m,E, F) C {u: wisstrong Ao-related to m} . (5.35)
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For the reverse inclusion, consider a measure 4 = wdm that is Ago-
related to m. Since p is mutually absolutely continuous with respect to m,
uweAX,d,m,E,F).

Let 6 denote the metric dj, in Definition 5.15. Since u is Ao -related to m,
w satisfies VD on (X, d). Since 6(x, y) is comparable to ,/u(By y), where
By y = B((x +y)/2,d(x, y)/2), by the VD and RVD for the measure p, we
obtain that

0eJX,d). (5.36)
By (5.36), Proposition 3.2 and VD, there exists C; > 0 such that
C'r? < u(Bg(x,r) < Cir? forallx € X,r > 0. (5.37)
By Lemma 4.11, Proposition 3.2, and (5.36), there exists C, > 0 such that
Cy' < Cap(By(x,r), Bg(x,2r)°) < C, forallx € X,r > 0. (5.38)

By Lemma 4.8, the time-changed MMD space (X, 6, u, E#, F*) satisfies
EHI. Combining (5.36), (5.37) and (5.38), and using Theorem 4.5, we obtain
that u € G(X,d, m, E, F). |

Proposition 5.16 along with known results on strong A -related measures
leads to many further examples of measures in G(X, d, m, £, F) for Brownian
motion in R2. For instance, Bessel potentials can be used to construct strong
Aso-measures [16, Theorem 3.1].

Unlike the case of Brownian motion on R” with n > 2 treated so far, it turns
out that the inclusion in (5.25) is an equality for Brownian motion on R, which
we prove in the rest of this subsection as a complete answer to the Gaussian
uniformization problem for Brownian motion on R. For this purpose, we need
the following lemma characterizing A-related weights in terms of a reverse
Holder inequality.

Lemma 5.17 Let (X, d) be a locally compact metric space and let m be a
non-zero Radon measure on (X, d) satisfying VD and such that the function
(0,00) > r — m(B(x,r)) is continuous for each x € X. Then for each

[0, o0)-valued w € Llloc(X, m), the following are equivalent:

(a) w = wdmis Axo-related to m.
(b) w # 0 and there exists C > 1 such that the following reverse Holder
inequality holds:

2
][ wdm < C (][ ﬂdm) whenever B is a ball in (X, d).
B B
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Proof (b) = (a): By Gehring’s lemma [42, Lemma 7.3], there exist ¢ > 0
and C; > 0 such that

1/(1+4¢) 2
(][ w1+8dm> < C; <][ ﬁdm) < ][ wdm
B B B

for all balls B in (X, d). By [86, Theorem 18 in Chapter I], u is Axo-related
tom.

(a) = (b): By [86, Theorem 18 in Chapter I], there exist r > 1 and C, > 1

such that
1/r
(][ w” dm) < Cz][ wdm  for all balls B. (5.39)
B B

Choose 6 € (0, 1) such that 67 ~! +2(1 — ) = 1. By Holder’s inequality and

(5.39),
0/r 2(1-0)
wdm < ( wrdm) (][ ﬂdm)
B

et (fywan) (f,voam)

0/1-0)

for all balls B. This immediately implies (b) with C = C, O

In the following result, we consider the case of Brownian motion in R; that
is (X,d,m, &, F) is given by X = R, d is the Euclidean distance, m is the
Lebesgue measure, F = W12 and £(f, f) = i |f’|2dm.

Theorem 5.18 Let (X, d, m, £, F) denote the MMD space corresponding to
the Brownian motion on R. Then the family of Gaussian admissible measures
is characterized by the reverse Holder inequality as in Lemma 5.17-(b), i.e.,

g(X7 d’ m’ g’ F)
={u | uis Axo-related to m}
={wdm|we Llloc (X, m), wis [0, 0o)-valued and satisfies Lemma 5.17-(b)}.

Proof Set

5 4 g # 0, there exists C > 1 such that for all a < b,
= m b 1/2 b
EAM N b —a)\2([ gam)'? < C [P ygdm
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By Theorem 2.12 and Lemma 5.17, it suffices to show thatG C GX,d,m,E,F).
Let gdm € G. Then consider the measures ) = /g dm and . = g dm. For
all a < b, an easy calculation shows that

b
di‘flt(a,b):m([a,b]):/ Jedm. (5.40)

Since /g satisfies areverse Holder inequality, by [86, Lemma 12 and Theorem
17 in Chapter I], i is a doubling measure on (X, d). By the correspondence
between doubling measures and quasisymmetric maps on R described in [40,
Remark 13.20-(b)] and (5.40), we have

mt e J(X,d). (5.41)
By the reverse Holder inequality assumption on ,/g, we have
ui(la, b)) < (b —a)'* (u(la, b)'/* < Cpi(la, b)).
Since 1 is a doubling measure on (X, d), the above estimate shows that u
is also a doubling measure on (X, d). Since d m e J(X,d), nis a doubling
measure on (X, dmt) by (3.3).
By [86, Theorem 18 of Chapter I] and Lemma 5.17, the measures p and m
are mutually absolutely continuous. This implies that u € A(X, d, m, £, F).

By [26, Theorem 1.4], for any interval I = [a, b] and for all f € w2 we
have a Poincaré inequality

/(f( )—ﬁ/f u) n(dx) < Kﬁ,,/llf%xﬂzdm(x),

where the optimal constant K, ; satisfies the two-sided estimate

1 X 1/2
Ky = ) ( supb{uqx,b]f/2 (/ n(la, t])zdr> }

b 1/2
+ sup {u([a,x])'/2 (/ M([t,b])zdt> }) (5.42)
a<x<b X

By using the bound p(A) < w(I) for all A C 1, (5.42) and reverse Holder
inequality, we have

i

K Sum) < pi)> (5.43)
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By (5.40), w1 (1) is the diameter of / under the intrinsic metric di’fn. Therefore
by (5.42) and (5.43), we have the Poincaré inequality PI(2) for the MMD space
(X, d,, w, EM, F*). By [88, Lemma 1], the MMD space (X, d/ , ju, £, FH)
satisfies CS(2). Since p is a doubling measure on (X, di’fu), we have that
uw € G(X,d,m,E, F) by Theorem 4.5. Alternately, the claim that u €

G(X,d,m, &, F) follows from [89, Theorem 3.5]. O

Remark 5.19 A major obstruction to determining the Gaussian admissible
measures for multidimensional Brownian motion in R”, n > 2 is that the
intrinsic metric with respect to @ = gdm does not admit a simple descrip-
tion unlike the one-dimensional case where there is a simple formula (5.40).
As noted in Example 5.14, the conclusion of Theorem 5.18 fails in higher
dimensions.

6 The attainment problem for self-similar sets

In this section, we study the attainment problem, that of whether the infimum
in (1.4) defining the conformal walk dimension d.y = 2 is attained, in the case
of a self-similar Dirichlet form (£, F) on a post-critically finite self-similar set
K. After introducing the framework of such a Dirichlet form in Sect. 6.1, we
provein Sect. 6.2 that d.,, = 2 is attained (if and) only if (K, 6, ' (h, h), E, F)
satisfies PHI(2) for some harmonic function h € F and a metric 6, on K
quasisymmetric to the resistance metric Rg of (£, F), where I" (&, h) denotes
the energy measure of & associated with (£, F). Then in Sect. 6.3 we present
several examples, all of which are shown NOT to attain d¢,, = 2 except for the
two-dimensional standard Sierpiniski gasket, which is known to attain dcy = 2
by the results in [52,62] as discussed in Theorem 6.33 and its proof below.

The restriction of the framework to post-critically finite self-similar sets is
mainly for the sake of simplicity. In fact, all the results in Sect. 6.2 can be
verified, with just slight modifications in the proofs, also for the canonical
self-similar Dirichlet form on any generalized Sierpiriski carpet introduced in
Sect. 6.4, which forms essentially the only class of examples of infinitely ram-
ified self-similar fractals where the theory of a canonical self-similar Dirichlet
form has been established. We treat the case of generalized Sierpiriski carpets
in Sect. 6.4 and explain what changes are needed for the arguments in Sects. 6.1
and 6.2 to go through in this case.

6.1 Preliminaries
In this subsection, we first introduce our framework of a post-critically finite

self-similar set and a self-similar Dirichlet form on it, for which we mainly
follow the presentation of [54, Section 3], and then present preliminary facts.
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Let us start with the standard notions concerning self-similar sets. We refer
to [60, Chapter 1] for details. Throughout this subsection, we fix a compact
metrizable topological space K, a finite set S with #S > 2 and a continuous
injective map F;: K — K foreachi € S. Weset £ := (K, S, {Fi}ics).

Definition 6.1 (1) Let Wy := {{}, where ¢ is an element called the empty
word,let W, .= S" ={w;...w, | w; € Sfori e {1,...,n}}forn e N
and let W, = UneNu{O} W,. For w € W,, the unique n € N U {0} with
w € W, is denoted by |w| and called the length of w. Fori € S and
neNU{0}wewritei" :=i...i € W,.

(2) We set X = SN = {wimws ... | wj € Sfori € N}, which is always
equipped with the product topology of the discrete topology on §, and
define the shift map 0: ¥ — X by oc(wjmmws...) := wyw3ws . ... For
i € §wedefineg;: ¥ - ¥ by oj(wowaw3...) = iwjwrws . ... For
w=wiww;... € X andn € NU {0}, we write [w], := w1 ...w, € W,.

(3) Forw = wy...w, € Wy, weset F, := F, o---0 F,, (Fp:=idg),
Ky = Fy(K), oy = 0y, 0+ 00y, (0p :=idy) and X, := o0y (2),
and if w # () then w*™ € ¥ is defined by w*™ := www... in the natural
manner.

Definition 6.2 £ = (K, S, {F;}ies) is called a self-similar structure if and
only if there exists a continuous surjective map 7 : ¥ — K suchthat Fjomr =
m o o; for any i € S. Note that such 7, if it exists, is unique and satisfies
{(m(@®)} = ,en K[w], forany o € X.

In the rest of this subsection we always assume that £ is a self-similar
structure.

Definition 6.3 (1) We define the critical set C, and the post-critical set P of
L by

Co=n"N U jes.iz; KiNK;) and  Pr:=U,en0o"Co).
(6.1)

L is called post-critically finite, or p.-c.f. for short, if and only if P, is a
finite set.

(2) We set Vo == 7(Pr), V, = UweWn Fy,(Vp) forn € Nand V, :=
UneNU{O} Va.

Vo should be considered as the “boundary” of the self-similar set K ; indeed,
Ky NKy, = F,(Vo) N Fy(Vp) for any w, v € W, with ¥, N X, = by [60,
Proposition 1.3.5-(2)]. According to [60, Lemma 1.3.11], V,,_; C V,, for any
n € N, and if Vjy # ¢ then V, is dense in K. Also note that by [60, Theorem
1.6.2], K is connected if and only if for any i, j € § there exist n € N and
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{ix}i_o C S with iop = i and i, = j such that K;,_, N K; # @ for any
k € {l,...,n},and if K is connected then it is arcwise connected.

In the remainder of this subsection our self-similar structure £ =
(K, S, {F;}ics) is always assumed to be post-critically finite with K con-
nected, so that 2 < #V < oo, K # Vo = Vp and V, is countably infinite and
dense in K.

Next we briefly recall the construction and basic properties of a self-similar
Dirichlet form on such £; see [60, Chapter 3] for details. Let D = (D q) p.gev,
be areal symmetric matrix of size # V) (which we also regard as a linear operator
on R"0) such that

(D1) {u € RV | Du =0} = Rly,,
(D2) Dy > Oforany p,q € Vo with p # q.

We define

EOw,v) == )" Dpgu(q)v(p)
P,9€Vo

1
=3 2 Dpgu(p) —u@)@w(p) —v(@)  (62)

P.9€Vo

for u, v € R, so that (£©, R") is a Dirichlet form on L2(Vj, #). Further-
more letr = (r;);es € (0, 00)° and define

1
EM(y,v) = Z —EO@Wo Fylyvo Fulyy), u,veR"™ (6.3)

weW, w
for each n € N, where ry, 1= ryry, ... 1y, forw = wjwa...w, € W,
(rg :=1).

Definition 6.4 The pair (D, r) of a real symmetric matrix D = (Dq) p.qev,
of size #Vy with the properties (D1) and (D2) and r = (rj)jes €
(0, 00) is called a harmonic structure on L if and only if £©O(u,u) =

infveva,mVO:u EW (v, v) for any u € R"; note that then

EMD (u, u) = min EM(y, v) (6.4)

Vn _
veR 2,v|an_u

for any ny,n, € NU {0} withn; < np and any u € RYm by [60, Proposition
3.1.3]. If r € (0, 1)S in addition, then (D, r) is called regular.

In the rest of this subsection, we assume that (D, r) is a regular harmonic
structure on L. In this case, {£ (")(ulvn, u]y,)}nenuijo) 18 non-decreasing and
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hence has the limit in [0, oco] for any u € C(K). Then we define a linear

subspace F of C(K) and a non-negative definite symmetric bilinear form
E:FxF — Rby

Fi={u € C(K) | limy_0o E™(uly,, uly,) <00},  (6.5)

E,v) == lim,— 00 E™(uly,, vlv,) €R, u,veF, (6.6)

so that (&€, F) is easily seen to possess the following self-similarity properties
(note that 7 N C(K) = F in the present setting):

FNCK)={ueCK)|uokF; € Fforanyi € S}, (6.7)
1
S(u,v):Z—é’(qui,voFi), u,ve FNCK). (6.8)
— r;
ieS

By [60, Proposition 2.2.4, Lemma 2.2.5, Theorem 2.2.6, Lemma 2.3.9, The-
orems 2.3.10 and 3.3.4], (£, F) is a resistance form on K and its resistance
metric Rg: K x K — [0, 00) is a metric on K compatible with the original
topology of K; here (£, F) being a resistance form on K means that it has the
following properties (see [60, Definition 2.3.1] or [64, Definition 3.1]):
(RF1) {u e F|E(u,u) =0} =Rlg.
(RF2) (F/R1kg, &) is a Hilbert space.
(RF3) {u|y | u € F} =R for any non-empty finite subset V of K.
(RF4) Re(x,y) = sup,cr\rilu(x) — u(y)|>/E(u, u) < oo forany x,y €
K.

RFS) ut Ale FandEw™ Al,u™ A1) < E(u,u) forany u € F.
See [60, Chapter 2] and [64, Part 1] for further details of resistance forms.

In the present framework, the notion of harmonic functions is defined as
follows.

Definition 6.5 Let n € N U {0}. A continuous function 7 € C(K) is called
E-harmonic on K \ V,,, or n-harmonic for short, if and only if 7 € F and

Eh, h) = inf E, ),
verF, U\VnZh\Vn (69)

or equivalently, E(h,v) =0 for any v € fK\Vn’
where FK\Y» .= {u € F | uly, = 0}. Weset H, = {(h € C(K) |
h is n-harmonic}.

It is obvious that H,, is a linear subspace of F and R1gx C 'H, C H,+ for
any n € N U {0}. Moreover, we easily have the following proposition by [60,
Lemma 2.2.2 and Theorem 3.2.4], (6.3), (6.4), (6.7) and (6.8).
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Proposition 6.6 Letn € N U {0}.

(1) Foreachu € RV there exists a unique H, (1) € Hy such that H,(u)|y, =
u. Moreover, H,: RY" — H,, is linear (and hence it is a linear isomor-
phism).

(2) It holds that

Hy=1{h € F|EM, 1) =EW(hly,, hly,)) (6.10)
={heC(K)|hoFy, € Hgyforanyw € W,}. (6.11)

In particular, for each w € Wy, a linear map F,,: Ho — H is defined by
Fih:=ho Fy.

Now we equip K with a measure to turn (£, F) into a Dirichlet form. Indeed,
we have the following proposition.

