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Abstract

We construct and investigate (1, p)-Sobolev space, p-energy, and the correspond-
ing p-energy measures on the planar Sierpinski carpet for all p € (1, 00). Our method
is based on the idea of Kusuoka and Zhou [Probab. Theory Related Fields 93 (1992),
no. 2, 169-196], where Brownian motion (the case p = 2) on self-similar sets in-
cluding the planar Sierpinski carpet were constructed. Similar to this earlier work,
we use a sequence of discrete graph approximations and the corresponding discrete
p-energies to define the Sobolev space and p-energies. However, we need a new ap-
proach to ensure that our (1, p)-Sobolev space has a dense set of continuous functions
when p is less than the Ahlfors regular conformal dimension. The new ingredients
are the use of Loewner type estimates on combinatorial modulus to obtain Poincaré
inequality and elliptic Harnack inequality on a sequence of approximating graphs.
An important feature of our Sobolev space is the self-similarity of our p-energy,
which allows us to define corresponding p-energy measures on the planar Sierpinski
carpet. We show that our Sobolev space can also be viewed as a Korevaar-Schoen
type space.

We apply our results to the attainment problem for Ahlfors regular conformal
dimension of the Sierpiriski carpet. In particular, we show that if the Ahlfors regular
conformal dimension, say dimagrc, is attained, then any optimal measure which
attains dimagc should be comparable with the dimagrc-energy measure of some
function in our (1,dimarc)-Sobolev space up to a multiplicative constant. In this
case, we also prove that the Newton-Sobolev space corresponding to any optimal
measure and metric can be identified as our self-similar (1, dimagrc)-Sobolev space.

Keywords: Sierpiniski carpet, Sobolev space, Ahlfors reqular conformal dimension,
Loewner space
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1 Introduction and main results

The goal of this work is to construct and investigate properties of (1, p)-Sobolev space,
p-energy and p-energy measures on the Sierpiriski carpet. Our (1, p)-Sobolev space can be
considered to be an analogue of W1?(R") on Euclidean space, the p-energy of a function f
is an analogue of [, [V f|’(z) dz, and the p-energy measure of a function f is an analogue
of the measure A — [, [V f|’(z)dz. Similar (1,p)-Sobolev spaces were constructed in
recent works of Kigami and the second-named author but much of the results there only
apply to the case p > dimagrc, where dimagrc is the Ahlfors regular conformal dimension
[Shi+, Kig23].

Our approach and that of [Shi+, Kig23] goes back to the construction of Brownian
motion on the Sierpinski carpet by Kusuoka and Zhou [XZ92]. The Dirichlet form cor-
responding to the Brownian motion on the Sierpinski carpet is a special case of p-energy
when p = 2. The idea behind defining a p-energy of a function f on a metric space (X, d)
is to approximate a metric space by a sequence of graphs {G,, = (V,,, E,) : n € N} on a
sequence of increasingly finer scales and to consider a sequence of discrete approximations



Figure 1.1: The planar Sierpinski carpet and its approximation graphs {G,}. (G; and
Gy are drawn in blue.)

M, f :V, = R of the function f: X — R. Consider the discrete p-energies,

ES(Muf) =Y (Muf)(@) = (Mo f) ()

{x,y}EEn

We then choose a sequence {r, : n € N} of re-scaling factors r, € (0,00) so that the
quantities imsup,, ., &y (M f), iminf, o 1, &7 (M, f), and sup, oy &y (M, f) are
comparable uniformly for all integrable functions f. The existence of such a sequence
r, is guaranteed by analytic properties on the sequence of graphs G,, such as bounds on
capacity and Poincaré inequality. The Sobolev space is then defined as

Fp = {f € LP :supr, & (M, f) < oo}.
neN

To describe our results, we recall a definition of the Sierpiriski carpet. Let ¢; = (—1,—1) =

—@s,q3 = (1,—1) = —g; denote the corners of a square in R? and let ¢o = (0,—1) =

—qs, ¢4 = (1,0) = —gg denote the midpoints of the sides of the corresponding square.

The Sierpiniski carpet K is the unique non-empty compact subset of R? such that

8
K = UfZ(K), where f; : R? — R? is the map fi(2) = 3(z — ¢;) + ¢, € {1,...,8}.
i=1

Next, we describe a sequence of graphs that approximate K. Let V,, = 5™ denote the
set of words of length n over the alphabet S = {1,2,...,8}. Let F; := fZ‘K for ¢ € S and
for w =wy -~ w, € V,, we set F,, := F,, 0F,,0---0F, . Let G, = (V,, E,) be the graph
whose vertex set is the set of words V,, with n-alphabets and the edge set is defined by

E, = {{u,v} :u,v € V,,, F,(K)N F,(K) # 0}.

The sequence of graphs G,,,n € N approximate the Sierpinski carpet K (see Figure 1.1).

We now describe how to approximate a function on K by a function on G,. To
this end, we equip K with the Euclidean metric d and the self-similar Borel probability



measure m on K such that m(F,(K)) =8 " for all w € V,,,n € N. For n € N, we define
the discrete approximation operators M, : LP(K,m) — R"" as

1

(M f)(u) = m(Fu(K))

/ fdm, foralluelV,.
u(K)

For any p € (1,00), we show the existence of an exponent p(p) € (0, 00) and some constant
C € (1,00) such that

sup p(p)"&," (Mo f) < Climsup p(p)" &, (M. f) < C*lim inf p(p)"E," (M., f)

neN n—00

for all f € LP(K,m). This implies that each of the three expressions in the above
display are uniformly comparable up to multiplicative constants. One of them, say
sup,en P(p)"EF™ (M, f) could be a considered as a candidate p-energy. However, we would
like to construct an improved p-energy &, : F, — [0,00) that is comparable to the above
candidate p-energy but satisfies desirable properties such as self-similarity, Lipschitz con-
tractivity, and strong locality that the above candidate need not satisfy. The definitions
of these properties are included in the statement of Theorem 1.1. For f € LP(K,m), by
supp,,|f] we denote the support of the measure fdm. The following theorem describes
the definition and basic properties of our Sobolev spaces.

Theorem 1.1 (Construction of (1, p)-Sobolev space and p-energy). Let p € (1,00) and let
(K,d,m) be the Sierpinski carpet equipped with the Euclidean metric and the self-similar
measure described above. Then there exists p(p) € (0,00) such that the normed linear
space (Fp, || - || z,) defined by

Fym { s e vtm) | [0 dmsup ot (01,5) < .
K neN
and
G 1/p
s, = (s o5 01)) Wl = 1+ 1l
satisfies the following properties.
(i) (Fp, |l -1l%,) is a reflezive separable Banach space.

(ii) (Regularity) F, NC(K) is a dense subspace in the Banach spaces (Fp, ||/ z) and
(COK), [ Mloo)-

Furthermore, there exist C > 1 and E,: F, — [0,00) satisfying the following:
(iii) &,(-)YP is a semi-norm satisfying CHflz, < E(f)VP < Clflz, for all f € F,.
(iv) (Uniform convexity) &,(-)Y? is uniformly convez.

(v) (Lipschitz contractivity) For every f € F, and 1-Lipschitz function ¢: R — R, we
have po f € F, and E,(po f) < E(f).
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(vi) (Spectral gap) It holds that
||.f - fKH]Z,p(m) S Cgp(f) fOT all f € era

where fx = fK fdm is the m-average of f. In particular,

{feF,:E(f) =0} ={f € LP(K,m) : f is constant m-a.e.}. (1.1)

(vil) (Strong locality) If f, g € F, satisfy supp,, [f] supp,,lg—allx] = O for some a € R,
then

E(f +9) = &E(f) + E(9)-

(viil) (Self-similarity) For every f € F,, we have f o F; € F, for alli € S and

ENf)=pp) Y E(f o F).

i€S
Furthermore, F, NC(K) ={f € C(K) : fo F; € F, for alli € S}.

(ix) (Symmetry) Let Dy denote the dihedral group of isometries of K. For every f € F,
and ® € Dy, we have fo® € F, and E,(f o ®) = E,(f).

We compare the above result with earlier results in [Shi+, Kig23]. Theorem 1.1 was
previously known only in the case p > dimarc (K, d), where dimarc (K, d) € (1,00) is the
Ahlfors regular conformal dimension [Shi+] (we recall the definition of Ahlfors regular
conformal dimension in Definition 1.7). Similar to this work, Kigami uses an approach
based on discrete energies and introduces a conductive homogeneity condition under which
the Sobolev space was constructed [[Kig23]. However much of the results apply only to
the case p > dimagrc (K, d) as the author points out “Regrettably, we do not have much
for the case p < dimagrc(K,d)” in [Kig23, p. 8]. In particular, Theorem 1.1 answers a
question of Kigami [Kig23, §6.3, Problem 1] for the Sierpinski carpet which asks for the
property (ii) above. This property is known as reqularity in the theory of Dirichlet form
[FOT].

The difficulty in the case p < dimarc (K, d) is due to the fact that the Sobolev space
contains discontinuous functions. If p > dimagrc(K,d), there is a version of Morrey’s
embedding theorem which makes the analysis easier. Recently Cao, Chen and Kumgai
show that under the conductive homogeneity condition, the Sobolev space constructed
by Kigami contains discontinuous functions if and only if p < dimarc(K,d) [CCK23+].
Another difficulty is that the conductive homogeneity condition of [Kig23] (or its analogue
‘knight move condition” in [Shi+]) was not obtained on the Sierpinski carpet if p <
dimagrc (K, d). The Poincaré inequality for graphs G,, shown in our work (Theorem 4.2)
implies these conditions when p < dimarc (K, d). However, we do not show them as our
approach only relies on Poincaré inequality and certain upper bounds on capacity across
annulus on the sequence of graphs G,,.

As we will see in Theorem 1.4 and Proposition 1.6, the value of p(p) in Theorem 1.1
is uniquely determined by the above properties. If p(p) were larger, the Sobolev space F,

6



would only consist of constant functions violating property (ii). If p(p) were smaller, then
the resulting p-energy would be too small to satisfy property (v).

Our next result is the existence of energy measures. To motivate energy measure,
let us consider the following question: what information does the energy measure contain
about a function? In the primary example on R", the p-energy measure of a function
f € WHP(R™) is the measure A — [, [V f(x)]” dz. By considering the Radon-Nikodym
derivative of the energy measure with respect to Lebesgue measure, we see that the
energy measure contains the same information as [V f| up to sets of Lebesgue measure
zero, were V f is the distributional gradient of f. A generalization of |V f| is given by
the minimal p-weak upper gradient in the theory of Newton-Sobolev space [HKST]. In
these settings, the energy measure is always absolutely continuous with respect to the
reference measure. In the setting of diffusion on fractals, the energy measure (for p = 2)
is typically singular with respect to the reference measure [Hin05, KM20]. As we will
see in Theorem 1.8, not requiring the p-energy measure to be absolutely continuous with
respect to the reference measure is useful as the reference measure might not be suited to
express energies and also because the energy measure might satisfy better properties such
as the Loewner property. Based on the above analogy, we think of our energy measures as
containing similar information about the function as the minimal p-weak upper gradient
in the setting of Newton-Sobolev spaces.

Let us describe the construction of energy measure. Following an idea of Hino [Hin05],
we use the self-similarity property of the p-energy to construct our p-energy measure. To
describe it, we let ¥ = SN be the set of all infinite words in the alphabet S equipped with
the product topology. Recall that the canonical projection (or coding map) x : ¥ — K is
defined to satisfy

{x@)} = [(Fu, 0+ 0Fy,,)(K), wherew = (wy,wy,--) € .
neN

For w € S™, let ¥, C X be the set of infinite words whose beginning n alphabets
coincide with w. For any function f € F,, self-similarity of the p-energy &,(-) and
Kolmogorov’s extension theorem guarantees the existence of a measure m,(f) on ¥ such
that m,(f)(Z,) = p(p)"Ey(f o F,,) for all w € S™,n € N. The energy measure is then
defined to be the pushforward measure I',(f) := x.(m,(f)). Our next theorem shows the
existence of energy measure corresponding to self-similar energy and describes some of its
basic properties.

Theorem 1.2 (Existence of p-energy measure). Let p € (1,00) and let (K,d,m) be the
Sierpinski carpet. Let (€,,F,) be the p-energy in Theorem 1.1. There exists a family of
Borel finite measures {I',(f)}ser, on K satisfying the following:

(i) For any f € F,, we have I'),(f)(K) = E,(f) and
Lp(f)(Fu(K)) = p(p)"Ey(f o Fy) forallw e S",n e N.

(ii) (Triangle inequality) For any fi1, fo € F, and Borel function g: K — [0, 00,

(/Kgdrp<f1+fz>>l/p < (Lngp<f1>)l/p+ (/Kgdrp<f2>)l/p,
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(iii) (Lipschitz contractivity) For any f € F,, Borel function g: K — [0,00] and 1-
Lipschitz function p: R — R,

/Kgdfp<s00f>§/Kngp<f>-

(iv) (Self-similarity) For any n € N and f € F,,

To(f) = p(p)" Y (Fu)«(Tp(f o Fu)).

weSsn™

(v) (Symmetry) For any f € F, and ® € Dy, we have ®,(L,(f)) =,(f o ®).
(vi) (Chain rule and strong locality) For any ¥ € C*(R) and f € F, NC(K),

Lp(W o f)(dx) = [W'(f (@) Tp(f)(dz).

If f,g e F, NC(K) and A € B(K) satisfy (f —g)‘A =a-1, for some a € R, then
Lp{f)(A) = Tp{g)(A)

We describe another approach to defining Sobolev space motivated by a work of
Korevaar and Schoen [KoSc]. This work describes classical Sobolev spaces in terms of
Besov-Lipschitz spaces at the critical exponent (also called Korevaar-Schoen space). On
a metric space (X,d), we denote by By(z,r) = {y € X : d(x,y) < r} the open ball
centered at x € X and radius » > 0. Our next result identifies our Sobolev space ob-
tained using rescaled discrete energies in Theorem 1.1 as the critical Besov-Lipshitz or
Korevaar-Schoen type space with comparable seminorms.

Definition 1.3. Let (X,d) be a connected metric space with #X > 2 and let m be a
Borel-regular measure on X such that m(By(z,7)) € (0,00) for any z € X,r > 0. For
p € (1,00) and s > 0, the Besov-Lipschitz space B} = B;}OO(X, d,m) is defined as

p
sup / ][ Vi) = Fly)" m(dy)m(dz) < oo}.
re(0,diam(X,d)]NR Bu(z,r) TSP

Korevaar and Schoen show that the Sobolev space W' (R") coincides with B, . (R, d, \)
where d is the Euclidean metric and X is the Lebesgue measure [[oSc, Theorem 1.6.2].
Furthermore there exists C' € (0,00) such that the distributional gradient Vf of any
function f € W'P(R") satisfies

c- / VPN < sup /]é (y)’p/\(dy)A(dx)gC/n VAP d.

r€(0,00)

B = { f e L’(X,m)

This result was later extended to spaces satisfying doubling property and Poincaré in-
equality by Koskela and MacManus [KoMa, Theorem 4.5]. In these settings, it turns out
that the exponent s = 1 is critical in that for every s > 1 every function f € B;  is
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constant almost everywhere and for every s < 1, the space B?__ contains non-constant

functions.

p,00

This motivates the definition of the critical exponent for Besov—Lipschitz space
sp = sup{s > 0: By _ contains non-constant functions} (1.2)

and the Korevaar-Schoen space as the critical Besov-Lipschitz space By'~. This approach
to define Sobolev space was recently proposed by Baudoin [Bau22+]. Our next result is
that the Sobolev spaces defined using rescaled discrete energies coincides with the one
defined using critical Besov—Lipschitz space with comparable seminorms. Furthermore,
we describe the scaling constant p(p) in Theorem 1.1 in terms of the critical scaling
exponent for By

Theorem 1.4 (Self-similar Sobolev space is a Korevaar-Schoen space). Let (K, d,m)
be the Sierpiniski carpet. Let F,, pr,p(p) be the Sobolev space, seminorm and scaling

constant respectively as given in Theorem 1.1. Set dy(p) = %. Then, there exists a
constant C' > 1 such that

1y pp . fx)— f(y)
C 1|f|]—'p < hmlnf/ ]id(m)Hw)ﬂlem(dy)m(dx)

< sup / ][ p)(y)|p m(dy)m(dz) < C|ff5.  for all f € LP(K,m).
By(z,r)

r>0

In particular, F,(K,d, m) = BMW/P (K g, m) and

TR

<C? lirﬁ%nf/ ]{Bd M |f(xid_f(i;(y)|771(dy)m(clac) forall f € LP(K,m). (1.3)

Moreover, it holds that dy(p)/p = sp.

This result was previously obtained under the additional assumption p > dimagrc (K, d).
The above result answers a question of F. Baudoin as he asks if (1.3) is true for the
Sierpiriski carpet [Bau224]. Recently, Yang also proves (1.3) for generalized Sierpiriski
carpets in the case p > dimagc [Yan+, Theorem 2.8]. If (1.3) were true, then [Bau22+| ob-
tains number of useful consequences such as Sobolev embeddings and Gagliardo-Nirenberg
inequalities. Our notation dy(p) in Theorem 1.4 is inspired by the notion of walk dimen-
sion studied for p = 2 in the context of diffusion on fractals [KM23]. Similar to that
setting, dy(p) also plays a role as the exponent governing Poincaré inequality and capac-
ity bounds as shown in the following theorem.

