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Abstract

We obtain an upper bound on the minimal number of points in an ε-chain
joining two points in a metric space. This generalizes a bound due to Hambly and
Kumagai (1999) for the case of resistance metric on certain self-similar fractals. As
an application, we deduce a condition on ε-chains introduced by Grigor’yan and
Telcs (2012). This allows us to obtain sharp bounds on the heat kernel for spaces
satisfying the parabolic Harnack inequality without assuming further conditions on
the metric. A snowflake transform on the Euclidean space shows that our bound is
sharp.

1 Introduction

The fundamental solution of the heat equation (or heat kernel) on Rn is given by the
Gauss Weierstrass kernel

pt(x, y) =
1

(4πt)n/2
exp

(
−d(x, y)2

4t

)
, for all x, y ∈ Rn, t > 0.

From a probabilistic viewpoint, the heat kernel can be interpreted as the transition prob-
ability density of the diffusion generated by the Laplacian ∆. More generally, for any

uniformly elliptic, divergence form operator Lu =
∑n

i,j=0
∂
∂xi

(
aij(x) ∂u

∂xj

)
on Rn, Aronson

[Ar67] proved that the heat kernel pt(x, y) of the corresponding heat equation ∂tu−Lu = 0
satisfies

c1

V (x, t1/2)
exp

(
−d(x, y)2

c1t

)
≤ pt(x, y) ≤ C1

V (x, t1/2)
exp

(
−d(x, y)2

C1t

)
,

for all x, y ∈ Rn, t > 0, where c1, C1 ∈ (0,∞). Here V (x, r) denotes the Lebesgue measure
of the Euclidean ball B(x, r) centered at x with radius r.
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To prove the above lower bound on pt(x, y), the first step is to obtain the lower bound
under the additional restriction that d(x, y) ≤ Ct1/2. Such an estimate is called a near
diagonal lower bound. In order to obtain the full lower bound from a near diagonal lower
bound, one chooses a sequence of points (called a chain) {xi}ni=0 such that x0 = x, xn = y
and n ∈ N such that d(xi, xi+1) ≤ C(t/n)1/2/2 for all i = 0, 1, . . . , n − 1. Then we use
Chapman-Kolmogorov equation to obtain the estimate

pt(x, y) ≥
�
B(xn−1,C(t/n)1/2/2)

. . .

�
B(x1,,C(t/n)1/2/2)

Πn−1
i=0 pt/n(yi, yi+1) dy1 . . . dyn−1,

where y0 = x, yn = y. By optimizing over n and the sequence {xi}ni=0 and using the near
diagonal lower bound, we obtain the full lower bound on the heat kernel pt(x, y). This
method of obtaining full heat kernel lower bound is called the chaining argument.

The use of chaining argument to obtain heat kernel estimates is classical [AS67, Ar67].
Such chaining arguments are also used to obtain heat kernel estimates on fractals; see
[Bar98] for a general introduction to diffusions on fractals. In this work, we address the
natural converse question: Do heat kernel estimates imply the existence of short chains?
Our main result provides an upper bound on the length of chains, which in some sense
is the best possible. The goal of this work is to obtain sharp quantitative bounds on the
connectivity of a metric space. This will be expressed as bounds on the length of chains.

1.1 Framework and definitions

We recall the definition of a chain in a metric space (X, d).

Definition 1.1. We say that a sequence {xi}Ni=0 of points in X is an ε-chain between
points x, y ∈ X if

x0 = x, xN = y, and d(xi, xi+1) < ε for all i = 0, 1, . . . , N − 1.

For any ε > 0 and x, y ∈ X, define

dε(x, y) = inf
{xi} is ε-chain

N−1∑
i=0

d(xi, xi+1),

where the infimum is taken over all ε-chains {xi}Ni=0 between x, y with arbitrary N .
Note that if (X, d) is a geodesic space, then dε(x, y) = d(x, y) for all ε > 0, x, y ∈ X.

Throughout this paper, we consider a complete, locally compact separable metric space
(X, d), equipped with a Radon measure m with full support, i.e., a Borel measure m on X
which is finite on any compact set and strictly positive on any non-empty open set. Such
a triple (X, d,m) is referred to as a metric measure space. Then we set diam(X, d) :=
supx,y∈X d(x, y) and B(x, r) := {y ∈ X | d(x, y) < r} for x ∈ X and r > 0.

Let (E ,F) be a symmetric Dirichlet form on L2(X,m). In other words, the domain
F is a dense linear subspace of L2(X,m), such that E : F × F → R is a non-negative
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definite symmetric bilinear form which is closed (F is a Hilbert space under the inner
product E1(·, ·) := E(·, ·) + 〈·, ·〉L2(X,m)) and Markovian (the unit contraction operates on
F ; (u ∨ 0) ∧ 1 ∈ F and E((u ∨ 0) ∧ 1, (u ∨ 0) ∧ 1) ≤ E(u, u) for any u ∈ F). Recall that
(E ,F) is called regular if F ∩Cc(X) is dense both in (F , E1) and in (Cc(X), ‖ · ‖sup). Here
Cc(X) is the space of R-valued continuous functions on X with compact support.

