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Abstract. We obtain connectivity of annuli for a volume doubling metric

measure Dirichlet space which satisfies a Poincaré inequality, a capacity es-

timate and a fast volume growth condition. This type of connectivity was
introduced by Grigor’yan and Saloff-Coste in order to obtain stability results

for Harnack inequalities and to study diffusions on manifolds with ends. As an
application of our result, we obtain stability of the elliptic Harnack inequality

under perturbations of the Dirichlet form with radial type weights.
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1. Introduction

In this work, we study geometric consequences of analytic properties in the con-
text of metric measure spaces equipped with a Dirichlet form. We are interested in
connectivity properties of metric spaces at various scales and locations for spaces
that satisfy a Poincaré inequality, an upper bound on capacity, and certain condi-
tions on volume growth. We obtain a connectivity condition on annuli introduced
by Grigor’yan and Saloff-Coste [GS99]. A similar connectivity of annuli was used
to obtain heat kernel bounds on a family of planar graphs in [Mur19, Theorem
6.2(d)].

Much of the motivation for our work arises from analysis and probability on
fractals. For a large class of fractal spaces (X, d), there exists a diffusion process
which is symmetric with respect to some canonical measure m and exhibits strong
sub-diffusive behavior in the sense that its transition density (heat kernel) pt(x, y)
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satisfies the following sub-Gaussian estimate:

pt(x, y) ≥ c1
m(B(x, t1/β))

exp

(
−c2

(d(x, y)β

t

) 1
β−1

)
,

pt(x, y) ≤ c3
m(B(x, t1/β))

exp

(
−c4

(d(x, y)β

t

) 1
β−1

)
,

(1.1)

for all points x, y ∈ X and all t > 0, where c1, c2, c3, c4 > 0 are some constants, d is
a natural metric on X, B(x, r) denotes the open ball of radius r centered at x, and
β ≥ 2 is an exponent describing the diffusion called the walk dimension. Often,
m is a Hausdorff measure and is Ahlfors df -regular; that is m(B(x, r)) � rdf for
all x ∈ X and 0 < r < diam(X, d). The number df is called the volume growth
exponent of the space. This result was obtained first for the Sierpiński gasket in
[BP], then for nested fractals in [Kum93], for affine nested fractals in [FHK] and
for Sierpiński carpets in [BB99]. We refer to [Bar98] for a general introduction to
diffusions on fractals.

An important motivation for this work arises from a conjecture of Grigor’yan,
Hu and Lau [GHL14, Conjecture 4.15], [GHL15, p. 1495] – see also [Kum14,
Open Problem III]. The conjecture is a characterization of the sub-Gaussian heat
kernel estimate (1.1), in terms of the volume doubling property, a capacity upper
bound and a Poincaré inequality. The answer to this conjecture is known only
in certain “low dimensional settings” (or strongly recurrent case) [BCK]. Recent
progress had been made on a family of planar graphs [Mur19] and on some tran-
sient graphs [Mur20+] but still under quite restricted assumptions. If we further
assume that the measure m is Ahlfors df -regular, then the setting in [BCK] cor-
responds to df < β, where β is the walk dimension as described above. Roughly
speaking, we consider spaces that are complementary to the “strongly recurrent”
regime considered in [BCK]. In the case of polynomial volume growth as described
above, our “fast volume growth” condition corresponds to the complementary case
df ≥ β while [BCK] considers df < β – see Definition 1.5. Since this is the
case where [GHL14, Conjecture 4.15] is still open, we hope our work will simulate
further progress on the conjecture of Grigor’yan, Hu and Lau.

We briefly survey some previous related works. A major milestone in the under-
standing of heat kernel bounds and Harnack inequalities is the characterization of
the parabolic Harnack inequality by the combination of the volume doubling prop-
erty and the Poincaré inequality due to Grigor’yan and Saloff-Coste [Gri91, Sal].
Such a characterization implies the stability of the parabolic Harnack inequality
under bounded perturbation of the Dirichlet form. More recently, the understand-
ing of geometric consequences of analytic properties has played an important role
in works on the stability of elliptic Harnack inequality and the singularity of energy
measures. In particular, a crucial step in obtaining the stability of elliptic Harnack
inequality in [BM] is the result that any geodesic space that satisfies the elliptic
Harnack inequality admits a doubling measure. In [KM], the chain condition plays
a role in the proof of the singularity of the energy measures for spaces satisfying the
sub-Gaussian heat kernel estimate. In [Mur20], the chain condition was obtained
as a consequence of the sub-Gaussian heat kernel estimate.

1.1. Main results. Throughout this paper, we consider a complete, locally
compact separable metric space (X, d), equipped with a Radon measure m with full
support, that is, a Borel measure m on X which is finite on any compact set and
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strictly positive on any non-empty open set. Such a triple (X, d,m) is referred to
as a metric measure space. In what follows, we set diam(X, d) := supx,y∈X d(x, y)
and B(x, r) := {y ∈ X | d(x, y) < r} for x ∈ X and r > 0.

Let (E ,F) be a symmetric Dirichlet form on L2(X,m). In other words, the
domain F is a dense linear subspace of L2(X,m), such that E : F × F → R is a
non-negative definite symmetric bilinear form which is closed (F is a Hilbert space
under the inner product E1(·, ·) := E(·, ·) + 〈·, ·〉L2(X,m)) and Markovian (the unit
contraction operates on F , that is, (u∨ 0)∧ 1 ∈ F and E((u∨ 0)∧ 1, (u∨ 0)∧ 1) ≤
E(u, u) for any u ∈ F). Recall that (E ,F) is called regular if F∩Cc(X) is dense both
in (F , E1) and in (Cc(X), ‖ · ‖sup). Here Cc(X) is the space of R-valued continuous
functions on X with compact support.