Theorem 1.5 (Poincaré inequality and capacity upper bound). Let p € (1,00) and let
(K, d,m) be the Sierpinski carpet. Let E,, F, be the p-energy and Sobolev space in Theorem
1.1. Let dy(p) = 10g108p3 ) be as defined in Theorem 1. and let T,y(-) denote the p-energy
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measure constructed in Theorem 1.2. Then there exist C; A > 1 such that for all x € K,
r >0 and f € F,, we have

/ 1 = Fasem|” dm < Cras® / dr,(f).
By(z,r) By(z,Ar)

and

m(By(x,7))
rdW(P) ’

inf{Sp(f) } fe ]:pﬂC(K),f}Bd(m) = 1,supp[f] C Bd(a:,Zr)} <C

where de(x,r) = m de(:e,r) fdm.

Theorems 1.1 and 1.4 suggest that the Sobolev space we construct is canonical since
two different approaches lead to the same space. As further evidence, we present the
following axiomatic description of our Sobolev space and self-similar p-energy.

Proposition 1.6 (Axiomatic description of the self-similar Sobolev space). Let p € (1, 00)
and let (K,d,m) be the Sierpiriski carpet. Let E,, F,, p(p) be the p-energy, Sobolev space
and scaling constant in Theorem 1.1.

Let .#, be a subspace of LP(K, m) and let &,: #, — [0,00) be a functional. Suppose
that the pair (&,,.%,) satisfies the following properties:

(a) {f € F :E(f) =0} ={f € LP(K,m) : f is constant m-almost everywhere}. For
any a € R and f € %, we have

E(f +alg) =&(f),  &laf) =l &(f).

(b) The functional f — &,(f)'/P satisfies the triangle inequality on %,. In addition,
. p
the function ||-|| 5, : F, = [0,00) defined by || | 5, (f) = (I1f 5oy + (1)) s

a norm on F, and (Fp, |||z ) is a uniformly convexr Banach space.

(c) (Regularity) The subspace %, NC(K) is dense in C(K) with respect to the uniform
norm and is dense in the Banach space (Fy, || - || 7 ).

(d) (Symmetry) For every ® € Dy and for all f € #,, we have fo ® € %, and
Ep(f o @) = &,(f).

(e) (Self-similarity) There exists p € (0,00) such that the following hold: For every
feZ,1eS, we have f o F;, € #,, and

PY_&(foF)=6&(f).

€S
Furthermore, #, NC(K) ={f € C(K) | fo F; € #, for alli € S}.

(f) (Unit contractivity) f* A1 € %, for all f € F, and &,(fT A1) < &,(f).

10



(g) (Spectral gap) There ezists a constant Cgap € (0,00) such that
[ fKH]Zp(m) < Coap6p(f)  for all f € F,.

Then p = p(p), Fp = F, and there exists C € [1,00) such that

CE(f) < &,(F) < CEN(F) forall f € Fp=F,.

By the above result, the assumptions (a)-(g) in Proposition 1.6 determine the Sobolev
space uniquely and the self-similar p-energy up to a bi-Lipchitz transformation. In light
of the uniqueness result of [BBK'T], we conjecture that the p-energy is unique up to a
multiplicative constant. Note that the self-similar p-energy &, constructed in Theorem
1.1 satisfies the properties of &, in Proposition 1.6. For instance, the unit contractivity is
a special case of Lipschitz contractivity.

The most widely used definition of Sobolev space on a metric measure space relies on
the notion of upper gradient introduced by Heinonen and Koskela [HK98]. Two different
definitions of Sobolev space (sometimes called the Newton-Sobolev space) based on upper
gradient were proposed by Shanmugalingam [Sha00] and Cheeger [Che99] but these two
definitions lead to the same Sobolev space on any metric measure space [HKST, Theorem
10.1.1]. The Newton-Soboev space N'P(K, d, m) for the Sierpinski carpet is known to be
trivial, that is, N'"?(K,d,m) = LP(K,m) with equal norms, because the minimal weak
upper gradient of any function is 0. We refer to Remark 11.7 for further details and
references. The triviality of Sobolev space based on upper gradient suggest the need for
an alternate method to construct Sobolev spaces on fractals such as the one considered
in this work.

An important motivation for our work is quasisymmetric uniformization and the re-
lated attainment problem for Ahlfors regular conformal dimension. A recent work pre-
dicts that Sobolev spaces and energy measures are relevant to the attainment problem
for Ahlfors regular conformal dimension [KM23, p.395-396]. Our work confirms this pre-
diction. To describe our results in this direction, we recall the relevant definitions of
conformal gauge and Ahlfors regular conformal dimension. Ahlfors regular conformal di-
mension is a slight variant of Pansu’s conformal dimension [Pan| and first appeared in
[BP03, BKO05]. Conformal dimension of boundary of hyperbolic groups and Julia sets
of complex dynamical systems are widely studied. We refer the reader to [MT] for a
comprehensive account of conformal dimension.

Definition 1.7 (Conformal gauge). Let (X, d) be a metric space and 6 be another metric
on X. We say that d is quasisymmetric to 6, if there exists a homeomorphism 7 : [0, 00) —
[0, 00) such that

d(z,y)

0
(z,9) <p=22 for all triples of points x,y, 2z € X, x # z.
0(z, z) d(z, 2)

The conformal gauge of a metric space (X, d) is defined as

J(X,d) ={6: X x X —[0,00) | §is a metric on X, d is quasisymmetric to 6}. (1.4)
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A Borel measure p on (X, d) is said to be p-Ahlfors reqular if there exists C' > 1 such
that
C~ P < p(By(z,7)) < OrP for all x € X,0 < r < diam(X, d).

The Ahlfors regular conformal dimension is defined as

dimARc (X, d)
=inf{p > 0:0 € J(X,d) and there is a p-Ahlfors regular measure p on (X,6)}. (1.5)

The infimum in the definition of dimarc (X, d) need not be attained in general [BK05,
§6]. The attainment problem for Ahlfors regular conformal dimension asks if the infi-
mum in the definition of dimarc(X,d) is attained by a ‘optimal’ metric and measure.
Quasisymmetric uniformization problem asks if there is a metric in the conformal gauge
isometric to a model space with more desirable properties. These two problems are often
related. For instance, it is a well-known open problem to determine whether or not the
conformal gauge of the standard Sierpinski carpet contains a Loewner metric [HKST, p.
408], [Kle, Question 8.3] (we recall the definition of Loewner metric in Definition 11.12).
Another related question is to determine if the Ahlfors regular conformal dimension of
the Sierpinski carpet is attained [BKO05, Problem 6.2]. As pointed out by Cheeger and
Eriksson-Bique, these two questions are essentially the same due to the combinatorial
Loewner property of the Sierpiriski carpet [BK13, Theorem 4.1], [CE, §1.6].

As a motivation for the attainment problem for Ahlfors regular conformal dimension,
we recall a long-standing conjecture in geometric group theory, namely Cannon’s conjec-
ture. It asserts that any Gromov hyperbolic group G whose boundary at infinity 0,,G
is homeomorphic to S? admits an action on the hyperbolic 3-space H? that is isomet-
ric, properly discontinuous and cocompact. Bonk and Kleiner show Cannon’s conjecture
under the additional assumption that the Ahlfors regular conformal dimension of the
boundary at infinity 0,,G is attained [BK05]. Thus Cannon’s conjecture is reduced to an
attainment problem for the Ahlfors regular conformal dimension of 0,,G. We refer the
reader to ICM 2006 proceedings of Bonk for further context and details [Bon].

Another related motivation for the attainment problem for Ahlfors regular conformal
dimension is to better understand Loewner spaces. Since Loewner spaces enjoy desirable
properties, it is useful to know if a given metric space contains a Loewner metric in its con-
formal gauge. To this end, Kleiner formulated a combinatorial version of Loewner property
that is necessary for such a Loewner metric to exist and is easier to check. Bourdon and
Kleiner verify combinatorial Loewner property for a number of examples including the
Sierpiriski carpet [BK13]. Kleiner conjectured that the combinatorial Loewner property
for a self-similar space is equivalent to the existence of Loewner metric in the conformal
gauge [Kle, Conjecture 7.5]. Due to an observation of Cheeger and Eriksson-Bique [CE,
§1.6], Kleiner’s conjecture can be rephrased as a conjecture about the attainment prob-
lem as follows: combinatorial Loewner property for a self-similar space implies that the
Ahlfors regular conformal dimension is attained. We refer to the ICM 2006 proceedings
of Kleiner for further details [Kle].

As partial progress towards the attainment problem for Ahlfors regular conformal
dimension on the Sierpinski carpet, we show that if an optimal measure attaining the
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Ahlfors regular conformal dimension exists then this measure is necessarily a bounded
perturbation of the p-energy measure of some function in our (1, p)-Sobolev space, where
p is the Ahlfors regular conformal dimension. This result confirms the relevance of energy
measures to the attainment problem for Ahlfors regular conformal dimension as predicted
earlier in [[KKM23, p.395-396]. Furthermore, if the Ahlfors regular conformal dimension is
attained we identify our Sobolev space F, with Newton-Sobolev space of the attaining
metric measure space. To state this result, we briefly recall the definition of Newton-
Sobolev space N'P(X, 0, u) of a metric measure space (X, 0, ).

We define N LP(X,0, 1) as the set of p-integrable functions with a p-integrable p-weak
upper gradient (we recall the definition of weak upper gradient in Definition 11.4). We
equip N'?(X,0, ) with the seminorm lull oo, = lwllzogy + I9ullpog,. where gy
denotes the minimal p-weak upper gradient of u in (X, 6, u) (Heuristically, the minimal
p-weak upper gradient of u is an analogue of [Vu|). Two functions f, g € Nip (X,0, ) are
said to be equivalent if || f — g[|y1p(x g,y = 0- The Newton-Sobolev space NP (X 0, 1) is
defined to the set of equivalence classes equipped with the norm ||| 51,(x 4, Our final
result below identifies the Newton-Sobolev space for any metric and measure attaining
the Ahlfors regular conformal dimension of (K, d) with our Sobolev space F,(K,d, m).
Moreover, the attaining measure is essentially equal to the energy measure I',(h) for some
function h € C(K) N F,(K,d,m). The following result relates the Sobolev space based on
upper gradient to the self-similar Sobolev space under the attainment of Ahlfors regular
conformal dimension. Moreover, the attaining measures are essentially energy measures.

Theorem 1.8. Let (K,d,m) denote the Sierpiniski carpet and let p = dimarc(K, d).
Suppose that there ezists 0 € J(K,d) and a measure p on K attaining the Ahlfors reqular
conformal dimension; that is, p is a p-Ahlfors regqular measure on (K,0). Let F, =
Fo(K,d,m),E, and T'y(-) denote the Sobolev space, p-energy and p-energy measure as
giwen in Theorem 1.2. Then we have the following:

(i) The spaces Fp(K,d,m) and N'P(K,0, 1) are equal with comparable norms, semi-
norms, and energy measure. More precisely, it holds that C(K) N F,(K,d,m) =
C(K)NNY?(K, 0, ), there exist a bijective linear map ¢ : Fp(K,d,m) — NP(K, 0, i)
and Cy > 1 such that (f) = f for any f € C(K) N Fo(K,d,m) = C(K) N
NV (K, 0,u)' and

CIIT,(F)(B) < /B g dii < O (£)(B)

for any Borel set B C K, f € F,(K,d, m), where gf(f) denotes the minimal p-weak
upper gradient of 1(f). In particular, C7'E,(f) < [ gf(f) dp < CLE,(f) for all
f € F,(K,d,m). Furthermore, the corresponding norms are comparable; that is,

c ”fH]—'p(K,d,m) < ”L(f)HNlm(K,e,u) <C Hf”f,,(K,d,m) for all f € Fy(K,d,m).

!more precisely, the equivalence class containing f in F,(K,d, m) is mapped to the equivalence class
containing f in NVP(K, 0, u).
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(ii) There exist h € F,(K,d,m)NC(K) and Cy € (0,00) such that
Cy'Ty(h)(B) < u(B) < CyT'y(h)(B)  for any Borel set B C K.
In particular, T'y(h) is a p-Ahlfors reqular measure on (K, 0).

Let us briefly explain how Theorem 1.8 could be potentially used to solve the attain-
ment problem. Although the attainment problem requires us to find optimal metrics and
measures, it is well-known that the metrics and measures determine each other (see Lem-
mas 11.16 and 11.14). Therefore it suffices to look for optimal measure and use Lemma
11.14 to construct the corresponding metric. By Theorem 1.8, it suffices to look for op-
timal measures among energy measures of continuous functions. We conjecture that it
suffices to look for optimal measure among energy measures of p-harmonic functions (see
Conjecture 12.9). One could then hope to find a ‘good’ function whose energy measure is
optimal or rule out the existence of such function by a careful analysis of energy measures.
In fact, Theorem 1.8(ii) was inspired by a similar result for the attainment problem for
conformal walk dimension [[XM23, Theorem 6.16]. Such a result was successfully used to
solve a similar attainment problem in [KM23].

More generally, we believe that Sobolev spaces and energy measures are relevant to
similar quasisymmetric uniformization problems and the attainment problem for Ahlfors
regular conformal dimension on other ‘self-similar spaces’ such as boundaries of hyperbolic
groups and Julia sets in conformal dynamics. It would be interesting to construct Sobolev
space, energy measures and prove analogues of Theorem 1.8 for fractals arising from
hyperbolic groups and conformal dynamics [Bon, Kle]. Another obvious question is to
use Theorem 1.8 to solve the attainment problem. This motivates further study of energy
measures.

Although we discussed three approaches towards defining Sobolev space based on
discrete energies, Korevaar-Schoen energies, and upper gradients, there are several omis-
sions. Among them, we mention Sobolev spaces constructed using two-point estimates
by Hajtasz (Hajtasz—Sobolev space) [Haj96], Poincaré inequalities by Hajtasz—Koskela
(Poincaré-Sobolev space) [HIK95, HK00], and using weak LP-estimates of gradient on hy-
perbolic fillings by Bonk-Saksman [BS18]. It would be interesting to understand if these
spaces or their variants are related to our Sobolev spaces constructed using discrete ener-
gies.

1.1 Overview for the rest of the paper.

In §2, we introduce basic notions concerning capacity, modulus and volume growth of
graphs.

In §3, we introduce variants of the ball Loewner property due to Bonk and Kleiner
and of Loewner-type modulus lower bounds between connected sets. The main result
(Theorem 3.2) shows that lower bounds of modulus between balls imply lower bounds of
modulus between any pair of connected sets.
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In §4, we use the lower bounds of modulus from §3 to obtain a discrete Poincaré
inequality. The proof of the Poincaré inequality in Theorem 4.2 follows an idea of Heinonen
and Koskela [HK98, Proof of Theorem 5.12].

In §5, we show that discrete Poincaré inequality along with capacity upper bounds
on graphs imply elliptic Harnack inequality for p-harmonic functions on graphs. The
Harnack inequality is then used to prove existence of Holder continuous cutoff functions
with controlled energy.

In §6, we introduce a framework describing the approximation of a metric space by
a sequence of graphs. We then define the Sobolev space using discrete graph energies
under the assumption that the sequence of graphs satisfy uniform Poincaré inequality
and capacity upper bounds. We obtain many basic properties of this Sobolev space such
as completeness, separability, reflexivity, and the existence of a dense set of continuous
functions in the Sobolev space.

In §7, we identify our Sobolev space as the Korevaar-Schoen space with comparable
energies. We express the critial exponent for Besov—Lipschitz space in terms of the scaling
exponent for discrete energies.

In §8, we introduce the setting of self-similar sets and construct a natural approxi-
mation of a self-similar set by a seuence of graphs. obtain a sufficient condition for the
existence of a self-similar p-energy in our Sobolev space (Theorem 8.12).

In §9, we describe the construction of the energy measure associated to a self-similar
p-energy and obtain its basic properties.

In §10, we apply the results from previous sections to the planar Sierpinski carpet.
To this end, we check the assumptions imposed on the graph approximations for the
construction of the Sobolev space in §6 and the assumptions imposed for the existence of
a self-similar p-energy in §8.

In §11, we show that any optimal measure for Ahlfors regular conformal dimension
on the Sierpinski carpet must necessarily be comparable to a energy measure. If the
Ahlfors regular conformal dimension is attained we identify the Newton-Sobolev space of
the attaining space with our Sobolev space.

In §12, we collect some conjectures and open problems related to our work.

Notations. In this paper, we use the following notation and conventions.
(1) N.={n€Z|n>0}and Z>, = NU{0}.
(2) For a set A, we write #A to denote the cardinality of A.

(3) Let X be a non-empty set. For disjoint subsets A and B of X, we use AL B to denote
the disjoint union of A and B.

(4) For p > 1, we write p' = #, i.e. p is the Holder conjugate index of p so that

1 1
lil=1
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(5) For a € R, define

1 if a >0,

sgn(a) =<0 if a =0,

-1 if a < 0.
(6) For a,b € R, we write a V b = max{a,b} and a A b = min{a,b}. For simplicity, we
also write a™ = a VvV 0 and a= = a A 0. We also use these notations for real-valued

functions.