For a function u ∈ F , let suppm[u] denote the support of the measure |u| dm, i.e., the
smallest closed subset F of X with

�
X\F |u| dm = 0; note that suppm[u] coincides with

the closure of X \ u−1({0}) in X if u is continuous. Recall that (E ,F) is called strongly
local if E(u, v) = 0 for any u, v ∈ F with suppm[u], suppm[v] compact and v is constant
m-almost everywhere in a neighborhood of suppm[u]. The pair (X, d,m, E ,F) of a metric
measure space (X, d,m) and a strongly local, regular symmetric Dirichlet form (E ,F) on
L2(X,m) is termed a metric measure Dirichlet space, or an MMD space. We refer to
[FOT, CF] for a comprehensive account of the theory of symmetric Dirichlet forms.

We recall the definition of energy measures associated to an MMD space. Note that
fg ∈ F for any f, g ∈ F ∩ L∞(X,m) by [FOT, Theorem 1.4.2-(ii)] and that {(−n) ∨
(f ∧ n)}∞n=1 ⊂ F and limn→∞(−n) ∨ (f ∧ n) = f in norm in (F , E1) by [FOT, Theorem
1.4.2-(iii)].

Definition 1.2 (cf. [FOT, (3.2.14) and (3.2.15)]). Let (X, d,m, E ,F) be an MMD space.
The energy measure Γ(f, f) of f ∈ F is defined, first for f ∈ F ∩ L∞(X,m) as the
unique ([0,∞]-valued) Borel measure on X with the property that

�
X

g dΓ(f, f) = E(f, fg)− 1

2
E(f 2, g) for all g ∈ F ∩ Cc(X), (1.1)

and then by Γ(f, f)(A) := limn→∞ Γ
(
(−n) ∨ (f ∧ n), (−n) ∨ (f ∧ n)

)
(A) for each Borel

subset A of K for general f ∈ F .

The notion of energy measure can be extended to the local Dirichlet space Floc, which
is defined as

Floc :=

{
f ∈ L2

loc(X,m)

∣∣∣∣ For any relatively compact open subset V of X,
there exists f# ∈ F such that f1V = f#1V m-a.e.

}
. (1.2)

For any f ∈ Floc and for any relatively compact open set V ⊂ X, we define

Γ(f, f)(V ) = Γ(f#, f#)(V ),

where f# is as in the definition of Floc. Since (E ,F) is strongly local, the value of
Γ(f#, f#)(V ) does not depend on the choice of f#, and is therefore well defined. Since
X is locally compact, this defines a Radon measure Γ(f, f) on X.

Definition 1.3 (Capacity between sets). For subsets A,B ⊂ X, we define

F(A,B) := {f ∈ F : f ≡ 1 on a neighborhood of A and f ≡ 0 on a neighborhood of B} ,

and the capacity Cap(A,B) as

Cap(A,B) = inf {E(f, f) : f ∈ F(A,B)} .
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The main result of this work provides upper bounds on dε(x, y) based on analytic
conditions on an MMD space that we introduce now. Henceforth, we fix a continuous
increasing bijection Ψ : (0,∞)→ (0,∞) such that for all 0 < r ≤ R,

C−1

(
R

r

)β1
≤ Ψ(R)

Ψ(r)
≤ C

(
R

r

)β2
, (1.3)

for some constants 0 < β1 < β2 and C > 1. Throughout this work, the function Ψ is
meant to denote the space time scaling of the process.

Definition 1.4. We recall the following properties that an MMD space (X, d,m, E ,F)
may satisfy:
We say that (X, d,m) satisfies the volume doubling property (VD) if there exists CD ≥ 1
such that

m(B(x, 2r)) ≤ CDm(B(x, r)), for all x ∈ X, r > 0. (VD)

We say that (X, d,m, E ,F) satisfies the Poincaré inequality PI(Ψ), if there exist constants
C,A ≥ 1 such that for all x ∈ X, r ∈ (0,∞) and f ∈ F

�
B(x,R)

(f − f)2 dm ≤ CΨ(r)

�
B(x,Ar)

dΓ(f, f), PI(Ψ)

where f = m(B(x, r))−1
�
B(x,r)

f dµ. If all balls are relatively compact, then the above

inequality can be extended to all f ∈ Floc.

We say that (X, d,m, E ,F) satisfies the capacity estimate cap(Ψ)≤ if there exist
C1, A1, A2 > 1 such that for all x ∈ X, 0 < R < diam(X, d)/A2,

Cap(B(x,R), B(x,A1R)c) ≤ C1
m(B(x,R))

Ψ(R)
. cap(Ψ)≤

We recall the definition of the heat kernel corresponding to an MMD space.

Definition 1.5. Let (X, d,m, E ,F) be an MMD space, and let {Pt}t>0 denote its asso-
ciated Markov semigroup. A family {pt}t>0 of non-negative Borel measurable functions
on X × X is called the heat kernel of (X, d,m, E ,F), if pt is the integral kernel of the
operator Pt for any t > 0, that is, for any t > 0 and for any f ∈ L2(X,m),

Ptf(x) =

�
X

pt(x, y)f(y) dm(y) for m-almost every x ∈ X.

We remark that not every MMD space (X, d,m, E ,F) has a heat kernel. The existence
of heat kernel is an issue in general.

1.2 Main results

Our main result is the following upper bound on dε.
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Theorem 1.6. Let (X, d,m, E ,F) be an MMD space that satisfies (VD), PI(Ψ), and
cap(Ψ)≤, where Ψ satisfies (1.3). Then there exists C > 1 such that for all ε > 0 and for
all x, y ∈ X that satisfy d(x, y) ≥ ε, we have

dε(x, y)2

ε2
≤ C

Ψ(d(x, y))

Ψ(ε)
(1.4)

In particular, for all x, y ∈ X, we have

lim
ε→0

Ψ(ε)
dε(x, y)

ε
= 0. (1.5)

Remark 1.7. (a) If Ψ(r) = r2, (1.4) implies the chain condition dε(x, y) . d(x, y) for all
ε > 0, x, y ∈ X.