For a function u ∈ F , let suppm[u] ⊂ X denote the support of the measure
|u| dm, that is, the smallest closed subset F of X with

∫
X\F |u| dm = 0. Note

that suppm[u] coincides with the closure of X \ u−1({0}) in X if u is continuous.
Recall that (E ,F) is called strongly local if E(u, v) = 0 for any u, v ∈ F with
suppm[u], suppm[v] compact and v is constant m-almost everywhere in a neighbor-
hood of suppm[u]. The pair (X, d,m, E ,F) of a metric measure space (X, d,m) and
a strongly local, regular symmetric Dirichlet form (E ,F) on L2(X,m) is termed a
metric measure Dirichlet space, or a MMD space. We refer to [FOT94, CF12] for
a comprehensive account of the theory of symmetric Dirichlet forms.

We recall the notion of curves and path connectedness in a metric space.

Definition 1.1 (Path connected). Let (X, d) be a metric space and let A ⊂ X.
We say that γ is a curve in A from x to y if γ : [0, 1]→ A is continuous, γ(0) = x
and γ(1) = y. For two sets B1 ⊂ B2 ⊂ X we say that B1 is path connected in B2

if for all x, y ∈ B1, there exists a curve in B2 from x to y.

Henceforth, we fix a function Ψ : (0,∞)→ (0,∞) to be a continuous increasing
bijection of (0,∞) onto itself, such that for all 0 < r ≤ R,

C−1
(
R

r

)β1

≤ Ψ(R)

Ψ(r)
≤ C

(
R

r

)β2

, (1.2)

for some constants 0 < β1 < β2 and C > 1. Throughout this work, the function Ψ
is meant to denote the space time scaling of a symmetric diffusion process.

Definition 1.2 (Volume doubling). We say that (X, d,m) satisfies the volume
doubling property (VD) if there exists CD ≥ 1 such that

m(B(x, 2r)) ≤ CDm(B(x, r)), for all x ∈ X, r > 0. (VD)

We recall the definition of energy measures associated to a MMD space. Note
that fg ∈ F for any f, g ∈ F ∩L∞(X,m) by [FOT94, Theorem 1.4.2-(ii)] and that
{(−n) ∨ (f ∧ n)}∞n=1 ⊂ F and limn→∞(−n) ∨ (f ∧ n) = f in norm in (F , E1) by
[FOT94, Theorem 1.4.2-(iii)].

Let (X, d,m, E ,F) be a MMD space. The energy measure Γ(f, f) of f ∈ F is
defined, first for f ∈ F ∩L∞(X,m) as the unique ([0,∞]-valued) Borel measure on
X with the property that∫

X

g dΓ(f, f) = E(f, fg)− 1

2
E(f2, g), for all g ∈ F ∩ Cc(X), (1.3)

and then by Γ(f, f)(A) := limn→∞ Γ
(
(−n) ∨ (f ∧ n), (−n) ∨ (f ∧ n)

)
(A) for each

Borel subset A of X for general f ∈ F .
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The notion of an energy measure can be extended to the local Dirichlet space
Floc, which is defined as

Floc :=

{
f ∈ L2

loc(X,m)

∣∣∣∣ For any relatively compact open subset V of X, there
exists f# ∈ F such that f1V = f#1V m-a.e..

}
.

(1.4)
For any f ∈ Floc and for any relatively compact open set V ⊂ X, we define

Γ(f, f)(V ) := Γ(f#, f#)(V ),

where f# is as in the definition of Floc. Since (E ,F) is strongly local, the value of
Γ(f#, f#)(V ) does not depend on the choice of f#, and is therefore well defined.
Since X is locally compact, this defines a Radon measure Γ(f, f) on X.

Definition 1.3 (Poincaré inequality). We say that (X, d,m, E ,F) satisfies the
Poincaré inequality PI(Ψ), if there exist constants CP , A ≥ 1 such that for all
x ∈ X, r ∈ (0,∞) and f ∈ Floc∫

B(x,r)

(f − f)2 dm ≤ CPΨ(r)

∫
B(x,Ar)

dΓ(f, f), PI(Ψ)

where f = m(B(x, r))−1
∫
B(x,r)

f dm.

The following elementary observation will be used along with the Poincaré
inequality:∫

B(x,r)

(f−f)2 dm =
1

2m(B(x, r))

∫
B(x,r)

∫
B(x,r)

|f(y)−f(z)|2m(dy)m(dz). (1.5)

Definition 1.4 (Capacity estimate). Let (X, d,m, E ,F) be a MMD space. For
disjoint subsets A,B ⊂ X, we define

F(A,B) :=

{
f ∈ F :

f ≡ 1 on a neighborhood of A and f ≡ 0 on a
neighborhood of B

}
,

and the capacity Cap(A,B) as

Cap(A,B) := inf {E(f, f) : f ∈ F(A,B)} .

We say that (X, d,m, E ,F) satisfies the capacity estimate cap(Ψ)≤ if there exist
C1, A1 > 1 such that for all 0 < r < diam(X, d)/A1, x ∈ X

Cap(B(x, r), B(x,A1r)
c) ≤ C1

m(B(x, r))

Ψ(r)
. cap(Ψ)≤

Definition 1.5 (Fast volume growth). We say that (X, d,m, E ,F) satisfies the
fast volume growth condition FVG(Ψ) if there exists a constant CF > 0 such that

Ψ(R)

Ψ(r)
≤ CF

m(B(x,R))

m(B(x, r))
, FVG(Ψ)

for all 0 < r ≤ R < diam(X, d) and x ∈ X.

Our main result is the following path connectedness of annuli.

Theorem 1.6. Let (X, d,m, E ,F) be a MMD space that satisfies (VD), PI(Ψ),
cap(Ψ)≤ and FVG(Ψ), where Ψ satisfies (1.2). Then there exists C0 ≥ 2 such that
for all x ∈ X, r > 0, B(x, 2r) \B(x, r) is path connected in B(x,C0r) \B(x, r/C0).



GEOMETRIC IMPLICATIONS OF FAST VOLUME GROWTH AND CAPACITY ESTIMATES 5

Remark 1.7. (1) The condition FVG(Ψ) is not necessary for the conclu-
sion of Theorem 1.6. For example, the Brownian motion on the standard
two-dimensional Sierpiński carpet satisfies all of the hypotheses except
FVG(Ψ) and satisfies the conclusion. On the other hand, if the volume
growth exponent df is strictly less than the walk dimension β, the gluing
construction of Delmotte [Del] shows that FVG(Ψ) is a sharp condition.
In particular, if df < β, then by gluing two copies of the same space at
a point, one obtains a space that satisfies (VD), PI(Ψ), cap(Ψ)≤ with
Ψ(r) = rβ but fails to satisfy the conclusion.