(7) For a € R, define [a], |a] € Z by
[a] =max{n € Z |n<a} and |a] =min{n€Z|a<n}.
(8) For arbitrary countable set V', define
RV = {ff: Vo RY, (V)= [0,400) = {f | f:V = [0,+00)},
and
(E(V) = {f €[0,+00)" | # supp[f] < +o0},

where supp|f] = {z € V| f(z) # 0}.

(9) Let (X,d) be a metric space. The open ball with center z € X and radius r > 0 is
denoted by By(x,r), that is,

By(z,r) ={y € X | d(z,y) <r}.

If the metric d is clear in context, then we write B(z,r) for short. We write B(z, R)
for {y € X | d(z,y) < r}. For a metric ball B, let rad(B) denote the radius of B.
For A > 0 and a ball B = B(z, R), define AB = B(z, AR).

(10) Let (X,d) be a metric space. For A C X, the diameter of A with respect to d is
defined as

diam(A, d) = sup d(z,vy).
T,yeA

We also use diamg(A) to denote diam(A,d). If no confusion can occur, we omit the
metric d in these notations.

(11) Let (X, o, 1) be a measure space. For f € L (X, pu) and A € & with u(A) < +oo,

loc
we use f [ dp to denote the averaged integral of f over A, i.e.

]i fu= ﬁ /A F(2) p(d).

We also write f4 or (f)a to denote f, fdpu if the underlying measure f is clear.

(12) Let (X, o7, ) be a measure space and let 1 < p < oco. For f € LP(X, pu), we use
| f]l, to denote the LP-norm of f. In addition, for any A € </, define

1l = 1], = ( / !f(x)!pu(dx))l/p.

(13) Let X be a topological space. We use #(X) (resp. (X)) to denote the set of
[—00, 0o]-valued (resp. [0, oo]-valued) Borel measurable functions on X. (Note that
each element in Z(X) or A, (X) is defined on every points of X.)
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2 Preliminaries

2.1 Basic facts and terminologies of graphs

Throughout this section, let G = (V, E) be a locally finite connected simple non-directed
graph, i.e. G = (V, E) is a simple connected graph, where V' is a countable set (the set of
vertices) and E C {{z,y} ’ z,y € V,x #y} (the set of edges), satisfying

dego(x) =#{y eV |{zr,y} € E} <400 forallz e V.

We always consider G as a metric space equipped with the graph distance d = dg. In this
paper, we suppose that G has bounded degree, i.e.

deg(G) = supdeg(z) < +o0.
zeV

A sequence of vertices § = [xy,...,x,] for some n € N is said to be a (finite) path in
G if x; € V and {z;,;.1} € FE for each i € {0,...,n — 1}. We frequently regard a path
0 as a subset {x;}" , of V. Define the length of 6 = [x,...,z,] by

leng(0) == n.
A finite path 6 = [z, ..., xz,] is said to be simple if there is no loops, i.e. x; # x; for any
distinct 4, 7 € {0,...,n}. Note that our definition excludes the case where a one point set

{z} becomes a path (since G' has no self-loops). In particular, len(f) € N for any finite
path 6.

For any subset A C V| we define
E(A) = {{z,y} € E | z,y € A}.

A subset A C V is called a connected subset of V' (with respect to G ) if dia,gcay(z,y) < 0o
for all x,y € A.

For arbitrary A C V', define
0;A ={x € A | there exists y € V' \ A such that {z,y} € E},

0A ={x € V'\ A there exists y € A such that {z,y} € E},

and
A= AUODA.

The set ;A (resp. 0A) is called the interior (resp. exterior) boundary of A in G. The set
A is a kind of closure of A in G.
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2.2 Combinatorial p-modulus of path families

We recall the notion of combinatorial modulus of discrete path families on a graph and a
few basic properties. For a path # in G = (V, E) and p € (T(V), define the p-length of 6,
Lp(e) , by

Ly(0) = Z p(v).

vel

For arbitrary path family © on G, define the p-length of ©, L,(©), by

L,(©) = inf L,(0).

The set of admissible functions Adm(©) for © is given by
Adm(©) = {p € (7(V) | L,(©) = 1}.

Definition 2.1. Let © be a family of paths in G and let p > 0. The (combinatorial)
p-modulus Modf(@) of © is

Mod}?(@) = inf(e) o7y =  inf Zp(v)p'

€Adm €Adm(©
P p ( )vGV

We also use Mod,(©) to denote Mod]?(@) when no confusion can occur.

Remark 2.2. For a path family O, define
Vel ={veV|vebd for some § € O}.
We easily see that p € Adm(©) implies plyg) € Adm(©). This observation yields

G _ : p
Mod, (€)= _jnf llel,vie-

The following properties of p-modulus is well-known.
Lemma 2.3 (e.g. [HKST, Section 5.2]). Let p > 0.

(i) Mody(0) = 0.

(ii) If path families ©; (i = 1,2) satisfy ©1 C O, then Mod?(@l) C Modf(@g).

(iii) For any sequence of path families {©, }nen,

Mod¢ (U @n> <> Modf(6).
neN n=1
(iv) Let ©,04 be families of paths. If all path 6 € © has a sub-path 0y € Oy (i.e.

0, C0), then
Mod{ (©) < ModS (©4).
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If p > 1, then by the strict convexity of ¢7, there exists a unique p € Adm(©) such
that Mod(©) = Y .y p(v)P.
For subsets A; CV (i =0, 1,2) with Ao U A; C A,, define

Path(AO, Al; Ag) = {[.To, e ,an]

neN{z;,z;1} € Eforany i =0,...,n—1,
x; €Ay (i=0,...,n),z9 € Ag,x, € A4 ’

and we write Mod, (Ao, A1; As) for Mod, (Path(Ag, A1; A2)). We use Path(Ay, 4;) and
Mod, (Ao, A1) to denote Path(Ag, A;;V) and Mod,(Ay, A1; V') respectively. When we
need to specify the underlying graph G, we will use Pathg(Ag, A1; As) and so on.

The following lemma is used to obtain lower bounds on modulus. Roughly, speaking
modulus lower bound of a curve family is equivalent to existence of shortcuts.

Lemma 2.4. Let p > 0. Let O be a family of paths in G and let ¢ > 0. If Mod,(©) > c,
then for any e > 0 and p € {T (V) there exists a path 6 € © such that

Ly(0) < (1 +e)e 7 |lpll, e - (2.1)

(If the infimum in the definition of L,(©) is attained, then € can be replaced with 0.)
Conversely, if for any p € (+(V) there exists a path 0 € © such that L,(0) < c=Y/P ol
then Mod,(©) > c. In particular, if p > 1, L € N and there exists § € O such that
len(0) < L, then

Mod{(©) > L'™?. (2.2)

Proof. First, we observe that

[y
Mod%(0) = inf ew) 2.3
© p( ) pez+(v1)1?L,,(®)>o L,(O)r (2:3)

Set p = plye for any p € £7(V). Since Ly(0) = L(O) and ||pllz(1ry < [llpo(y: we have

||/)H§,V[@]

Mod¢%(0) = .
od, (©) pee+(\/l)]?Lp(®)>o L,(O)

Therefore, Mod,(©) > ¢ implies L,(©) < ¢ /7 lp|l, yie- Pick 6§ € © so that L,(0) €
[L,(©),(1+¢)L,(0)). Then 0 satisfies (2.1).

Let us prove the converse. Let p € ¢+(V) with L,(©) > 0 and suppose that there
exists § € O such that L,(0) < ¢~1/P o], Combining with (2.3), we get Mod,(©) > c.

Lastly, suppose that p > 1 and that 6 € © satisfies len(f) < L. For any p € {*(V), by
Holder’s inequality,

(»-1)/p
L,(0) = " plo) < (Z 1) 1Pl < L9 1ol e

vED velh

which implies (2.2). The proof is completed. O
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2.3 Discrete p-energy, p-Laplacian and associated capacity
For f € RY, the length of discrete gradient of f, |V f|: E — [0,+00), is given by

VAEz y}) = 1f(y) = f(z) for {z,y} € E.
For simplicity, we also use [V f|(z,y) to denote [V f|({z,y}) for each {z,y} € E.
Definition 2.5. Let p > 0 and let A C V. For f,g € RV, define

ELfig) = > sen(f(y) — fF@)If(y) — f@)P  (g(y) — 9()).

{z,y}eE(A)

The p-energy of f on A is given by EIfA(f) = SSA(f; f), ie

ELN = Y Nfyr= > @) -l

{z,y}eE(A) {z,y}eE(A)

We write ng (f;g) and SPG (f) for ‘%fv( f;g) and ng( f) respectively. We omit the underling
graph G in these notations if no confusion can occur.

We recall basic properties of discrete p-energy, which are immediate from the definition.

Lemma 2.6. Letp >0 and ACV.

(a) EF4(po f) < EFA(f) for any f € R and 1-Lipschitz function ¢ € C(R). In
partzcular

g]fA(f#) S 8pG:A(f) for any f € RV: ac R; f# € {f+7f_7 ‘f” (f - a)+}?
(b) 5GA(f Ag)V SGA(f Vyg) < S;SA(f) + 5GA(9) for any f,g € R
(€) E5alf-9) <27V D) (gl ay E5alE) + 11 f 1 4y ES4(9)) for any f,g € R™.

(d) Suppose that f € RY is constant on A°, i.e. there exists a € R such that f(z) = a
for every x & A. Then we have EF(f) = 8fz(f).

Proof. (a) This is obvious from [p(f(z)) — o(f(W)I" < |f(z) — f(y)I".
(b) This is immediate from the following elementary estimate. For any aj, as, by, by € R,

’(CLl A bl) — (CL2 A bg)|p V \(al V bl) — (&2 V bg)‘p S ‘Cll - CLQ’p + ’bl — bg’p.
(c) We easily see that

S <@tV Y (9@ ) = FIF + I W) lg) — g()F)

{zy}eE(A)

< @ V) (e ) EEALD) + 1 [ty E6ia(9) )

(d) The assertion holds since |f(z) — f(y)| = 0 whenever {z,y} ¢ E(A). O
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Next we recall the definition of discrete p-Laplacian using a discrete version of inte-
gration by parts. Let (-, -)s2(v.deq) denote the inner product of £2(V, deg)

Definition 2.7. Let p > 0. The p-Laplacian Af on G is the operator satisfying

1
ng(f;g) = _§<Agf’g>£2(v,deg)

for all f,g € RY. Equivalently,

(ASH) @) = —— 3 san(f(y) — FE)IF ) — F@P™ (2.4)

" degln) 2o
(z,y)EE

(See [Shi21, Theorem 6.4] for example.) A function f € RY is said to be p-superharmonic
(vesp. p-subharmonic) at x € V if AS f(x) <0 (resp. AS f(z) > 0). In addition, f is said
to be p-harmonic at x € V if AYf(z) =0. If A CV and AS f(x) = 0 for every z € A,
then f is said to be p-harmonic in A. p-superharmonic, p-subharmonic functions in A are
defined in similar ways.

The following lemma describes a well-known property of p-superharmonic (resp. p-
subharmonic) functions, namely the minimum (resp. mazimum) principle.

Lemma 2.8 ([HS97, Theorem 3.14] or [MY92, Theorem 7.5]). Let A be a non-empty
connected subset of G. Let f € RV be p-superharmonic (resp. p-subharmonic) in A.

(i) If there exists x € A such that f(x) = min, .5 f(2) (resp. f(x) = max,4 f(2)),
then f is constant on A.

(ii) If A is finite, then ming, f = ming f (resp. maxgps f = maxyz f).

Proof. For the reader’s convenience, we recall the proof by following [Bar, Theorem 1.37],
where the case p = 2 is treated. Here, we discuss only the case where f is p-superharmonic
on A because the maximum principle can be obtained from the minimum principle by
considering — f instead of f.

(i) Define A, = {z € A | f(2) = ming f}. Then AN A, # 0 since x € AN A,. For any
y€ AN A, and z € A with (y,2) € E, we have f(z) > f(y). Since f is p-superharmonic
in A,

0> deg(y)A,f(y)= Y senlf(2) = F)If () = fy)"" = 0.

z2€V,(y,z)€E

Hence f(z) — f(y) = 0 for any z € A with (y,2) € E. This implies that AN {y} C A,
for any y € AN A,. Since A is connected, we conclude that A, = A, which means
flx = minzu.

(ii) Note that A is a finite set and thus there exists # € A such that f(z) = miny f. If
x € OA, then there is nothing to be proved. If x € A, then (i) implies that f is constant
on A. We finish the proof. O
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Definition 2.9. Let p > 0 and let A; C V (i = 0,1,2) with Ay U A; C A,. Define the
p-capacity between Ay and A; in Ay by

cap (Ao, Ar; As) = inf{E5,,(f) | fERY, f=0o0n Ay and f =1 on A4 }.

We write capff(Ao, A,) for capg(Ao, Ay; V). The underlying graph G is omitted in these
notations if no confusion can occur.

The following monotonicity is immediate from the definition.
Lemma 2.10. Let p >0 and let A; CV (i=0,1,2). If A, C A; (i =0,1), then
capf(Ag, Al Ay) < Capg(Ao, Ap; Ay)

Typical p-harmonic functions are given as equilibrium potential of p-capacity:

Lemma 2.11 ([HS97, Theorems 3.5 and 3.11]). Let p > 1. Let Ay, A1 CV and let Ay

be non-empty connected subset of V. with AgN Ay =0 and AgU A; C Ay. There exists a

unique function ¢: Ay — [0, 1] equilibrium potential ) such that p|a, =i for i =0,1 and
ggAg(SO) = Capf(Ao, Ay Ay)

Furthermore, ¢ is p-harmonic in Ag \ (Ao U Ay).

On bounded degree graphs, the notions of modulus and capacity between sets are
comparable as observed by He and Schramm [HS95].

Lemma 2.12. Let p > 0. Then there exists a constant C' > 1 depending only on p, deg(G)
such that the following statement is true: for any A; C V(i =0,1,2) with AgU A; C As,

C™'cap§ (Ao, Ar; Az) < MOdg(Ao,Al;AQ) < Ccapy (Ao, Ar; As). (2.5)

Proof. 1f we introduce the edge version of combinatorial p-moduli, then that p-moduli
and p-capacity are the same (see [ABPPW, Theorem 4.2] or [Shi2l, Theorem 3.17] for
example). It is easy to see that vertex and edge version of modulus are comparable by a
slight modification of [H595, Theorem 8.1].

A direct proof of (2.5) can be found in [Kig20, Proposition 4.8.4]. O

2.4 Volume growth conditions

We recall doubling properties and Ahlfors regularity on graphs and metric spaces.

Definition 2.13. A metric space (X,d) is said to be metric doubling if there exists
Np € N such that any ball By(x,r) can be covered by at most Np balls with radii r/2.
A Borel measure m on X is said to be volume doubling (VD for short) with respect to d
if there exists Cp > 1 such that

0 < m(Bqy(z,2r)) < Cpm(By(z,r)) <oco forallz e X, r>0. (VD)
A graph G = (V| E) is volume doubling if VD holds with respect to the graph distance

and the counting measure.
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Definition 2.14. Let di > 0. A metric space (X,d) is said to be d¢-Ahlfors regular
(AR(dy) for short) if there exist Cag > 1 and a Borel measure m on X with

Conr™ <m(By(z,7)) < Cagr™ for any € X and r € (0,diam(X,d)). (AR(ds))

(X, d) is said to be Ahlfors regular if it satisfies AR(d;) for some di > 0. We shall say
that a graph G = (V, E) is dg-Ahlfors regular if the condition above defining AR(d¢) holds
with respect to the graph distance and the counting measure for all z € V and for all

r € (1,diam(V)).
We recall a few elementary consequences of these definitions.

Remark 2.15. Let (X,d) be a metric space.

(1) If there exists a volume doubling measure m on (X, d), then (X, d) is metric doubling
whose doubling constant Np depends only on the doubling constant Cp of m. [Hei,
Chapter 13]

(2) If a Borel measure m on X satisfies AR(d¢) for some d¢ > 0, then m is volume dou-
bling whose doubling constant Cp depends only on C'ag and d¢ > 0. Furthermore,
AR(d¢) implies that the Hausdorff dimension of (X, d) is d;.

We recall the following consequence of the volume doubling property.

Lemma 2.16. Let (X,d) be a metric space and let m be a Borel measure on X satisfying
VD. Then there exists a > 0 depending only on the doubling constant Cp such that

m(Bqy(z, R))
m(Ba(y, 7))

In particular,

d e}
<3 (M) foranyz,y € X and1 <r <R <oo. (VD(«))
r

m(By(z, R)) < CpRY  for any x € X and 1 < R < diam(X,d). (2.6)

Since increasing « does not affect the validity of VD(«), we assume that o > 1 for
much of this work.

3 Loewner-type lower bounds for p-modulus

Throughout this section, let p > 1 and let G = (V, E') be a locally finite connected simple
non-directed graph.

We introduce the following Loewner-type lower bounds on modulus between balls.
The case with exponent ¢ = 0 was introduced by Bonk and Kleiner [BIK05, Proposition
3.1]. This was extended by Bourdon and Kleiner [BIK13, Proposition 2.9] to a discrete
setting.
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Definition 3.1. Let ( € R. A graph G satisfies p-combinatorial ball Loewner condition
with exponent ¢ (BCL,(C) for short) if there exists A > 1 such that the following hold:
for any xk > 0 there exist cgcr(k) > 0 and Lpcr (k) > 0 such that

Mod€ ({6 € Path(By, By) | diam 6 < Licy. (k) R}) > cpe (i) RS (BCL,(¢))

whenever R € [1,diam(G)/A) and B;(i = 1,2) are balls with radii R satisfying
diSt(Bl, BQ) S kR.