(b) If Ψ(r) = rβ, then (1.4) and the triangle inequality dε(x, y) ≥ d(x, y) imply that

d(x, y)2

ε2
≤ dε(x, y)2

ε2
≤ C

d(x, y)β

εβ
,

for all x, y ∈ X, ε > 0 with d(x, y) ≥ ε. By letting ε→ 0, we give a new proof of the
known fact that β ≥ 2 must necessarily hold.

(c) Let Ψ(r) = rβ with β ≥ 2. Consider the Dirichlet form corresponding to the Brownian
motion on Rd with Lebesgue measure as the symmetric measure, and the snowflake
metric d(x, y) = ‖x− y‖2/β

2 , where ‖x− y‖2 denotes the Euclidean distance (cf. [MT,
Defintion 1.2.8] for the terminology ‘snowflake metric’). In this case, it is easy to
obtain

Ψ(ε)
dε(x, y)2

ε2
� Ψ(d(x, y)) � ‖x− y‖2

2

for all x, y ∈ Rd, ε > 0 with ε < d(x, y). Hence, the bound (1.4) is sharp for all β ≥ 2.

(d) Theorem 1.6 provides a new proof to an estimate due to Hambly and Kumagai
[HaKu99, Lemma 3.3]. Based on the results in [HaKu99], the estimate (1.5) was
introduced by Grigor’yan and Telcs in [GT12, (1.8)] to obtain sharp estimates of the
heat kernel (cf. Corollary 2.9).

By [GT12, Theorem 6.5] along with (1.5), we have the following corollary (see Theorem
2.11 for generalization to arbitrary scale functions Ψ).

Corollary 1.8. Let (X, d,m, E ,F) be an MMD space that satisfies the following sub-
Gaussian estimate on its heat kernel pt(·, ·): there exists β ≥ 2, C, c > 0 such that

c

V (x, t1/β)
exp

(
−
(
d(x, y)β

ct

)1/(β−1)
)
≤ pt(x, y) ≤ C

V (x, t1/β)
exp

(
−
(
d(x, y)β

Ct

)1/(β−1)
)

(1.6)
for all x, y ∈ X, t > 0, where V (x, r) = m(B(x, r)). Then the metric d satisfies the chain
condition: there exists K > 1 such that

d(x, y) ≤ dε(x, y) ≤ Kd(x, y) for all ε > 0 and for all x, y ∈ X. (1.7)
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Remark 1.9. (a) The chain condition (1.7) admits the following characterization. Let
(X, d) be metric space such that the open balls B(x, r) are relatively compact for all
x ∈ X, r > 0. Then (X, d) satisfies the chain condition if and only if there exists a
geodesic metric ρ such that d is bi-Lipschitz equivalent to ρ [KM, Proposition A.1].
Recall that (X, ρ) is geodesic, if for any two points x, y ∈ X, there exists a function
γ : [0, ρ(x, y)]→ X such that ρ(γ(s), γ(t)) = |s− t| for all s, t ∈ [0, ρ(x, y)].

(b) Corollary 1.8 was previously known only for the case β = 2. By a version of Varad-
han’s asymptotic formula in [HR, Theorem 1.1], we obtain that d is bi-Lipschitz
equivalent to the intrinsic metric. Hence by the remark above, d satisfies the chain
condition. However, the intrinsic metric vanishes identically for the case β > 2. This
suggests the need for a completely different approach when β > 2.

(c) The chain condition plays an essential role in the proof of singularity of energy mea-
sures in [KM] for spaces satisfying the sub-Gaussian heat kernel estimate.

Recall that the parameter β in Corollary 2.9 is called the walk dimension. The fol-
lowing result can be viewed as a generalization of the result that the walk dimension is
at least two.

Corollary 1.10. Let (X, d,m, E ,F) be an MMD space that satisfies (VD), PI(Ψ), and
cap(Ψ)≤, where Ψ satisfies (1.3). Then there exists C1 ≥ 1 such that

Ψ(r)

Ψ(s)
≥ C−1

1

(r
s

)2

, for all 0 < s ≤ r < diam(X, d).

Notation. In the following, we will use the notation A . B for quantities A and B
to indicate the existence of an implicit constant C ≥ 1 depending on some inessential
parameters such that A ≤ CB. We write A � B, if A . B and B . A.

2 Proofs

2.1 Connectedness

We recall the notion of a net in a metric space.

Definition 2.1. Let (X, d) be a metric space and let ε > 0. A maximal ε-separated
subset V ⊂ X is called an ε-net; in other words, V satisfies the following properties:

(a) V is ε-separated; that is, d(x, y) ≥ ε whenever x, y ∈ V and x 6= y.

(b) (maximality) If W ⊇ V and W is ε-separated, then W = V .

As a first step towards (1.4), we show that dε(x, y) is finite for all ε > 0, x, y ∈ X.
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Lemma 2.2. Let (X, d,m, E ,F) be an MMD space that satisfies (VD), PI(Ψ), where Ψ
satisfies (1.3). Then

dε(x, y) <∞ for all x, y ∈ X and for all ε > 0.