(2) Our argument is quite flexible and can be localized at different scales.
For example, the cylinder S × R satisfies the hypotheses and conclusion
of Theorem 1.6 only at small enough scales. On the other hand, the
cable system (graph with edges represented by copies of the unit interval)
corresponding to Zd, d ≥ 2, satisfies the hypotheses and conclusion only
at large enough scales.

(3) Theorem 1.6 can be applied to obtain stability of elliptic Harnack inequal-
ity under perturbations of the Dirichlet form (Theorem 4.6). Furthermore,
our theorem can be combined with [Mac, Theorem 1.1] to obtain that the
conformal dimension of (X, d) is strictly greater than one.

Much of the proof involves estimating capacities between sets from above and
below. Our proof is motivated by the arguments in [Kor, HK98, Mur20]. The
basic idea behind our approach is that if the capacity between two sets is strictly
positive, then the two sets cannot belong to different connected components. Using
lower bounds on capacities implied by the Poincaré inequality, we obtain a connec-
tivity result in Proposition 2.3. This along with upper bounds on capacity leads
to a more quantitative estimate in Theorem 3.1. Theorem 3.1 strengthens a recent
result in [Mur20] which was used to show the chain condition for spaces satisfying
sub-Gaussian heat kernel bounds. In this work, Theorem 3.1 plays a crucial role in
upgrading from connectivity to path connectivity.

2. Chain connectivity

We recall the definition of an ε-chain in a metric space (X, d).

Definition 2.1 (ε-chain). Let B ⊂ X. We say that a sequence {xi}Ni=0 of
points in X is an ε-chain in B between points x, y ∈ X if

x0 = x, xN = y, and d(xi, xi+1) ≤ ε for all i = 0, 1, . . . , N − 1,

and

xi ∈ B, for all i = 0, 1, . . . , N .

For any ε > 0, B ⊂ X and x, y ∈ B, define

Nε(x, y;B) = inf {n : {xi}ni=0 is ε-chain in B between x and y, n ∈ N} ,
with the usual convention that inf ∅ = +∞.

We introduce a notion of connectedness based on the existence of ε-chains.

Definition 2.2 (Chain connected). Let (X, d) be a metric space and let B1 ⊆
B2 ⊆ X. We say that B1 is chain connected in B2 if

Nε(x, y;B2) <∞, for all x, y ∈ B1 and for all ε > 0.
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Proposition 2.3. Let (X, d,m, E ,F) be a MMD such that balls are precompact.
Assume that (X, d,m, E ,F) satisfies the Poincaré inequality PI(Ψ). Then for all
x ∈ X, r > 0, B(x, r) is chain connected in B(x,Ar), where A ≥ 1 is the constant
in PI(Ψ).

Remark 2.4. We note if (X, d) is a complete metric space and if m is a Borel
measure that satisfies (VD), all metric balls in (X, d) are precompact. We always
apply Proposition 2.3, when the metric space is complete and admits a doubling
measure.

Proof of Proposition 2.3. Let A ≥ 1 be the constant in PI(Ψ).
Let x ∈ X, ε > 0 and Ux = {y ∈ B(x,Ar) : Nε(x, y;B(x,Ar)) <∞}.
By definition of Ux, we have

d(y, w) > ε, for all y ∈ Ux, w ∈ B(x,Ar) \ Ux. (2.1)

Let N denote an ε/2-net in (X, d) such that N ∩B(x,Ar) is an ε/2-net of B(x,Ar).
By the precompactness of metric balls, the set N ∩ B(x,Ar) is finite. For each
z ∈ N , choose a function φz ∈ Cc(X) ∩ F such that 1 ≥ φz ≥ 0, φz

∣∣
B(z,ε/2)

≡ 1,

and supp(φz) ⊂ B(z, ε). Define

φ(y) = sup
z∈N∩Ux

φz(y), for all y ∈ X.

Since N ∩ Ux is a finite set, φ ∈ F . By (2.1), and since ∪z∈NB(z, ε/2) = X, we
obtain

φ ≡ 1Ux , on B(x,Ar). (2.2)

By [CF12, Theorem 4.3.8], the push-forward measure of Γ(φ, φ) by φ is absolutely
continuous with respect to the 1-dimensional Lebesgue measure. Since {0, 1} has
zero Lebesgue measure, by using (2.2) we obtain

Γ(φ, φ)(B(x,Ar)) = 0. (2.3)

Since φ is continuous, by PI(Ψ), φ is constant on the ball B(x, r). Therefore
φ(y) = φ(x) = 1 for all y ∈ B(x, r), r > 0. Therefore φ ≡ 1 on B(x, r), which along
with (2.2) implies that Ux ∩B(x, r) = B(x, r).

Since ε > 0 was arbitrary, we obtain that B(x, r) is chain connected in B(x,Ar)
for all x ∈ X, r > 0. �

The following lemma records an useful consequence of the conditions cap(Ψ)≤
and FVG(Ψ).

Lemma 2.5. Let (X, d,m, E ,F) be a MMD space that satisfies (VD), cap(Ψ)≤
and FVG(Ψ), where Ψ satisfies (1.2). Then for any δ > 0, there exist C,Aδ > 1
such that

Cap(B(x,R/C), B(x,R)c) ≤ δm(B(x,R))

Ψ(R)
, (2.4)

for all x ∈ X, 0 < R < diam(X, d)/Aδ.

Proof. Let C1, A1 be the constants in cap(Ψ)≤, and let CF denote the con-
stant in FVG(Ψ).