In this section, we discuss BCL,(() and prove a key estimate (Theorem 3.2) in this
paper. The setting of this section is given by the following condition:

The underlying graph G satisfies BCL,(¢) and 1 —p < { < 1. (BCLI™(¢))

We are interested in the case where ( is the ‘largest’ possible value. Since BCLL"W(l —p)
is always true by (2.2), there is not much loss of generality in the assumption ( > 1 —p
but the inequality {( < 1 need not be true in general but holds in many ‘low dimensional
settings’ such as the Sierpinski carpet.

Under BCL;OW(C), we can show a generalized lower bound of p-modulus as in the
next theorem, which is one of the main results in this section. It states that Loewner-
type lower bounds on modulus between balls imply analogous lower bound on modulus
between any pair of connected sets. This result plays important roles in the proofs of
Poincare inequality in §4 and elliptic Harnack inequality in §5. The following theorem
can be viewed as an extension of a result of Bonk and Kleiner from ¢ = 0 to more general
exponent ¢ [BK05, Proposition 3.1], [BK13, Proposition 2.9].

Theorem 3.2. Let p € [1,00) and kg € (0,00). Assume that G is bounded degree
graph that satisfies p-combinatorial ball Loewner condition BCL;’W(C) with exponent ( €
[1 —p,1). Then there ezist constants ¢, L > 0 depending only on the constants associated
to the assumptions such that the following statement is true: If F; (i = 1,2) are disjoint
connected subsets of V' satisfy

diSt(Fl, FQ)
; X S Ko,
diam F A diam F,

then
Mod§ ({6 € Path(Fy, F») | diam 6 < LRy}) > cRg, (3.1)

where Ry = 2dist(Fy, Fy) A %diam Fi A %diam L.

The proof of the above theorem is inspired by [BK05, Proposition 3.1] and [BK13,
Proposition 2.9]. Similar to [BK05, BK13], the idea behind its proof is to show the
existence of a shortcut with respect to an arbitrary function p € £*(V) and use Lemma
2.4. To construct such a shortcut, we need two key lemmas.

The first one is a is a discrete analog of [BK05, Lemma 3.5] and provides a linear
decay of measure of suitably chosen balls.
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Lemma 3.3. Let (G,v) = (V, E,v) be a weighted graph with v(V) < 400 and let A CV
be a connected subset with respect to G with #A > 2. Then there exists z € A such that

v(B(z,1)) <

diamA<T vV 1v(V)  for any r > 0. (3.2)
Proof. The proof is a straightforward modification of the proof of [BK05, Lemma 3.5].
We give the details for the reader’s convenience. If (3.2) were false, then for any z € A
there exists r, > 0 such that

v(B(z,r,)) > C(r. vV 1)v(V), (3.3)
where C' = 8/ diam A. From this estimate, we have

supr, < v(B(z, 1))

— T K Cil < +00.
e Cu(V) —

Applying the basic covering lemma (Lemma A.1), we get a family of disjoint balls
{B(zi,7)}Yier (for each i € I, z; € A and r; = r;,) such that A C (J,.; B(2,3r).
Since A is connected, we can show that for any distinct 7, j € I there exists a sequence
1 =10,%1, ** ,4_1,% = j in [ such that

B(zi,_,,3ri,_,) N B(z,,3r;,) #0 forany k € {1,...,1}.

By the triangle inequality, we see that
diam A <) diam B(z;,3r;) <Y (61, +2) <8 (r; V1),
icl icl icl
that is, >, ;(r; V1) > C~'. However, by combining with (3.3), we have
v(V) =Y v(B(zi,mi) > Cu(V)Y (r; V1) > v(V),
iel il

which is a contradiction. O

The next lemma is an analog of [BK05, Lemma 3.7] or [BK13, Lemma 2.10]. Note
that condition (iv) is similar to the hypothesis and is suitable for indutive application of
this lemma.

Lemma 3.4. Suppose that G = (V,E) satisfies BCL,((). For any A € (0,1/8), let

Ly = Lpcr(3x) + & Let (B, F1, F) be a triple such that B = B(x, R) for some x € V

and R > 16 and F; (i = 1,2) are connected subset of V. If the triple (B, Fy, F,) satisfies
1
then for any p € {T(V) there exist x; € F; (i = 1,2) satisfying the following:
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(i) For each i = 1,2, #; € B(x,3R/4) and d(z,x1) A d(z, 1) < 3R/8. Furthermore,
B; = B(x;, \R) satisfies éBi - %B and B; N By = 0.

(ii) For eachi = 1,2, |[p|lh 5 < 128(AV R~ [|pll? 5.
(iii) There exists 6 € Path(%Bl, %132) such that 8 C LB, diamf < LBCL(%)R and
Ly(0) < Copa(AR) " lpll,, 1, 5 -
where Cy, x > 0 is a constant depending only on p,(, A and CBCL(%).
(iv) F;N3B;, 0N 1B;, F;\ B; and 0\ B; (i = 1,2) are non-empty.

Proof. Since R > 16, we can choose disjoint connected subsets F; (1 =1,2) of V such that
-~ —( 3 —( 1 _ .~ _ R
Fi is a connected subset of I N | B z, gR \ B z, ZR with diam F; > 16
and

F, is a connected subset of Fy N (E(x, ER) \E(m, §R>> with diam Fy > 1—}2
Let p € £ (V) and define a measure v, by v,(A) = [|p||} 4~p for any A C V., ie. v,({z}) =

p(x)? for x € B and v,({z}) = 0 for x ¢ B. Applying Lemma 3.3, we find z; € F; for
each ¢ = 1,2 such that

V1
TR vp(B) for any r > 0.

Vp(B(zi,1)) < (rv1)v,(V)=128-

R/16
Choosing 7 = AR and setting B; .= B(z;, AR) C B, we get
lplly 5, < 128NV R ol 5

which proves (ii). Clearly, we have B; C B by A € (0,1/8) and z € B(z,3R/4).
Moreover, for any y € S%\Bi,

31 7
do(,y) < do(w, 20) + da(z,y) < TR+ S (AR) = SR,

which proves & B; C £B. Since z; € B(x,3R/8), 22 & B(x,5R/8) and A < 1/8, we have

7

1 1
Bl g §B and BQ g gB \ §B,

and hence By N By = (). This proves (i).
The rest of the proof is proving (iii) and (iv).
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(iii) It is clear that

1 1 3 3 9 9 AR
ist (= B —B)< <°R+°R="R=_—.2%
dlSt(4 1,4 2 _dG(Zl,ZQ) ~ 8R+4R 8R o\ 4

Thus BCL,(¢) together with Lemma 2.4 implies that there exists a path 6 € Path(1By, 1 B>)
satisfying the following conditions.

e diamf < LBCL(%)R and hence 6 C (LBCL(%) + %)B = L,\B;

e L,(0) < Q[CBCL(%)}_UP (%)_C/p ||pHp,LAB = CpA(AR) =</ ||p||p,L>\B'

(iv) Since B; is centered at F; and B; C B, we immediately have F; N }LBi # () and
F;\ B; # 0. Also, 6N %;Bi = () is clear. Since BN By = () and 6 € Path(;llBl, iBg), we
see that 0\ B; # (. We complete the proof. O

Finally, we shall prove the main result (Theorem 3.2) in this section.

Proof of Theorem 3.2. Let p € ¢*(V). We will construct a L,-shortcut joining F; and F5.
Let A € (0,1/16) be a fixed small parameter that will be chosen later. First, we consider
the case Ry > \~'. Set

Ny = n.(\, Ry) = max{n € Zso | \"Ry > A"} +1,
i.e. n, € N is the unique natural number such that

log RO _l<n log RO
log A\—1 = log AL

(3.4)

Then, for any n € Z>( with n < n,,
AV (A"R)™P =X and ARy >\ > 16.

Pick x; € F; so that dg(z1, x9) = dist(Fy, Fy). Then B; := B(z;, Ry) satisfies F; N iBi + ()
and F;\ B; # () for each ¢ = 1,2. Furthermore, dist(iBl, iBg) can be estimated as follows:
If RO =2 diSt(Fl, Fg), then

(1 1 . R
dlSt<ZB1; ZB2> S dlSt(Fl, F2> =2- ZO
If Ry # 2dist(Fy, Fy) (i.e. 2Ry = diam F; A diam F5), then
. 1 1 . 8diSt(F1 Fg) RO Ro
dt(—B,—B)<d {(F), Fy) = — J L0 gy 2O
ist( B g B2) < distlh, B = o e B 4 = o0

By using BCL,(¢) and Lemma 2.4, we can find a path 6y € Path (%Bl, }lBg) satisfying the
following condition (c;).
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()1 diamfy < Lycp(2 V 8ko)Ro and L,(6y) < C - encr(2 V 8kg) VP Ry /" Ipll,, where
C > 0 is a constant depending only on p and (.

We set ©1 == {6y}, By = {By, B2}, and Z1 = {F}, F»}.

Next we describe an essential step of this proof. Set =, := Z; U {fy} = Z; U O, and
define Fyy = Fy, Fig = Fy = 0y and Fy = F,. Then Zy = {F,}.cq102. If Ry > 16,
then 6y is a connected subset of V' with #6) > 2 and we can apply Lemma 3.4 for the
triple (B;, Fi1, Fi2). (The case Ry < 16 will be discussed in the next paragraph.) Indeed,
we have from Ry < 2dist(Fy, F») that 1B, N B; = 0 if {i,57} = {1,2}. Combining with
Op € Path(3B1,1Bs,), we verify 1B, N6y # 0 and 0y \ B; # () for i = 1,2. As a result of
Lemma 3.4, we get balls B;;, B;» and paths 6; satisfying the following conditions (as)-(ds).

(a)2 Eil = B(xi1, ARy), Bia = B(22, ARy) for some x;1 € F1, &0 € Fip with 1,25 €
B(l’l,gRo/Zl) and dg<l'z',l'i1) A dg(l'l',l'ig) S 3R0/8 Furthermore, %le U %Bﬁ g
%Bl and Bﬂ N BZ'Q = @

()2 llpllyp, V1ol 5, < CaxX ol 5, where Coy = 128.

(C)Q 01 € Path(}lBﬂ, iBiz), 91 g L/\Bi, diam 91 S L)\Ro and

L,(0;) < Cp,A(ARO)_C/p ”pHp,L)\Bi )
where Ly and C),  are the constants in Lemma 3.4.
(d)2 Fori,j7 € {1,2}, all of Fj; N iBij, 0; N %;Bij: F;; \ B;; and 6; \ B;; are non-empty.

We set ©, = {6;,6,} and By = {B:}.cf1,2p2. Thanks to (dy), we can use Lemma
3.4 for (B, Fij1, Fij2) when ARy > 16, where {F};1, Fijo} = {F};,0;}. Here, we select
-Fijk (i,j, k= ]_, 2) so that F111 = F1 and FQQQ = FQ. IIldU.CtiVGly, for j = 2, cee, Ny + 1, we
can construct a path collection ©; = {0, }.ef1,2p5-1, a ball collection B; = {B:}-cf1,2),
and a collection of connected sets Z; = {F;}.¢q10p With F;.; = F; (i = 1,2) subject to
the following conditions: for any w = wy - wj—1 € {1,271 (i.e. wy € {1,2} for each
k=1,...,7—1),

(a); Bu1 = B(xwl,)\j_’lRo) and B,y = B(x,2, N 1Ry) for some z,1 € F, 1, Tuo € Fl
with z,1, Twe € B(z,, 3N 2Ry /4) and dg(xy, Ty1) A dg(Ty, Twe) < 3NV 2Ry /8. Fur-
thermore, - By1 U gxBue C LB, and B,y N B, = 0.

(B); el 5., Vel 5., < CarAllplly 5,-
(c); 0., € Path(3B,1,1Bu2), b, C LyB,, diam6, < LyN?R, and

4

L,(6,) < Cp7,\()\j_1Ro)_</p ||p||p,LABw .

(d); For i e {1,2}, all of F,,; N iBm, 0, N iBm, F,; \ By; and 0, \ B,,; are non-empty.
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Note that a combination of (a); and (c); implies Uwe{1 9)i-1 0, C LyB; U LyB,. Indeed,
forje{l,...,ni+ 1}, w=wi - -w; € {1,2}9 and y € L\B,,, we have from (a); that

da(Twy w15 Y) < da(Twyow;_1> Tw) + da(Tw, Y)

< %)\J2R0 + /\JflL)\Ro < (Z + ?) )\JizRo < L)\)\JizRo,

where we used Ly > £ > & in the last inequality. Combining with (c);, we obtain
0, C LyBy € LyBuyow, -

Hence we conclude that 6, C LyB,,, € L \B; U L)Bs.

Next we will fill “gaps” between 6, and the center of }le for each w € {1,2}™ and
i =1,2. Since G is connected, we can find a (shortest) path gm € Path(0,, x,;) such that
am- C B,,; and len (gw) <A™ Ry/4 < (4\)~1. By Holder’s inequality, we also have

= \(-1)/p 1 e
L) < en @) ol < (35) Dol (35

Concatenating paths {6, | w € {1,2}9,7 = 0,...,n,} and {57 |7 e {1,2}"*'} ina
suitable way, we can obtain a path 6, satisfying the following conditions (3.6)-(3.8):

9* c Path(Fl, FQ) with 0* - L)\Bl U L/\BQ U 9@, (36)

diam 6, <d1am9@+z Z diam 6, + Z (Ien Ien(5w2)>, (3.7)

J=1 we{1,2}J we{1,2}m=

and

L)< > L0+ > L(6:). (3.8)

we{1,2}n= Te{l1,2}nx+1

From (3.7) and (c);, we can give an upper bound for diam 6, as follows:

LN ons
diam 6, < (LBCL(I{()) + LAZQJ)\J”) Ro+ 55
j=1

1
2\

Ly +

<
< (LBCL(HO) + —ax

) Ro = LR,. (3.9)

We will give an upper bound on L,(6,) by using (3.8). We start by introducing

Lo =1.(\ Ly) = max{l <n,

(8N)M < Ly}
Here, if {I < n, | (8\)7 < Ly} =0, then we define [, as 0. By (3.8), we have

L,(0.) < Li+ Ly+ Ls. (3.10)
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where
L« N
=3 > Lyb.), Lo= Y > L0.), and Ly:= > L,(6)
J=0 we{1,2}J J=lt+1lwe{1,2}J Te{1,2}x+1

Each term can be estimated as follows.
The first term £;. For any j € {1,...,l.} and w € {1,2}/, by (¢);41,

Lp(0) < CpaWRo) " llpll, 1,5, < Con(N Ro)™"% o],
Combining with (c);, we see that

:Z{Z DLy Y

J=1 we{1,2}J

Ly
< (clro) 7+ Coa S ENTIN RGPl (311)

j=1

Moreover, if we suppose A < O} (= 12871), then since (Cg,A)V=4"D/P > 1 for j <,
L«
L, < (cBCL(HoY”P +Ca > ZJA_JC/p(CShr/\)(”_l*_l)/p> Ry llpll, - (3.12)
=1

The second term L,. Note that Ly < (8\)™™. For any j € {l. +1,...,n.}, k €
{1,...,j— 1} and w = w; - --w; € {1,2}, define [w]_ = wy - wj_x € {1,2}7%. From
(a);, we observe that

L\B, C (SA)_I*BW C (8)\)_l*+1B[w]_1 - C B[w],l*-
By using (b); repeatedly, we obtain

ol < Cad) P ol <o < (Caed)T 7P o]l
(Cane M) ], (3.13)

IN

Therefore, by (c),+1, we have
Ly(0) < Coa(N Ro) ™ lIpll, 1,5, < ConA 7P (Conc)) 0"V RGP ],

and hence

-y Y <cpx(z 2\, A)“*‘”p>R</pHpH (3.14)

J=lt+1lwe{1,2}J j=l41
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The third term £3. By (3.5) and the same argument to obtain (3.13), we have

N 1\ @-D/p
L3 = Z L,(0,) <2 (ﬁ) (2°Cane )™ P || ., - (3.15)

Te{l,2}nx+1

Recall that we suppose ¢ < 1. Pick § € ((,1) and define n/, as the unique non-negative
integer such that
log Ry el < log Ry
log (2PCyp N) 1 log (2PCyp A) 1

We now suppose A < (2PCyp,,) /079, Then log A\~ < log (2PCy,yA)~'/? and hence

lgRo

on ;_1 sAl <n,+1.
Therefore, we have
(2PCaeA)™ < (2P O N)™ 71 < (22CeN) TRy ® < (2PCineN) 1 Ry . (3.16)
Combining (3.15) and (3.16), we obtain
L5 < CoaRy " lIpll, (3.17)

where C, == 2(1/4X)@=D/p(22C \) =17 that depends only on p, A and deg(G).
Consequently, if we fix § € (¢, 1) and A < (2°Cay) 179 (eg. A = L(2PCy,,) "1/ 079,
then (3.12), (3.14) and (3.17) imply that

L,(6.) < C.Rs " |lpll, (3.18)
where .
C, = (ko)™ + Cypr(CappA) " E D /PZ(Q : Csl}{f . )\(1—4)/10)]' + 5]07)\'
=0

By A < (2°Cy) /09 we have 2- CY/P - X1=0/P < 1 and, by Cy,, = 128,
(CauX) ™ < (8A) ™ < Ly

Hence C, < ¢~ /7 if we put

+00 -p
¢i= <CBCL(HO)—1/Z’ + Cpn Ly P (Cae )TV (2 CYE - AOZO/R) (7,”) .