Proof. Let x ∈ X, ε > 0 and Ux = {y : dε(x, y) <∞} , Vx = X \ Ux. Clearly Ux is open,
since z ∈ Ux implies B(z, ε) ⊂ Ux. Similarly, Vx is open since z ∈ Vx implies B(z, ε) ⊂ Vx.
The above statements also imply that

inf {d(y, z) : y ∈ Ux, z ∈ Vx} ≥ ε. (2.1)

Let N denote a ε/2-net in (X, d). Let φz ∈ Cc(X)∩F such that 1 ≥ φz ≥ 0, φz
∣∣
B(z,ε/2)

≡ 1,

and supp(φz) ⊂ B(z, ε). Define

φ(y) = sup
z∈N∩Ux

φz(y) for all y ∈ X.

By (2.1), and ∪z∈NB(z, ε/2) = X, we obtain

φ ≡ 1Ux . (2.2)

For any precompact open set U , we have |{z ∈ N ∩ Ux : B(z, ε) ∩ U}| <∞. In this case,
by setting NU = {z ∈ N ∩ Ux : B(z, ε) ∩ U}, we have

inf
z∈NU

φz(y) = φ(y) for all y ∈ U, inf
z∈NU

φz ∈ F ∩ C(X).

Therefore φ = 1Ux ∈ Floc ∩ C(X). By [CF, Theorem 4.3.8], the push-forward measure of
Γ(φ, φ) by φ is absolutely continuous with respect to the 1-dimensional Lebesgue measure.
Since {0, 1} has zero Lebesgue measure, we obtain

Γ(φ, φ)(B) = 0 (2.3)

for all balls B = B(x,R), R > 0. Since φ is continuous, by PI(Ψ), φ is constant on all
balls B(x,R). Therefore φ(y) = φ(x) = 1 for all y ∈ B(x,R), R > 0. Therefore φ ≡ 1.
Hence Vx = ∅. Since x ∈ X, ε > 0 are arbitrary, we obtain the desired estimate. �

Recall that a metric space (X, d) is said to be uniformly perfect, if there exists C > 1
such that B(x, r) \B(x, r/C) 6= ∅ for all x ∈ X, r > 0 that satisfy B(x, r) 6= X.

Corollary 2.3. Let (X, d,m, E ,F) be an MMD space that (VD), PI(Ψ), where Ψ satisfies
(1.3). Then (X, d) is a uniformly perfect metric space.

Proof. Let B(x, r) be a ball such that B(x, r) 6= X. Let y ∈ X \ B(x, r). By Lemma
2.2, there exists an ε-chain {xi}Ni=0 , x0 = x, xN = y between x and y for ε = r/4.
Since d(x, x0) = 0, d(x, xN) ≥ r and |d(x, xi)− d(x, xi+1)| ≤ d(xi, xi+1) ≤ r/4 for all
i = 0, . . . , N − 1, we have d(x, xj) ∈ [r/2, r) for some 1 ≤ j ≤ N − 1. Hence

B(x, r) \B(x, r/2) 6= ∅. (2.4)

�
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2.2 A two point estimate using Poincaré inequality

For two measures m, ν on (X, d), for R > 0, x ∈ X, we define a ‘truncated maximal
function’

Mm
R ν(x) = sup

0<r<R

ν(B(x, r))

m(B(x, r))
. (2.5)

If ν � m, then the above expression is the truncated maximal function of the Radon-
Nikodym derivative dν

dm
. However, in the lemma below ν will be the energy measure, and

hence the measure ν and m might be mutually singular. In the following lemma, by C(X)
we mean the space of continuous functions on X.

Lemma 2.4. (see [HeKo98, Lemma 5.15]) Let (X, d,m, E ,F) be an MMD space that
satisfies (VD), PI(Ψ), where Ψ satisfies (1.3). There exists C > 0 such that for all
x0 ∈ X,R > 0, x, y ∈ B(x0, C

−1R), and for all u ∈ C(X) ∩ Floc

|u(x)− u(y)|2 ≤ CΨ(R) (Mm
R Γ(u, u)(x) +Mm

R Γ(u, u)(y)) ,

where Γ(u, u) denotes the energy measure of u.

Proof. The proof in [HeKo98] applies to our setting with minor modifications. For the
convenience of the reader, we recall the proof below.

Let δ ∈ (0, 1) be a constant that will be chosen later. For a ball B, by uB we denote
1

m(B)

�
u dm. Define Bx,i = B(x, 2−iδR) for i ∈ {0, 1, 2, . . .}. We estimate

∣∣u(x)− uBx,0

∣∣ ≤ ∞∑
i=0

∣∣uBx,i
− uBx,i+1

∣∣ =
∞∑
i=0

1

m(Bx,i+1)

∣∣∣∣∣
�
Bx,i+1

(
u− uBx,i

)
dm

∣∣∣∣∣
≤

∞∑
i=0

1

m(Bx,i+1)

�
Bx,i+1

∣∣u− uBx,i

∣∣ dm
.

1

m(Bx,i)

�
Bx,i

∣∣u− uBx,i

∣∣ dm (since Bx,i+1 ⊂ Bx,i and by (VD))

≤
∞∑
i=0

(
1

m(Bx,i)

�
Bx,i

∣∣u− uBx,i

∣∣2 dm)1/2

(by Hölder inequality)

.
∞∑
i=0

Ψ(2−iδR)1/2

(
1

m(Bx,i)

�
B(x,Aδ2−iR)

dΓ(u, u)

)1/2

(by PI(Ψ))

.
∞∑
i=0

Ψ(R)1/22−β1i/2 (Mm
AδRΓ(u, u)(x))1/2 (by (1.3) and (VD))

. (Ψ(R)Mm
AδRΓ(u, u)(x))1/2 . (2.6)

Similarly, by setting By = B(y, δ′R), we obtain∣∣u(x)− uBy

∣∣ . (Ψ(R)Mm
Aδ′RΓ(u, u)(y))1/2 . (2.7)
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We choose C > 1 large enough and δ′ > δ so that x, y ∈ B(x0, C
−1R) implies Bx ⊂ By.