Proposition 6.7 Let v be a Radon measure on K with full support. Then
(&, F) is an irreducible, strongly local, regular symmetric Dirichlet form on
L?*(K, w), and its extended Dirichlet space F, coincides with JF. Moreover, the
capacity Caplf associatedwith (K, Re, u, £, F) satisfiesinf ,c g Cap/f({x}) >
0, and in particular (recall Definition 2.8)

A(K, Rg, u, E, F) = {v | vis a Radon measure on K with full support}.
(6.12)

Proof This proposition is well known to experts on Dirichlet forms on fractals,
but we include a complete proof of it for the reader’s convenience. (£, F) is
a regular symmetric Dirichlet form on L?(K, 1) by [64, Corollary 6.4 and
Theorem 9.4], strongly local by the same argument as [45, Proof of Lemma
3.12] on the basis of (6.7), (6.8) and E(1 g, 1) = 0, and irreducible by (RF1)
above and [24, Theorem 2.1.11]. The equality F, = F is immediate from
(RF1), (RF2) and (RF4) . We also easily see from (RF4), diamg, (K) < oo and
U(K) < oo that inf,cg Cap’f({x}) > 0, so that a subset of K is quasi-closed
with respect to (K, Rg, u, £, F) if and only if it is closed in K. In particular,
any Radon measure v on K is smooth with respect to (K, Rg, i, £, F) and v
having full quasi-support with respectto (K, Rg, u, £, F) means that the only
closed subset F of K with v(K \ F) = 0is F = K, which together imply
(6.12). O

Let dy € (0, 00) be such that ) ;¢ ridH =1, so that dy > 1 since
max Rge(x, < max Rg(Fi(x), F; < ;| max Re(x,
max Re(x,y) < XSij e(F;(x), Fi()) (ZS r,) mag Re(x, )

(6.13)
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by the connectedness of K, [60, Theorem 1.6.2 and Lemma 3.3.5] and hence
Diesti= 1= g rl.dH. Let m be the self-similar measure on £ with weight

(rid ");es, 1.€., the unique Borel measure on K such that m(K,,) = rﬁl}H for any

w € W,. The measure m could be considered as the “uniform distribution” on
L, and it is the most typical choice of the reference measure p for (£, F). Itis
well known that (K, Rg, m, £, F) satisfies PHI(dy + 1); more precisely, the
following lemma and proposition hold.

Lemma 6.8 There exist ci,cy € (0,00) such that for any (x,s) € K X
(0, diamp, (K)],

c1s™ < m(Bg,(x,5)) < cas™. (6.14)
Proof This is immediate from Lemma 6.14 below and [60, Lemma 4.2.3]. O

Proposition 6.9 (K, Re, m, &£, F) satisfies PHI(dg + 1).

Proof Lemma 6.8 and [64, Theorem 15.10] together imply that (K, Re, m, £,
JF) satisfies HKE(dg + 1) as well as VD and RVD, and therefore it also satisfies
PHI(dyg + 1) by Theorem 4.5. m|

We conclude this subsection with the following Proposition, which is essen-
tially due to Kigami [63,64] and gives a simple equivalent condition for the
validity of PHI(f) after quasisymmetric change of the metric and time change.

Proposition 6.10 Let 0 € J (K, Rg) (recall (1.2)), let i be a Radon measure
on K with full support and let B € (1, 00). Then the following conditions are
equivalent:

(a) (K,0,u,E,F) satisfies PHI(B).
(b) There exists C € (1, 00) such that for any w € Wi,

C~!(diamg (K )P < ryu(Ky) < C(diamg(K,))P.  (6.15)

Moreover, if either of these conditions holds, then w(F,(Vp)) = 0 for any
w e Wy and n({x}) = 0 forany x € K.

The rest of this subsection is devoted to the proof of Proposition 6.10, which
requires the following lemmas and definitions.

Lemma 6.11 ([60, Lemma 3.3.5], [61, Theorem A.1]) There exists cr, €
(0, 1] such that for any w € W, and any x, y € K,

CReTwRe(x, y) < Re(Fy(x), Fy(y)) < ruRe(x, y). (6.16)
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Definition 6.12 (1) Letw,v € Wy, w = wy ... wy,,V = V1 ... Vy,. Wedefine
wv € Wy by wv i= wy...wy V...V, (WP = w, Jv := v). We write
w < v if and only if w = vt for some t € W,; note that X, N X, = @ if
and only if neither w < v nor v < w.

(2) Afinite subset A of W, is called a partition of ¥ ifand only if ¥,,N¥, = @
forany w,v € A withw #vand ¥ = [J,cp Zw-

(3) Let Ay, Aj be partitions of X. We say that A is a refinement of A, and
write A1 < A», if and only if for each w! € A there exists w? € A, such

that w! < w2.

Definition 6.13 (1) We define A := {{},
Ay ={w|lw=wr...w, € Wi\ {0}, Fwi.w,_ > 8 2 ruw} (6.17)

for each s € (0, 1), and . := {As}se(0,1]- We call . the scale on X
associated with r.

(2) For each (s, x) € (0,1] x K, we define Asx = {w € As | x € Ky},
Ks(x) := Uyen, , Kus Aj = {w € Ay | Ky N Ky (x) # ¢} and

Us(x) = UwGA;‘X Kw.

Clearly limg o min{|w| | w € Ay} = 00, and it is easy to see that Ay is a
partition of X for any s € (0, 1] and that Ay, < Ay, for any s1, 52 € (0, 1]
with s1 < s7. These facts together with [60, Proposition 1.3.6] imply that
for any x € K, each of {K(x)}se,17 and {Us(x)}se(0,17 18 non-decreasing
in s and forms a fundamental system of neighborhoods of x in K. More-
over, {Us(x)}(s,x)e(0,11xk can be used as a replacement for the metric balls
{Bre (X, )} (x,5)eKk x(0.diam(K, Rg)] 10 (K, Rg) by virtue of the following lemma.

Lemma 6.14 There exist ay, ay € (0, 00) such that for any (s, x) € (0, 1] x
K,

Brg (x, a1s) C Us(x) C Bgg(x, azs). (6.18)

Proof This is mentioned in [53, Subsection 4.1], but we include a complete
proof of it for the reader’s convenience. By the upper inequality in (6.16)
we have diamg.(Ky) < rydiamg,(K) for any w € W,, which implies
the latter inclusion in (6.18) with ap € (2diamg, (K), 00) arbitrary. On the
other hand, by [60, Proof of Lemma 4.2.4] there exists a1 € (0, co) such that
Re(x,y) > ays forany s € (0, 1], any w, v € Ay with K, N K, = ¢ and any
(x,y) € Ky, x Ky, which yields the former inclusion in (6.18). |

Proof of Proposition 6.10 This equivalence can be easily concluded by combin-
ing Theorem 4.5 and results in [63,64], as follows. First, by Theorem 4.5 and
[64, Theorem 15.10], under 6 € J (K, R¢), (a) is equivalent to the following
condition (c):

@ Springer



N. Kajino, M. Murugan

(c) (K, 8, ) is VD and there exists C € (1, 0o) such that for any x,y € K
with x # y,

C'0(x,y)? < Re(x, y)u(Bo(x,0(x, ) < COx, y)P. (6.19)
Next, by 8 € J(K, Rg), (1.3) and (3.3) with (d1, d») € {(Rg, 0), (0, Re)},
(K, 6, n)is VD if and only if (K, Rg, 1) is VD, which in turn is, by Lemma

6.14 and the compactness of K, equivalent to the existence of C € (1, 00)
such that

n(Us(x)) < Cu(Ugpp(x))  forany (s,x) € (0,1] x K. (6.20)

Then by [63, Theorem 1.3.5] and the fact that .7 is locally finite with respect
to L, i.e.,

1
SUP(s5,x)e(0, 1]x K #Ay x < OO (6.21)

by [60, Lemma 4.2.3] and [63, Lemma 1.3.6], we have (6.20) if and only if
there exists C € (1, co) such that the following hold:

(w(Kyj) > C ' u(Ky) forany (w, j) € Wi x S, (6.22)
W(Ky) < Cu(Ky) foranys € (0, 1] and any w, v € A with K, N K, # @.
(6.23)

Moreover, by [63, Theorem 1.2.4], (6.22) implies that
w(Fy(Vp)) =0=n({x}) foranyw € W,andanyx € K. (6.24)

(We remark that (6.24) is part of the assumptions of [63, Theorem 1.3.5]
but can be dropped; indeed, even without assuming (6.24), [63, Proofs of
Theorems 1.3.10 and 1.3.11] show that any one of the three conditions [63,
Theorem 1.3.5-(1),(2),(3)] implies (6.22), from which (6.24) also follows by
[63, Theorem 1.2.4].)

On the other hand, since the quasisymmetry of Rg to 6 yields §1, 82 € (0, 00)
such that By (x, 810(x, y)) C Bre(x, Re(x,y)) C By(x, 820(x, y)) for any
x,y € K withx # y by (3.3),under VD of (K, 0, ) and (K, Rg, 1) we have
(6.19) if and only if there exists C € (0, oo) such that for any x, y € K with

X F# Y,
C7'0(x, y)P < Re(x, y)u(Bre(x, Re(x,y))) < CO(x, y)P. (6.25)

Therefore (c) is equivalent to the following condition (d):
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(d) There exists C € (1, o0) such that (6.22), (6.23) and (6.25) hold.

Thus it remains to show that (d) is equivalent to (b). Indeed, let w € W,
and take x, y € K,, with the property diamRE (Ky) = Re(x, y),sothat w €
Ay, Re(x,y)/diamg.(K) € [croTw, ry] by Lemma 6.11, and 6 (x, y)ﬂ =
(diamg ({x, y}))ﬂ = (dlamg(Kw))Bg by 0 € J(K, R¢) and (3.7). If (d) holds,
then since (K, Rg, ) is VD we easily see from Lemma 6.14, (6.21) and (6.23)
that

11(Bre (x, diamp, (Ky))) = p(Brg (x, Re(x,y))) < pu(Ky)  (6.26)

and hence (6.25) implies (b). Conversely suppose that (b) holds. Then for any
J € S,Lemma6.11yieldsdiamg. (Ky;)/ diamg, (Ky) € [cr, minges 7%, CE;
maxges 'r], hence

(diamg (K ))? = (diamg (K ))” (6.27)

by 6 € J(K, Re) and (3.7), and therefore (6.15) implies (K ;) < w(Ky),
i.e., (6.22) holds. Also forany s € (0, 1]and any v, T € Ay with K,NK; # @,
diamg, (K;) =< diamg, (K, UK;) < diamg. (K;) by Lemma 6.11 and hence

(diamy (K ,))? = (diamy (K, U K;))? = (diamy (K;))? (6.28)

by 0 € J(K, Rg) and (3.7), which together with (6.15) implies u(K,) =<
w(Kz), proving (6.23). In particular, (K, Rg, i) is VD, and now it follows
from Lemma 6.14, (6.21) and (6.23) that (6.26) holds, which together with
(6.15) yields (6.25), proving (d). O

6.2 A necessary condition: attainment by the energy measure of some
harmonic function

Throughout this subsection, we assume that £ = (K, S, {Fj}ics) is a post-
critically finite self-similar structure with #S > 2 and K connected and that
(D, r) is a regular harmonic structure on £, and we follow the notation intro-
duced in Sect. 6.1.

Proposition 6.10 with 8 = 2 justifies introducing the following set of pairs
of metrics and Borel probability measures on K. Recall Definition 6.5 for H.

Definition 6.15 We set

Homeo™ := {5 | n: [0, 00) — [0, 00), n is a homeomorphism},  (6.29)
P(K) := {u | n is a Borel probability measure on K}, (6.30)
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which is equipped with the topology of weak convergence, and for each
(n, C) € Homeo™ x (1, co) we define

g, C) :=Gc, b C)
= 6 is a metric on K and n-quasisymmetric to R¢, u € P(K),
TNV et < rpp(Ky)/(diamg (K )2 < C foranyw € Wy [
(6.31)

which is considered as a subset of C(K x K) x P(K). We also set

G:=Gr.pr = U G(n, C) (6.32)

(n,C)eHomeo™ x(1,00)
and for each subset Z of G define Ho(Z) C Hp and ﬁo (Z) C Ho/R1g by

Ho(2) :={h € Ho | By, '(h, h)) € Z for some metric 6, on K}, (6.33)
ﬁo(Z) ={h+Rlg | h € Hy(2)}. (6.34)

Since u € A(K, Re, m, E, F) forany (0, u) € G by (6.12) with m in place
of u and (6.31), it follows from Proposition 6.10 with 8 = 2 and (1.3) that

G(K,Re,m,E,F)={an | O, un) € G,a € (0, 00)}. (6.35)

In particular,

G(K,Re,m,E,F) #£4W, ie., the infimum in (1.4) is attained for
(K, Rg,m,E, F), ifand only if G # O, namely G(n, C) # @ for (6.36)
some (1, C) € Homeo™ x (1, 00).

In fact, it turns out that in this case Ho(G) # 0, ie., (6p,'(h,h)) € G
for some i1 € Hy and some 0, € J(K, Rg), which is the main result of this
subsection and stated as follows. We let cg, be as in Lemma 6.11, take arbitrary
(7, C) € Homeo™t x(1, 00), define 1 € Homeot by 7i(r) := 1/np~ ')
(7(0) := 0) and fix them throughout the rest of this subsection.

Theorem 6.16 If G(n, C) # @, then Ho(g(c;;n, C)) # O, i.e., there exist

h € Ho and a metric 6, on K such that (0, T'(h, h)) € g(c,;g‘n, ).
Moreover, a slight addition to our proof of Theorem 6.16 also shows the

following proposition, which is used in Sect. 6.3.2 to prove the non-attainment

of the infimum in (1.4) for the N-dimensional Sierpiiiski gasket with N > 3
(Theorem 6.35). Recall (RF2) for (F/R1g, £).
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Proposition 6.17 (1) ﬁo(g(n, C)) is compact in norm in (F /Rlg, E).
(2) Ifh € Ho(G(n, C)), then E(ho Fy, ho F) " Y?hoF, € Ho(g(c,;gln, 0))
forany w € W,.

We remark that in Proposition 6.17-(2) we have E(h o Fy,h o Fy) =
rwl'(h, h)(Ky) > 0 for any w € W, by Lemma 6.21 below and the lower
inequality in (6.31) for u = I'(h, h).

The rest of this subsection is devoted to the proof of Theorem 6.16 and
Proposition 6.17, which is reduced to proving a series of propositions and
lemmas concerning the set G(n, C). We start with establishing its compactness.
Note that P(K) is a compact metrizable topological space by [87, Theorems
9.1.5 and 9.1.9] and hence that C(K x K) x P(K) is also metrizable.

Proposition 6.18 G(n, C) is a compact subset of C(K x K) x P(K).

Proof Let{(0,, n)}nen C G(n, C). By the metrizability of C(K x K) xP(K)
noted above, it suffices to show that there exists a subsequence of {(6,,, ,) }neN
converging to some (6, u) € G(n, C) in C(K x K) x P(K).

First, recalling that the compactness of K implies that of P(K) by [87, The-
orem 9.1.9], we can choose 1 € P(K) and a subsequence { iy, Jxen Of {ttn}nen
converging to u in P(K), and therefore by considering {(6y; , ttn; ) }ken instead
of {(6,, n)}neny we may assume that {1, },cn itself converges to i in P(K).

Next, diamg, (K) € [C —1/2 C1/2] for any n € N by the inequalities in
(6.31) and hence {6, },en is uniformly bounded. Moreover, for each n € N,
since the n-quasisymmetry of 6, to Rg yields the -quasisymmetry of Rg to
6, by [40, Proposition 10.6], it follows from (3.7) that for any x, y € K,

Re(x, y) _diang({x,y})< (2diam9”({x,y}))<n(2C1/29n(x »)

diamg. (K)  diamg,(K) diamg, (K )
(6.37)
_ diamg, ({x, y}) . 2diamg.({x, y})\ ./ 2Re(x,y)
1/2 On £ —
OO ) = g, (K) 5"( diampg, (K) >_n(diamR5(K)>’
(6.38)

which in turn implies that for any x1, y1, x2, y2 € K,

0 (X1, Y1) — O (x2, y2)| < On(x1, x2) + 0, (¥1, y2)
_(2Re(x1, x2)\ | - (2Re(y1, y2)
<clr ,
= <n(diang(K)) - n<diang(K)))
(6.39)

so that {6, },eny C C(K x K) is equicontinuous. Thus by the Arzela—Ascoli
theorem (see, e.g., [81, Theorem 11.28]) there exist 6 € C(K x K) and
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a subsequence {6y, }ken Of {6,},en converging to 6 in C(K x K), so that
{(Bny» tny) }ken converges to (0, ) in C(K x K) x P(K). Then diamy(K) €
[Cc~1/2 /2] and for any x, y,z € K we have (6.37) with 6 in place of 6,,
O(x,x) =0,0(x,y) =60(y,x) > 0andf(x,y) < 0(x,z) +6(z, y) by the
same properties of 6,, for k € N, whence 6 is a metric on K. Furthermore
letting k — oo in the n-quasisymmetry of 6, to Rg as defined in (3.2) yields
that of 6 to Rg.