=0

We conclude from Lemma 2.4, (3.9) and (3.18) that

Mod§ ({6 € Path(Fy, F») | diam @ < LRy}) > RS,

which finishes the proof when Ry > AL,
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Lastly, we consider the case Ry < A™!. If Ry = 0 (i.e. #F, = 1 or #F; = 1), then
the required estimate is trivial. So we can assume that Ry > 1 and #F; > 2. Since
dist(Fp, F1) < (271 A 2k¢) Ry =: ¢1 Ry, there exists a shortest path 6, € Path(Fp, Fy) such
that len(6,) < ¢; Ry. Applying Holder’s inequality, we obtain

L,(0.) < len(0.) "D/ [|p]l,,. < "VPREV g,
Since ( > 1 —pand 1 < Ry < A™!, we see that

R(p 1)/ =R C/pR ¢+p—1)/p <A (C+p— 1)/pR C/p

By Lemma 2.4, we obtain
Mod§ ({6 € Path(Fy, F) | diam 6 < LRy}) > cRg,

where ¢ > 0 depends only on p, (, ¢; and . O

We also frequently use the following consequence of Theorem 3.2.

Corollary 3.5. Assume that G is bounded degree graph that satisfies p-combinatorial ball
Loewner condition BCL;)OW(C) with exponent ¢ € [1 — p,1). There exist constants ¢ > 0
and L > 1 depending only on the constants associated with the assumptions such that if
F; (i = 1,2) are connected subsets of V' satisfying #F; > 2, F;N B # 0 and F; \ 4B # )
for some ball B with radius R > 0, then

Mod¥(Fy, F5;4LB) > ¢(RV 1)°, (3.19)

Proof. We first consider the case R > 2. Notice that V' \ 4B # (). Since F; is connected,
we can find a connected subset F; of F; satisfying the following conditions (i)-(iii):

(i) Fy C FiN(2B\ B) and F» C F, N (4B \ 3B).
(i) FNB # 0 and F,N3B # 0.
(i) Fy\ 2B # 0 and F, \ 4B # 0.
Then we immediately see that 3R > diam F} > diam F, = [4R] — [3R] > ;R and

~ ~ 1
8R > dist(F, Fb) > [3R] — [2R] > ok

Hence, by applying Theorem 3.2 for E, there exist ¢, L > 0 (depending only on the
constants associated with the assumptions) such that

Mod, ({0 € Path(Fy, ) | diam ¢ < LR}) > cR¥.
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By Lemma 2.3(ii),
Mod$ ({0 € Path(Fy, F3) | 6 C (L +1)B}) > Modg‘({e € Path(Fy, ) | diam 6 < LR}),

which implies our assertion in this case.

Next we consider the case R < 2. Let L > 0 be the same as in the previous paragraph.
Then, by (2.2) in Lemma 2.4, we have

Mod{ ({6 € Path(Fy, F») | 0 C (L +4)B})
> Modf({@ € Path(F}, F3) | 6 is a shortest path})
> 4P =4"P(RV1) ¢ (RV1) >4"P(27' A1) (R V1),

where we used (RV 1) > (RV1)"' A1P7! and R < 2 in the last inequality. O

4 Discrete (p,p)-Poincaré inequality

Throughout this section, let p > 1 and let G = (V, E') be a locally finite connected simple
non-directed graph.

The goal of this section is to show that the ‘low-dimensional’ p-ball combinatorial
Loewner type property BCL;"W(C ) implies a Poincaré inequality. We shall give the defini-
tion of (weak) (p, p)-Poincaré inequality in our setting.

Definition 4.1. Let 8 > 0. A graph G satisfies (p, p)-Poincaré inequality of order [
(PL,(B) for short) if there exist constants Cpr, Ap; > 1 such that for any x € V, R > 1
and f € RY,

> ) — fownl” < CotR & (f): (PL,(8)

y€B(z,R)

The main result in this section (Theorem 4.2) tells us that the (p, p)-Poincaré inequality
follows from the the combinatorial ball Loewner-type property BCL;OW(Q ) and VD. This
result and its proof are inspired by a similar theorem of Heinonen and Koskela [HI98,
Theorem 5.12]. Although the result in [HK98] corresponds to the case ( = 0 the proof
there works when ¢ < 1.

Theorem 4.2. Let G = (V, E) be a graph satisfying VD(«) and BCL"(C), where ov > 1
and ¢ € [1 —p,1). Then G satisfies PL,(3), where 8 = a — (, Ap1 = 2 and Cp; depends
only on the constants associated with the assumptions.

The proof of Theorem 4.2 is done in two steps. In the first step, we introduce a two-
point estimate that is a sufficient condition for the Poincaré inequality (see Definition 4.3
and Lemma 4.6). In the second step, we show that the combinatorial ball Loewner-type
property BCL;,OW(C ) implies the two-point estimate (Lemma 4.7).
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4.1 Equivalence with two-point estimates

We introduce a two-point estimate and show that it is equivalent to the Poincaré inequal-
ity. For f € RV and R > 1, we define

& (f)
VRN = sty T eV

The function Mp[f] is the truncated mazimal function of the gradient of f in our setting.
Perhaps, the notation Mg(|V f|”) is more appropriate but we choose the above notation
for brevity. The following definition gives a discrete generalization of pointwise estimates
(see [HKO00, (15)] or [HK98, (5.16)] for example).

Definition 4.3. Let § > 0. The graph G satisfies the p-two-point estimate of order (8
(TP,(p) for short) if there exists a constant Crp > 0 such that for any z € V, R > 1,
feRY and z,y € B(z,CrpR),

(@) = F)I” < CrepR” (M[f](x) + ME[f1(y))- (TP,(5))

It is easy to see that VD(«), where a > 1, implies TP, (oo +p — 1).

Lemma 4.4. Suppose that G satisfies VD(«) for some o > 1. Then G satisfies TP (o +
p — 1) with Ctp > 1 depending only on o, Cp.

Proof. Let C' > 1 that will be chosen later. Let [z, 21,...,2] be a shortest path in G
such that zy = = and 2z, = y. Note that [ = dg(x,y) < R, and z; € B(y,R.). If C > 2,
then by Holder’s inequality, we have

-1
F@) = F)P <7 S () = Fal < RPES 0 (F).
1=0

Thus TP,(a + p — 1) follows by using VD(«). O]

A well-known telescoping sum argument show that Poincaré inequality implies the two
point estimate. This follows from a straighforward modification of the proof of [HIK98,
Lemma 5.15] or a discrete version of that argument in the special case p = 2 in [Mur20,
Lemma 2.4]. We omit the proof as we will not use the lemma below.

Lemma 4.5. Let G = (V, E) be a graph satisfying VD and PL,(3) for some 8 > 0. Then
G satisfies TP, ().

The following lemma is a converse of the previous lemma. Let us recall the notion of
median. For f € RV and A, a median of f on A is a number a € R such that

#{w e A|f(-)> a) At{w € A| f(2) S a} > J#A

We write med(f, A) to denote the set of medians of f on A. (It is easy to show that
med(f, A) #0.)
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Lemma 4.6. Let G = (V, E) be a graph satisfying VD and TP () for some > 0. Then
there exist constants C' > 0 and A > 0 depending only on p,Cp,deg(G), Crp such that

Z f = d” < CRPE]py am)(f), (4.1)

B(z,R)
foranyx €V, R>1, f €RY, a € med (f, B(z, R)) In particular, G satisfies PL,(/3).

Proof. The proof of [HK98, Lemma 5.15] applies to our setting with minor modifications.
For the reader’s convenience, we give a proof.

Let z € V,let R>1andlet f € RV. Set B := B(z,CrpR) and fix a € med(f, B).
By considering f — a instead of f, we can assume that a = 0, i.e.

1
#{zEB\f(z)ZO}/\#{zEB|f(z)§O}2i#B. (4.2)
Let s > 0. Suppose that =,y € B satisfy

fla) > sand f(y) <O (vesp. f(r) < —s and f(y) > 0). (4.3)

We choose w € {z,y} so that My[f](w) = My[f](x) Vv Mi[f](y). Then there exists
R, = R.(w) € (0, R) NN such that

P D ggB(w,R*)<f)
Mg[fl(z) + Mg[fl(y) < QW.

By TP,(3), we have

1/
&y )) ’

s < |f(x) - fy) < 2/7CHERY? < 4B(w, R.)

which is equivalent to
#B(w, R,) < Cys PRE 5 py(f), (4.4)
where C] := 2Ctp.
Next we prove the following weak LP-type estimates: for any s € (O, | £1] gos (V)] NR,

#(BN{lfl = s}) < CRIsTPET (4.5)

z,(c;;H)R)(f)’

where C5 > 0 is a constant depending only on Ctp and Cp. The proof will be divided
into the following two cases.

Case 1: Consider the case where there exists x € {f > s} N B (resp. z € {f < —s}NB)
such that, for any y € {f <0} N B (resp. y € {f >0} N B),

Mg [fI(y) = ME[f)(=) V ME[f](y).
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In this case, by applying the basic covering lemma (Lemma A.1) for { B(y, R.(v)) }yefr<oinB
(resp. {B(y, R.(v))}yers>03n8), we obtain N € N and {y;}I¥, C {f < 0} N B (resp.
{y:}Y, C{f >0} N B) such that

E(yHR)mB(yﬁ >_® lfl%.ﬁ

and v N
{f<oynBC|JB:4R:) (resp. {f >0}N B C|JB(y:,4Ry)),
i=1 i=1

where R; := R, (y;) for each 7 € {1,...,N}. Using VD and (4.4), we see that

N

N
#({f<0}NB) <> #B(yi,4R;) < C1CY > #B(yi, R)
=1

i=1

N
< Clc%sprB Z SpCfB(w,R*)<f)

i=1

< CICRsPRIET ooy () (4.6)

(resp. #({f >0} N B) < Ci\CEs PRPE, 5. ity +1m(f)-) By (4.2), we obtain

#(BO{If 2 s}) < #B <201Chs PROE 5 ooty (F):

Case 2: Consider the complement of Case 1, i.e. for any x € {f > s} N B (resp.
z € {f < —s} N B) there exists y, € {f <0} N B (resp. y, € {f > 0} N B) such that

Mg[f)(z) = Mp[f](x) v M[f](yz)-

By considering a sequence of balls { B(z, R.()) }zc(s>synp (resp. {B(z, Ri()) }aefr<—sinB)
instead of ‘{ B(y, R.(y)) }ye(s<oyns’ in Case 1, a similar argument to the derivation of (4.6)
implies that
- G
#({f > s}NB) < OB PRIET,  or i ().
(resp. #({f < —s} N B) < C1C3sPRP &y B((Colu+ 1R ) (f).) Therefore, we get (4.5).

The desired Poincaré inequality will be shown by a truncation method by using (4.5)
(cf. [Maz]). Define J, = J.(f) =max{j € Z | 2 < 1 1l gos 1y boaf [ £l oo 1y = +00, then
we define J, = 4+00.) For each j € Z N (—o0, J.], set

A =Bn{2 <|f|<2*'} and f;=(|f|-2)) VOA2.
Note that {|f| > 2/} = {|f;| > 2/}. By (4.5) and Lemma 2.6(a,d), we have

#(Bn{lfi] =2'}) < CRP277PEC

p.B(z,(Cp+1)R )(fj) < O2R62_]pggfj(f)

Hence,

115 A, = D (@) <20+ PgA; <20M0P4 (B {|f)] > 27}) < 2PCoRPEL(f).

wGAJ'
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Since {A;}; are disjoint, we note that . ; Egzj(f) < 2EC(f). Hence we obtain

IfIP 5 < 277 CLRPE, 5(f) < 2°Cy deg(G)RPESy5(f),

which proves (4.1).
We conclude the proof by observing that (4.1) implies PL,(3). By (4.1),

inf Y |f(2) — o' < CRPE] i am (F).

z€B(z,R)

Combining with Lemma A.3, we get PL,(5). O

4.2 Two-point estimates are implied by Loewner bounds

We shall see that PI,(3) holds on a graph G satisfying BCLI™((), i.e. BCL,(¢) with
1—p< (<1, and VD with exponent a > 1, where 8 = a — ( > 0. By virtue of Lemma
4.6, it is enough to show the following lemma.

Lemma 4.7. Let G = (V, E) be a graph satisfying VD(«) and BCLYY(C) with the expo-
nent ¢ € [1 —p,1). Then G satisfies TP,(3) and the associated constant Crp depends
only on constants involved in the assumptions.

Proof. We adapt the argument of [HK98, Lemma 5.17] which we briefly outline. The
proof proceeds by contradiction. If the two-point estimate fails, there exists a function
for which the difference |f(x) — f(y)] = 1 but the truncated maximal-function of the
gradient is much smaller than D~# where D is comparable to the distance between x
and y. By using Theorem 3.2 repeatedly at various scales, we find a shortcut in the [V f]
metric between x and y whose length is strictly less than 1. This contradicts the triangle
inequality as any such path must have length at least 1.

We first prepare estimates, (4.8), to get ‘shortcuts’. Let z € V and let R > 1. Let
C > 1 that will be chosen later and set B := B(z,C~'R). Let x,y € B be distinct.
Pick a shortest path 0., = [ = xo,21,...,2p,,—1,%p,, = Y|, i.e. Dy = de(x,y) and
{x;-1,z;} € E for each i = 1,...,D,,. Set D := [D,,/2]. Note that we always have
2*1Dmy <D <2D,, and D,, < 2R. The assertion in the case D < 2 can be obtained
from Lemma 4.4. So, we consider the case D > 3. Fix k > 9 and define

Ny = Ny (k, Dpy) =max{j € Zso | kD — k¥ 72D > 2}.
Note that D > 3 and x > 9 imply D — k72D > 2. Set
AY = B(x, k" D)\ B(z,x¥7?D) for each j € Zx.

For each j € {0,...,n.}, let 0; be the connected component of ., N A7. (Since 0, is a
shortest path, there exists only one connected component of ¢, N A;“”) Then we have

diam; = [k D] — |k ¥ 2D| > k¥ D — k¥ 72D > 2,
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and thus #6; > 2. Using the fact that 6,, is a shortest path, we see that

dist(6;,60,41) _ (k32D — |k 33D
diam 0; A diam ;. — [k=30TDD] — |k=30+D2D|

K972D— k953D 42 11— K1+ =g < P

— g0V D — g30HD-2D B k-l — k-3 — K2 — 1 )

where we used k™3 D > 24 x~%72D > 2 in the last inequality. By Theorem 3.2, there
exist constants L, ¢ > 0 (depending only on the constants associated with the assumptions)
such that

Modf(@j) > (k¥ D)S, (4.7)

where

©; = {6 € Path(6;,6;,1) | diam6 < Lx¥D}.

(We do not define {©;} if n. = 0.) Note that § C (1 + L)B(z,x D) = B; for any
6 € ©,. By Lemma 2.4 and (4.7), for any p € (T (V), we have

Iplly 5, = cLn(©,)P (k=¥ D)°.

Combining with (2.6), we obtain

1
#B;

S pla) = O L(©,) (¥ D). (48)

$EB]'
To prove TP, () with = o — (, it suffices to show that

1< CLR™(ME, Alf)(@) + ME, 411()) (4.9)

for any f € RV with |f(x) — f(y)| = 1, where C, is a universal constant. Hereafter, we
fix f € RY satisfying |f(z) — f(y)| = 1. Define [V f];, € (V) by setting

Viv(z) = max |f(z) = f(), zeV.

2 e€Vi{z,z'}eFE
It is enough to consider whether the following case (4.10) occurs or not.
leﬂv(@j)p/i?’j(a’g < Cy forany je{0,...,n,—1}, (4.10)
where

Ou o L L -’ 411
# T\ 1T ws@om) (4.11)

(Here, we let {0,...,n, — 1} = {0} if n, = 0.) Indeed, if there exists j € {0,...,n, — 1}
such that .
Ly g, (0P > Oy, (4.12)
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then we see that

(4.12) (4.8)
1 < C3'Liy, (0,00 < '3 Cp - D~ 4# > VA
UEB
—1,~v—1 a— G
<c C# Cp-D C#BJ deg(G)ganj(f)

<cl'cy'cy . D¢ L deg(@)e”

S C # #B] eg( ) p,B-(f)

< 2% SO Cp deg(@) - da(w,y) MY, ) plf ().
(4.13)

Since dg(z,y) < 2R and o« — ¢ > 0, we have (4.9).
We will show that a combination of (4.10) and the failure of (4.9) yields a contradiction.
Suppose that (4.10) holds. Then for any j € {0,...,n. — 1} there exists 6; € ©; such

that
Lyg, (6,)" < Cur9, (4.14)

Note that diamgj > k73972D — k373D > 2 and thus #Qj > 2. By using the fact that
0y is a shortest path, we have
dlst(e 0]+1) < diam ;.44 < [k D] — |k372D] < k(2K — 1)'

diam0; A diam 0,,; ~ diam0; A diam0,,, ~ KD —k3D T k-1

Again by Theorem 3.2, there exist constants Z,E > 0 (depending only on the constants
associated with the assumptions) such that, for any j € {0,...,n, — 1},

0; = {0 € Path(0;,0;41) | diam 0 < Lx~¥ D}

satisfies B
Mod$ (6,) > &(v ¥ D). (4.15)

We also define B
O, = {0 € Path({z},6,,) | 6 is a shortest path}.