Therefore, for all x ∈ X, 0 < r ≤ R < diam(X, d)/A1, we have

Cap(B(x, r), B(x,A1r)
c) ≤ C1

m(B(x, r))

Ψ(r)
≤ C1CF

m(B(x,R))

Ψ(R)
. (2.5)
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Therefore, by the strong locality (see [GNY, Lemma 2.5]) for any k ∈ N

Cap(B(x,A−k1 R), B(x,R)c) ≤

(
k−1∑
i=0

Cap(B(x,A−i−11 R), B(x,A−i1 R)c)−1

)−1

≤

(
k−1∑
i=0

Ψ(R)

C1CFm(B(x,R))

)−1
(by (2.5))

≤ C1CF
k

m(B(x,R))

Ψ(R)
. (2.6)

By choosing k ∈ N large enough so that k > δ−1C1CF , we obtain the desired
estimate. �

In the following proposition, we obtain the chain connectivity of annuli under
the same assumption as in our main result in Theorem 1.6.

Proposition 2.6. Let (X, d,m, E ,F) be a MMD space that satisfies (VD),
PI(Ψ), cap(Ψ)≤ and FVG(Ψ), where Ψ satisfies (1.2). Then there exist C,K ≥ 2
such that for all x ∈ X, 0 < r < diam(X, d)/K, B(x, 2r)\B(x, r) is chain connected
in B(x,Cr) \B(x, r/C).

Proof. Let A ≥ 1 denote the constant in PI(Ψ). Let C ≥ 3A be a constant
whose value will be determined later in the proof.

Assume by contradiction that B(x, 2r) \ B(x, r) is not chain connected in
B(x,Cr)\B(x, r/C). Then there exist y, z ∈ B(x, 2r)\B(x, r) and ε > 0 such that

Nε(y, z;B(x,Cr) \B(x, r/C)) =∞.
Define

Uy = {w ∈ B(x,Cr) \B(x, r/C) : Nε(w, y;B(x,Cr) \B(x, r/C)) <∞} ,
and

Vy = (B(x,Cr) \B(x, r/C)) \ Uy.
By our assumption z /∈ Uy. By Proposition 2.3, B(z, r/(2A)) is chain connected in
B(z, r/2). Using this and B(z, r/2) ⊂ B(x,Cr) \B(x, r/C)), we have

Nε(w, z;B(x,Cr)\B(x, r/C)) ≤ Nε(w, z;B(z, r/2)) <∞, for all w ∈ B(z, r/(2A)).
(2.7)

Combining (2.7) with z /∈ Uy, we have

B(z, r/(2A)) ∩ Uy = ∅. (2.8)

By the same argument as (2.7), we have

B(y, r/(2A)) ⊂ Uy. (2.9)

Let N be an ε/3-net of (X, d) such that N ∩ Uy ∩ (B(x,Cr) \B(x, r/C)) is
an ε/3-net of Uy ∩ B(x,Cr) \ B(x, r/C). For each z ∈ N , choose a function ψz ∈
Cc(X) ∩ F such that 0 ≤ ψz ≤ 1, ψz

∣∣
B(z,ε/3)

≡ 1, and supp(ψz) ⊂ B(z, 2ε/3).

Define
ψ = sup

z∈N∩Uy
ψz.

We observe that

ψ ∈ F ∩ Cc(X), 0 ≤ ψ ≤ 1, ψ
∣∣
B(x,Cr)\B(x,r/C)

≡ 1Uy
∣∣
B(x,Cr)\B(x,r/C)

. (2.10)
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Similar to (2.3), we deduce that

Γ(ψ,ψ) (B(x,Cr) \B(x, r/C)) = 0. (2.11)

Let h ∈ Cc(B(x, r/2)) ∩ F be such that 0 ≤ h ≤ 1, h
∣∣
B(x,2r/C)

≡ 1, and

E(h, h) ≤ 2 Cap(B(x, 2r/C), B(x, r/2)c). (2.12)

Let g = max(h, ψ) ∈ Cc(X) ∩F . By (2.10) and the properties of h above, we have

g ≡ 1 on B(x, 2r/C) ∪ Uy, g ≡ 0 on B(x, r/2)c ∩ U cy ∩B(x,Cr). (2.13)

Furthermore, since d(z1, z2) ≥ ε for all z1 ∈ Uy and z2 ∈ Vy, we have ψ ≡ 0 on
∪w∈VyB(w, ε/3). Therefore g ≡ h on B(x, 2r/C)

⋃
∪w∈VyB(w, ε/3). Hence

g ≡ h, in a neighborhood of B(x, r/2) \ (B(x, 2r/C) ∪ Uy). (2.14)

By (2.11) and strong locality

Γ(g, g)(B(x, 3Ar)) = Γ(g, g)(B(x, r/2) \ (B(x, 2r/C) ∪ Uy)) (by (2.13))

= Γ(h, h)(B(x, r/2) \ (B(x, 2r/C) ∪ Uy)) (by (2.14))

≤ E(h, h) (by (2.10))

≤ 2 Cap(B(x, 2r/C), B(x, r/2)c) (by (2.11)). (2.15)

Let δ > 0 be an arbitrary constant. By (1.2), and Lemma 2.5, we can choose
C ≥ 3A large enough so that

Cap(B(x, 2r/C), B(x, r/2)c) ≤ δm(B(x, r/2))

Ψ(r/2)
≤ C2δ

m(B(x, r))

Ψ(r)
, (2.16)

where C2 depends only the constants in (1.2). Combining (2.15) and (2.16), we
obtain

Γ(g, g)(B(x, 3Ar)) ≤ 2C2δ
m(B(x, r))

Ψ(r)
. (2.17)

Evidently, by (2.8), (2.9) and (2.13), g = max(h, ψ) satisfies

g ≡ 1 on B(y, r/(2A)), g ≡ 0 on B(z, r/(2A)). (2.18)

By the triangle inequality, B(y, r/(2A))∪B(z, r/(2A)) ⊂ B(x, 3r). Now, we use the
Poincaré inequality PI(Ψ) along with (1.5) to derive the following estimate. Since
g ∈ F ∩ C(X) and satisfies (2.18), we have

Γ(g, g) (B(x, 3Ar))

≥ 1

2CPm(B(x, 3r))Ψ(3r)

∫
B(x,3r)

∫
B(x,3r)

|g(p)− g(q)|2m(dp)m(dq)

≥ 1

2CPm(B(x, 3r))Ψ(3r)

∫
B(z,r/(2A))

∫
B(y,r/(2A))

|g(p)− g(q)|2m(dp)m(dq)

≥ m(B(y, r/(2A))m(B(z, r/(2A))

2CPm(B(x, 3r))Ψ(3r)
(using (2.18))

≥ m(B(x, r))

C1Ψ(r)
, (by (1.2) and (VD)) (2.19)

where the constant C1 ≥ 1 depends only on the constants in (1.2), (VD), and
PI(Ψ).