For example, it suffices to choose C, δ, δ′ so that

2C−1 + δ < δ′. (2.8)

We also require
Aδ ≤ Aδ′ ≤ 1, (2.9)

so that Mm
AδRΓ(u, u)(x) ≤Mm

R Γ(u, u)(x) and Mm
AδRΓ(u, u)(y) ≤Mm

R Γ(u, u)(y).

Evidently, given any A > 1, it is possible to choose C > 1, 0 < δ ≤ δ′ < 1 such that
(2.8) and (2.9) are satisfied. We fix one such C, δ, δ′ for the remainder of the proof.

By Bx,0 ⊂ By, m(By) . m(Bx,0), (VD) and PI(Ψ), we obtain∣∣uBx,0 − uBy

∣∣ ≤ 1

m(Bx,0)

�
Bx,0

∣∣u− uBy

∣∣ dm . 1

m(By)

�
By

∣∣u− uBy

∣∣ dm
.

(
Ψ(R)

Γ(u, u)(B(y, Aδ′R))

m(By)

)1/2

≤ (Ψ(R)Mm
Aδ′RΓ(u, u)(y))1/2 (2.10)

Combining (2.6), (2.7), (2.10), Aδ ≤ Aδ′ ≤ 1, we obtain the desired bound

|u(x)− u(y)| ≤
∣∣u(x)− uBx,0

∣∣+
∣∣uBx,0 − uBy

∣∣+
∣∣u(y)− uBy

∣∣
. Ψ(R)1/2 (Mm

R Γ(u, u)(x) +Mm
R Γ(u, u)(y))1/2 .

�

The telescoping sum argument has been applied in the context of anomalous diffusions
previously in [BCK, p. 1654]. However, in [BCK] the argument is used in the ‘strongly
recurrent case’. One of the main novelties of this work is to extract useful estimates from
that argument without further assumptions on volume growth.

2.3 A partition of unity

The use of partition of unity with functions of small Dirichlet energy indexed by a net is
well-known [Ka86, p. 235], [BBK, p. 504]. Since we do not have a reference to give for
the requirement in (c) below, we provide the details.

Lemma 2.5. Let (X, d,m, E ,F) be an MMD space that satisfies (VD), and Cap(Ψ)≤.
Let ε > 0 and let V denote any ε-net. Let ε < diam(X, d)/A2, where A2 ≥ 1 is the
constant in Cap(Ψ)≤. Then, there exists a family of functions {ψz : z ∈ V } that satisfies
the following properties:

(a) {ψz : z ∈ V } is partition of unity
∑

z∈V ψz ≡ 1.

(b) ψz ∈ Cc(X) ∩ F with 0 ≤ ψz ≤ 1, ψz
∣∣
B(z,ε/4)

≡ 1, and ψz
∣∣
B(z,5ε/4)c

≡ 0.

(c) For all z ∈ V , z′ ∈ V \ {z}, we have ψz′
∣∣
B(z,ε/4)

≡ 0. (this follows from (a) and (b)).
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(d) There exists C > 1 such that for all z ∈ V ,

E(ψz, ψz) ≤ C
m(B(z, ε))

Ψ(ε)
.

Proof. For z ∈ V , we define the corresponding ‘Voronoi cell’ Rz as

Rz =

{
p ∈ X : d(p, z) = d(p, V ) = min

v∈V
d(p, v)

}
.

We denote its ε/4-neighbourhood by R
ε/4
z = ∪x∈RzB(x, ε/4). By the triangle inequality,

we have
B(z, ε/2) ⊂ Rz ⊂ B(z, ε),

⋃
z∈V

Rz = X, (2.11)

and
p ∈ B(z, ε/2) implies that p /∈ Vw for w ∈ V \ {z}. (2.12)

By (2.12), and the triangle inequality, we have

v, w ∈ V and v 6= w, imply that B(z, ε/4) ∩Rε/4
w = ∅. (2.13)

For z ∈ V , let Nz denote an ε/(4A1)-net of Rz, where A1 denote the constant in cap(Ψ)≤.
For each w ∈ Nz, by cap(Ψ)≤, (1.3), (VD), there exists C1 > 1 such that for w ∈ Nz, z ∈
V , we have a non-negative function ρw ∈ Cc(X) ∩ F that satisfies

ρw
∣∣
B(w,ε/(4A1)

≡ 1, ρw
∣∣
B(w,ε/4)c

≡ 0, E(ρw, ρw) ≤ C1
m(B(w, ε)

Ψ(ε)
. (2.14)

Hence by (VD) and (2.14), we obtain a family of functions {φz : z ∈ V } that satisfy

φz = max
w∈Nz

ρw such that φw
∣∣
Rz
≡ 1, φw

∣∣
(R

ε/4
z )c
≡ 0, E(φz, φz) .

m(B(z, ε)

Ψ(ε)
. (2.15)

Define

ψz :=
φz∑
w∈V φw

.