By (2.2) in Lemma 2.4, we have

Mod$ (6,.) > (k72 D)' ™" > ¢, (v %™ D)", (4.16)

2 1-p—¢ 2%3 1-p—(¢
_ 3 (p—1
lecl(pagli) .75(10 ){<1—H_2> \/(1_%_2) ’

Indeed, n, satisfies

where
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and thus (k=" D)l_p > (ff_?’”*D)C holds. Note that 6§ C B(z, (1+ Z)Ii_ng) for any
6 € O;. By using (4.16) instead of (4.8) in the argument of (4.13), we can show that the
existence of j € {0,...,n.} satisfying

Livg, (6;)"k¥9 > Cy

implies (4.9) (with C, = 2(1+ L) V2(4e¢(c Vep )C’;C’% deg(G))). So let us suppose
the following case:

Livg, (,)'k¥9 < Cy forany j € {0,...,n.}. (4.17)

We will deduce a contradiction by constructing a “too short path joining z and y”. From
(4.17), for each j € {0,...,n.}, we can find a path ¢; € ©; such that

leﬂv ((’92)1) < C#l{_gj(a_o. (4.18)

By concatenating {0;}7~, and {6 } o» We obtain a path 0@ = [z = vg,vy,...,u,] for
some [, € N such that

(a) v, € 0y C AF;
(b) Lyg, () <20, (LIVﬂv(Qj) + LlVﬂv(aj))-

By (4.14), (4.18) and (4.11), the condition (b) implies that

y N 2071%/17 1
x —3j(a—
Ly, (%)) <207 Y w9070 < T30 = 3°

Jj=0

To summarize, what we have shown in the above argument is that (4.9) holds or

1
there exists a path 8@ € Path({z}, AZ) such that Lyg, (9(“)) <3 (4.19)
In a similar way, we also see that (4.9) holds or
1
there exists a path % € Path({y}, AY) such that LWﬂV(G(y)) <3 (4.20)

where AY .= B(y, D)\ B(y, s 2D).

Next we will construct a “short-cut joining 6 and #®”. Recall that 02y = [ =
Zo,...,xp,, = y] and D = [D,,/2] = [da(z,y)/2]. We write B := B(zp, (1 — r;°)D).
Then 6, N B # 0 for w € {z,y}. If ko € (1,/16/15), then we easily see that 6,, \ 4B # 0
for w € {z,y}. Henceforth, we fix ko € ( \/16/15 ) Applying Corollary 3.5, we have

Mod (9@, o). 4LB> > DS
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for some universal constants ¢ > 0 and L > 1 (depending only on the constants as-
sociated with the assumptions). Since 4LB C B(z,(4L(1 — ky?) + 1)D), a combina-
tion of this lower bound of p-modulus and Lemma 2.4 implies that there exists a path
0*Y € Path (0(1), AR 4LB) such that

x p
H|vf|v||5,B(90,(4L(1—552)+1)D) Z CL\Vﬂv (9 Hy) DC'

If Ly, (679Y) > 3, then the arguments in (4.13) using the above bound instead of (4.8)
implies (4.9) (the associated constant C, depends only on the constants associated with
the assumptions.) If Liyy, (0‘“—”’) < 1/3, then, by concatenating #, %) and §*¥ and
using (4.19) and (4.20), we can find a path 0, € Path({z},{y}) such that Ly, (6.) < 1,
which implies a contradiction:

1L=1f(z) = f(y)l < Ly, () < 1.

As a result, we obtian (4.9) and finish the proof. O

Proof of Theorem 4.2. Combining Lemmas 4.6 and 4.7, we obtain Theorem 4.2. 0

5 Discrete elliptic Harnack inequality

This section is devoted to Harnack type inequalities for discrete p-harmonic functions.
Such estimates are crucial to establish that the Sobolev space we construct has a dense
set of continuous functions.

Throughout this section, let p € (1, 00) and let G = (V, E) be a locally finite connected
simple non-directed graph.

5.1 EHI for discrete p-harmonic functions

The Poincaré inequality introduced in Definition 4.1 implies a lower bound on capacity
across annulus. Let us introduce a matching capacity upper bound which serves to identify
the exponent S introduced in Definition 4.1 as the best possible one.

Definition 5.1. Let 5§ > 0. A graph G satisfies cap, <() if there exist constants Ceap > 0
and Ac,p > 1 such that for any x € V and R € [1, diam(G)/Acap),

#B(z, R)

capf (B(q:, R),B(:c,QR)C) < Ceap 7

(capy.<(5))

The main result of this section is the following elliptic Harnack inequality.
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Theorem 5.2. Let p € (1,00), df > 1 and f > 0. Assume that G = (V, E) satisfies
AR(d), BCLY™(de — 3) and cap, <(3). Then there exist constants 0y € (0,1) and Cy > 1
depending only on the constants associated with the assumptions such that, for any x € V.

and R > 1 with B(z,R) # V', if h: V' — [0, 00) is p-harmonic on B(z, R), then

max h<Cy min h. (5.1)
B(z,0qR) B(z,0uR)

A standard argument using Moser’s oscillation lemma immediately yields the following

interior Holder regularity of harmonic functions (see [Sal02; §2.3.2] or [Bar, Proposition
1.45]).

Corollary 5.3. Let p € (1,00), d¢ > 1 and § > 0. Assume that G = (V, E) satisfies
AR(dg), BCLY(ds—3) and cap, <(f). For any X € (0,1) there exist constants Cyg1, sl >
0 depending only on the constants associated with the assumptions such that for any non-
negative function h € RY which is p-harmonic in a ball B with radius R > 1,

dG(:an)
R

o1
Ih(z) — h(y)| < Cual ( > osc h, forall z,y € AB. (5.2)

To prove Theorem 5.2, we start with a log-Caccioppoli type inequality which plays a
key role in our proof of Theorem 5.2. The following lemma is a generalization of [KZ92,
Lemma 7.5].

Lemma 5.4. Let p € (1,00). Suppose that F,G € C*((0,400);R) satisfy |[F'(s) > 0,

G'(s) = |F'(s)” and G(s) <0 for any s > 0 and that V(s) = W,i()fg,l is monotone (i.e.

non-decreasing or non-increasing). Let A C V', let h: V — (0,00) and let ¢: V — [0,1].
If supplg] C A, then

LY (el Al ((a) ~ )~ ES (he - (G o h)
{z,y}eE(A)
<D NS @ ) o) — o). (5.3)

b {zyteB(4)

Proof. First, we prepare a notation. Foreach¢: V' — Rand z,y € V, define ¢, ,: [0,1] —
R by
Vay(t) =tp(x) + (1 —1)d(y), tel0,1].

For any h: V — (0,00), ¢: V — [0,1], 2,y € V, we can show

1
d
/ Py (1)
0

p

(Pl ()] de

= sgu(h(z) — h(y)h(z) = byl {p(@)G(h(@)) — o(y)"G(h(y)) }

@y (1))

p—1

W(hy,(t))dt.
(5.4)

42



Indeed, by simple computations, we have
p

d , d
= = G (hay (1)) e ()

p

F(hqy ()

= (%G(hx,y(t))> h(x) — h(y)" 'sgn(h(z) — h(y)),

and

[ eattr G o) at

:/0 %<¢$vy(t)pG<hx7y(t))> dt — p(p(r) — o(y)) /0 0oy (1) Gy (1)) dt

=((2)"G(h(z)) — ¢(y)"G(h(y))) — ple(x) — ©(y)) /0 oy () Ghoy (1)) dt

Using these identities, we see that

| sty | (F by )
= sgn(h(x) — ) x) ~ hly)"
{ (PP Gm@) =P Gn)) = pel@) = o) [ oGl 0)at}.

We now get (5.4) since

p

dt

p—1

d (s (1)),

G(hay (8)) 1) = h(y)" = 2 F(hay (1)

On the one hand, by a simple computation: ¢, ,(t)? > ¢(z)? A ¢(y)P, we have

[ eanter gt = oty o) [ | F s a
> (p(x)? A p(y)P) /0 %F(hmy(t)) dt|  (by Hélder)
> (p(@)? A p(y)?)IF (h(z)) — F(h(y))”. (5.5)
On the other hand, by the above Claim, we see that
1 d P
> [ enter|gron o) @
{zyyeB(A) "
= Y sga(h(z) = h(y) () — by (e(2)? G (h(z)) = o(y)" G (h(y)))
{zy}E(A)
1 . d p—1
o Y senlhe) — ) (@) ~ ) | an®P | Py Ul (0)
{zy}eBA) 0
=& (h; " - (G o h)) + Aylp, h] <EF(h; " - (G o h)) + |A[e, hl], (5.6)
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where

Ap[(P, h’] =
—p Y sen(h(x) = h(y)(e(x) — o(y)) / Py ()7 %F (hey(t))]  W(hay(t))dt.
{z,y}€E(A) 0

Now, a combination of Holder’s inequality on E x [0,1] and Young’s inequality implies
that for any any € > 0,

(p—1)/p
P

d
dt

dt

el <p| 3 /%,y@)p

{zy}eB(A)

F(hay(t))

1/p

| ) — e / O (h (1) dt

{zy}eE(A)

<(p-en Y /%y Sy (0)

{z,y}eE(A

T @) - o) / O (b (1)) .

{zy}eB(A)

p

dt

By choosing £ = (1/2(p — 1))(%1)/[) and combining with (5.6), we obtain

1

3 2 [ ey

_Jo dt
{z,y}eE(A)

<Dy P / 0 (1))

P {zy}eE(A)

<TI0V S e v ) ) - e (5.1)

b {zy}eE(A)

F(hyy(t)) ’ dt — E5 (h;¢” - (G o h))

Here we used the monotonicity of ¥ in the last inequality, i.e.

/0 W (P (1)) it < [ (R())” V@ (R (y))I"

A combination of (5.5) and (5.7) yields (5.3). We complete the proof. O

Particular the case F(t) = logt gives an important inequality so called the log-
Caccioppoli inequality in PDE theory. See also [[KZ92, Corollary 7.7] for the case p = 2.
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Corollary 5.5 (Log-Caccioppoli inequality). Let p € (1,00). Let A CV and p: V —
[0, 1] with supple] € A. If h: V — (0,00) satisfies —ASh > 1 for some n: V — R, then

1
5 Y (p@)? Ap(y))llog h(z) — log h(y)P
(z.y)EE(A)
1 n(@)e(@)? a
d <
+ 2(p _ 1) Z‘; h([[’)p_l egG('x) Cpg (90)7 (5 8)
where C), = %.
Proof. Set F(t) := logt, G(t) = —p%lt_(’"l) for t € (0,00). Note that G: (0,00) —
(—00,0). Then we easily see that
F't)=t"1>0,
G'(t)=t7" =),
1
0= o=
|F(t) p—1
Since
1 ©P 1 P
—E5 (h; P - h)) = ~ASh >
gp ( Al (G © )) 2(]) — 1)< P pl-p >£2(V,deg) - 2(]9 — 1) <n’ hp—1 >Z2(V,deg)7
we get (5.8) by applying Lemma 5.4. O

The next lemma is immediate by considering p-energies of indicator functions.

Lemma 5.6. For any x € V and R > 0,
cap’ (B(z, R), B(z,2R)°) < #{{y.2} € E |y € B(x,R),z ¢ B(z,R)}. (5.9)
In particular, if R € (0, 1], then
cap, (B(z, R), B(z,2R)") < degg(x). (5.10)

Proof. Note that ¢ == 1p ry: V — {0, 1} satisfies ¢|p(,,z) = 1 and supply] C B(z,2R).
We then have

capS (B(z, R), B(z,2R)) < &,(¢),

which shows (5.9). We also note that ¢ = J, when R € (0, 1], and hence (5.10) holds. O

The following generalization of cap, <(/3) is done by a standard covering argument
using the metric doubling property.
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Lemma 5.7. Let d¢ > 1,8 > 0 and let G = (V, E) satisfy AR(ds) and cap, <(3). For
any 6 € (0,1) there exists Ceap(0) > 0 depending only on § and the constants associated
with the assumptions such that for any x € V and R > 671,

#B(z,0R)
RF

Proof. Note that G also satisfies VD(d¢). Let x € V, R>1and § € (0,1). Let Agp > 1
be the constant in cap, <(f). Set 5 = L0 A Ao, € (0,1). Fix a maximal  R-net
{;}2°, of B(z,0R), i.c. z; € B(x,0R), d(z;,2;) > OR for each i # j € {1,..., N5} and
B(z,0R) € U¥, B(z;,0R). Since G is metric doubling, the number Nj has an upper

bound depending only on dR/6R = 45/(1 — 6) V 0AL-
If6R > diam(G)/Acap, then B(x, R) = V for any « € V and cap$ (B(z,0R), B(z, R)")
0. So we consider the case R < diam(G)/Acap. For each i € {1,...,Ns}, let

¢;: V = [0,1] be the minimizer of cap$ (B(z;, 0R), B(x;, 2(5NR)C) such that ;| 5, 57 =1
and supply;] € B(x;,20R). Since § + 20 < 1, we also have supply;] € B(z, R). Define

©: V= 1[0,1] by
Ns
Y= (Z goi) AL,
i=1

If R > 1, then we see from cap, <(f) and VD that,

capg (B(z,6R), B(x, R)°) < Ceap(6)

capp(B(x, dR), B(x, R)C) < &Elp) <&, (Z go,;)

<SNPTY ()
=1

Yo, #B(z:,0R)
< CcapNgj—l Z S 3]

=1 (6R)B

L (30+1\" (4 \’ #B(z,6R)
< p—1 ) )
< CoapColy ( 45 ) (1—5) RS

If 6R < 1, then we have from Lemma 5.6 that

Capf(B<$’6R)u B<x7R)C) S gf(]lB(a:,éR)> S #{{yu Z} S ‘ Yy € B(I75R>7Z € B(ZE, 6R)}
< deg(G)‘SR“ < deg(G)55_1+1 _ deg(G)‘l‘;/(l"s)H.

Note that, by AR(dy),

B 1— di—p
# gédR) > C;éédedf_ﬁ > C;}:l{(sdf <5df_ﬁ A (Té) )
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Therefore, if we put

Ceap(9)
~1
_ 30 +1 ds 4 B 3 B B 1-46 de—p
_ CcapCDNggo 1 (4—5) (Té) V CaARd ds deg(G)4§/(1 8)+1 (é‘df BA (T) ’
then the required bound holds. [

Proof of Theorem 5.2. Fix oy € (O, (4L)*1), where L is the constant appeared in Corol-
lary 3.5. By Lemma 2.3, we can assume that L > 2 without loss of generality. Let ¢ > 0
and set h. = h 4+ ¢. Note that h. is also p-harmonic on B := B(z, R). Define

m:= min h, and M := max h..
B(z,0uR) B(z,0uR)

If R < 4L, then B(z,0nR) = {z} and thus m = M. Hence it is enough to consider
the case R > 4L. In this case, we always have R — oyR > 4L — 1 > 2., in particular
B(z,R)\ B(x,0uR) # 0. Using the maximum/minimum principles (Lemma 2.8), we can
find paths pin, Omax in G satisfying the following conditions (i) and (ii) (see Figure 5.1).

(1) emin g {he S m} and emax g {ha Z M}7
(i1) Omin, Omax € Path (8iB(a:,(5HR),8Z-B(;E,R); B(x,R)).

Since B(z,46uR) C B(x,3B) by L > 2, it follows from Corollary 3.5 that there exists
¢ > 0 depending only on the constants associated with the assumptions such that

ModS (Gumin, Omas; 6B) > cR47, (5.11)

where 0 := 465 L € (0, 1).
In order to show (5.1), it suffices to consider the case m < M. Define h. =
m(logh6 — logm) and hf = (AL V 0) A 1. Then we easily see that h €

Adm (O min, Omax ), Where f?;: V — [0, 00) is defined as

hi(z) = max |hi(z)—hi(y) forze V.

yeVi{zyleE ©

Noting that m > ¢ > 0, we have

- M\ P
ModY (Bmin, Omax; 0B) < CESs 5 (hr) < C deg(G) <log H) ESsp(log he.), (5.12)
where C' > 1 is the constant in Lemma 2.12. Let ¢ be the equilibrium potential of
capf((SB, B¢) such that gp‘ sp = Land p| . = 0. Since h, is a positive p-harmonic function
on B, the log-Caccioppoli inequality (Corollary 5.5) for the tuple (h, ) yields

5?5B(log he) < Cpcapf((SB, B°). (5.13)

p
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Hmin

Figure 5.1: The paths 0, and 0,,.«
From (5.11), (5.12), (5.13), cap, <(/), Lemma 5.7 and (2.6), we obtain
M -p
R < CyCa(5)- Cand des(©) (1og 2 ),
m

which implies

maxs,ph +¢€ < 1/p

— -1 . ds = .
log - = log S - < <c O, Cloap(4L3y) - Car(4L6y) deg(G)) log Ciy
Hence,
< :
Ig{aé(h—ke < C’H<r£[1gh+€>.
Since £ > 0 is arbitrary, (5.1) holds. O

Remark 5.8. The above proof tells us that we can choose dy € (0, 1) arbitrarily small.
Obviously, the constant Cly depends on this choice.