To show the inequalities in (6.31) for (8, u), let w € W,, choose x =
Xy € Ky \ Fyy(Vp) and set s := ry, so that w € Ay and A;, = {w} by
[60, Proposition 1.3.5-(2)] (recall Definition 6.13). Note that K,, = Fy,(K)
is compact and hence closed in K, that K, \ F,(Vop) = K \ (Fw(Vo) U
UveW‘w|\{w} Kv) by [60, Proposition 1.3.5-(2)] and is thus open in K, and
that Ky, C U (x) with UJ (x) the interior of Us(x) in K by [60, Proposition
1.3.6]. By using these facts and the convergence of {(0,;, tn;)}ken to (0, 1)
inC(K x K) xP(K) toletk — oo in the inequalities in (6.31) for (6, tn, ),
we obtain

Fuwt(Ky) > limsup ry iy, (Kyy) > C~ ' (diamg (K )%, (6.40)
k— 00
ruwtt (K \ Fu (Vo)) < liminf ry i, (K \ Fi (Vo)) < C (diamg (K ),
(6.41)

ru(Ky) < ryu(Ug (x)) < liminf 7y pap, (U (X))
k— 00

< Y ™ (diamg(K,))?
Iy

veA}’x

C

< ———— ) (diamg(K,))* < (diamg(K,))*,  (6.42)
minges 'k

veAl

where the last step in (6.42) follows from (6.28) and (6.21). We now con-
clude from (6.40), (6.42) and (6.27) that u(K,;) =< rl;jl (diamg (ij))2 =
ro (diamg (K ))? < w(Ky) for any (w, j) € Wy x S, which together with
[63, Theorem 1.2.4] implies that i (F,,(Vg)) = Oand hence (K, \ Fyy (Vo)) =
w(Ky) forany w € W,,sothat (6.40) and (6.41) yield the inequalities in (6.31)
for (0, w) and thus (0, u) € G(n, C). ]

Corollary 6.19 Let {(0,, n)tnen C G(n, C), u € P(K) and suppose that
{ttn}nen converges to p in ‘P(K). Then there exists a metric 0 on K such that
O, n) € G(n, C).

Proof Since G(n, C) is a compact subset of C(K x K) x P(K) by Proposi-
tion 6.18, there exist (6, v) € G(n, C) and a subsequence {(6y,, tn;)}ken Of
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{(Bn, n)}nen converging to (0, v) in C(K x K) x P(K), but then {1, }ken
converges in P(K) to both i and v, hence u = v and thus (6, u) = (0, v) €
g, C). o

We next observe that the set G(, C) is almost invariant under the operation
of pulling back by F,, followed by a suitable normalization, as stated in the
following lemma.

Lemma 6.20 Let (0, u) € G(n, C), w € W, and define (0, uy) € C(K X
K) x P(K) by

_OF0) Fu ) BFu(A)
Vrwit(Ky) T u(Kw)

Then (6. tw) € G(cgn. C).

Proof 1tis immediate from (6, ) € G(n, C) that 8, and 1, can be defined by
(6.43) and are a metric and a Borel probability measure on K, respectively, and
that (6, 1y ) satisfies the inequalities in (6.31). Moreover, forany x, y, z € K
and r € (0, 00) with 0,,(x,y) < t0y(x, z), we have 6(Fy(x), Fy,(y)) <
t0(Fy(x), Fy(2)) and hence it follows from the n-quasisymmetry of 6 to R¢
and Lemma 6.11 that

Ow(x, y)

. (6.43)

CReTwRe (X, y) < Re(Fy(x), Fu(y)) =n(1)Re (Fy(x), Fyy(2)) <n(t)ry Re(x, 2)

and thus that Re(x, y) < c;egl n(t)Re(x, z), proving the CESI n-quasisymmetry
of 6, to Re. O

The operation as in (6.43) of pulling back Borel measures on K by Fy, is
compatible with the analogous operation on F (recall (6.7) and (6.8)) in the
following sense.

Lemma 6.21 Letu € F and w € W,. Then I'(u, u)(Fy,(A)) = rule(u o
Fy,uo Fy)(A) for any Borel subset A of K, and in particular I (u, u)(Ky) =
ru_)lé‘(quw, uoFy). Moreover, if I'(u, u)(Ky) > 0, then for any Borel subset
Aof K,

I'(u, u) (Fy(A))
I(u, u)(Ky)
where uy = E o Fy,uo Fy) Y?uoFy. (6.44)

=(uy, uy)(A),

Proof Since Fy,: K — K, is a homeomorphism, the first assertion is easily
seen to be equivalent to [49, Lemma 4-(i)], and the second follows by choosing
A = K in the first. Furthermore if I'(u, u)(K,,) > 0, then we see from the
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first and second assertions and the bilinearity of I'(f, g) in f, g € F that for
any Borel subset A of K,

T'(u, u)(Fy(A)  ry'To Fy,uo Fy)(A)
P, u)(Ky) — rp'€wo Fy,uo Fy)

= T(uw, uy)(A),

completing the proof. O

At this stage, we can already give the proof of Proposition 6.17 as follows.
Proof of Proposition 6.17 Recall (6.33) for Hy(Z) and (6.34) for ﬁo(Z).

(2) Let h € Ho(G(n, C)) and set u := I'(h, h), so that (8, u) € G(n, C) for
some metric 6 on K. Let w € W,, set hy := E(ho Fy, ho Fy)~Y2ho F,
and define (0, uy) € C(K x K) x P(K) by (6.43). Then h,, € Hyp
by Proposition 6.6-(2), I'(hy, hy) = Wy by Lemma 6.21, (0, iy) €
G(cpln, €) by Lemma 6.20 and thus &, € Ho(G(cgin, ©)).

(1) Let {Ay}nen C Ho(G(n, €)), so that {I"(hy, hy)}neny C P(K) and hence
{hntnen C {h € Ho | (T'(h, h)(K) =) E(h, h) = 1}. Since Hy/R1g is a
finite-dimensional linear subspace of (¥ /R1 g, £) by Proposition 6.6-(1),
{h € Ho/R1g | £(h, h) = 1}iscompactinnormin (F/R1g, &), and thus
there existh € Hg and a strictly increasing sequence {ny}xeny C Nsuch that
E(h,h) =1and lim_ oo E(h —hy,, h —hy, ) =0.ThenI'(h, h) € P(K)
and, noting that 7 x F > (u,v) — I'(u, v) is bilinear, symmetric and
non-negative definite, for any Borel subset A of K we have

T (h, ) (A)'72 = T (g, B ) (A 2P < T = hyys b — B ) (A)

k— 00

<I'th—=hy,h—hy)K)=EMh—hy,h—hy,) —0.
(6.45)

In particular, {I"(h,,, hn,)}ken converges to I'(h, h) in P(K), and now
it follows from {h,, }xen C Ho(G(n, C)) and Corollary 6.19 that h €
HO(QN(n, C)), which together with limy_, oo £(h —hy, , h—hy, ) = 0 proves
that Ho(G(n, C)) is (sequentially) compact in norm in (F/R1g,£). 0O

We continue with the preparation for the proof of Theorem 6.16. Recall
that 1 is a minimal energy-dominant measure of (£, F) for any (6, u) € G
by Proposition 6.10 and Proposition 2.11-(b), and hence in particular that
I"(u, u) is absolutely continuous with respect to u for any (8, u) € G and any
u € F. The following lemma is a special case of the well-known Lebesgue
differentiation theorem.
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Lemma 6.22 Let (0, ) € G, u € F and set f :=dlU (u, u)/du. Then p-a.e.
x € K is an (Rg, u)-Lebesgue point for f, i.e., satisfies

1

lslfg 1B i, (xys)lf(y) F)ldu(y) =0. (6.46)
Proof We have Rg € J(K,0) by (6, 1) € G and hence 6 € J(K, Rg) by
(1.3). Thus (3.3) holds with (dy, d2) = (Rg, 0),and (K, 6, u) is VD by Propo-
sition 6.10 and Theorem 4.5, which together imply that (K, Rg, u) is VD.
Now since C(K) is dense in L1(K, W) (see, e.g., [81, Theorem 3.14]) and
f € L' (K, ), the claim follows by Lebesgue’s differentiation theorem [40,
(2.8)] for (K, Rg, ), which requires (K, Re, i) to be VD. O

Lemma 6.23 Let (O, ) € G, u € F, let f: K — [0, 00) be a Borel mea-
surable p-version of dU (u, u)/dp and let x € K satisfy (6.46). Then for any
w e n ' (x) and any w € W,,

5 U(u, u)(Kiw),w)
im
n—00 M(K[w]nw)

= f(x). (6.47)

Proof Letw € 71 (x), w € Wy, n € NU {0} and set 5, := diamg, (Ko}, )-
Then by (6.22), (6.26), and VD of (K, Rg, i) noted in the above proof of
Lemma 6.22, we have

(K iwpw) = W (Kiwy,) = e/ 1n(Brg (x, 25,)) (6.48)

for some ¢, ¢’ € (0, 00) determined solely by L, (D, r), (6, u). Now since
Kiw,w C Kw), C Bgrg(x,2s,) and lim, . s, = 0 by Lemma 6.11, it
follows from (6.48) and (6.46) that

I'(u, u)(K[w]nw)

- - — d
(Kiopm) fx )‘ ‘ Ko K[w]nw(f(y) f)du(y)
- — d
SM(K[w]nw) K[w]nwlf(y) f)ldu(y)
|lw| y—1
< 1) = FEOldu(y)
M(BRg(x’zsn)) BRE(x,an)
m—0oQ O’
proving (6.47). O

Taking an (Rg, u)-Lebesgue point x € K for dI'(u,u)/du with
dT'(u,u)/dn)(x) > 0 and considering the enlargements of infinitesimally
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small cells containing x to the original scale as in Lemmas 6.20 and 6.21, we
arrive at the following proposition.

Proposition 6.24 Let (O, ) € G, u € F, let f: K — [0, 00) be a Borel
measurable p-version of dU' (u, u)/du, let x € K satisfy (6.46) and f(x) > 0,
and let w € 7~ (x). For each n € N U {0}, define p, := Uw], € P(K) by
(6.43) with w = [w], and, noting that I"(u, u)(K,),) > 0 by (6.47), define
Up = Uy, € F by (6.44) with w = [w],. If v € F and {nx}rey C N
is strictly increasing and satisfies limg_, o0 E(V — Up,, v — Uy, ) = 0, then
['(v,v) € P(K) and {{tn, }ken converges to I' (v, v) in P(K).

Proof Letw € W,.Then we see from (6.43), (6.44), (6.47)and f(x) € (0, co)
that

I'(up, uy)(Ky) . I'(u, u)(K[w]nw)/M(K[w]nw) n—oo f(x) i

— = 1.
tn(Ky) I'(u, u)(Kw),)/ (Kiw],) f(x)

(6.49)

On the other hand, the same argument as (6.45) based on limy_, o, E(v —
Upg, V — Up,) = 0 yields lim, o0 I'(up;, uy, ) (Ky) = I'(v, v)(Ky), which
together with (6.49) implies that

Jm gy (Ky) = (v, 0)(Kw) (6.50)

and in particular that I' (v, v)(K) = limg_ o0 iy, (K) = 1, namely I'(v, v) €
P(K). Note that 1, (Fy, (Vo)) = n(Kw),) ' 1t (Flw),w (Vo)) = 0 for any n €
N U {0} by Proposition 6.10 and that I" (v, v)(Fy (Vo)) = 0 by #F,, (Vo) < o0
and [24, Theorem 4.3.8], and recall that K,, = F,,(K) is closed in K and
Ky \ Fy(Vp) is open in K as noted in the last paragraph of the proof of
Proposition 6.18. By using these facts and the equality K \ V,, = |, ew, (Kv \
F,(Vp)), with the union disjoint, implied by [60, Proposition 1.3.5-(2)] for any
n € N, we easily see that the validity of (6.50) for any w € Wi is equivalent
to the desired convergence of {i,, }ken to I'(v, v) in P(K), which completes
the proof. O

Now we can conclude the proof of the main result of this subsection (The-
orem 6.16).

Proof of Theorem 6.16 By the assumption G(n, C) # ) we can take (6, u) €
G(n, C).Letu € Ho\ R1 g, which exists by Proposition 6.6-(1) and #Vy > 2,
and let f: K — [0, c0) be a Borel measurable p-version of d1"(u, u)/du.
Then since ,u(f_l((O, oo))) > 0 by fK fdu=T(u,u)K)=Ew,u) >0,
Lemma 6.22 implies that there exists x € K with the properties (6.46) and
f(x)>0.Letw € 7~ (x), and for each n € N U {0}, as in Proposition 6.24
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define (6, in) := (O, Mlw],) € C(KXK)XP(K)by(6.43)withw = [w],
and u, := upy), € F by (6.44) with w = [w],, so that {(6;, ) }nenujo) C
g(c,;;n, C) by Lemma 6.20 and {u,},enuioy C {h € Ho | E(h,h) = 1}
by Proposition 6.6-(2). Noting that Hy/R1g is a finite-dimensional linear
subspace of the Hilbert space (F¥/R1g, £) by Proposition 6.6-(1) and hence
that {h € Ho/R1g | E(h, h) = 1} is compact in norm in (F/Rlg, &), for
some h € Hp and some strictly increasing sequence {ny}reny C N we have
E(h,h) =Tandlimy_ 0o E(h—up,, h —uy, ) =0.ThenI'(h, h) € P(K) and
{1, Jken converges to I'(h, h) in P(K) by Proposition 6.24, and it follows
from this convergence, {(0p; , tn; )} ken C g(c}én, () and Corollary 6.19 that

Gn,C(h,h)) e Q(cl_e;n, C) for some metric 6, on K. O

6.3 Examples

In this subsection, we show that the infimum in (1.4) defining the conformal
walk dimension d.y, = 2 fails to be attained for some concrete examples of
post-critically finite self-similar sets. In view of (6.36) and Theorem 6.16, for
the proof of the non-attainment G(K, Rg, m, £, F) = @ it suffices to verify
that the conclusion of Theorem 6.16 cannot hold for any & € Hy. We start
with providing a further characterization of 7 € Hy as in the conclusion of
Theorem 6.16. In the following definition and proposition, we continue to
assume the setting specified in the first paragraph of Sect. 6.2.

Definition 6.25 Let u be a Borel measure on K. Recalling Definition 2.3, we
define the u-intrinsic metric d{fn: K x K — [0, o0] of (€, F) by

dly (x,y) == sup{u(x) —u(y) |u € F,T'(u,u) < p}. (6.51)

Proposition 6.26 (1) There exists C € (1, 0o) such that for any h € Ho and
any w € W,,

C~!(diam(K ,, d-""))* < r, T (h, ) (Ky) < C(diam (K, d- ")),
(6.52)

(2) Let h € Ho. Then T'(h, h) € G(K, Re,m, &, F) if and only if di. """ e
J (K, Re¢).
(3) G(K, Re,m, E, F) = Pifand only ifd-"" ¢ J(K, Re) forany h € Ho.

nt

Proof(1) Let h € Ho and w € Wi. Since |h(x) — h(y)| < d-"""(x, y) for

nt

any x,y € K by (6.51) with u = I'(h, h), we see from Lemma 6.21,
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h € Hop, (6.11), (6.10) and (6.2) that

rol (R, B)(K ) = EQ(h o Fylyy, b o Fyly,) < C (diam(K PG h)))

ws “int

Where C =5 Zp 4eVo, pq Ppg- On the other hand, setting C' =
diamg, (K), for any x, y € Ky, and any u € F with I'(u, u) < I'(h, h),
by (RF4) and Lemma 6.21 we have

u(x) — u()? = | o Fu)(Fy ' (x) — (o Fu)(Fy ' O]
= Clg(u oFy,uolkly)= C/rwr(“a u)(Ky)
< C'ryD(h, h) (K ),

therefore taking the supremum over such u yields dmt(h h)(x, y? <

C'ryC(h, h)(Ky) by (6.51) with u = T'(h,h) and thus (diam(Kw,
dE "YY< C'r, T (R, h)(K o), proving (6.52).