Property (a) is immediate. Properties (b) and (c) follow from (2.15), (2.13), and (2.11).
Property (d) follows from (2.15), (VD), Leibniz rule, chain rule and Cauchy-Schwarz
inequality, we obtain

E(ψz, ψz) . sup

(∑
w∈V

φw

)−2
E(φz, φz) + (supφz)

2
∑

w∈V ∩B(z,5ε/2)

E(φw, φw)


.

∑
w∈V ∩B(z,5ε/2)

m(B(w, ε))

Ψ(ε)
.
m(B(z, ε))

Ψ(ε)
.

�
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2.4 Proof of the main result

We recall an elementary lemma from [GT12].

Lemma 2.6. ([GT12, Lemma 6.3]) Let (X, d) be a metric space. Define Nε(x, y) as
the minimal value of N such that there exists an ε-chain {xi}Ni=0 between x and y. If
dε(x, y) <∞ for some x, y ∈ X, ε > 0, then⌈

dε(x, y)

ε

⌉
≤ Nε(x, y) ≤ 9

⌈
dε(x, y)

ε

⌉
.

Proof of Theorem 1.6. Let A2 denote the constant in Cap(Ψ)≤. Since dε ≤ dε′ whenever
ε′ ≤ ε, by replacing ε by ε/(2A2) if necessary and by using (1.3), we assume that ε <
diam(X, d)/A2.

Fix x, y ∈ X, ε > 0 such that d(x, y) ≥ ε. Set ε′ = ε/3. Let V be an ε′-net such that
{x, y} ⊂ V . Define û : V → [0,∞) as

û(z) := Nε(x, z), (2.16)

where Nε(x, z) is as defined in Lemma 2.6. By Lemma 2.2, û is finite. By definition,

|̂u(z1)− û(z2)| ≤ 1 for all z1, z2 ∈ V such that d(z1, z2) < ε. (2.17)

Let {ψz : z ∈ V } denote the partition of unity defined in Lemma 2.5. Define u : X →
[0,∞) as

u(p) :=
∑
z∈V

û(z)ψz(p).

For any ball B(x0, r), x0 ∈ X, r > 0, by Lemma 2.5 we have

u(p) =
∑

z∈V ∩B(x0,r+5ε′/4)

û(z)ψz(p) for all p ∈ B(x0, r). (2.18)

Since V ∩ B(x0, r + 5ε′/4) is a finite set by (VD), we obtain that u ∈ Floc. By Lemma
2.5(b), we have u

∣∣
B(z,ε′/4)

≡ û(z) for all z ∈ V . Therefore by [CF, Theorem 4.3.8],

the push-forward measure of Γ(u, u) by u is absolutely continuous with respect to the
1-dimensional Lebesgue measure. Therefore, we obtain

Γ(u, u)(B(z, ε′/4)) = 0 for all z ∈ V . (2.19)

By (2.18) and Lemma 2.5(a), we have

u(p) = û(z) +
∑

w∈V ∩B(z,9ε′/4)

(û(w)− û(z))ψw(p) for all p ∈ B(z, ε′), z ∈ V . (2.20)

By (VD), there exits C1 > 1 such that supz∈V |V ∩B(z, 9ε′/4)| ≤ C1. By (2.20), and
Cauchy-Schwarz inequality, there exists C2 > 1 such that the following holds: for all
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z ∈ V , we have

Γ(u, u)(B(z, ε′)) ≤ C1

∑
w∈V ∩B(z,9ε′/4)

(û(w)− û(z))2E(ψw, ψw)

.
∑

w∈V ∩B(z,9ε′/4)

m(B(w, ε′))

Ψ(ε′)
(by (2.17) and Lemma 2.5(d))

≤ C2
m(B(z, ε′/2))

Ψ(ε)
(by (VD) and (1.3)). (2.21)

By Lemma 2.5, (2.21) and (VD), there exists C3 > 0 such that for all z ∈ X, r ≥ ε′/4, we
have

Γ(u, u)(B(z, r)) ≤ C2

∑
w∈B(z,r+5ε′/4)

m(B(w, ε′/2))

Ψ(ε)
≤ C3

m(B(z, r))

Ψ(ε)
. (2.22)

Combining (2.19) and (2.22), we obtain

Mm
R Γ(u, u)(z) = sup

r<R

Γ(u, u)(B(z, r))

m(B(z, r))
≤ C3

Ψ(ε)
for all z ∈ V,R > 0. (2.23)

By (2.23), Lemma 2.4, û(x) = 0, û(y) = Nε(x, y), and (1.3), there exists C4 > 0 such that

Nε(x, y)2 ≤ C4
Ψ(d(x, y))

Ψ(ε)
for all x, y ∈ X, ε ≤ d(x, y).

Combining the above estimate along with Lemma 2.6, we obtain (1.4). We obtain (1.5)
using (1.4) and limε↓0 Ψ(ε) = 0. �

Remark 2.7. (a) The constant C in (1.4) can be chosen to depend only on the constants
associated with the assumptions (VD), PI(Ψ), cap(Ψ)≤ and (1.3).

(b) The proof of the estimate on dε(x, y) uses cap(Ψ)≤ only at scales less than ε, whereas
it relies on PI(Ψ) for scales up to the order of d(x, y). In other words, our argument
relies on the Poincaré inequality on a larger range of scales than it relies on the
capacity upper bound.

Proof of Corollary 1.10. Let 0 < s < r < diam(X, d). By uniform perfectness of (X, d)
(more precisely, by (2.4)), there exists x, xr ∈ X such that r/2 ≤ d(x, xr) < r.