5.2 Holder continuous cut-off functions with controlled energy

In this subsection, we construct globally Holder continuous cutoff functions with con-
trolled energy. Although energy minimizers for capacity are p-harmonic, the local Holder
regularity given by Corollary 5.3 is not sufficient to conclude the desired global Holder
regularity asserted in Theorem 5.9. This requires an additional Harnack-type estimate
near boundary.

The following theorem asserts the existence of Holder continuous cut-off functions with
controlled energy and is the main result in this subsection. This will in turn be used to
show that our Sobolev spaces have a dense set of continuous functions.
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Theorem 5.9. Let p € (1,00), df > 1, 5 > 0 and K > 1. Assume that G = (V, E)
satisfies AR(d;), BCLYY(ds — ) and cap, <(8). Then there exist constants 0,,Cy > 0
depending only on the constants associated to the assumptions such that the following hold:
for any z € V and R > 1 with B(z, KR) # V, there exists a function g, r: V — [0,1]
satisfies

SDZ,R‘B(Z’R) = 17 Supp [SOZ,R] g B(Z7 KR)? (514>

ES(p2r) < CLR"P, (5.15)
and .
dg(l', y) i

i%ﬁm»—%ﬁwﬂscu( ) for any 2.y € V. (5.16)

R

Proof. Fix § € (0,(4L)7") and set 6y = 46L € (0,1), where L is the constant in Corollary
3.5. Note that dy is also the same constant as in Theorem 5.2. Then we let

K—-1 K—-1 52

0y = /\ > 0,
45H+5§1+1 1+ 60,

fix e € [10716,,4,), and set R, =~ '. The case 1 < R < R, is easy. Indeed, let

_(IKR] = da(z0)\*
unte) = (Vi m) A

Then it is immediate that ¢, g satisfies (5.14). Furthermore, we see that

5;?(902,1%) < ( ) e pB(z KR) (dG(Z ))
< ([K R|) " deg(G)#B(z, KR)
< CARde deg(G)Rdf < CARde deg(G)RY - R"7,
and that
‘dg(z,l') _dG(Zay)’ dg<£ll',y)
— < <
() — il < FO TR < dg(ay) < RO

Hereafter, we consider the case R > R,. Define
D = B(z, KR) \ U B(w2e64'R) |,
wed; B(z,KR)

and let ¢ = ¢, g be the equilibrium potential with respect to capf (B(z, R), DC) satisfying
¢B(=,r) = 1 and supplp] € D. (The condition B(z, KR) # V implies 0;,B(z, KR) # 0.)
For any w € 9;B(z, KR) and y € B(w, 2e5;'R),

da(z,y) > da(z,w) — da(w,y) > | KR| — 2e65' R
> (K — R =255 )R> (K — ¢ — 2¢05Y)R,
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which implies B(z, K'R) C D, where K' := K'(¢,0y,K) = K — & — 26" > 1. Here we
used ¢ < (K —1)/(1+665") < (K —1)/(1 +205") to ensure that K’ > 1. By Lemma
2.10, cap, <(5), AR(ds) and Lemma 5.7,

&5 (p) = capy (B(z, R), D) < capy (B(z, R), B(z, K'R)?) < C'R%™7,

where C’ > 0 depends only on the constants associated to the assumptions.

The rest is proving (5.16). We shall prove that there exist constants C, § > 0 depending
only on the constants associated with the assumptions such that

0
lo(x) —p(y) < C (%) for all 2’ € D and z,y € B(Z',eR). (5.17)

Fix 2 € D and set B, = B(%',2¢R). We consider the following three cases.

Case 1: (51313* C D\ B(z, R). Note that oscy ¢ = 1 and that ¢ is p-harmonic on 5&13*.
The estimate (5.17) follows from Corollary 5.3.

Case 2: 6;'B. N B(z, R) # 0. Since diam (6" B,) < 4ed;' < K'—1bye < (K—1)/(1+
605"), we have from ;' B, N B(z, R) # 0 that 0;'B. C B(z, K'R) C D. If B, C B(z, R),
then

max [p(z) — ¢(y) =1 -1 = 0.

z,yE€ By
In the rest of this part, we suppose B(z, R) \ B, # (. Define

m, = mingy and M, = maxp.
By

*

Clearly, 0 < m, < M, < 1. By B(z, KR) # V, we note that 0;,6;' B, # ). Since ¢ is
p-superharmonic on D, by the minimum principle (Lemma 2.8), we can seek a path yyin
in GG satisfying

“Ymin € Path(aiB*y azaﬁlB*; 5513*) and “Ymin g {QO S m*}

Since 5
diam B, + rad (65 B,) < (4 + d5')eR < 7H R <R,

where we used ¢ < 64/10 < 6%/(2 + 80y) to ensure (4 + 0g')e < 27'6y, we obtain
z ¢ 8" B.. This together with gp}B(Z R = Maxy ¢ = 1 deduces that there exists a path
Ymax i G such that

Ymax € Path(0;B., 0,05 B.; 65" B.) and  Ymax € {¢ > M.},

where we used the maximum principle on D\ B(z, R) (Lemma 2.8) if necessary. Indeed, for
any z¢ € 0;B(z, R) N d5' B., we can easily find a path v € Path({zo}, ;05" By; 05" B.),
which automatically satisfies 79 C {¢ = 1} C {p > M.,}. If B, N B(z,R) # (), then
Ymax = Yo is enough. Suppose B,NB(z, R) = (. Since ¢ is p-harmonic on 05' B, \ B(z, R),
an application of the maximum principle yields a path vy, € Path(9;B,,0B(z, R); 67" B.)
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satisfying 71 C {¢ > M.}. Let us denote the endpoint of v, in dB(z, R) by x;. By
choosing g € 9;B(z, R) N §;' B, so that {zg, 71} € E, we get the desired path Y., by
concatenating 7o, {xo, 21} and ;.

Using these paths i and Ymax, we can cary out the same argument as in the proof
of Theorem 5.2. Indeed, since ¢ is a non-negative p-superharmonic function on D, the
log-Caccioppoli inequality (Corollary 5.5) yields

ESB*(log p) < Cpcapf (B., (05" B.)°).
Similar to Theorem 5.2, we can obtain
o < Cungn

where Cy is the constant in Theorem 5.2. The desired Holder regularity (5.16) follows
from the above Harnack inequality using the standard Moser’s oscillation lemma argument
similar to Corollary 5.3.

Case 3: 65" B. N D¢ # (). Let us consider 1— ¢ instead of ¢. Note that osc4 ¢ = osca(1—

¢) for any subset A C V' and that 1 — ¢ is a non-negative p-superharmonic function on
B(z, R). For x € 5&13* and y € 5&13* N D¢, we have

dg(z,7) > dg(z,y) — da(y,z) > K'R — 4e65'R = (K — ¢ — 655'¢)R > R.

Here we used ¢ < (K — 1)/(1 + 665") to ensure K — ¢ — 505" > 1. In particular,
B(z, R)Ndg' B, = 0. Also, we observe from the definition of D that 65" B,Nd;B(z, KR) =
0 and thus 05'B. C B(z, KR). Indeed, if there exists z € 05'B. N 9;B(z, KR), then
dg(z,2') < 2e64'R, i.e. 2/ € B(x,2¢0;' R). This is a contradiction since x € 9;B(z, K R)
and 2 € D C B(z,KR) \ B(z,2¢6;'R).

Similar to Case 2, we define

ms :=min(l —¢) and M, = rrjlgax(l — ).

*

Then, by the minimum principle (Lemma 2.8), we can seek a path oy, in G such that
Omin € Path(@iB*,aiéﬁlB*ﬁﬁlB*) and  opin € {1 — o < m,}.

Since 65" B, N D¢ # () and we know that 1 — ¢ takes its maximum on D¢, by using
maximum principle if necessary, we can find a path o, such that

Omax € Path(aiB*,&»éﬁlB*;éﬁlB*) and  opax C {1 — ¢ > M,}.

Indeed, we can construct o, as follows. If B, C D, then, by an application of the
maximum principle (Lemma 2.8) | we can get a path o such that

o1 € Path(@iB*,(()iD 051313*,51313*) and o1 C{l—¢ > M.}

Since the endpoint of oy, say x;, is in 8;D N 05" B,, there exist w € 9;B(z, KR) and
1 € B(w,?séﬁlR) satisfying {z1,y1} € E. By concatenating oy, {x1,y:} and a path
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joining y; and w in B (w, 2edy 1R) in a suitable way, we get a path containing the required
path oyax. If B, N D¢ # (), then a path joining xo € 9;B, N D¢ and w € 9;B(z, KR) in
B(w, 25(5&1}%), where w satisfies xo € B(w, 255ﬁ1R), satisfies the required properties of
Omax SINCE 5ﬁ1B* C B(z,KR).

The same argument as Case 2 using these paths o, and oy, gives Harnack inequality
for 1 — ¢, which in turn yields the desired Holder regularity. 0

6 Sobolev space via a sequence of discrete energies

We consider a sequence of finite graphs that can be regarded as approximations of a metric
space on a sequence of increasingly finer scales. The Sobolev space on a metric space is
then defined using this sequence of discrete energies.

6.1 Approximating a metric space by a sequence of graphs

We introduce our assumptions on a sequence of graphs.

Definition 6.1. Let {G,, = (V,, E,,) }nen be a sequence of finite, connected simple non-
directed graphs. We say that a family of surjective maps {m,x: V, = Vi | 1 < k <
n, (n, k) € N?} is projective if 7, is surjective for all k < n and

Tk © Tny = Tpk, forall k <l <n with k,[,n € N.

Given {G,, }nen and a projective family of maps {7, : k¥ < n}, we say that a sequence
of probability measures {m,, € P(V,)}nen, where P(V},) denotes the set of probability
measure on V,,, is consistent if

(Tnk)smn = my  for all k < n.

Given a sequence of finite connected graphs {G,, },en, a projective family of maps {m, x |
k < n}, and a consistent family of probability measures {m,, },cn, we say that a sequence
of functions {f,: Vi, = R},en is conditional with respect to {m, }nen if

= — " n for all k£ < n,v € Vj. 6.1

fr(v) (o) ; fo(w)m,(w) for a n,v € Vg (6.1)
wewnyk({v})

Equivalently, f; is the conditional expectation fi(v) = E,,, [fo(W) | Tk (W) = v], where

m,, 1s the law of W.

In the above definition, the graphs G, can be regarded as approximating a metric
space (K,d) at a sequence of increasingly finer scales, while the measures m, can be
considered to approximate a measure m on K. A conditional sequence of functions can
be considered to approximate a function f on the metric space (K, d).

The sequence of measures {m, }nen in the above definition is often assumed to satisfy
the condition given by the following definition.
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Definition 6.2. Let {m,, € P(V},)}nen be a sequence of probability measures on a family
of finite sets V,,. We say that such a sequence {m,, },en is roughly uniform if there exists
Cy > 1 such that

Cytmy(v) <

s < Cymyp(v), forallm e NjovelV,. (6.2)

We introduce a geometric condition on the sequence of graphs which relates different
graphs in the sequence. Roughly speaking, the following condition states that diam(G,,)
grows like R? and W;ik’ (w) are ‘roundish’ in an uniform fashion; that is ﬂ;ihk(w) behave
like balls in the graph G, for all w € V.

Definition 6.3. Let R, € (1,00), let {G,, = (Vp,, E) }nen be a sequence of finite, simple
non-directed connected graphs, and let {m,x: V,, = Vi | 1 < k < n} be a family of pro-
jective maps. We say that the sequence of graphs {G,, },en equipped with the projective
maps {m,x: Vi, = Vi | E < n} is R.-scaled if there exist constants A, As € (1,00) so that
the following holds: for any n,k € N, for all w € Vj, there exists ¢,(w) € V. such that

By, (ea(w), AT'RY) C 7l i (w) € Ba,p (en(w), AL RY) (6.3)
and
dnyr(cn(w), cp(w')) < AgRY whenever w,w' € Vj, satisfy dy(w,w’) =1, (6.4)
where d,, denotes the graph distance of G,,.

We next discuss discrete approximations of a metric space. Any compact metric
space can be approximated by a sequence of graphs on increasing finer scales. This idea is
present in various (closely related) notions such as hyperbolic filling [BBS22, BP03, BS1S,
BS], K-approximation [BK02], quasi-visual approximation [BM22], generalized dyadic
cubes [HK12, Sas23], and partitions of a metric space indexed by tree [Kig20]. The
following definition describes yet another way in which a sequence of graphs ‘approximate’
a compact metric space.

Definition 6.4 (compatibility). Consider a compact metric space (K,d) and let R, €
(1,00),0 € (0,1]. Let {G,, = (V,,, E,.) }nen be a sequence of finite, connected simple non-
directed graphs and let {m,;: V;, = Vi | 1 <k < n} be a family of projective maps. Let
dy: Vo x Vi, = Zsp,n € N denote the corresponding graph metrics. We say that {G,}
along with {m, : Vi, = Vi | 1 < k < n} is R.-compatible with (K, d) if there exists a
sequence of maps {p,: V,, = K},en, a collection of Borel set {l?v |veV,nce N} and
C € [1,00) such that the following hold:

(i) (comparision of metrics)

dn(,y)

O—l
R’

for all z,y € V,, and for all n € N.
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(ii) (partition) For all n € N, the collection of sets { kv}vev form a partition of K; that
is Uyev,, K, =K and K, N K,, = 0 for all u,w € V, with u # w.

(ili) (compatibility with projections) For all 1 < k < n and for all v € V, we have
K,= |J K (6.6)

weﬁ;jc(v)

(iv) (roundness of partition) For all n € N,v € V,,, we have
Ba(pa(v), CT'R.™) C K, C By(pa(v), CRI™). (6.7)

Note that (6.5) implies that the points {p,(v) | v € V,,} are C7' R "-separated and
that diam(V,,,d,) < RZ.
We introduce a uniform notion of AR(dy) for a sequence of graphs.
Definition 6.5. We shall say that the sequence {G, },en satisfies di-Ahlfors regularity
condition uniformly, U-AR(d;) for short, if there exists Cagr > 1 such that for any n € N,
x € Vy, R € [1,diam(G,)],
CinR" < #By, (v, R) < CarR™. (U-AR(d))

The following elementary lemma explains the relationship between a metric space and
a sequence of graphs approximating it in the sense of Definition 6.4 and the notions in
Definition 6.1 and 6.2.

Lemma 6.6. Let (K,d) be a compact metric space and let m be a dg-Ahlfors regular
probability measure on (K, d). Let {G,, = (V,,, E,,) }nen be a sequence of finite, connected
simple non-directed graphs and let {m,x : V, = Vi | 1 < k < n} be a projective family of
maps. Suppose that {G,)} along with {m,; | 1 < k < n} is R.-compatible with (K,d).
Let {K@ € B(K) | veV,,ne N} be a collection of Borel sets as given in Definition 6.4.
Let
my(v) = m(K,)
foralln € Nyv € V,,. Then
(i) The sequence of graphs {G,} satisfies U-AR(ds).

(ii) The family of measures {m,} is roughly uniform, and is consistent with respect to
{mur | 1 <k <n}.
(iii) For any f € L*(K,m), the family of functions M, f: V,, — R defined by
1
(M, f)(v) = —= fdm, forallneNwvelV,, (6.8)
m(K,) /&,

is conditional with respect to {m,} and {m, |1 <k < n}.

The operator M, converts a function on K to a function on V,,. We would sometimes
like to construct functions on K using functions on V,, by defining

Tnf() = flg, (), forall f:V, >R neN. (6.9)

’UGVn
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6.2 Hypotheses on a sequence of graphs

A sequence of graphs approximating a metric space often satisfies some analytic properties
in an uniform manner. To this end, we introduce uniform versions of analytic conditions

such as cap, <(), BCL,((), and PL,(53).

Definition 6.7. Let {G,, = (V,,, E,) }nen be a sequence of finite, connected simple non-
directed graphs and let d,, be the graph metric of G,,. Let p € (1,00), df > 0, 8 > 0 and
¢ eR.

(1) We shall say that the sequence {G, },en satisfies p-capacity upper bound with order
B uniformly, U-cap, <(/3) for short, if there exist constants Ceap > 0 and Ag,p > 1
such that for any n € N, z € V,, and R € [1,diam(G,,)/A),

#Bdn (ZL’, R) )

cap$™ (Ba, (7, R), B, (2,2R)) < Ceap i

(U-capp,<(5))

(2) We shall say that the sequence {G,, },en satisfies ball combinatorial p-Loewner prop-
erty with order ¢ uniformly, U-BCL,(() for short, if there exists A > 1 such that
the following hold: for any x > 0 there exist cpcr(k) > 0 and Lpcr(k) > 0 such
that

Mod" ({6 € Pathg, (B1, B2) | diam(0, d,,) < Licw(k)R}) > epew(k) R
(U-BCL,(())
whenever n € N, R € [1,diam(G,,)/A) and B; (i = 1,2) are balls in G,, with radii
R satisfying distg, (By, B2) < kR. We also say that {Gy, }nen satisfies U-BCLI™™(()
if {G,, }nen satisfies U-BCL,(¢) with ¢ < 1.