1nt

Q) If T(h, h) € G(K, Re,m, &, F) then d. ™" e J(K, Rg) by Proposi-
tion 2.11-(a) (recall (5.3)), and conversely if dr(h = J (K, R¢) then
['(h,h) € G(K, Re,m, E, F) by (6.52) and Pr0p051tion 6.10 with g = 2.

(3) This is immediate from (2) and the fact that, by (6.36), Theorem 6.16 and
(6.35),G(K, Re,m, E, F) = WifandonlyifI'(h, h) ¢ G(K, Rg,m,E, F)

for any h € Hp. O

6.3.1 The Vicsek set

Example 6.27 (Vicsek set) Set S := {0, 1, 2, 3, 4}, define {g;}ics C R? by
q0:=1(0,0), g1 := (1, 1), q2 := (—1,1), g3 := (=1, —1) and g4 := (1, = 1),
and define f;: R> — R? foreachi € S by fi(x) := ¢; + %(x — q;). Let
K be the self-similar set associated with { f;};cs, i.e., the unique non-empty
compact subset of R? such that K = | ;g f; (K), which exists and satisfies
K ¢ [—1, 1 thanksto ;g fi([—1, 11%) < [—1, 11> by [60, Theorem 1.1.4],
and set F; := fij|x foreachi € S. Then L := (K, S, {F;}ics) is a self-similar
structure by [60, Theorem 1.2.3] and called the Vicsek set (see Fig. 1 below),
and it easily follows from K C [—1, 1] that Py = {1°°,2%° 3%, 4%} and
Vo = {q1, 92, 93, q4}, so that L is post-critically finite and K is connected. Let
d: KxK — [0, co) bethe Euclidean metricon K givenbyd(x, y) := [x—y]|.

Let r € (0,3), setr = (ri)ies := (1 —2r,r,r,r,r), and define D =
(Dpg)p.gevy and D" = (D;aq)P,qEVoU{qo} by
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4 ifp#qgandqgo € {p,q},
5 _:{1 itp#q. |0 ifp#qandpgen.
pa -3 ifp=gq, pa —16 if p = q = qo,

-4 ifp=geW.

Then setting £'©Q (u, v) == — Zp,quOU{qo} D;,qu(q)v(p) foru, v e RYoUiao},
we immediately see that £© (u, u) = inf | cgvoulo). vlvy=u 'O, v) for any

u € RYY%! which in turn easily implies that (D, r) is a regular harmonic
structure on L.

Our concern is whether G(K, Re,m,E, F) = () for the MMD space
(K, Rg, m, &£, F) resulting from this £, (D, r). We first remark that the resis-
tance metric Rg is quasisymmetric to the Euclidean metric d and that it is
bi-Lipschitz equivalent to d when r = %

Lemma 6.28 Let L = (K, S, {F;}ics),d, (D, x = (1 —2r,r,r,1,r)) be as
in Example 6.27 and let (K, Rg, m, E, F) be the MMD space resulting from
L, (D, r) as introduced in Sect. 6.1. Then Re € J(K,d). Moreover, R¢ is
bi-Lipschitz equivalent to d if r = %

Proof Tosee Rg € J (K, d), we verify that Rg and d satisfy the assumptions
of [67, Theorem 3.6.6], i.e., that they are adapted in the sense of [67, Definition
2.4.7 and Proposition 2.4.8] and exponential in the sense of [67, Definitions
3.1.15 and 3.6.2] and that R¢ is gentle with respect to d in the sense of [67,
Definition 3.3.1]. Indeed, R¢ is adapted by Lemma 6.14 and exponential by
Lemma 6.11, d is obviously exponential, and d is adapted since Lemma 6.14 is
easily seen to hold also with d, (%) iesinplace of R¢, r. Moreover,ifw, v € W,
satisfy w # v, |lw| = |v|and K, N K, # @, then for some t € W,,n € NU{0}
and i, j € S\ {0} with |i — j| = 2 we have {w, v} = {r0i", rij"} and
hence ry,/ry € {ro/ri, ri/ro} = {(1 —2r)/r, r/(1 —2r)}, which together with
Lemma 6.11 shows that Rg is gentle with respect to d. Thus [67, Theorem
3.6.6]is applicableto R¢ and d and yields Rg € J (K, d).Lastly,ifr = %, then
we have Lemma 6.14 with d in place of Rg, which together with Lemma 6.14
implies that R¢ is bi-Lipschitz equivalent to d. m|

In the situation of Example 6.27, it turns out that the energy measure I' (4, &)
of any £-harmonic function 7 € Hy has its support within the union of the
diagonals of [—1, 1]2, as stated in the following proposition.

Proposition 6.29 Let L = (K, S, {F;}ies) and (D, r) be as in Example 6.27
and consider the MMD space (K, Rg, m, E, F) resulting from L, (D, r) as
introduced in Sect. 6.1. Set I; jy2 = {(1 — t)q; + tqiy2 | t € [0, 1]} for
i €{1,2}. Then T (h, h)(K \(I13U 12,4)) = 0 for any h € H,.
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Fig. 1 The Vicsek set and the N-dimensional Sierpinski gaskets (N = 2, 3)

Proof Let U be aconnected component of K\ (/13U 4). Thenitisimmediate
from K = Uies Fi(K) € [1, 1]? that dx U consists of a unique element
qu € 13 U I 4, where 0x U denotes the boundary of U in K. Note that
uly,ulg\y € Fand Euly, ulg\y) = 0 forany u € F with u(qy) = 0;
indeed, this is clear by [33, Exercise 1.4.1 and Theorem 1.4.2-(ii)] and the
strong locality of (£, F) if qu ¢ supp,,[u], and the general case follows by
approximating u by {u — (—%) Vv (u A %)}neN on the basis of [33, Theorem
1.4.2-(iv)]. Therefore for any u € F, the function uy € C(K) defined by
uyly :=u(qu)ly anduy|x\v := ulx\v satisfies uy = (u —u(qu))lx\v +
u(qu)lg € Fand E(u, u) > E(uy, uy), where the equality holds if and only
if u = uy by (RF1). In particular, any u € F with u # uy fails to be 0-
harmonic by U N Vy = 0, so that any h € Hy satisfies h|y = h(qy)1ly,
hence I'(h, h)(U) = 0 by [33, Corollary 3.2.1] and thus I" (&, h)(K \ (13U
12,4)) = 0 since U is any one of the countably many connected components
of K\ ([13Uh4). O

Corollary 6.30 Let L = (K, S, {Fi}ies) and (D, r) be as in Example 6.27
and consider the MMD space (K, Rg, m, £, F) resulting from L, (D, r) as
introduced in Sect. 6.1. Then G(K, Rg, m, £, F) = 0, i.e., the infimum in (1.4)
is not attained for (K, Rg, m, E, F).

Proof For any h € Hy we have I'(h,h) ¢ A(K,Rg,m,E,F) since
['(h, h) does not have full support by Proposition 6.29, and therefore
['(h,h) ¢ G(K,Re,m,E,F) for any h € Hp, which is equivalent to
G(K, Rg,m,E, F) = @ by (6.36), Theorem 6.16 and (6.35) as already noted
in the proof of Proposition 6.26-(3). |

6.3.2 Higher-dimensional Sierpinski gaskets

Example 6.31 (N-dimensional Sierpinski gasket) Let N € N, N > 2 and let
{qk},ivzo C RY be the set of the vertices of a regular N-dimensional simplex
Ap, so that Ay is the convex hull of {gx | k € {0,1,..., N}} in RN. We
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further set § := {0, 1,..., N} and for each i € S define f;: RY — RV by
filx) =qi+ %(x —gi). Let K be the self-similar set associated with { f; }ics,
which exists and satisfies K C Ay thanks to | ;. fi(An) € An by [60,
Theorem 1.1.4], and set F; := f;|x foreachi € S.Then £ := (K, S, {Fi}ics)
is a self-similar structure by [60, Theorem 1.2.3] and called the N-dimensional
(standard) Sierpiriski gasket (see Fig. 1 above), and it easily follows from
K Cc Ay that P = {(k*° | k € S}and Vy = {qr | k € S}, so that L is
post-critically finite and K is connected. Let d: K x K — [0, c0) be the
Euclidean metric on K given by d(x, y) := |x — y|.

Define D = (Dpg)p,gevy by Dpp := —N and D, := 1 for p,q € Vp
with p # ¢g. By the symmetry of £ and D, there exists a unique r € (0, co)
such that (D, r = (r;);es) with r; := r is a harmonic structure on £, and an
elementary calculation shows that r = %_Ié < 1, so that (D, r) is a regular
harmonic structure on L.

In the rest of this subsection, we fix the setting of Example 6.31 and consider
the MMD space (K, Rg, m, £, F) resulting from L, (D, r) as introduced in
Sect. 6.1. We first remark that the resistance metric R¢ is bi-Lipschitz equiva-
lent to the power d'°2(1/7) of the Euclidean metric d and hence quasisymmetric
tod.

Lemma 6.32 Rg is bi-Lipschitz equivalent to d'°%V/")_ In particular, Rg €
J(K,d).

Proof Lemma 6.14 with ¢'°2(/7) in place of Rg¢ is easily seen to hold and, in
combination with Lemma 6.14, immediately implies the assertions. O

The following result, which is essentially due to Kigami [62], was the start-
ing point of the whole study of the present paper.

Theorem 6.33 ([52,62]) Assume that N = 2, and let hy, hy € Ho satisfy
Ehy, hy) = E(ha, hy) = 1 and E(hy, hy) = 0. Then d--+T k),

nt

d- MM e 7K Re) and T(hy, hy) + T(ha, ha), T(hy, hy) € G(K, Re, m,

int

E,F).

Proof Set Khy by = I'(hy, h1) + T'(hy, hy) and let u € {:uhl,hz’ I'(hy, hy)}.
As in the proof of Lemma 6.28 above, to see di’:n € J(K, Rg) we apply
[67, Theorem 3.6.6]. Note that the results in [62, Sections 5 and 6] and [52,
Sections 3 and 4] are applicable to di’fn by virtue of the identification of di’fn
given in [52, Theorem 4.2]. By [62, Theorem 5.11] for i = pp, 5, and [52,
Proposition 3.16-(1)] for u = I'(hy, hy), dﬁt is a metric on K compatible
with the original topology of K and adapted in the sense of [67, Definition
2.4.7 and Proposition 2.4.8]. Also by [62, Theorem 5.11 and Proof of Theorem

3.2] for & = pn,.n, and [52, Proposition 3.16-(1) and Lemma 3.9] for pu =
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'(hy, hy),d lm is exponential in the sense of [67, Definitions 3.1.15 and 3.6.2]
and gentle with respect to d in the sense of [67, Definition 3.3.1]. Clearly
d is exponential in the sense of [67], and is also adapted in the sense of
[67] by Lemma 6.14 with d'°226/3) ip place of Rg mentioned in the above
proof of Lemma 6.32. Thus [67, Theorem 3.6.6] is applicable to dl’flt and d and
shows, togetherw1thLemma6 32 and (1.3), thatd mt e J(K,d)=J(K, Rg).
Finally, (K, d mt, w, €, F) satisfies VD and HKE(2) by [62, Theorems 6.2
and 6.3] for & = pp, n, and by [52, Theorem 3.19 and Corollary 4.3] for
uw = I'(hy, hy), and it thus satisfies PHI(2) by Theorem 4.5, proving pu €

G(K,Rg,m,&E, F). O

One of the key observations for the validity of Theorem 6.33 is that the
energy measures of harmonic functions are volume doubling with respect to
the resistance metric Rg (or equivalently, with respect to the Euclidean metric
d on K), which in fact extends to the N-dimensional Sierpiniski gasket with
N > 3 as follows.

Proposition 6.34 (K, R, I'(h, h)) is VD for any h € Ho \ Rlg. More
generally, if {hplpen C Ho satisfies Y, E(hn, hy) € (0, 00), then
(K, Re, Y_pen (i, hy)) is VD.

Proof We follow [62, Proof of Theorem 3.2]. Let h € Hp \ Rl g. As noted
in the second paragraph of the proof of Proposition 6.10, (K , Rg, I'(h, h))
is VD if and only if (6.22) and (6.23) with © = I'(h, h) hold. To verify
(6.22) and (6.23), recalling Proposition 6.6-(1) and (RF1), for each j € S we
choose a basis {h]}!'_, of the linear space Ho such that &) = 1k, hi|y, =
N2 yg\q;0 hi () = 0and Y- oy, k() = Oforany k € {2, ..., N} and

{hljc},](\’:2 is orthonormal in (Ho/R1g, £). Then {h‘,i};{v:l is also orthonormal
in (Ho/R1g, &) by (6.10), and it easily follows by Ho C Hi, (6.11) and
solving [60, (3.2.1)] that h{ o F; = ¥=Lh{ and that hf o Fj = xL5h{ for any
kel2,..., N}.Inpartlcular foreachw € Wy, alinearmap F,,: Ho/R1gx —
Ho/R1g is defined by Fs(u +Rlg) := uo F,, +R1lg and is invertible, and
we set 1y, = E(h o Fw,h o Fy)~'2h o Fy € Ho \ Rlg.

Let (w, j) € W, x S. Then hy, = Zk Oakh for some (ak)k o € RVHL

Since hy o Fj = a ho + %iéalhj + N+3 Zk 2akhk and Zk 1ak =

E(hy, hy) = 1, by Lemma 6.21 we have

T (h, ) (K o))

L'(h, h)(Ky)

=E(hy o Fj, hy o Fj)

N+ D2+ 30, at [ 1 N+ 1)2]
N (N +3)? (N +3)2" (N +3)2]
(6.53)
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proving (6.22) with u = I'(h, h).

Next, to show (6.23), let w, v € W, satisfy |w| = |v|and K, N K, # . We
may assume w # v, so that there exist t € W,,n e NU {0} and i, j € § with
i # j such that w = 7ij" and v = 7ji". Take (bp)}_. ()i, € RN *! such
thath;oF; = Y p_o bihi and heo Fj = Y 1 cihl. Thenby = h. (Fi(q;)) =
he(Fj(qi)) = coby Fi(q;) = F;(qi), Nbo+N?b;+Nco+N'2c; = 2Nby
by the harmonicity of &, at F;(g;) (see [60, (3.2.1)]) and thus by = —cy.
Moreover, by (6.53),

Shcibf Elhe o Fi hy o Fy) _WN+D 2/(N +3)?

fo:ﬁl% E(he o Fj, he OF) 1/(N + 3)2

= (N + 12

(6.54)

Since /iy o Fyjn = boh, + (N+1)"b h] + (545)" Yo, behi and e o Fjn =

cohf)—i-(%—ié)nclhil (N—) Zk 5 cihi, we see from Lemma 6.21,b; = —c|

and (6.54) that

2n 2
L, )(Ky) _ E(heo Fyn,he o Fyn) _ (353) 01 + (78) ™" Eia 7
[ (h, h)(Ky) E(hy o Fjin, he OF/!") (N'H)2 c%—k(;)zn ZN 2

N+3 3 k=2 Ck
(N DY - DR+ Y b2
— - k-
(N + D2 = D)p2 + 30 e
2 1\i2 2N 2
3 (N 4+ DY = Db+ (N + 1D, N4

(N 4+ 12— Db+ 30,
(6.55)

which proves (6.23) with . = I'(h, h) and thereby that (K, Re, T'(h, h))
is VD.

Finally, if {h,}sen C Ho satisfies ), . E(hn, hy) € (0,00), then
Y nen T'(hn, hy) is a Radon measure on K, (6.22) and (6.23) with u =
Y nen I'(hp, hy) holdby (6.53) and (6.55), and hence (K, Re, Y pen Uy, hn))
is VD. O

Despite Proposition 6.34, Theorem 6.33 does NOT extend to the case of
N > 3, which is the main result of this subsection and stated as follows; recall
Proposition 6.26-(3).

Theorem 6.35 Assume that N = 3. Then di, " ¢ J (K. Re) for any h €
Ho. Equivalently, G(K, Rg,m,E, F) = ), i.e., the infimum in (1.4) is not
attained for (K, Rg, m, E, F).
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Theorem 6.35 is proved by deducing a contradiction to the conclusion of
the following proposition through taking scaling limits of functions in Hp on
the basis of Proposition 6.17.