By choosing δ < (2C1C2)−1, the bounds (2.17) and (2.19) lead to the desired
contradiction. �
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3. From chain connectivity to path connectivity

The following result strengthens a bound on the length of chains given in
[Mur20]. The improvement is that the upper bound was on Nε(x, y;X) instead of
Nε(x, y;B(x,A0d(x, y)).

Theorem 3.1. Let (X, d,m, E ,F) be a MMD space that satisfies (VD), PI(Ψ),
and cap(Ψ)≤, where Ψ satisfies (1.2). Then there exist C,A0 > 1 such that for all
ε > 0 and for all x, y ∈ X that satisfy d(x, y) ≥ ε, we have

Nε(x, y;B(x,A0d(x, y)))2 ≤ CΨ(d(x, y))

Ψ(ε)
. (3.1)

For two measures m, ν on (X, d), for R > 0, x ∈ X, we define a truncated
maximal function

Mm
R ν(x) = sup

0<r<R

ν(B(x, r))

m(B(x, r))
. (3.2)

If ν � m, then the above expression is the truncated maximal function of the
Radon-Nikodym derivative dν

dm . However, in the lemma below ν will be the energy
measure, and hence the measure ν and m might be mutually singular [KM]. In the
following lemma, C(X) denotes the space of continuous functions on X. We recall
two lemmas from [Mur20].

Lemma 3.2 (Two point estimate). (see [HK98, Lemma 5.15] and [Mur20,
Lemma 2.4]) Let (X, d,m, E ,F) be a MMD space that satisfies (VD), PI(Ψ), where
Ψ satisfies (1.2). There exists CP > 1 such that for all x0 ∈ X,R > 0, x, y ∈
B(x0, C

−1
P R), and for all u ∈ C(X) ∩ Floc

|u(x)− u(y)|2 ≤ CΨ(R) (Mm
R Γ(u, u)(x) +Mm

R Γ(u, u)(y)) ,

where Γ(u, u) denotes the energy measure of u.

Lemma 3.3 (Partition of unity). [Mur20, Lemma 2.5] Let (X, d,m, E ,F) be
a MMD space that satisfies (VD), and cap(Ψ)≤. Let ε > 0 and let V denote any
ε-net. Let ε < diam(X, d)/A1, where A1 ≥ 1 is the constant in cap(Ψ)≤. Then,
there exists a family of functions {ψz : z ∈ V } that satisfies the following properties:

(a) {ψz : z ∈ V } is partition of unity, that is,
∑
z∈V ψz ≡ 1.

(b) For all z ∈ V , ψz ∈ Cc(X) ∩ F with 0 ≤ ψz ≤ 1, ψz
∣∣
B(z,ε/4)

≡ 1, and

ψz
∣∣
B(z,5ε/4)c

≡ 0.

(c) For all z ∈ V , z′ ∈ V \ {z}, we have ψz′
∣∣
B(z,ε/4)

≡ 0.

(d) There exists C > 1 such that for all z ∈ V ,

E(ψz, ψz) ≤ C
m(B(z, ε))

Ψ(ε)
.

Proof of Theorem 3.1. Let A1 denote the constant in cap(Ψ)≤. Since Nε(x, y;B) ≤
Nε′(x, y;B) whenever B ⊂ X and ε′ ≤ ε, by replacing ε by ε/(2A1) if necessary and
by using (1.2), we assume that ε < diam(X, d)/A1.

Fix x, y ∈ X, ε > 0 such that d(x, y) ≥ ε. Set ε′ = ε/3. Let V be an ε′-net such
that {x, y} ⊂ V . Let A0 > 0 be

A0 = 2A(CP + 2), (3.3)
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where A is the constant in PI(Ψ) and CP is as given in Lemma 3.2. Define û :
V ∩B(x, 2(CP + 2)d(x, y))→ [0,∞) as

û(z) := Nε(x, z;B(x,A0d(x, y))). (3.4)

We set Ṽ = V ∩B(x, 2(CP+2)d(x, y)). By Proposition 2.3, û is finite. By definition,

|û(z1)− û(z2)| ≤ 1, for all z1, z2 ∈ Ṽ such that d(z1, z2) < ε. (3.5)

Let {ψz : z ∈ V } denote the partition of unity defined in Lemma 3.3. Define u :
X → [0,∞) as

u(p) :=
∑
z∈Ṽ

û(z)ψz(p).

For any ball B(x0, r), x0 ∈ X, r > 0, by Lemma 3.3(b) we have

u(p) =
∑

z∈V ∩B(x0,r+5ε′/4)

û(z)ψz(p), for all p ∈ B(x0, r). (3.6)

Since V ∩ B(x0, r + 5ε′/4) is a finite set by (VD), we obtain that u ∈ Floc. By
Lemma 3.3(b), we have u

∣∣
B(z,ε′/4)

≡ û(z) for all z ∈ V . Therefore, by [CF12,

Theorem 4.3.8], the push-forward measure of Γ(u, u) by u is absolutely continuous
with respect to the 1-dimensional Lebesgue measure. Therefore, we obtain

Γ(u, u)(B(z, ε′/4)) = 0, for all z ∈ V . (3.7)

By (3.6) and Lemma 3.3(a), we have

u(p) = û(z)+
∑

w∈V ∩B(z,9ε′/4)

(û(w)−û(z))ψw(p), for all p ∈ B(z, ε′), z ∈ V . (3.8)