By (1.3), it suffices to consider the case s ≤ r/2. Therefore,

Ψ(r)

Ψ(s)
� Ψ(d(x, xr))

Ψ(s)
(by (1.3))

&

(
d(x, xr)

s

)2

&
(r
s

)2

(by (1.4)).
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2.5 Application to heat kernel estimates

Definition 2.8. Let U ⊂ V be open sets in X with U ⊂ U ⊂ V . We say a continuous
function φ is a cutoff function for U ⊂ V if φ = 1 on a neighbourhood of U and supp(φ) ⊂
V .
We recall the cutoff Sobolev inequality CS(Ψ) for an MMD space(X, d,m, E ,F): there
exists CS > 0 such that for any x ∈ X,R, r > 0, there exists a cutoff function φ for
B(x,R) ⊂ B(x,R + r) such that

�
B(x,R+r)\B(x,R)

f 2 dΓ(φ, φ) ≤ 1

8

�
B(x,R+r)\B(x,R)

φ2 dΓ(f, f) +
CS

Ψ(r)

�
B(x,R+r)\B(x,R)

f 2 dm,

for all f ∈ F .

For Ψ satisfying (1.3), we define

Φ(s) = sup
r>0

(
s

r
− 1

Ψ(r)

)
. (2.24)

Corollary 2.9. Let (X, d,m, E ,F) be an MMD space that satisfies (VD), PI(Ψ), and
CS(Ψ), where Ψ satisfies (1.3). Then we have matching upper and lower bounds on the
heat kernel as given in

pt(x, y) � C

V (x,Ψ−1(t))
exp

(
−ctΦ

(
dε(x, y)

t

))
, (2.25)

where Φ is as defined in (2.24), and ε = ε(t, x, y) is chosen so that

ε(t, x, y) = sup

{
ε > 0 :

Ψ(ε)

ε
dε(x, y) ≤ t

}
.

Here � in (2.25) means that both ≤ and ≥ are true, but the positive constants C and c
may be different for upper and lower bounds.

Proof. This follows from [GHL, Theorem 1.2], [GT12, Theorem 6.5] and Theorem 1.6. �

Lemma 2.10. Let Ψ : (0,∞)→ (0,∞) be a continuous, increasing bijection such that

C−1
1

(
R

r

)β1
≤ Ψ(R)

Ψ(r)
≤ C1

(
R

r

)β2
, (2.26)

for some constants 1 < β1 ≤ β2 and C1 > 1. Let Φ be the function defined in (2.24).
Then, there exists C2 > 0 such that

C−1
2

(
S

s

)β2/(β2−1)

≤ Φ(S)

Φ(s)
≤ C2

(
S

s

)β1/(β1−1)

, for all 0 < s ≤ S. (2.27)
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Proof. For λ ≥ 1, r > 0, we have

Φ(s) = sup
r>0

(
s

r
− 1

Ψ(r)

)
= sup

r>0

(
s

rλ
− 1

Ψ(rλ)

)
≤ sup

r>0

(
s

rλ
− 1

C1λβ2Ψ(r)

)
(by (2.26))

≤ 1

C1λβ2
sup
r>0

(
sC−1

1 λβ2−1

r
− 1

Ψ(r)

)
≤ 1

C1λβ2
Φ(sC−1

1 λβ2−1).

By choosing S/s = C−1
1 λβ2−1 in the above estimate, we obtain the lower bound on Φ(S)

Φ(s)

in (2.27). The proof of upper bound in (2.27) is analogous. �

We prove the following generalization of Corollary 1.8.

Theorem 2.11. Let (X, d,m, E ,F) be an MMD space. Let Ψ : (0,∞) → (0,∞) be an
increasing bijection that satisfies (2.26). Assume that (X, d,m, E ,F) satisfies the following
estimate on its heat kernel pt(·, ·):

pt(x, y) � C

V (x,Ψ−1(t))
exp

(
−ctΦ

(
d(x, y)

t

))
, (2.28)

for all x, y ∈ X, t > 0, where V (x, r) = m(B(x, r)), where Φ : (0,∞) → (0,∞) be as
defined in (2.24). Here � in (2.28) means that both ≤ and ≥ are true, but the positive
constants C and c may be different for upper and lower bounds. Then the metric d satisfies
the chain condition: there exists K > 1 such that

d(x, y) ≤ dε(x, y) ≤ Kd(x, y) for all ε > 0 and for all x, y ∈ X.

Proof. By [GT12, Lemma 6.4] and (2.26), ε = ε(t, x, y) satisfies

εβ2−1dε(x, y) .
Ψ(ε)

ε
dε(x, y) = t. (2.29)

Note that

tΦ

(
2Ψ−1(t)

t

)
= sup

r>0

(
2Ψ−1(t)

r
− t

Ψ(r)

)
≤ sup

r>0

(
2Ψ−1(t)

r
− C−1

1 min

(
Ψ−1(t)β1

rβ1
,
Ψ−1(t)β2

rβ2

))
(by (2.26))

. 1 (2.30)

For x ∈ X, r > 0, by integrating the lower bound in (1.6), over the ball B(x, 2r) with
Ψ−1(t) = r and using (2.30), we obtain

V (x, 2r)

V (x, r)
.

�
B(x,2r)

pt(x, y)m(dy) ≤ 1,
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which implies the volume doubling property. By the argument in the proof of Theorem
1.2 in [GHL, proof of (8.6)], the MMD space (X, d,m, E ,F) satisfies PI(Ψ). By (2.4)
and [Hei, Exercise 13.1], (X, d,m) satisfies the reverse volume doubling property; that is,
there exist c, α > 0 such that

V (x,R)

V (x, r)
≥ c−1

(
R

r

)α
, for all 0 < r < R < diam(X, d).