Proposition 6.36 Leti, j € S,i # j and let h'"J € Hy be such that h'*J |y, =
Lig) — Ligy)- Then diy™ "™ (x.y) = 0 for any k.1 € S\ (i, j} and any
x,ye{(1 =gk +tq |t el0,11). Thus if N > 3, then d&- """ is not a

1 L nt
metric on K and T'(h*/, h*J) ¢ G(K, Rg,m, E, F).

Proof In the same way as in the proof of Proposition 6.34, it easily follows

by Ho C Hji, (6.11) and solving [60, (3.2.1)] that A’/ o F, = NLHhivf for
any k € S\ {i, j}. Let u € F satisfy I'(u, u) < (k7 , hJ). Then setting
C := diamg, (K), we see from Lemma 6.21 that forany w € U,‘iozl(S\{i, jhr

and any x, y € Ky,

u(x) — () = | o Fu)(Fy ' (x) — (o Fu)(Fy ' (y))|
<CEWwo Fy,uokFy,) =Cryl'(u,u)(Ky)
< CrypTC (W WY (Ky) = CEW o Fy, k7 o Fy)
= (N + 3)2Icgmbi, nidy. (6.56)

Now letk,l € S\ {i,j}and x,y € {(1 —t)gx +tq; | t € [0, 1]}. Then for
any n € N, taking v M ¢ {k,1}" such thatx € K, and y € K, @), from
(6.56) we obtain

lu(x) —u(y)|
< u(x) = u(Fyon (q)| + |u(Fym (qi) — u(Frn (q))|
+ |u(Fron (gn) — u(y)|
S2AN +3)7TCPEMH WD)+ N |u(Fu(qo) — u(Fu(a)))|
welk, "
< Q2+ 2MN +3)7"CY2EMNT, hi)

n— oo
1/2

0

and thus u(x) — u(y) = 0. Since u € F satistying I'(u, u) < r(hijj, h7Y is
arbitrary, it follows from (6.51) with ju = T'(hi/, -/ ) thatd! """ (x, y) =

0. Finally, if N > 3, then we can choose k,/ as above so that k # [,

hence x, y as above so that x # y, thus dil;lt(hl'j’hl’j) is not a metric on K
by dil;lt(hl’j’hl’j)(x, y) = 0, and therefore I'(h"/, h'-/) ¢ G(K, Rg, m, €, F) by
Proposition 6.26-(2). m|

Proof of Theorem 6.35 Let h € Hy. By Proposition 6.26-(2),(3) it suffices
to show that I'(h, h) ¢ G(K, Rg, m, E, F). Since this is clear for 1 € Rlg
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by I'(h, h)(K) = E(h, h) = 0, in the rest of this proof we assume that h €
Ho \ Rlg. Take j € S such that ii(g;) = mingey, h(q), let {h]}}_, be the
basis of Ho as introduced in the first paragraph of the proof of Proposition

6.34, and set Y = h{, so that Yy o F; = %—iéw, for a unique a € R we

have (h — ay — h(gj)1g) o F; = 25(h — ay — h(g;)1g), and @ > 0
by h(g;) = mingey, h(q). Setting iijn := E(h o Fjn,h o Fjn)~Y2h o Fju for
n € N U {0}, we easily see from these observations and £(¢, 1) = 1 that
limy 00 EW — hjn, ¥ — hjn) = 0.

Now suppose that I'(h,h) € G(K, Re,m,&,F), which means, by
(6.32), (6.35) and (6.33), that hjo € Ho(G(n, C)) for some (n,C) €
Homeo™ x (1, 00). Then, with cg, as in Lemma 6.11, {hjn}penujo; C
Ho(g(c;gln, C)) by Proposition 6.17-(2) and hence ¢ € Ho(g(c;gln, C)) by
lim,, 00 E(WY—h jn, Yy—h jn) = 0,(6.34) and Proposition 6.17-(1). Further, let-
tingi € S\{j}andsettingg := E(YoF;, yoF;) /2 (Yo Fi—N~12 821 ),
we would have ¢ = (2N + 2)~12ptJ with A7 as in Proposition 6.36
by Ho C Hi, (6.11) and solving [60, (3.2.1)], ¢ € Ho(g(c;e;n, C)) by

VA= Ho(g(c,;;n, C)) and Proposition 6.17-(2), and thus I'(h*/, hi/) =
2N 4+ 2)I' (¢, ¢) € G(K, Rg,m,E, F) by (6.33), (6.32) and (6.35). This
would be a contradiction to Proposition 6.36 and thereby proves that I" (&, h) ¢
G(K,Re,m,E, F). O

We conclude this subsection with the following theorem, which is an easy
consequence of the conjunction of Proposition 6.34, [64, Corollary 15.12] and
Theorem 6.35.

Theorem 6.37 Assume that N > 3, let {h,lpen C  Ho satisfy
Y nen Ehu, hy) € (0,00) and set w =), ' (hy, hy). Then there does
not exist a metric 6 on K compatible with the original topology of K such that
the MMD space (K, 6, u, £, F) satisfies HKE(2).

Proof Since (K, Rg, i) is VD by Proposition 6.34, 11 is a Radon measure on
K with full support, hence u € A(K, Rg, m, £, F) by (6.12) with m in place
of u, and [64, Corollary 15.12] is applicable to (K, Re, u, £, F) and yields
p € J(K,Re)and B € (1, 00) such that (K, p, u, £, F) has a continuous
heat kernel p* = p,“(x, y): (0,00) x K x K — R and satisfies VD and
HKE(B) with “u-a.e. x, y” in (4.1) and (4.2) replaced by “any x, y”.

Now suppose that there existed a metric 6 on K compatible with the orig-
inal topology of K such that (K, 6, u, &, F) satisfied HKE(2). Then for
each t € (0, 00), we easily see from the continuity of p!, the lower semi-
continuity of u(Bg (-, 1172y), the upper semi-continuity of M(EQ(-, !/ 2)) and
VD of (K, p, ) that HKE(2) for (K, 0, i, £, F) would also hold with the
same heat kernel p* and with “u-a.e. x, y” in (4.1) and (4.2) replaced by
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“any x,y”. Now for any x,y € K with x # y we would obtain, first
w(By(x, tV/B) =1 < pl(x, x) < w(By(x,t'/%))~! for any ¢ € (0, 00), then
o(x, y)2/2 < 0(x, y) by combining (4.1) for p, i, B and (4.2) for 6, 11, 2 with
t = (A(x,y)/8)? for a constant § € (0, 00), and O(x,y) < p(x, y)P/? by
combining (4.1) for 0, i, 2 and (4.2) for p, ju, B with t = (p(x, y)/8")? for a
constant 8’ € (0, 00). Thus 6 < p#/2 inparticular6 € J(K, p) = J(K, Re)
by p € J(K, Re) and (1.3), and VD of (K, p, n) would imply VD of
(K, 0, ), whence (K, 0, u, &, F) would satisty PHI(2) by Theorem 4.5.
Therefore we would get u € G(K, Rg,m, E, F), which would contradict
Theorem 6.35 and completes the proof. O

6.4 The case of generalized Sierpinski carpets

In this subsection, we treat the case of the canonical self-similar Dirichlet
form on an arbitrary generalized Sierpiriski carpet and see that the arguments in
Sect. 6.2 go through also in this case with just slight modifications in the proofs.
We closely follow the presentation of [54, Section 4] for the introduction of
the framework of this subsection up to Theorem 6.48 below, which we repeat
here for the reader’s convenience.

We fix the following setting throughout this subsection.

Framework 6.38 Let N,/ € N, N > 2,1 > 3 and set Qg := [0, 1]V. Let
S C {0,1,...,1 — 1}V be non-empty, define f;: RY — R by fi(x) :=
I7'i +1 'x foreachi € Sandset Q; := Uies fi(Qo), sothat Q1 € Q. Let
K be the self-similar set associated with { f;};cs, i.e., the unique non-empty
compact subset of R such that K = | ;g f; (K), which exists and satisfies
K C Qg thanks to Q1 € Qg by [60, Theorem 1.1.4], and set F; := fi|k
for each i € S, so that GSC(N,[,S) := (K, S, {F;}ics) is a self-similar
structure by [60, Theorem 1.2.3]. Letd: K x K — [0, co) be the Euclidean
metric on K given by d(x, y) := |x — y|, set dr := log; #S, and let m be the
self-similar measure on GSC(N, [, S) with weight (1/#S);cs, i.e., the unique
Borel probability measure on K such thatm(K,,) = #S)~ 1! for any w € W,
which exists by [60, Propositions 1.5.8, 1.4.3, 1.4.4 and Corollary 1.4.8].

Recall that dr is the Hausdorff dimension of (K, d) and that m is a constant
multiple of the df-dimensional Hausdorff measure on (K, d); see, e.g., [60,
Proposition 1.5.8 and Theorem 1.5.7]. Note thatdf < Nby S C {0,1,...,/—
1}V,

The following definition is essentially due to Barlow and Bass [5, Section
2]. In what follows, the interior of A C R" in R" is denoted by intpn (A).

Definition 6.39 (Generalized Sierpiniski carpet, [8, Subsection 2.2]) GSC(N,
1, S) is called a generalized Sierpiriski carpet if and only if the following four
conditions are satisfied:
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Fig. 2 Sierpiniski carpet, some other generalized Sierpinski carpets with N = 2 and Menger
sponge

(GSC1) (Symmetry) f(Q1) = Q; for any isometry f of RN with f(Qp) =
Qo.

(GSC2) (Connectedness) Q; is connected.

(GSC3) (Non-diagonality) intgy (Q1 N [Tr—; [k — e, (ix + DI7') is
either empty or connected for any (i) ,’(VZI e ZV and any (g;) 1?’:1 €
{0, V.

(GSC4) (Borders included) [0, 1] x {0}V~! ¢ 0.

As special cases of Definition 6.39, GSC(2, 3, Ssc) and GSC(3, 3, Sms)
are called the (two-dimensional standard) Sierpiriski carpet and the Menger
sponge, respectively, where Ssc = {0, 1, 2)? \ {(1,1)} and Sms :=
{(i1,i2,i3) € {0, 1,2} | S ) < 1} (see Fig. 2 above).

See [5, Remark 2.2] for a description of the meaning of each of the four con-
ditions (GSC1), (GSC2), (GSC3) and (GSC4) in Definition 6.39. We remark
that there are several equivalent ways of stating the non-diagonality condition,
as in the following proposition.

Proposition 6.40 ([51, §2]) Set |x|; := Z,]Lllxklforx = (xk),i\’:1 e RN.
Then (GSC3) is equivalent to any one of the following three conditions:

(ND)n intRN(Ql N ]_[,I{V:l[(ik — DI, (i + l)l_"]) is either empty or

connected for any n € N and any (ik),](v:1 ef{l,2,....,1" =1}V,
(ND), intpn (Q1 N ]_[,ivzl[(ik —DI72, G+ l)l_z]) is either empty or con-
nected for any (ik),](V:1 e{l,2,..., 1% — l}N.

(NDF) For any i,j € S with fi(Qo) N fij(Qo) # O there exists
W I < S such that n(0) = i, n(li — jl1) = j and
ntk) —ntk + 1))y =1foranyk € {0,...,|i — jl1 — 1}.

Remark 6.41 (1) Only the case of n = 1 of (ND)y had been assumed in the
original definition of generalized Sierpiniski carpets in [5, Section 2], but
Barlow, Bass, Kumagai and Teplyaev [8] later realized that it had been too
weak for [5, Proof of Theorem 3.19] and had to be replaced by (ND)y (or
equivalently, by (GSC3)).
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(2) In fact, [8, Subsection 2.2] assumes instead of (GSC2) the seemingly
stronger condition that intpy Q1 is connected, but it is implied by (GSC2)
and (GSC3) in view of (NDF) in Proposition 6.40 and is thus equivalent
to (GSC2) under the assumption of (GSC3).

In the rest of this subsection, we assume that £ := GSC(N,[,S) =
(K, S, {Fi}ics) is a generalized Sierpinski carpet. Then we easily see the fol-
lowing proposition and lemma.

Proposition 6.42 Set S, = {(i,))_, € S | ix = (I — De} fork €
{1,2,....N}and e € {0, 1}. Then Pz = Up— (Stg U S ) and Vo = Vo =
K\ 0, DN £K.

Lemma 6.43 There exist c1,cy € (0,00) such that for any (x,s) € K X
(0, diamy(K)],

c1s® < m(By(x, s)) < cas®. (6.57)

We next recall some basics of the canonical self-similar Dirichlet form
on GSC(N, !, S). There are two established ways of constructing a non-
degenerate m-symmetric diffusion without killing inside on K, or equivalently,
a non-zero, strongly local, regular symmetric Dirichlet form on L*(K, m),
one by Barlow and Bass [4,5] using the reflecting Brownian motions on the
domains approximating K, and the other by Kusuoka and Zhou [70] based
on graph approximations. It had been a long-standing open problem to prove
that the constructions in [4,5] and in [70] give rise to the same diffusion on K,
which Barlow, Bass, Kumagai and Teplyaev [8] have finally solved by proving
the uniqueness of a non-zero conservative regular symmetric Dirichlet form on
L%(K, m) possessing certain local symmetry. As a consequence of the results
in [8], after some additional arguments in [47,53,55] we have the unique exis-
tence of a canonical self-similar Dirichlet form (£, F) on L2(K, m), the heat
kernel estimates HKE(dy,) with dy, > 2, and hence PHI(d,,) by Lemma 6.43
and Theorem 4.5, as follows.

Definition 6.44 We define

To := {flk | f is an isometry of R, f(Qo) = Qo}. (6.58)

which forms a subgroup of the group of isometries of (K, d) by virtue
of (GSCI).

Theorem 6.45 ([8, Theorems 1.2 and 4.32], [47, Proposition 5.1], [53, Propo-
sition 5.9]) There exists a unique (up to constant multiples of £) regular
symmetric Dirichlet form (£, F) on L*(K,m) satisfying Eu,u) > 0 for
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someu € F, 1g € F, E(1g,1g) =0, (6.7), (6.8) for some r € (0, 00), and
the following:

(GSCDF) Ifue FNC(K)and g € Ipthenuog e FandE(uog,uog) =
E(u,n).

Throughout the rest of this subsection, we fix (£, F) and r as given in
Theorem 6.45; note that r is uniquely determined by (£, F), since £ (u, u) > 0
for some u € F N C(K) by the existence of such u € F and the denseness of
F N C(K) in the Hilbert space (F, &1 := & + (-, ") 12k m))-

Definition 6.46 The regular symmetric Dirichlet form (£, F) on L%(K,m)
as in Theorem 6.45 is called the canonical Dirichlet form on GSC(N, [, S),
and we set dy, := log;(#S/r). Note that (£, F) is also strongly local by
the same argument as [45, Proof of Lemma 3.12] based on (6.7), (6.8) and
E(lg,1g) =0.

Theorem 6.47 ([5, Remarks 5.4-1.], [55, Theorem 2.7]) dyw > 2.

Theorem 6.48 ([5, Theorem 1.3], [8, Theorem 4.30 and Remark 4.33]) There
exists a (unique) continuous version p = p;(x, y): (0,00) x K x K — [0, 00)
of the heat kernel of (K,d,m, E, F), and there exist cy, ca, c3, c4 € (0, 00)
such that for any (t,x,y) € (0,1] x K x K,

L ex _(d(x’)’)dw)dwll
iy P oot

< pix,y) < €3 exp _<M)"Wl‘ (6.59)
= t ) = [df/dw C4l’ . .

Inparticular, (K, d, m, £, F) satisfies HKE (dy) and PHI(dy,) by Lemma 6.43
and Theorem 4.5.

The following lemma is an immediate consequence of Theorem 6.48. Recall
that F is a Hilbert space under the inner product &1 := & + (-, ) 12k m)-

Lemma 6.49 The inclusionmap F — L*(K, m) is a compact linear operator
from (F, &) to L*(K, m), and there exists Cp € (0, 00) such that for any
u e F,

/’u —/ udm‘zdm < Cp&(u,u). (6.60)
K K

In particular, {u € F | £E(u,u) = 0} = Rlg, (F/Rlg, £) is a Hilbert space,
and the extended Dirichlet space F, of (K, d, m, E, F) coincides with F.
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Proof The compactness of the inclusion map F < L2(K, m) follows from
Theorem 6.48 and [30, Corollary 4.2.3 and Exercise 4.2]. The existence of
Cp € (0, o0) satisfying (6.60) for any u € F is implied by Theorems 6.48 and
4.5 as a special case of PI(dy,), or more elementarily by [30, Theorems 4.5.1
and 4.5.3] and the factthat {u € F | E(u,u) =0} = RlgbyE(g, 1g) =0,
Theorem 6.48 and [24, Theorem 2.1.11]. The completeness of (F/Rlg, &)
is immediate from that of (F, £1) and (6.60), and they also easily imply the
equality F, = F as proved in [48, Proposition 2.9]. O

Introducing the following space of £-harmonic functions is convenient for
our purpose in this subsection; recall (2.4) for the definition of £-harmonicity
of functions.