By (VD), there exits C1 > 1 such that supz∈V |V ∩B(z, 9ε′/4)| ≤ C1. By (3.8), and
the Cauchy-Schwarz inequality, there exists C2 > 1 such that the following holds:
for all z ∈ V ∩B(x, 2(CP + 1)d(x, y)), we have

Γ(u, u)(B(z, ε′)) ≤ C1

∑
w∈V ∩B(z,9ε′/4)

(û(w)− û(z))2E(ψw, ψw)

.
∑

w∈V ∩B(z,9ε′/4)

m(B(w, ε′))

Ψ(ε′)
(by (3.5) and Lemma 3.3(d))

≤ C2
m(B(z, ε′/2))

Ψ(ε)
(by (VD) and (1.2)). (3.9)

In the second line above, we used the fact that z ∈ V ∩B(x, 2(CP + 1)d(x, y)) and
w ∈ V ∩B(z, 9ε′/4) implies w ∈ B(x, 2(CP + 2)d(x, y)). By Lemma 3.3, (3.9) and
(VD), there exists C3 > 0 such that for all z ∈ V ∩ B(x, 2d(x, y)), r ≤ 2CP d(x, y),
we have

Γ(u, u)(B(z, r)) ≤ C2

∑
w∈B(z,r+5ε′/4)

m(B(w, ε′/2))

Ψ(ε)
≤ C3

m(B(z, r))

Ψ(ε)
. (3.10)

Combining (3.7) and (3.10), we obtain

Mm
R Γ(u, u)(z) = sup

r<R

Γ(u, u)(B(z, r))

m(B(z, r))
≤ C3

Ψ(ε)
, (3.11)
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for all z ∈ {x, y} , 0 < R ≤ 2CP d(x, y). By (3.11), Lemma 3.2, û(x) = 0, û(y) =
Nε(x, y;B(x,A0d(x, y))), and (1.2), there exists C4 > 0 such that

Nε(x, y;B(x,A0d(x, y)))2 ≤ C4
Ψ(d(x, y))

Ψ(ε)
for all x, y ∈ X, ε ≤ d(x, y).

Thus we obtain (3.1). �

Corollary 3.4. Let (X, d,m, E ,F) be a MMD space which satisfies (VD),
PI(Ψ), and cap(Ψ)≤, where Ψ satisfies (1.2). Then there exists a curve from x to
y in B(x, 2A0d(x, y)) for all x, y ∈ X, where A0 is the constant in Theorem 3.1.

Proof. By (1.2) and Theorem 3.1, for any ε ∈ (0, 1/2), there exists N ∈ N
such that

Nεd(x,y)(x, y,B(x,A0d(x, y))) ≤ N, for all x, y ∈ X,

where A0 is the constant in Theorem 3.1. For the remainder of the proof, we fix
ε ∈ (0, 1/2) and N ∈ N as above.

Let x, y ∈ X a pair of distinct points. For each k ∈ N, we define γk : [0, 1]→ X

as follows. Let z
(1)
0 , z

(1)
1 , . . . , z

(1)
N be a sequence of points in B(x,A0d(x, y)) such

that d(z
(1)
i , z

(1)
i+1) < εd(x, y), with z

(1)
0 = x, z

(1)
N = y. Let γ1 : [0, 1] → X be the

piecewise constant function on intervals defined by

γ1(t) = z
(1)
i , for all i = 0, . . . , N − 1 and for all i/(N + 1) ≤ t < (i+ 1)/(N + 1)

and γ1(1) = y. Similarly, for all i = 0, . . . , N and we chose z
(2)
j , j = i(N +

1), i(N + 1) + 1, . . . , i(N + 1) +N such that z
(2)
i(N+1) = z

(1)
i , z

(2)
i(N+1)+N = z

(1)
i+1, z

(2)
k ∈

B(z
(1)
i , A0d(z

(1)
i , z

(1)
i+1)), for k = i(N +1), . . . , i(N +1)+N , d(z

(2)
j , z

(2)
j+1) < ε2d(x, y)

and define

γ2(t) = z
(2)
j ,

for all j = 0, 1, . . . , (N + 1)2 − 1 and for all j/(N + 1)2 ≤ t < (j + 1)/(N + 1)2

with γ2(1) = y. We similarly define γk : [0, 1] → X that is piecewise constant on
intervals [j/(N + 1)k, (j + 1)/(N + 1)k), j = 0, 1, . . . , (N + 1)k − 1. Since for all
t ∈ [0, 1], d(γk(t), γk+1(t)) < A0ε

kd(x, y), the sequence {γk(t), k ∈ N} is Cauchy,
and hence converges to say γ(t) ∈ X. This limit defines a function γ : [0, 1] → X.
Note that

d(x, γ(t)) ≤
∞∑
k=0

εkd(x, y) = A0d(x, y)/(1− ε) < 2A0d(x, y).

If |t1 − t2| ≤ 1
Nk

for some k ∈ N, we have

d(γ(t1), γ(t2)) ≤ d(γk(t1), γ(t1)) + d(γk(t2), γ(t2)) + d(γk(t1), γk(t2))

≤ 2

( ∞∑
l=k

A0ε
ld(x, y)

)
+ 2(A0 + 1)εkd(x, y)

≤ 2(A0 + 1)(1 + (1− ε)−1)εkd(x, y),

which implies the continuity of γ. Hence γ : [0, 1]→ B(x, 2A0d(x, y)) is continuous
and γ(0) = x, γ(1) = y. �
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We now have all tools at our disposal to prove the main result.
Proof of Theorem 1.6. We choose C0 = 2C, where C is the constant in Proposition
2.6. Let ε = r

4CA , where A is the constant in PI(Ψ). By Proposition 2.6, for any
x ∈ X, r > 0 and y, z ∈ B(x, 2r) \B(x, r)

Nε(y, z;B(x,Cr) \B(x, r/C)) <∞.