By [GHL, Theorem 1.2], the MMD space (X, d,m, E ,F) satisfies (VD), PI(Ψ), and CS(Ψ).
In [GHL, Theorem 1.2] assumes that the space is unbounded, the same result also extends
to the bounded case [Lie, Theorem 3.2]; see [KM, Remark 2.9] for further discussion.
Therefore by Corollary 2.9 and (2.28), for all x, y ∈ X and t > 0, we have

c2 exp

(
−C2tΦ

(
d(x, y)

t

))
≤ V (x,Ψ−1(t))pt(x, y)

≤ C1 exp

(
−c1tΦ

(
dε(x, y)

t

))
where ε = ε(t, x, y). Therefore for x, y ∈ X, t > 0

c1tΦ

(
dε(x, y)

t

)
≤ C2tΦ

(
d(x, y)

t

)
+ log(C1/c2)

Hence, by [GT12, Lemma 3.19], for every x, y ∈ X, there exists tx,y > 0 such that for all
0 < t < tx,y, we have

c1tΦ

(
dε(x, y)

t

)
≤ 2C2tΦ

(
d(x, y)

t

)
By the above estimate and Lemma 2.10

dε(x, y) . d(x, y), for all x, y > 0, t < tx,y, where ε = ε(t, x, y). (2.31)

By (2.29) and dε ≥ d, we obtain

ε(t, x, y) .

(
t

d(x, y)

)1/(β2−1)

.

Hence limt→0 ε(t, x, y) = 0. Since ε 7→ dε(x, y) is non-increasing, and limt↓0 ε(t, x, y) = 0,
by letting t ↓ 0 in (2.31), we obtain

lim
ε↓0

dε(x, y) . d(x, y), for all x, y ∈ X.

Hence for all x, y ∈ X, ε > 0, we obtain dε(x, y) � d(x, y). �

Proof of Corollary 1.8. This is a special case of Theorem 2.11 with Ψ(r) = rβ. �
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Remark 2.12. Let Ψ : X×[0,∞)→ [0,∞) is a regular scale function in the sense of [BM,
Definition 5.4]; that is, there exists C > 1, β1, β2 > 0 such that for all x, y ∈ X, 0 < s ≤ r,
we have

C−1

(
r

d(x, y) ∨ r

)β2 (d(x, y) ∨ r
s

)β1
≤ Ψ(x, r)

Ψ(y, s)
≤ C

(
r

d(x, y) ∨ r

)β1 (d(x, y) ∨ r
s

)β2
.

Further, assume that the MMD space (X, d,m, E ,F) satisfies (VD), PI(Ψ), and CS(Ψ).
In this case, we can obtain sharp heat kernel bounds as follows: by a change of metric
as done in [BM, Proposition 5.7], we can reduce it to the case Ψ(r) = rβ, which can be
handled using Corollary 2.9.
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applications: a jubilee of Benôıt Mandelbrot, Part 2, 233–259, Proc. Sympos. Pure
Math., 72, Part 2, Amer. Math. Soc., Providence, RI, 2004. MR2112125

[Hei] J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer-Verlag,
New York, 2001, x+140 pp. MR1800917

[HeKo98] J. Heinonen, P. Koskela. Quasiconformal maps in metric spaces with controlled
geometry, Acta Math. 181 (1998), no. 1, 1–61. MR1654771

[HR] M. Hino, J. A. Ramirez, Small-time Gaussian behavior of symmetric diffusion semi-
groups. Ann. Probab. 31 (2003), no. 3, 1254–1295. MR1988472

[KM] N. Kajino, M. Murugan. On singularity of energy measures for symmetric diffusions
with full off-diagonal heat kernel estimates (preprint) 2020.

[Ka86] M. Kanai. Rough isometries and the parabolicity of Riemannian manifolds. J.
Math. Soc. Japan 38 (1986), no. 2, 227–238. MR0792983

[Lie] J. Lierl, Scale-invariant boundary Harnack principle on inner uniform domains in
fractal-type spaces, Potential Anal. 43 (2015), no. 4, 717–747. MR3432457

[MT] J. M. Mackay, J. T. Tyson. Conformal dimension. Theory and application. Univer-
sity Lecture Series, 54. American Mathematical Society, Providence, RI, 2010.

Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2,
Canada.
mathav@math.ubc.ca

17

http://www.ams.org/mathscinet-getitem?mr=2849840
http://www.ams.org/mathscinet-getitem?mr=1363211
http://www.ams.org/mathscinet-getitem?mr=2778606
http://www.ams.org/mathscinet-getitem?mr=3417504
http://www.ams.org/mathscinet-getitem?mr=2962091
http://www.ams.org/mathscinet-getitem?mr=1665249
http://www.ams.org/mathscinet-getitem?mr=2112125
http://www.ams.org/mathscinet-getitem?mr=1800917
http://www.ams.org/mathscinet-getitem?mr=1654771
http://www.ams.org/mathscinet-getitem?mr=1988472
http://www.ams.org/mathscinet-getitem?mr=0792983
http://www.ams.org/mathscinet-getitem?mr=3432457

	Introduction
	Framework and definitions
	Main results

	Proofs
	Connectedness
	A two point estimate using Poincaré inequality
	A partition of unity
	Proof of the main result
	Application to heat kernel estimates