Definition 6.50 We define

h is £-harmonic on K \ Vp, i.e., E(h,v) =0

Ho = {h €F forany v € FNC(K) withsupp,,[v] C K\Vo}’ (6.61)

which is clearly a linear subspace of F and satisfies Rlg C Hp by
E(g,1k) = 0. Note that Hy is weakly closed in (F, &) since E(-, v) is
a bounded linear functional on (F, £1) for any v € F.

As the counterpart of Proposition 6.10 for generalized Sierpiriski carpets,
we have the following characterization of the pair (6, u) of 8 € J(K,d)
(recall (1.2)) and u € A(K,d,m,E,F) (recall Definition 2.8) such that
(K, 0, u, E*, FH) satisfies PHI(B); see also [66] for related results.

Theorem 6.51 Let 6 € J(K,d), let u be a Radon measure on K with full
support and let B € (1, 00). Then the following conditions are equivalent:
(a) we AK,d,m,E, F)and (K, 0, u, E*, F*) satisfies PHI(B).

(b) There exists C € (1, 00) such that for any w € W, with ry, := rlwl

C~(diamg (K ))? < rypu(Ky) < C(diamg(K,)P.  (6.62)

Moreover, if either of these conditions holds, then w(Fy, (Vo)) = 0 for any
w € W, and n({x}) = 0 forany x € K.

Theorem 6.51 follows by repeating the same arguments as the proof of
Proposition 6.10, on the basis of the following proposition concluded from
Theorem 4.5 with the help of [9, Lemma 5.22 and Proposition 6.16].

Proposition 6.52 Let 6 € J(K,d), let u be a Radon measure on K with
Sfull support and let B € (1, 00). Then Theorem 6.51-(a) is equivalent to the
following condition:
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(c) (K,0, ) is VD and there exists C € (0, 00) such that for any x,y € K
withx #y,

C7'0(x, )P <d(x, )™ u(Bg(x, 6(x, ) < COx, y)P.(6.63)

Proof Note first that, if u is admissible with respect to (K, d, m, &, F), then
for any Borel subsets A, B of K with B closedin K and A N B = (J, by [24,
Theorem 5.2.11] and [33, Theorem 4.6.2 and Lemma 2.1.4] we have

Cap”(A, B)
=inf{E(fH AL fTAD | feF  ANsupp,[f —1x] =9 = BNsupp,[fI}
. feFh0<f<1pae,
= 1nf{€(f’ ) ’ Ansupp, [f—1g] =9 = Bﬂsuppu[f]}
=inf{E(f, /)| f € F(A,B),0 < f < 1m-ael}
=inf(E(fT AL fT AL | f € F(A, B)} = Cap(A, B), (6.64)

where Cap* (A, B) and Cap(A, B) denote the capacity between A, B with
respect to (K, 6, u, EH, F*) and (K, d, m, E, F), respectively. Next, since
(K,d, m, &, F) satisfies (6.57), cap(dy) and EHI by Lemma 6.43, Theorems
6.48 and 4.5, there exist C1, A1, Ay € (1, 0o) with A, > 2 such that for any
(x,s) € K x (0,diamgy(K)/A»),

C s~ < Cap(Ba(x, 5), K \ Ba(x, As)) < Cis%=% (6.65)

and by the quasisymmetry of 6 to d and Lemma 4.8 we have EHI for
(K,0,m, &, F),aswellasfor (K, 0, u, E*, F*)providedu € A(K,d, m, &,
F).

To prove the desired equivalence, assume Theorem 6.51-(a), so that
(K, 0, u, E*, FH) satisfies VD and cap(f) by Theorem 4.5 and therefore in
view of (6.64) there exist Cp, A3, A4 € (1, 00) such that

1 1 (By(x, 5))
5P

n(Bg(x, 5))

Cy < Cap(By(x, ), K \ Bo(x, A3s)) < C2 5
N

(6.66)
for any (x, s) € K x (0, diamy (K)/A4). To verify (6.63), let x, y € K satisfy
x # y.Bythe quasisymmetry of 6 tod, (3.3) and (3.5), there exist As € (1, 00)

determined solely by d, 6, A| and Ag € (1, c0) determined solely by d, 8, A3
such that

By (x,0(x,y)/As) C Ba(x,d(x,y)) C Ba(x, A1d(x,y)) C By(x, As0(x, y)),
(6.67)
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Bi(x,d(x,y)/Ae) C Bo(x,0(x,y)) C By(x, A30(x,y)) C Ba(x, Asd(x, y)).
(6.68)

Then by EHI for (K,d,m, &, F) and (K, 6,m, E, F), Remark 2.6 and [9,
Lemma 5.22] (note also [9, Theorem 5.4 and Lemma 5.2-(e)]), there exist
A7 € (Aa, o0) and Ag € (A4, 00) such that for any (z, s) € K x (0, 00),

Cap(Ba(z. ), K \ By(z, A15)) < Cap(Bqy(z. s). K \ Ba(z. Ags))
if s < diamy(K)/A7,
Cap(By(z. ). K \ By(z. Ass)) =< Cap(By(z. ), K \ By(z, A3s))
if s < diamg(K)/Ag.

(6.69)
(6.70)

(Tobe precise, the definition of capacity between sets in [9, Section 5] is slightly
different from ours, but they are easily seen to be equivalent to each other by
virtue of [33, Lemma 2.2.7-(ii)].) Moreover, the quasisymmetry of 8 to d again
and (3.7) show that by taking Ag large enough we may further assume that
0(x,y) < diamg(K)/Ag implies d(x, y) < diamy(K)/A7. Now,if 0 (x, y) >
diamy (K')/ Ag, then (6.63) clearly holds for some sufficiently large C € (0, o)
independent of x, y since j(By(x, 0(x, y))) < u(K) by VD of (K, 6, w) and
d(x,y) < diamy(K) by the quasisymmetry of 6 to d and (3.7). Otherwise
0(x,y) < diamg(K)/Ag, which implies d (x, y) < diamy(K)/A7, hence

w(Bo(x,0(x,y)))

C
70 y)f

> Cap(By(x,6(x, y)), K \ Bo(x, A36(x, y)))
> Cap(By(x,d(x, y)/As), K \ Ba(x, Agd(x, y)))
= d(x, y)df_dW

by (6.66), (6.68), (6.69) and (6.65), and similarly

Cid(x, )"~ > Cap(By(x,d(x, ), K \ By(x, A1d(x, y)))
> Cap(By(x,0(x, y)/As), K \ By(x, AsO(x, )))

_ (Bolx, 6(x, y)))
a 0(x,y)P

by (6.65), (6.67), (6.70), (6.66) and VD of (K, 6, u), proving (6.63) and
thereby (c).

Conversely, assume (c). Since K is connected, VD of (K, 6, i) implies RVD
of (K, 6, nu) by Remark 3.18-(b). Note that (6.67) remains valid and that
for each A3, Ay € (1,00) we still have (6.68), (6.69) and (6.70). Note
also that by the connectedness of K and [40, Theorem 11.3] there exist
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A, o € [1, 00) such that 6 is 1y ;-quasisymmetric to d with 7, ; as in Defini-
tion 3.1. Let x € K and let 51, sp € (0, diamg(K)/A»>) satisfy s; < sp. Then
d(x,y) =s1 and d(x, z) = s, for some y, z € K by the connectedness of K,
((Ba(x, s1)) =< n(Bg(x,0(x,y)) and n(By(x,s2)) =< u(Bg(x,0(x,2)))
by (6.67) and VD of (K, 6, u), and therefore by (6.63), (6.65), the 1y x-
quasisymmetry of 6 to d and (3.7),

L(Ba(x, s2)) Cap(Bq(x, s1), K \ By(x, Aysy))
1(Bq(x, s1)) Cap(By(x, 52), K \ Ba(x, A152))
_dx, )™ U (By(x,0(x, 2))
T d(x, y)ddip(By(x, 0(x, y)))

ﬂ o o
“(G) <=0 6]

It follows from EHI for (K, d, m, £, F), Remark 2.6 and (6.71) that [9, Propo-
sition 6.16] is applicable to u and implies that u € A(K,d,m,&, F). In
particular, (K, 0, u, E#, F*) satisfies EHI by Lemma 4.8. Finally, to show
cap(pB) for (K, 0, u, E*, FH), let A3, Ay € (1,00) satisfy A4 > 2, and
choose Ag, A7, Ag € (1,00) with A7 > A, and Ag > A4 so that (6.68),
(6.69) and (6.70) hold. Again thanks to the quasisymmetry of 6 to d and
(3.7), by taking Ag large enough we may further assume that d(x, y) <
diamg(K)/A7 for any x, y € K with 6(x, y) < diamg(K)/As. Let (x,s) €
K x (0,diamg(K)/(As5Ag)), so that 8(x,y) = s = 6(x,z)/As for some
v,z € K by the connectedness of K. Then by (6.68), (6.69), (6.65) and (6.63),

(6.71)

Cap(By(x,s), K \ By(x, A3s))
> Cap(Bq(x,d(x, y)/As), K \ By(x, Aed(x, y)))
mw(Bo(x,0(x,y))  (Bo(x.s))

=< dlx, )0 = oef B

and similarly by (6.70), (6.67), (6.65), (6.63) and VD of (K, 0, 11),

Cap(Bg(x,s), K \ By(x, Azs))
= Cap(By(x,0(x,2)/As), K \ By(x, AsO(x, 2)))
< Cap(Ba(x, d(x, 2)), K \ Ba(x, A1d(x, 2)))

(Bo(x,0(x,2)) _ pu(Bo(x,s))

- di—dw _
f\d(X,Z) — Q(X,Z)ﬁ — Sﬁ ’
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proving (6.66) for (x,s) € K x (0, diamg(K)/(A5Ag)), namely cap(8) for
(K, 0, u, ", F*). Now (K, 0, u, EF, FH) satisfies PHI(8) by Theorem 4.5,
showing Theorem 6.51-(a). O

Proof of Theorem 6.51 By Proposition 6.52, it suffices to prove the equivalence
of Proposition 6.52-(c) and (b). We can verify it in exactly the same way as
the proof of Proposition 6.10, by considering the scale . = {Ag}s¢(0,11 0n X
defined by A := {}} and

Ayi={w|w=w...w, € W\ (B}, 117" > 5 > 17I®ly  (6.72)

foreachs € (0, 1), which clearly satisfies (6.21), and by using instead of R¢ the
Euclidean metric d on K, which is easily seen to satisfy (6.18) with d in place of
R¢;note that since (6.19) needs to be replaced by (6.63) we also need to replace

Re(x, )ie(Brg (x, Re(x, y)) in (6.25) by d(x, )™~ u(By(x, d(x, y))). O

By virtue of Theorem 6.51, the whole of Sect. 6.2 can be easily adapted for
the present case, and below we explicitly give the details of the adaptation for
concreteness. We begin with stating the main result of this subsection, which
requires the following definition. Recall (6.29) for Homeo™ and Definition
6.50 for Hj.

Definition 6.53 We define P(K) by (6.30), equip P(K) with the topology
of weak convergence, and for each (1, C) € Homeo™t x(1, c0) we define

G(n,C) =Gn1,5(n, C) by

6 is a metric on K and n-quasisymmetric to d, u €
g, C):={(9,M) ’ P(K), C™! < ryu(Ky)/(diamg(K,))* < C for an}’},

we W,
(6.73)
which is considered as a subset of C(K x K) x P(K). We also set
G:=0nis = U G(n, C) (6.74)

(n,C)eHomeo™ x (1,00)

and for each subset Z of G define Ho(Z) C Hp by (6.33) and ﬁo(Z) -
Ho/R1g by (6.34).

Since p is a Radon measure on K with full support for any (6, u) € G, it
follows from Theorem 6.51 with 8 = 2 and (1.3) that

GK,d,m,E,F)={an | @,un) € G,a € (0,00)}. (6.75)
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In particular,

G(K,d,m,E,F) # 0, i.e., the infimum in (1.4) is attained for
(K,d,m, &, F), if and only if G # O, namely G(n, C) # O for (6.76)
some (1, C) € Homeo™ x (1, 00).

It turns out that in this case Ho(G) # @, i.e., 6y, ['(h, h)) € G for some
h € Hy and some 0, € J (K, d), which is the main result of this subsection
and stated as follows. We take arbitrary (n, C) € Homeo™ x (1, 00), define
ii € Homeo™ by 7j(1) := 1/n~ (¢t~ 1) (7(0) := 0) and fix them throughout the
rest of this subsection.

Theorem 6.54 IfG(n, C) # @, then Ho(G(n, C)) # @, i.e., there existh € Hy
and a metric 0, on K such that (6, T'(h, h)) € G(n, C).

Moreover, as in Sect. 6.2, a slight addition to our proof of Theorem 6.54
also shows the following theorem, which will be useful in studying further the
problem of whether the infimum in (1.4) is attained for generalized Sierpinski
carpets. Recall that (F /R1 g, &) is a Hilbert space as observed in Lemma 6.49.

Theorem 6.55 (/) ﬁo (G(n, C)) is compact in norm in (F /Rl g, £).
(2) Ifh € Ho(G(n, ©)), then E(h o Fy, ho Fu)~'?ho Fyy € Ho(G(, C)) for
any w € W,.

We remark that in Theorem 6.55-(2) we have E(h o Fy,h o F) =
rwl'(h, h)(Ky) > 0 for any w € W, by Lemma 6.60 below and the lower
inequality in (6.73) for u = I'(h, h).

The rest of this subsection is devoted to the proof of Theorems 6.54 and 6.55,
which goes in exactly the same way as that of Theorem 6.16 and Proposition
6.17 except for some modifications required due to #Vy = oo = dim H and
explained in detail below.

Proposition 6.56 G(n, C) is a compact subset of C(K x K) x P(K).

Proof The proof of Proposition 6.18 remains valid also in this case, except
that R¢ needs to be replaced by d and that s in the last paragraph needs to be
defined as s := [~1*I. O

Corollary 6.57 Let {(0,, in)}nen C G(n, C), u € P(K) and suppose that
{in}nen converges to u in P(K). Then there exists a metric 6 on K such that

@, 1) € G, C).

Proof The proof of Corollary 6.19 remains valid with Proposition 6.56 applied
in place of Proposition 6.18. O
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Lemma 6.58 Let (0, ) € G(n, C), w € Wy and define (0, 1) € C(K X
K) x P(K) by (6.43). Then (0, tw) € G(n, C).

Proof The proof of Lemma 6.20 remains valid also in this case, except that
R¢ needs to be replaced by d. m|

Lemma 6.59 Let w € W,.

(1) fK|u o Fyldm = #8)IV! waluI dm for any Borel measurable function
u: K — [—00, 00l, and hence a bounded linear operator from L*(K , m)
to itself is defined by u +— u o F,.

(2) uoFy € F and (6.8) holds for any u, v € F.

(3) hoFy € Ho forany h € H).

Proof (1) is immediate from m = #5)!"'m o F,,, and (2) follows from (6.7),
(6.8), the denseness of 7 N C(K) in (F, £1) and the completeness of (F, £1);
see [55, Proof of Lemma 3.3]. To see (3), let h € Hp, andletv € F N C(K)
satisfy supp,,[v] C K \ V. Then since K; N Ky, = F7(Vp) N Fy, (Vo) for any
T € W)y \ {w} by [60, Proposition 1.3.5-(2)], we can define v € C(K) by
vk, :=vo Fujl and v"|g\k,, := 0and have v* € F N C(K) by (6.7) and
supp,,[v"] C Ky \ Fu (Vo) = Ky \ Vjw| C K \ Vo, and it therefore follows
from (6.8) for 7, v and 7t € Ho thatry,'E(h o Fiy,v) = Y ey, 77 Eh o

Fr,v% o Fr) = E(h,v") =0, proving h o Fy, € Hy. O

Lemma 6.60 Suppose that G # (. Let u € F and w € W,. Then
'(u,u)(Fy(A) = r;ll"(u o Fy,u o Fy)(A) for any Borel subset A of
K, and in particular T (u, u)(Ky) = rujlé'(u o Fy,u o Fy). Moreover, if
['(u, u)(Ky) > 0, then (6.44) holds for any Borel subset A of K.