Let {xi}Ni=1 be an ε-chain between y and z in B(x,Cr) \ B(x, r/C). By Corollary
3.4, there exist curves γi : [0, 1] → B(zi, r/(2C)), i = 0, . . . , N − 1 from zi to
zi+1. Since B(zi, r/(2C)) ⊂ B(x,C0r) \ B(x, r/C0) for all i = 0, . . . , N − 1, by
concatenating the curves γi, i = 0, . . . , N − 1 we obtain a curve from y to z in
B(x,C0r) \B(x, r/C0). �

Under the assumptions of Theorem 1.6, we can obtain a quantitative bound
on Nε as follows. By the volume doubling property, the minimum number of balls
of radii r required to cover a ball of radius R depends only R/r. Using this prop-
erty, we could obtain an uniform bound (that does not depend on x or r) on
Nr/(4CA)(y, z, B(x,Cr) \ B(x, r/C)), in the proof of Theorem 1.6. As a conse-
quence, using Theorem 3.1, for any ε > 0, x ∈ X, 0 < r < diam(X, d)/A, we
have

Nr/(4CA)(y, z, B(x,Cr) \B(x, r/C))2 .
Ψ(r)

Ψ(ε)
, for all y, z ∈ B(x, 2r) \B(x, r).

4. Applications

For simplicity, we will assume that our MMD space is unbounded; that is,
diam(X, d) =∞. We recall a condition introduced in [GS99, GS05].

Definition 4.1 (Relatively connected annuli). We say that (X, d) satisfies
(RCA) (this stands for relatively connected annuli) if there is a point o and a
constant A such that for any r > A and any two points x, y ∈ X with d(o, x) =
d(o, y) = r there is a continuous path in B(o,Ar) \B(o, r/A) connecting x to y.

A weighted manifold is a Riemannian manifold (M, g) equipped with a measure
µ that has a smooth positive density with respect to the Riemannian measure. This
space is equipped with a weighted Laplace operator that generalizes the Laplace-
Beltrami operator and is symmetric with respect to the measure µ. Such spaces
naturally arise in the context of Doob h-transforms and Schrödinger operators. We
refer the reader to [Gri06] for a comprehensive survey on weighted manifolds and
applications.

Motivated by weighted manifolds (and the corresponding weighted Laplace
operator), we perturb a MMD space by a continuous function w : X → (0,∞)
by a family of admissible weights.

Definition 4.2 (Admissible weight). Let (X, d,m, E ,F) be a MMD space and
let w : X → (0,∞) be continuous. We say that w is an admissible weight if the
following conditions hold:

(a) There exist o ∈ X, α1, α2 ∈ R, C > 1 such that

C−1
(
d(o, x)

d(o, y)

)α1 w(x)

w(y)
≤ C

(
d(o, x)

d(o, y)

)α2

, (4.1)

for all x, y ∈ X such that d(o, y) ≥ d(o, x).
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(b) There exists a MMD space (X, d,w dm, Ew,Fw), where Fw ⊂ Floc and

Ew(f, f) =

∫
X

w dΓ(f, f), for all f ∈ Fw,

where Floc is as defined in (1.4). Furthermore, F ∩ Cc(X) forms a core for the
Dirichlet form (Ew,Fw) on L2(w dm).

In the context of manifolds, we refer to [GS05, Gri06] for examples of admis-
sible weights.

We recall the definition of a generalized capacity bound introduced in [GHL15]
based on a similar condition due to Andres and Barlow.

Definition 4.3 (Generalized capacity estimate). For open subsets U, V of X
with U ⊂ V , we say that a function ϕ ∈ F is a cutoff function for U ⊂ V if
0 ≤ ϕ ≤ 1, ϕ = 1 on a neighborhood of U and suppm[ϕ] ⊂ V . Then we say that
(X, d,m, E ,F) satisfies the Generalized capacity estimate Gcap(Ψ), if there exists
CS > 0 such that the following holds: for each x ∈ X and each R, r > 0, f ∈ F
there exists a cutoff function ϕ ∈ F for B(x,R) ⊂ B(x,R+ r) such that∫

X

f2 dΓ(ϕ,ϕ) ≤ CS
∫
B(x,R+r)\B(x,R)

ϕ2 dΓ(f, f) +
CS

Ψ(r)

∫
B(x,R+r)\B(x,R)

f2 dm.

Gcap(Ψ)
Here and in what follows, we always consider a quasi-continuous version of f ∈ F ,
which exists by [FOT94, Theorem 2.1.3] and is unique E-q.e. (i.e., up to sets of
capacity zero) by [FOT94, Lemma 2.1.4], so that the values of f are uniquely
determined Γ(g, g)-a.e. for each g ∈ F since Γ(g, g)(N) = 0 for any Borel subset N
of X of capacity zero by [FOT94, Lemma 3.2.4].

By choosing a function f ∈ F such that f ≡ 1 in a neighborhood of B(x,R+r)
in the above definition, we note that Gcap(Ψ) implies cap(Ψ)≤.

We recall the definition of harmonic functions and the elliptic Harnack inequal-
ity.

Definition 4.4 (Harmonic functions and elliptic Harnack inequality). Let
(X, d,m, E ,F) be a MMD space. A function h ∈ F is said to be E-harmonic
on an open subset U of X, if

E(h, f) = 0, (4.2)

for all f ∈ F ∩ Cc(X) with supp[f ] ⊂ U , where supp[f ] denotes the support of f .
We say that a MMD space (X, d,m, E ,F) satisfies the elliptic Harnack in-

equality (abbreviated as EHI), if there exist C > 1, δ ∈ (0, 1) such that for all
x ∈ X, r > 0 and for any non-negative harmonic function h on the ball B(x, r), we
have

ess sup
B(x,δr)

h ≤ C ess inf
B(x,δr)

h. EHI

We recall the definition of a remote ball.

Definition 4.5 (Remote ball). Fix o ∈ X and ε ∈ (0, 1]. We say that a ball
B(x, r) is ε-remote with respect to o, if r ≥ 1

2εd(o, x).

As an application of the annular connectivity result in Theorem 1.6, we ob-
tain the following stability of elliptic Harnack inequality under perturbation by
admissible weights.
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Theorem 4.6. Let (X, d,m, E ,F) be an unbounded MMD space that satisfies
(VD), PI(Ψ), Gcap(Ψ) and FVG(Ψ), where Ψ satisfies (1.2). Let w ∈ C(X), w :
X → (0,∞) be an admissible weight. Then the corresponding weighted MMD space
(X, d,w dm, Ew,Fw) satisfies the elliptic Harnack inequality.