Proof First, by Lemma 6.59-(2) and [45, Lemma 3.11-(ii)] it holds, indepen-
dently of the assumption G # (}, that for any v € F and any n € N U {0},

1
F(v,v)(A)= ) —T(voFr,voF;)(F;'(A)) for any Borel subset A of K.
teW, T

(6.77)
By G # ¥ we can take (0, u) € G, then px is a minimal energy-dominant
measure of (£, F) by Theorem 6.51 and Proposition 2.11-(b), thus I" (v, v) <
u for any v € F, and hence

F'(w,v)(Vp) =0 foranyv € F (6.78)

since u(Vy) = 0 by Theorem 6.51. Recalling that for any T € W)y, \ {w} we
have K; N Ky, = F(Vp) N Fy, (Vo) by [60, Proposition 1.3.5-(2)] and hence
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Fr_1 (Ky) = Fr_l (K:NKy) C Vp, we see from (6.77) and (6.78) that for any
Borel subset A of K,

1
P w)(Fy(A) = ) —To Frouo F)(F; (Fy(A)
Te€W )y T

1
= —I'(uo Fy,uoFy)(A).

w
The rest of the proof goes in exactly the same way as that of Lemma 6.21. O

Remark 6.61 In fact, (6.78) holds without supposing G # @ by [47, Proposi-
tion 4.15] and hence so does Lemma 6.60. The proof of (6.78) presented in
[47, Section 5], however, is long and difficult, and since we later use Lemma
6.60 only under the supposition that G # @, we have decided to suppose it
explicitly to keep our present arguments independent of the demanding result
[47, Proposition 4.15].

Lemma 6.62 Suppose that G #= 0, let (O, ) € G, u € F and set [ =
dU(u,u)/dpn. Then p-a.e. x € K is a (d, u)-Lebesgue point for f, i.e., satis-
fies

lim ———— — d =0. 6.79
i Bar.s) Bd(xpg)lf(y) J)ldu(y) (6.79)

Proof The proof of Lemma 6.22 remains valid also in this case, except that
R¢ needs to be replaced by d. O

Lemma 6.63 Suppose thatG # 0, let (0, u) € G,u € F,let f: K — [0, 00)
be a Borel measurable -version of dU" (u, u)/du and let x € K satisfy (6.79).
Then (6.47) holds for any w € 7Y x) and any w € W,.

Proof The proof of Lemma 6.23 remains valid also in this case, except that
R¢ needs to be replaced by d. O

Proposition 6.64 Suppose that G # 0, let (O, 1) € G, u € F, let f: K —
[0, 00) be a Borel measurable ju-version of dU (u, u)/du, let x € K satisfy
(6.79) and f(x) > 0, and let w € 7~V (x). For eachn € NU{0}, define ju, :=
Hw], € P(K) by (6.43) with w = [w], and, noting that I"(u, u)(K|,),) > 0
by Lemma 6.63, define u,, := u|y), € F by (6.44) withw = [w],. Ifv € F and
{ni}ken C Nis strictly increasing and satisfies limy_ o0 E(V =y, , V—uty,) =
0, then I' (v, v) € P(K) and {jin, }ken converges to I' (v, v) in P(K).

Proof The proof of Proposition 6.24 remains valid also in this case, except
that it is because of G # ¥, (6.78) and Lemma 6.60 that I" (v, v) (Fy, (Vp)) =0
for any w € W,. O
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So far, except for the issue of the validity of (6.78) treated in the proof of
Lemma 6.60 and Remark 6.61, our current discussion has been almost the same
as the corresponding part of Sect. 6.2. On the other hand, the concluding parts
of the proofs of Proposition 6.17-(1) and Theorem 6.16 rely on the compactness
of {h € Ho/R1g | £(h, h) = 1} implied by dim Hy/R1x < oo and thereby
cannot be extended directly to the present case of a generalized Sierpifiski
carpet, where dim Hy/R1 g = oo by #Vy = oo. We overcome this difficulty
by establishing Proposition 6.67 below on the basis of Lemma 6.49 and the
following lemma and applying it with the help of the compactness of G(n, C)
from Proposition 6.56.

Lemma 6.65 (Reverse Poincaré inequality) There exists Crp € (0, 00) such
that for any (x,s) € K x (0, 00), any a € R and any function h € F that is
E-harmonic on By(x, 2s),

C
/ dr(h, h) < 51’/ h—al>dm.  (6.80)
By(x,s) S™W S By(x,25)\Ba(x,s)

Proof This is a special case of [56, Lemma 3.3] with W(s) = s, whose
assumption CS(W¥) formulated in [56, Definition 2.6-(b)] is implied in the
current situation by Lemma 6.43, Theorem 6.48 and [1, Theorem 5.5]; see
also Remark 6.66 below. |

Remark 6.66 To be precise, [56, Lemma 3.3] assumes additionally that & €
L°°(X, m), but this assumption can be dropped by replacing [56, the first four
lines of (3.9)] with the following, where h,, := (—n) vV (h An) forn € N:

0= lim E(h, hpg*) = lim_ T(h, h,9?)(X)  (by [56, (3.7) and (2.4)])

= lim (/ <p2dr(h,h,,)+2/ ohn dF(h,(p)) (by [33, Lemma 3.2.5])
X X

n—oo

zlimsup(/ sozdr(h,hn)—z// ¢2dr(h,h)/hgdr<¢,¢))
n— 00 X X X

(by [33, Proof of Lemma 5.6.1])

=/<p2dl“(h,h)—2\// (pzdF(h,h)/hzdF(go,cp)
X X X

(by the Cauchy-Schwarz inequality for [y ¢*>dT'(:, ")
and [33, Theorem 1.4.2-(iii)]).

Proposition 6.67 Let {h;}reny C Ho converge weakly in (F, 1) to h € F(,
so that h € Hy since Hy is weakly closed in (F, &£1)), and assume that there
exist a Radon measure v on K and ng € N such that v(F,(Vy)) = 0 and
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lim sup;_, o ru_)lé’(hk o Fy, hy o Fy) < v(Ky) for any w € W, satisfying
lw| > ng and Kyy N Vo £ @. Then limg_, oo E1(h — hg, h — hy) = 0.

Proof Thanks to the weak convergence in (F, £1) of {/x}xen to h, we have

lim /|h—hk|2dm:0 (6.81)
K

k—o00

by the compactness of the inclusion map from (F, &) to L?(K, m) stated in
Lemma 6.49 and [71, Chapter 21, Theorem 9], and for any w € W,, {hyo F,,+
Rlg}reny C Ho/R1g converges weakly in (F/Rlg,E) to ho Fyy + Rlg
since u — u o Fy, + Rlg is a bounded linear operator from (F, &) to
(F/Rlg, £) by Lemma 6.59-(2). In particular,

EhoFy,hoFy) < likm inf E(hg o Fy, hy o Fy)  forany w € W,.
— 00
(6.82)
Moreover, recalling that K \ Vg is openin K and non-empty and letting t € W,,
z¢ € Ky and s; € (0, 0o) satisty K; C Bi(z¢, s7) C Ba(z:,2s;) C K\ Vo,

we see from (6.77) with A = K, and Lemma 6.65 with a = 0 that for any
[US] Ho,

1 C
—E@Wo Fr,vo Fr)<T (v, v)(K¢) <T(v, ) (Ba(zr. sa)s%/ v’ dm,
K

rc STW
(6.83)
which with v = h — hy, for k € N, together with (6.81), shows that
lim E((h — hg) o Fy, (h — hy) o F;) =0. (6.84)
k—o00
Now let n € N satisfy n > ng, set Vo := Uyew,. k,nvy2n Kw and

We ={t € Wyan | K & Vou},sothat {w e W, | K, N Vp # B} U W) is
a partition of X (recall Definition 6.12-(2)) and each T € W, satisfies (6.84)
since K; C By(z¢, 17" 1) € By(z¢, 217" ") € K\ Vpforany z; € K. Then
since v(F,(Vp)) = 0 and lim sup;_, r;lé’(hk o Fy, hy o Fy) < v(Ky) for
any w € W, with K, NV # ¥ and hence ZweWn, KuNVo#d V(Ky) =v(Vo.n)
andv(Vp) = v(VoﬂUwGWn, KuNVo#d Fw(Vo)) = 0 by [60, Proposition 1.3.5-
(2)] and Vy C Vj, it follows from Lemma 6.59-(2), (6.84) for t € W, and
(6.82) that
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lim supS(h — hk, h— hk)

k— 00
1
= lim sup > —E((h—hy) o Fy, (h — hy) o Fy)
k=00 clwew, | KunVoABuwe  °
1
= lim sup Z —E(oFy—hygoFy, hoFy,—hgoFy)
k=00 ew, Konwors VY
. 2
<limsup Y (E(ho Fy.hoFy)+E(hgo Fy. hyoFy))
k>0 ew, KunVoss ¥
2 .
< ¥ —(S(h o Fy,ho Fy) +limsup E(hg o Fyy, by Fw)>
weW,, KyNVo#) Tw k=00
4
< > — limsup E(hg o Fy, hy o Fy)

r
weW,, KyNVozn W k=0

< ) 4Ky =4 (Vo) > 4u(Vp) =0,
weW,, Ky,NVy#)

which along with (6.81) proves limy_ o0 E1(h — hy, h — hy) = 0. O

Proof of Theorem 6.55 Recall (6.73) for G(n, C), (6.33) for Hp(Z) and (6.34)
for Ho(Z2).

2

ey

The proof of Proposition 6.17-(2) remains valid also in this case, except
that Proposition 6.6-(2), Lemmas 6.21 and 6.20 need to be replaced by
Lemma 6.59-(3), Lemmas 6.60 and 6.58 , respectively.

Let {hnlpen C Ho(G(n, C)), so that {T'(hy, hp)lpen C P(K) and
hence {h,}pen C {h € Ho | (C'(h, h)(K) =)E(h, h) = 1}. Setting
Up = hy — [ hadm € Ho for each n € N, by E(1g,1g) = 0
and Lemma 6.49 we have & (v, v,) < Cp + 1 for any n € N, there-
fore by [71, Chapter 10, Theorem 7] there exist # € F and a strictly
increasing sequence {n/j} jeN C N such that {vn/j }jen converges weakly
in (F, &) to h, and h € Hy since Hy is weakly closed in (F, £1). Fur-
ther, recalling that P(K) is a compact metrizable topological space by [87,
Theorems 9.1.5 and 9.1.9], we can choose a strictly increasing sequence
{Jk}ken C N such that {I"(hy,,, hp,)}ken converges to some v € P(K) in
P(K), where nj := n/jk, and then (¢, v) € G(n, C) for some metric ¥ on
K by {h,, }ken C Ho(G(n, C)) and Corollary 6.57. In particular, for any
w € W, we have v(Fy(Vp)) = 0 by (6.73) and Theorem 6.51 and

1
lim sup —& (v, © Fy, Uy © Fy) < limsup'(hy,,, hp, ) (Ky) < v(Ky)

k—oo Tw k— 00

(6.85)
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by E(1k, 1g) = 0and (6.77) with A = Ky, thus limg o0 E1(h — vy, , h —
vy, ) = 0 by Proposition 6.67 and hence limy_, o0 E(h — hp,, h — hy ) =0
by E(Akg,1g) = 0. It follows that (6.45) holds for any Borel sub-
set A of K, so that I'(h, h) € P(K) and {I'(hy,, hn,)}ken converges
to I'(h, h) in P(K), whence (¢, I'(h, h)) = (8,v) € G(n, C). There-
fore h € Ho(G(n, C)), which together with limg oo E(h — hp, h —
hp,) = 0 proves that Ho(G(n, C)) is (sequentially) compact in norm in
(F/Rlg, &). O

Proof of Theorem 6.54 By the assumption G(n,C) # @ we can take
@, ) € G(n,C). Choose u € Hy so that E(u,u) > 0; such u exists,
e.g., by [55, Propositions 3.7 and 3.10]. Let f: K — [0, co) be a Borel
measurable p-version of dI'(u, u)/dp. Then u(f_l((O, oo))) > 0 by
fK fdu =T(wu,u)(K) = E(u,u) > 0, and therefore by Lemma 6.62 there
exists x € K with the properties (6.79) and f(x) > 0. Let w € 77 (x),
and for each n € N U {0}, as in Proposition 6.64 define (6,, u,) :=
Blol,» Mol,) € C(K x K) x P(K) by (6.43) and u, = uj,), € F by
(6.44) with w = [w],, so that {(0,, tn)}nenujoy C G(n, C) by Lemma 6.58
and {u,}nenuo) C {h € Ho | £(h, h) = 1} by Lemma 6.59-(3). Then setting
Up = Uy — [ undm € Hy for eachn € NU {0}, by E(1g, 1gx) = 0 and
Lemma 6.49 we have & (v, v,) < Cp 4+ 1 for any n € NU {0}, hence by [71,
Chapter 10, Theorem 7] there exist 2 € F and a strictly increasing sequence
{l/l/j}jeN C Nsuch that {vnrj } jen converges weakly in (F, £1) to h,and h € Hy
since H is weakly closed in (F, &1). Further, by {(9,1;, /,Ln/j)}jeN c G, C),
Proposition 6.56 and the metrizability of C(K x K) x P(K) we can choose a
strictly increasing sequence { jx }xeny C N such that {(6,,, tn, ) }ken converges
tosome (3, v) € G(n, C)inC(K x K) x P(K), where nj := n;.k. Then for any
w € W,, we have v(F,,(Vp)) = 0 by (6.73) and Theorem 6.51, and by using
E(g,1g) =0,(6.77) with A = K, (6.44) from Lemma 6.60, the definition
of py, = Kl from (6.43), (6.47) from Lemma 6.63, f(x) € (0, co0) and
the convergence of {jt,, }ren to v in P(K), we obtain

1
lim sup —&(vp, o Fyy, vy © Fy)
k—oo Tw

<1 I'( )(Ky) =1 L0 10 Rloly )
< Tim sup Up,, U = lim sup
m su ng» Uny w koo L (U, M)(K[w]nk)

. I (u, u)(K[w]nkw)/:u(K[w]nkw)
= lim sup
k—oo  T(u, u)(Kw, )/ (Ko, )

= ;3; ligsogp My (Kyp) < v(Ky). (6.86)

Mny, (Kw)
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Thus limg_ o0 E1(h — vy, h — vy,) = 0 by Proposition 6.67, hence
limg oo Eh — U, h —uy) = 0by E(Ig, 1g) = 0, and it follows from
Proposition 6.64 that {1, }xen convergesto I'(h, h) € P(K) inP(K ), whence
@, T'(h,h)) =,v)egm,C). O

Remark 6.68 Note that the relatively short proof of Proposition 6.67 above is
enabled by the assumed properties of the Radon measure v on K. The existence
of such v seems difficult to verify for a general sequence {hj}ren C Ho con-
verging weakly in (F, £1), but can be obtained via the compactness of G (1, C)
from Proposition 6.56 in the situations of the proofs of Theorems 6.55 and 6.54
above as observed in (6.85) and (6.86). In fact, Hino [47, Proposition 4.18]
has proved a similar sequential compactness without assuming the existence
of such v, at the price of its long difficult proof given in [47, Section 5].

7 Further remarks and open problems

We conclude the present paper with mentioning some related open problems.

Problem 7.1 Does d.,, < oo characterize the elliptic Harnack inequality for
symmetric jump process?

It is not clear if the equivalence between (a) and (b) in Theorem 2.10 extends
to jump processes. Despite the progress made in the diffusion case, the charac-
terization and stability of the elliptic Harnack inequality is still open for jump
processes.

Our study of the Gaussian uniformization problem in Sect. 5 gives only
partial answers, both for a general MMD space and for the MMD space of
Brownian motion on R”, except for an explicit answer for R in Theorem 5.18
and an implicit (unsatisfactory) one for R? in Proposition 5.16. In particular,
the following problem is left open.

Problem 7.2 Characterize explicitly all the Gaussian admissible measures for
the MMD space of Brownian motionon R”,n > 2 (see (5.3) for the definition).

For Problem 7.3 below, let (K, Rg,m, £, F) denote the MMD space
resulting as in Sect. 6.1 from a post-critically finite self-similar structure
L= (K,S,{Fi}ics) with #S > 2 and K connected and a regular harmonic
structure (D, 1) on L. Recall that H( has been defined in Definition 6.5 as
Ho := {h € C(K) | h is O-harmonic} under this setting.