Proof. By Corollary 3.4, B(x, r) \ B(x, r/2) 6= ∅ for any ball B(x, r). This
along with (VD) implies the following reverse volume doubling property: there exist
C1, α > 0 such that

m(B(x,R))

m(B(x, r))
≥ C−11

(
R

r

)α
, for any x ∈ X, 0 < r ≤ R.

Let o ∈ X be the point as in Definition 4.2 and let µ = w dm denote the weighted
measure. By (4.1), the weight w is comparable to a constant on any ε-remote ball
with respect to o for any ε ∈ (0, 1]. By choosing ε ∈ (0, 1] small enough, the MMD
space (X, d,w dm, Ew,Fw) satisfies the volume doubling property, reverse volume
doubling property, Gcap(Ψ) and FVG(Ψ) for all remote balls. By [GHL15, proof
of Theorem 1.2], the MMD space (X, d,w dm, Ew,Fw) satisfies EHI for all remote
balls. By applying [GS05, Lemma 6.4] for the metric measure space (X, d,m), we
obtain the annuli covering condition in [GS05, Definition 6.2]. By Theorem 1.6
and [GS05, Lemma 6.3], we obtain that the the MMD space (X, d,w dm, Ew,Fw)
satisfies EHI for all balls. �

Remark 4.7. We remark that the FVG(Ψ) condition in Theorem 4.6 is neces-
sary. For example, for Brownian motion on R, the weight w(x) = (1+x2)α/2 where
α > 1 fails to satisfy the Liouville property and hence the elliptic Harnack inequal-
ity. This is because, the diffusion corresponding to the Dirichlet form (Ew,Fw) has
two transient ends at ±∞. Hence, the probability that the diffusion eventually
ends up in one of them (say +∞) is a non-constant positive harmonic function.
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carpets, Canad. J. Math. 51 (1999), no. 4, 673–744.

[BBK] M.T. Barlow, R.F. Bass and T. Kumagai. Stability of parabolic Harnack inequalities on

metric measure spaces. J. Math. Soc. Japan (2) 58 (2006), 485–519.

[BCK] M. T. Barlow, T. Coulhon, T. Kumagai. Characterization of sub-Gaussian heat kernel
estimates on strongly recurrent graphs, Comm. Pure Appl. Math. 58 (2005), no. 12, 1642–

1677.
[BM] M. T. Barlow, M. Murugan. Stability of the elliptic Harnack inequality, Ann. of Math. (2)

187 (2018), 777–823.

[BP] M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpinski gasket, Probab. Theory
Related Fields 79 (1988), no. 4, 543–623.

[CF12] Z.-Q. Chen, M. Fukushima. Symmetric Markov processes, time change, and boundary

theory, London Mathematical Society Monographs Series, 35. Princeton University Press,
Princeton, NJ, 2012. xvi+479 pp.

[Del] T. Delmotte. Graphs between the elliptic and parabolic Harnack inequalities. Potential Anal.

16 (2002), 151–168.
[FHK] P. J. Fitzsimmons, B. M. Hambly and T. Kumagai, Transition density estimates for Brow-

nian motion on affine nested fractals, Comm. Math. Phys. 165 (1994), no. 3, 595–620.

[FOT94] M. Fukushima, Y. Oshima, and M. Takeda, Dirichlet Forms and Symmetric Markov
Processes. de Gruyter, Berlin, 1994.



GEOMETRIC IMPLICATIONS OF FAST VOLUME GROWTH AND CAPACITY ESTIMATES15

[Gri91] A. Grigor’yan. The heat equation on noncompact Riemannian manifolds. (in Russian)

Matem. Sbornik. 182 (1991), 55–87. (English transl.) Math. USSR Sbornik 72 (1992), 47–77.

[Gri06] A. Grigor’yan, Heat kernels on weighted manifolds and applications, In: The Ubiquitous
Heat Kernel, Contemp. Math., 398, Amer. Math. Soc., Providence, RI, 2006, pp. 93–191.

[HK98] J. Heinonen, P. Koskela. Quasiconformal maps in metric spaces with controlled geometry,

Acta Math. 181 (1998), no. 1, 1–61.
[HR] M. Hino, J. A. Ramirez, Small-time Gaussian behavior of symmetric diffusion semigroups.

Ann. Probab. 31 (2003), no. 3, 1254–1295.

[GHL14] A. Grigor’yan, J. Hu, K.-S. Lau. Heat kernels on metric measure spaces. Geometry and
analysis of fractals, 147–207, Springer Proc. Math. Stat., 88, Springer, Heidelberg, 2014.

[GHL15] A. Grigor’yan, J. Hu, K.-S. Lau. Generalized capacity, Harnack inequality and heat

kernels of Dirichlet forms on metric spaces. J. Math. Soc. Japan 67 1485–1549 (2015).
[GNY] A. Grigor’yan, Y. Netrusov, S.-T. Yau, Eigenvalues of elliptic operators and geometric

applications. Surveys in differential geometry. Vol. IX, 147–217. (2004)
[GS99] A. Grigor’yan, L. Saloff-Coste. Heat kernel on connected sums of Riemannian manifolds,

Math. Res. Lett., 6 (1999), 307–321.

[GS05] A. Grigor’yan, L. Saloff-Coste. Stability results for Harnack inequalities, Ann. Inst.
Fourier (Grenoble) 55 (2005), no. 3, 825–890.

[GT02] A. Grigor’yan, A. Telcs. Harnack inequalities and sub-Gaussian estimates for random

walks. Math. Ann. 324 521–556 (2002).
[GT12] A. Grigor’yan, A. Telcs. Two-sided estimates of heat kernels on metric measure spaces.

Ann. Probab. 40 (2012), no. 3, 1212–1284.

[Kor] R. Korte. Geometric implications of the Poincaŕınequality, Results Math., 50 (2007), no.
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