Problem 7.3 Provide simple sufficient conditions for the non-attainment of
the conformal walk dimension for the MMD space (K, Rg, m, £, F).

In view of the non-attainment results in Sect. 6.3 for the Vicsek set (Corol-
lary 6.30) and the higher-dimensional Sierpifiski gaskets (Theorem 6.35), it

@ Springer



On the conformal walk dimension

seems natural to expect that the conformal walk dimension would typically fail
to be attained for the MMD space (K, Rg, m, £, F) as in Problem 7.3. This
expectation, however, does not seem very easy to verify, since the behavior of
the linear maps Ho > h +— h o Fy, € Ho could be difficult to analyze for a
given pair of £ and (D, r) and might not allow a proof by contradiction based
on Theorem 6.16 and Proposition 6.17 as achieved in the proof of Theorem
6.35.

For Problems 7.4, 7.5 and 7.6 below, let N, K, d, m, Vy, (£, F), Ho be
as introduced in Sect. 6.4 as pieces of the framework of the canonical self-
similar Dirichlet form on an arbitrary generalized Sierpifski carpet K; in
particular, recall that 7 has been defined in Definition 6.50 as Hy := {h €
F | his E-harmonic on K \ Vo = K N (0, DN},

Problem 7.4 Is the conformal walk dimension attained for the canonical
MMD space (K, d, m, £, F) over the generalized Sierpinski carpet K ?

As a matter of fact, the authors have proved in a recent ongoing work that the
conformal walk dimension is NOT attained for the two-dimensional standard
Sierpiriski carpet. It is therefore likely that the answer to Problem 7.4 would
be negative also for a given generalized Sierpiniski carpet. Note, however, that
in view of Theorem 6.54 the negative answer to Problem 7.4 would mean
only that the energy measure I'(%, h) of every h € Ho \ R1x would fail to
satisfy I'(h, h) € G(K,d, m, &, F), which is a much stronger requirement
than just VD of (K, d, I'(h, h)). In particular, the following problem remains
non-trivial regardless of the actual answer to Problem 7.4.

Problem 7.5 Does there exist 7 € Hp \ R1g such that its energy measure
I"(h, h) satisfies the volume doubling property with respect to the Euclidean
metric d?

Problem 7.5 appears very challenging since we do not know even the answer
to the following much simpler question.

Problem 7.6 Does there exist & € Hp \ R1x such that its energy measure
["(h, h) has full support?

It is tempting to conjecture that the energy measure I"(h, h) of every h €
Ho \ R1x has full support. This can be viewed as a unique continuation
principle for harmonic functions on a given generalized Sierpinski carpet.

We expect that there is a version of Theorems 6.16 and 6.54 for Ahlfors reg-
ular conformal dimension on self-similar spaces. In particular, we expect that
if the Ahlfors regular conformal dimension p > 1 is attained on a self-similar
space then there exists a “p-harmonic function” such that its “energy measure”
is a p-Ahlfors regular measure with respect to a metric in the conformal gauge.
This motivates the following problem.
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Problem 7.7 Define non-linear analogs of Dirichlet space, energy measure
and harmonic functions on self-similar spaces (for example, the Sierpifiski
carpet).

Using the theory of Dirichlet forms and its relationship to diffusion pro-
cess we have a notion of Sobolev space W2 on the Sierpifiski carpet whose
seminorm can be formally thought of as the integral ([ |V f 1>)172 on a dense
subspace of L?. For example in [70], the W!-2-seminorm and the Dirichlet
energy [ |V f | is constructed as suitably renormailized version of discrete
Dirichlet energy ZXN),( f (x) — f (y))?, where f is a discretization of the
function f on a sequence of graph approximations V,,. A key ingredient in the
constructions in [4] and [70] is the following submultiplicative and supermul-
tiplicative inequalities for resistance between opposite faces. Let R, denote
the resistance between the opposite faces for the nth level approximation of the
Sierpiniski carpet. Then the submultiplicative and supermultiplicative inequal-
ities are given by R,R;, = Rpy+n and R, R, < Ry,4,. These inequalities
have been generalized in the non-linear context for the Sierpiriski carpet by
Bourdon and Kleiner for any p > 1 [21, Lemma 4.4]. This suggests that one
could construct a non-linear version of Dirichlet form with a W7 seminorm
(formally denoted by ||V f1| ). This seminorm is defined on a dense subspace
JF) of L and is conjectured to satisfy the following properties:

1. (Closability) If f, is a Cauchy sequence in the ||V f ,-seminorm and if
fn — 01in L? then f, converges to 0 in the ||V f || p-seminorm.

2. (Regularity) Let K denote the Sierpiriski carpet. Then 7, N C(K) is dense
with respect to the uniform norm in C(K) and is dense with respect to the
£ VI, + 1 £1l, norm.

This yields the notion of p-harmonic functions which are defined as minimiz-
ers of the p-Dirichlet energy ||V f ||§. On the basis of Theorem 6.54, we have
the following conjecture: if the Sierpinski carpet attains the Ahlfors regular
conformal dimension, then there exists a p-harmonic function whose energy
measure (formally written as the measure A +— [ A IV fIP) is an optimal
Ahlfors regular measure, where p is the Ahlfors regular conformal dimension
of the Sierpinski carpet. The previous discussion on unique continuation ques-
tion in the linear case (p = 2) also applies to p-harmonic functions due to the
above mentioned relationship to the attainment problem for the Ahlfors regu-
lar conformal dimension. These conjectures serve as a motivation to develop a
theory of non-linear Dirichlet forms on fractals and develop methods to obtain
the elliptic Harnack inequality and quantitative unique continuation principle
for p-harmonic functions. Added in revision: there has been recent progress on
Problem 7.7 in [68,85]. These results are quite satisfactory when p is strictly
larger than the Ahlfors regular conformal dimension.

@ Springer



On the conformal walk dimension

Acknowledgements The authors would like to thank Ryosuke Shimizu for his valuable com-
ments on an earlier version of this paper, and the anonymous referees for their careful reading
of this manuscript and helpful suggestions. The authors would also like to express gratitude to
Shouhei Honda for having communicated to the first-named author the idea of taking scaling
limits at Lebesgue points to reduce the analysis to the case of harmonic functions, which the
authors have adapted in Sects. 6.2 and 6.4. This paper was revised while the second-named
author was at the Mathematical Sciences Research Institute in Berkeley, California, during the
Spring 2022 semester on Analysis and Geometry of Random Spaces, which was supported by
the National Science Foundation under Grant No. DMS-1928930.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the source, provide
alink to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix: index of words, phrases, symbols and abbreviations
Words and phrases

(1, p)-Poincaré inequality—Definition 5.3

attainment problem—Problem 1.3, second paragraph of Sect. 5
Aqo-related—Definition 5.5

bi-Lipschitz, bi-Lipschitz equivalent—Definition 3.1
boundary of a hyperbolic space—fourth paragraph of Sect. 3.1
caloric—Definition 2.4

canonical Dirichlet form on GSC(N, [, S)—Definition 6.46
conformal gauge—Definition 1.1

critical set—Definition 6.3

distortion function—Definition 3.1

doubling (measure)—Definition 3.17

doubling (metric space)—first paragraph of Sect. 3.2
E-harmonic—Definition 2.4

energy measure—Definition 2.1

full quasi-support—Definition 2.8

Gaussian admissible measures—(5.2), (5.3)

Gaussian uniformization problem—Problem 1.3, second paragraph of
Sect. 5

e generalized Sierpinski carpet—Definition 6.39

e gentle—Definition 3.15

Gromov hyperbolic space—second paragraph of Sect. 3.1
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e harmonic structure—Definition 6.4

e K p-doubling (metric space)—first paragraph of Sect. 3.2
e K-gentle, (K, K,)-gentle—Definition 3.15
e Kp-uniformly perfect—first paragraph of Sect. 3.2
e maximal semi-metric induced by 2—Definition 5.12
e Menger sponge—paragraph following Definition 6.39
e metric doubling property—first paragraph of Sect. 3.2
e metric measure space—first paragraph of Sect. 2.1
e MMD (metric measure Dirichlet) space—second paragraph of Sect. 2.1
e minimal energy-dominant measure—Definition 2.2
e nest—paragraph before Definition 2.8

e n-harmonic (£-harmonic on K \ V,,)—Definition 6.5
e N-dimensional (standard) Sierpifiski gasket—Example 6.31
e partition (of the shift space ¥)—Definition 6.12
e post-critical set—Definition 6.3

e post-critically finite (p.-c.f.)—Definition 6.3
e power quasisymmetry—Definition 3.1

e quasi-closed—paragraph before Definition 2.8

e quasi-open—paragraph before Definition 2.8

e quasisymmetry—Definition 3.1

e regular (harmonic structure)—Definition 6.4

e resistance form—paragraph following Definition 6.4

e resistance metric—paragraph following Definition 6.4, especially (RF4)
e reverse volume doubling property—Definition 3.17

e (Rg, u)-Lebesgue point—Lemma 6.22

e scale—Definition 6.13

e self-similar measure (with weight (rl.dH) ies)—paragraph before Lemma 6.8
e self-similar structure—Definition 6.2

e Sierpiniski carpet—paragraph following Definition 6.39

e smooth measure—Definition 2.7

e strong Ao-related—Definition 5.15

e two-dimensional standard Sierpifiski carpet—paragraph following Defini-
tion 6.39

uniformly perfect—first paragraph of Sect. 3.2

upper gradient—Definition 5.2

Vicsek set—Example 6.27

volume doubling property—Definition 3.17

e-net—Definition 3.8

J-intrinsic metric—Definition 6.25
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Symbols

1s = ]li{: indicator function of A C X on a set X—Notation 1.4-(f)
A(X,d, m, £, F): admissible measures—Definition 2.8

B(x,r) = Bg(x, r): open ball in metric d—first paragraph of Sect. 2.1
B(x,r) = By(x, r): closed ball in metric d—first paragraph of Sect. 2.1
cre—Lemma 6.11

C(X): space of continuous functions on X—Notation 1.4-(g)

C:(X): space of continuous functions on X with compact supports—
Notation 1.4-(g)

Cap;(A): 1-capacity of a set A—(2.6)

Cap(A, B): capacity between sets A and B—(2.7)

Cp: critical set of L—Definition 6.3

d.v: conformal walk dimension—Definition 1.2

ds: Euclidean Hausdorff dimension of GSC(N, [, S)—Framework 6.38
dp: maximal semi-metric induced by A~—Definition 5.12

dy: Hausdorft dimension of (K, Rg)—Lemma 6.8 and preceding para-
graph

diamy(A) = diam(A, d): diameter of A in metric d—first paragraph of
Sect. 2.1

dint: intrinsic metric—Definition 2.3

di‘flt: -intrinsic metric—Definition 6.25

dy,: walk dimension of the Dirichlet form on GSC(XN, [, S)—Definition 6.46
(D, r): harmonic structure—Definition 6.4

D;(B): descendants of generation [—(3.12)

Ds: combinatorial metric on the hyperbolic filling—Definition 3.6.

&1: inner product on F for a Dirichlet form (£, F)—second paragraph of
Sect. 2.1

EM: discrete Dirichlet form on V,—(6.2), (6.3)

F,,—Definition 6.1

F.: extended Dirichlet space—Definition 2.4

Floc: space of functions locally in F—Definition 2.3

GSC(N, I, S)—Framework 6.38

g(X,d,m, &, F): Gaussian admissible measures—(5.2), (5.3)
Gg(X,d,m, &, F): sub-Gaussian admissible measures—(5.1)

G = G, (p,r) (for post-critically finite £)—Definition 6.15

G =0n..s (for GSC(N, [, §))—Definition 6.53

G, C) =Gr,(p,r(n, C) (for post-critically finite £)—Definition 6.15
G, C) =Gn.i.s(n, C) (for GSC(N, I, §))—Definition 6.53

Homeo™: group of homeomorphisms of [0, co)—Definition 6.15

Ho (for GSC(N, [, S))—Definition 6.50

@ Springer



N. Kajino, M. Murugan

e Ho(Z): set of O-harmonic functions attaining d.y,—(6.33) in Defini-
tion 6.15

Ho(Z£)—(6.34) in Definition 6.15

‘H,, (for post-critically finite £)—Definition 6.5

intgn (A): interior of A C RY in R¥—paragraph before Definition 6.39
Zp: group of cubic symmetries of GSC(N, [, S)—Definition 6.44

J (X, d): conformal gauge of (X, d)—Definition 1.1

K (x)—Definition 6.13

K,,—Definition 6.1

L= (K, S, {F;}ies): self-similar structure—Definition 6.2

Lip u(x): pointwise Lipschitz constant—Definition 5.1

Lip(X): space of Lipschitz functions on X—Definition 5.1

NLP(X) = NVP(X, d, m)—Definition 5.2

NP (X) = NSP(X, d, m)—Definition 5.2

N: set of positive integers—Notation 1.4-(c)

N: non-peripheral vertices—Definition 3.23

‘P(K): set of Borel probability measures on K—(6.30) in Definition 6.15
Pr: post-critical set of L—Definition 6.3

Qo: N-dimensional unit cube [0, 1]N—Framework 6.38
Q—Framework 6.38

ry (for post-critically finite £)—(6.3)

ry (for GSC(N, [, S))—Theorem 6.51

Rg: resistance metric—paragraph following Definition 6.4, especially (RF4)
supp,, [ f1: support of | f| dm—second paragraph of Sect. 2.1

S: hyperbolic filling—Definition 3.6, Sect. 3.2

% = {As}se(0.17: scale on X associated with r = (r;);cs—Definition 6.13
Uy—(6.44) in Lemma 6.21

U, (x)—Definition 6.13

Vi: set of level-n boundary points of £L—Definition 6.3

V,: set of arbitrary level boundary points of £L—Definition 6.3
w*°—Definition 6.1

W,,: set of words of length n—Definition 6.1

W, set of words of arbitrary length—Definition 6.1

(X,d,m, &, F): MMD (metric measure Dirichlet) space—Sect. 2.1
['j4+1(B)—Definition 3.22

I'(f, f): energy measure—Definition 2.1

n: multiplicative dual of n—paragraphs before Theorems 6.16 and 6.54
Oy (for (0, n) € G(n, C))—(6.43) in Lemma 6.20

Ag—Definition 6.13

Ay x—Definition 6.13

A; .—Definition 6.13

Uy (for (6, w) € G(n, C))—(6.43) in Lemma 6.20
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e 7 (for a self-similar structure £): projection from X to K—Definition 6.2

e o—Definition 6.1

e o0y, —Definition 6.1

e X: (one-sided) shift space—Definition 6.1

e X,,—Definition 6.1

e [w],—Definition 6.1

e (-): positive part of a [—00, oo]-valued quantity—Notation 1.4-(e)

e (-)7: negative part of a [—00, co]-valued quantity—Notation 1.4-(e)

e (-]-).: Gromov product—(3.1)

e #A: cardinality (number of elements) of a set A—Notation 1.4-(d)

e < (for measures)—Notation 1.4-(h)

e < (for elements of W, )—Definition 6.12

e < (for partitions of X): refinement—Definition 6.12

e <:inequality up to constant multiples—Notation 1.4-(b)

e < :absolute continuity of a measure with respect to another—Notation 1.4-
(h)

e V: maximum of two [—00, co]-valued quantities—Notation 1.4-(e)

e A: minimum of two [—o00, co]-valued quantities—Notation 1.4-(e)

Abbreviations

cap(B): capacity estimate—Definition 4.2

CS(B): cutoff Sobolev inequality—Definition 4.3

(E): enhanced subadditivity estimate—Definition 3.23

EHI: elliptic Harnack inequality—Definition 2.5
(GSC1),(GSC2),(GSC3),(GSC4): requirements for GSC(N, I, S) to be a
generalized Sierpinski carpet—Definition 6.39

e (GSCDF)—Theorem 6.45

e (H1),(H2),(H3): conditions on weight functions in a hyperbolic filling—
Assumption 3.11

HKE(B): heat kernel estimate—Definition 4.1

(ND)y,(ND),,(NDF): equivalent formulations of (GSC3)—Proposition 6.40
PHI(B): parabolic Harnack inequality—Definition 2.5

PI(B): Poincaré inequality—Definition 4.3

RVD: reverse volume doubling property—Definition 3.17

(S1),(S2): conditions on weight functions in a hyperbolic filling—
Theorem 3.24

e VD: volume doubling property—Definition 3.17
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