(3) We shall say that the sequence of graphs {G, },en satisfies p-Poincaré inequality
with order § uniformly, U-PL,(3) for short, if there exist constants Cpr, Apy > 0
such that foranyn e Njx € V,, R>1and f:V, — R,

> MW = foenl” < CoRPER, (o am(F): (U-PL(8))

yEBdn (CC7R)

Using the above definition, we can rephrase Theorem 4.2 for a sequence of graphs as
follows.

Proposition 6.8. Let {G,, = (V,,, E,) }nen be a sequence of finite connected graphs. Let
p € (1,00),d¢ > 1 and > 0. Suppose that {G,} satisfies U-AR(d¢) and U-BCL};’W(df —
B). Then {G,}nen satisfies U-PL,(3) (the associated constants Cpr > 0 and Ap; > 1
depend only on the constants involved in the assumptions).

Definition 6.9. Let {G,, = (Vj,, E,,) }nen be a sequence of finite, connected simple non-
directed graphs and let d,, be the graph metric of G,,.

(1) Define L, = L.({G,, }nen) = sup, ey deg(G,,).
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(2) We shall say that {G,, },en is uniformly metric doubling, U-MD for short, if there
exists Np > 2 such that given n € N, x € V,,, R > 1 there exist yy,...,yn € Vj,
satisfying Ba, (z, R) € UMY Ba, (vi, R/2).

Then the following property is an easy consequence of Remark 2.15.

Lemma 6.10. Let {G,,},en be a sequence of graphs satisfying U-AR(dy) for some dg > 0.
Then L, < 0o and {G,, }nen is U-MD. In addition, the doubling constant Np can be chosen
so that Np depends only on CaR.

In order to state a version of Theorem 5.9 for a sequence of graphs, we introduce the
following definition.

Definition 6.11. Let {G,, = (V,,, E,,) }nen be a sequence of finite, connected graphs.
Let p € (1,0),8 > 0,9 € (0,1]. We say that the sequence of graphs {G,} satisfies
U-CF, (¢, B) if there exists C, € (0,00) so that the following holds: for all n € N,v €
Vo, R > 1 there exists ¢, g: V,, — [0, 1], so that

orlp, wm=1 supplevr] C Ba,(v,2R) (6.10)
#Bg, (v, R
£ (pun) < 0, F LT (6.11)
do(z,9)\"
kv r(7) — 0ur(y) < C. < R’ ) for all z,y € V,,. (6.12)

The next result provides a family of Holder continuous cut-off functions whose energies
are controlled in a uniform manner. This is an immediate consequence of Theorem 5.9.

Proposition 6.12. Let {G,, = (V,,, E,,) }nen be a sequence of finite connected graphs. Let
p € (1,00),ds > 1 and B > 0. Suppose that {G,} satisfies U-AR(d), U-BCL}DOW(df - 0B)
and U-cap, <(B). Then {G,} satisfies U-CF,(, 3) (the associated constants Cy,v > 0
depend only on the constants involved in the assumptions).

We would like to define p-energy as limit of re-scaled discrete energies. The following
result suggests the re-scaling factor. The main result of this section is the weak mono-
tonicity of energy.

Theorem 6.13. Let {G,, = (V,,, E,) }nen be a sequence of finite, connected simple non-
directed graphs equipped with the projective maps {m,x: Vo, = Visk < n} and let {m,, €
P(V,) bnen be a consistent sequence of probability measures. Suppose that {G,} along
with {m, .k < n} is R.-scaled for some R, € (1,00) and the sequence {m,} is roughly
uniform. Let p € (1,00),ds > 1,5 > 0 and we further suppose that the sequence {Gy, }nen
satisfies U-AR(dy) and U-PL,(B). There exists Cwm € (1,00) depending only on the
constants associated to the assumptions such that for any conditional sequence of functions
{fn: Vi = R}yen (with respect to my, m, ), we have

ESH(fr) < OwmRNIER 1 (f))  for all k,1 € N. (6.13)
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Proof. Let f,: V, — R,n € N denote an arbitrary conditional sequence of functions as
above. Let Ay, Ay € (1,00) be the constants as given in Definition 6.3, C,, € (1, 00) be the
constant in Definition 6.2. Set Az = 2A; + Ay. For any v, w € Vj, such that dy(v,w) =1,
we have

Tetin(0) Ul (w) C Ba,, (ai(v), A3RL) - (by (6.3) and (6.4)). (6.14)

There is C; € [1,00) depending only on the constants involved in U-AR(d;), roughly
uniform, and R,-scaled properties such that

CIYR;™ < my,(v) < OLR;™  for all n € N,v € V. (6.15)

For any v, w € V) such that di(v,w) = 1 and for all & € R, we have

fi(v) = fre(w) < |fe(v) — of + [fi(w) — o

< Z fk+l(v1)w —al + Z fk+l(w1)mk+l(wl) .

— my(v) my(w)
v1 Gﬂkle’k(U)

S ety )l Y PO ) ol

wiem Ly (w)

<

- mpg(v my(w
vlew;jl’k(v) ( ) wlen;jl’k(w) ( )

(6.15)

< CIRZ | > fen(w) —al+ D fen(w) — o

Uleﬂﬁz,k(”) w167r,;_il’k(w)
(6.14)
< 207R;" Z [fri1(v1) — o

v1€Bqg, , (ci(v),A3RL)

1 > frri(v1) = al, (6.16)

<
~ #B A3R!
# d41 (Cl(U)> 3 *) v1€Bay,, (c1(v), A3 RL)

where in the last line, we used the U-AR(d¢). Let us choose o = (ka)BdkH (c1(0), A5 RL) 1D
(6.16) and use Poincaré inequality U-PI,(5) to obtain

1 p
() = fiw)” l S ) = Ferdng, aoam
#Ba, ., (a(v), A3RL) v1E€Bg, ,, (a(v),A3RL) o
< RE gon (fi) (by U-PL(5))
~ #Ba,,, (ci(v), AsRL) p.Bay ., (c1(v), Apr Az RL) \J R+ y 2
S RV-e (fis1) (6.17)

P,Ba,,,,(c1(v),Ap1AsRL)

for any v, w € Vj such that dj(v,w) = 1. Using Lemma 6.10, we obtain

(6.17) B -
gfk(fk) = Z |fk(v) - fk(w)|p 5 Ri(ﬁ d) Z gng;;l(Cz(v),APIA:sRi)(ka)' (6'18)

{v,w}EEk veEVE

57



By (6.3), the points {¢;(v) | v € Vi } are 24, ' Rl-separated for all k,1 € N. Since {G,, },en
are U-MD by Lemma 6.10, there exists Co > 1 (depending only on Apy, A1, A and the
constants involved in U-AR(dy)) such that

Z ]lekH(Cl(U),APIABRi) < OQ, for all k,l € N. (619)
veVy
The desired estimate (6.13) follows immediately from (6.18) and (6.19). O]

Remark 6.14. In the work [Kig23], the notion of conductive homogeneity plays an impor-
tant role to develop the theory of (1, p)-Sobolev spaces via discretizations. The estimate
(6.17) can be regarded as a variant of this condition.

6.3 Sobolev space and cutoff functions

We now explain our strategy to construct p-energy as a scaling limit of discrete p-energies
in a general setting. The following assumption guarantees that our Sobolev space satisfies
good properties.

Assumption 6.15. Let p € (1,00), d; € [1,00), 8 > 0 and ¥ € (0,1]. Let (K, d)
be a connected compact metric space with #K > 2 and let m be a dg-Ahlfors regular
probability measure on (K, d). Let {G,, = (V,,, E,,) }nen be a sequence of finite, connected
simple non-directed graphs and let {m,; | 1 <k < n} denote a projective family of maps.
There exists R, € (1, 00) such that {G,, } along with {, s} is R.-scaled and R.-compatible
with (K, d). Furthermore, {G,} satisfies U-PL,(/5) and U-CF (0, ).

The weak monotonicity of discrete energies (Theorem 6.13) suggests the following
definition of Sobolev space.

Definition 6.16. Under the setting of Assumption 6.15, we define the normalized energy
of f e LP(K,m) for any n € Nand A CV, as

EVN(f) = RIC=I0ET (M, f), (6.20)

where M, f is as given in (6.8). For simplicity, §,§”)(f) = g’}g@ﬂ(f) Define our (1, p)-
Sobolev space F,(K,d, m) by

Fo(K,d,m) = {f € LP(K,m)

supgzgn)(f) < oo}. (6.21)

neN
. sy ey 7 .
We also set ‘f’]-'p(K,d,m) = (SUPneN Ep (f)> and Hfo,,(K,d,m) = HfHLP(m) + |f|]—'p(K,d,m)'

For simplicity, we use F, instead of F, (K, d, m) in these notations when no confusion can
occur.
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Hereafter in this section, we always assume that Assumption 6.15 holds. Thanks to
Theorem 6.13 and Lemma 6.6, we have

liminfg’é")(f) = limsupgzg")(f) = supg’}g”)(f), for all f € LP(K,m). (6.22)

n—o0 n—o00 neN

In particular,

n—oo

Fp = {f € LP(K,m)

hminszS”)(f) < oo} = {f € LP(K,m)

limsupg'lgn)(f) < oo}

n—o0

Some properties of F,, are already mentioned in [Kig23, Section 3.2] in the framework
of weighted partition theory developed in [Kig20]. We summarize the basic properties of
the Sobolev space (Fy, || - || ,) in the following theorem.

Theorem 6.17. Let (K, d) be a connected compact metric space with a dg-Ahlfors reqular
probability measure m and let {G,, = (V,,, Ey) }nen be a sequence of finite connected graphs
satisfying Assumption 6.15. Let (Fp, || - || ,) denote the normed linear space in Definition
6.16. Then (Fp, |- || £,) satisfies the following properties.

(1) (Fp, |l -1l%,) is a Banach space.

(il) (Fp. I+ ll%,) admits an equivalent uniformly convex norm. In particular, (Fp, |- || £)
15 a reflexive Banach space.

(iii) The Banach space (Fy, |- || £,) is separable.
(iv) F, NC(K) is dense in C(K) with respect to the uniform norm.

(v) FpNC(K) is dense in the Banach space (Fy, ||| £,)-

The combination of properties (iv) and (v) is referred to as regularity in the theory of
Dirichlet forms [FOT, CF]. The proof of Theorem 6.17 will be completed over this section
and the next.

Proof of Theorem 6.17(i). We will give a complete proof because known detailed proofs
for the required statement (see [Kig23, Lemmas 3.15 and 3.16] or [Shi+, Theorem 5.2))
are limited to the case where F,, is continuously embedded into C(K') and [Kig23, Lemma
3.24] is just a sketch. Let {f.},>1 be a Cauchy sequence in (Fp, |-z ). Since the
convergence in F, implies the convergence in LP, the sequence { f,, }n>1 converges in L? to
some f € LP(K,m). By the dominated convergence theorem, for any £ € N and w € Vj,
we have My f,(w) — My f(w) as n — oo. Also, since {f,, },>1 is a Cauchy sequence in F,,
for any € > 0 there exists N(g) € N such that

sup supEF(fo — fi) < e
nAl>N(e) keN
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Letting [ — oo in the estimate gz(,k)(Mkfn — My fi) < e and taking the supremum over
k € N and n > N(eg), we obtain

sup sup é;(,k)(fn —f)<e. (6.23)

n>N(e) keN
Therefore, for any k € N,

ED(F) < ED(fwo = Y7 + &P ()7 < 7+ sup £ 5,

This implies |f] F, S SUD> |fnl £, < 00 and thus f € F,. The required convergence f,, — f
in F, is also deduced from the LP-convergence of f,, and (6.23). O

Next, we will prove reflexivity and separability of the Banach space F,. The reflexivity
of such a function space is proved by the second-named author in [Shi+] by showing the
existence a comparable uniform convexr norm. To construct a uniformly convex norm on
Fp which is equivalent to || - || = , we need the notion of I'-convergence; see [Dal] for details.
We first recall the definition.

Definition 6.18 ([Dal, Definition 4.1 and Proposition 8.1]). Let X be a first-countable
topological space and let F': X — R U {£oo}. A sequence of functionals {F,: X —
R U {£o0}}nen I'-converges to F if the following hold for any = € X:

e (liminf inequality) If z,, — x in X, then F(x) < liminf,, . F,(z,).
e (limsup inequality) There exists a sequence {x, },en in X such that

z, > xin X and limsup F,(z,) < F(x). (6.24)

n—oo
A sequence {z, }nen satisfying (6.24) is called a recovery sequence of {Fy,}nen at .

The following compactness result is fundamental and useful.

Proposition 6.19 ([Dal, Theorem 8.5]). Suppose that X is a topological space with a
countable base. Then any sequence of functionals {F,,: X — R U {£o0}}nen has a I'-
convergent subsequence.

Now we can establish reflexivity.

Proof of Theorem 6.17(ii). The proof is essentially the same as in [Shi+, Theorem 5.9],
so we briefly outline the proof. By Proposition 6.19, we have a I'-cluster point E, of

the sequence of functionals {E}S”)}n oy o0 LP(K,m). Tt is easy to show that E,(-)'/7 is
a semi-norm on F,. The liminf inequality implies E,(-)Y/? < || 7,- A combination of
limsup inequality and weak monotonicity (Theorem 6.13) implies the converse estimate

E,()YP > || 5, Hence,
AN = (£, +Ep(£)" for f e LP(K,m)
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defines a norm on F,, which is equivalent to [| - || - . Noting that || - [|| is a I'-cluster point

~ 1/p
of |-, = <|| |1F, (. )) , which can be regarded as the LP-norm on K Ll E,,, we
easily obtain p-Clarkson’s inequality of || - ||, i.e., for all f,g € LP(K,m),

- _ 1/(p—1) :
{Mf+mwm’”+Mf—mw@]Js2WﬂW+mmWﬁ T IeE2 o

1 —1 —1 .
ILf+gll” -+ 11F = all” < 20N AP + [lgll” )" if p>2.

Since p-Clarkson’s inequality implies the uniform convexity [Cla36, p. 403], the Milman—
Pettis theorem (see [HKST, Theorem 2.49] for example) deduces the reflexivity of F,. O

In [Shi+, Theorem 5.10], the separability of F, has shown by using its reflexivity in
the situation that F, is continuously embedded into C(K) (cf. [Kig23, Theorem 3.22]
or [Shi+, Theorem 5.1]). The proof of [Shi+, Theorem 5.10] essentially relies on this
embedding. Here, we will adopt another simple way to show the separability by using an
idea in [AHM?23].

Proof of Theorem 6.17(iii). The Banach space F, is reflexive by Theorem 6.17(ii), and
LP(K,m) is separable since K is separable. Clearly, the identity mapping i: F, —
LP(K,m) is a bounded linear injective map, so F, is separable by [AHM23, Proposi-
tion 4.1]. O

We will next show the density of F, N C(K) in C(K) with respect to the uniform
norm. To show such the density, a standard idea is to use Stone-Weierstrass theorem by
showing that F, NC(K) is an algebra that separates points of K. We recall Arzeld—Ascoli
type theorem for (possibly) discontinuous functions in order to construct a function in
F,NC(K) that separates two distinct points (a cutoff function). The proof that F,NC(K)
is an algebra will be done in the next subsection.

Lemma 6.20. Let (X,d) be a totally bounded metric space. Let u,: X — R for any
n € N. Assume that there exist a non-decreasing function n: [0,00) — [0,00) and a
sequence {0p}tnen of non-negative numbers such that limyon(t) = 0, lim, o, = 0,
SuanN,xGX |un(x)| < oo and

fun () — un(y)| < n(d(x,y)) + 0, forallz,y € X andn € N. (6.26)

Then there ezist a subsequence {uy, tren and u € C(X) with

[u(z) = u(y)l < nld(z,y)) for allz,y € X,

such that sup ¢ x [un, () — u(z)] = 0 as k — oo.
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Proof. This is a simplified version of [Kig23, Lemma D.1]. Indeed, the case (Y,dy) =
(R,]-]) in [Kig23, Lemma D.1] is enough to obtain the required statement. O

The next proposition constructs cutoff functions with controlled energy in F, N C(K).
We use the following useful notation. For A C K, we define

Vo(A) = {w eV, | K,nA#0}.

Proposition 6.21. There exists C € (1,00) depending only on the constants associated
with Assumption 6.15 such that for any r > 0,z € K such that By(x,2r) # K, we have
a function 1, , € F, NC(K) such that ¢$7T‘Bd(z o =1 supp|¥s,r| € Ba(z,2r) and

sup tig")(%,r) < Ordf_ﬁ-
neN

Proof. Let {K, | v € V,,n € N},C € (1,00) be as given in Definition 6.4. By (6.5) and
(6.7), we have

K, C By(z,r +2CR." +CRR,") for any w € UUE‘,"(Bd(W)) By, (v, R). (6.27)

We choose R,, > 0 so that CR,R;™ = r/2 and a maximal R, /2-separated subset N of
Vi(Bg(x,r)) (with respect to the metric dy,), so that | J, .y Ba, (0, Rn/2) D Vi (Ba(x,1)).
Since {p,(w) | w € N} is C7Y(R,,/2) R, "-separated and satisfies {p,(w)}wen C Ba(z,r +
CR.;™). Therefore by the ds-Ahlfors regularity of m, we obtain

—n\ 9t —-n —n\ df

for all n large enough so that R, > 1.

For n large enough so that 2CR." < r/2, we have R, > 2 and K,, C By(,2r)
for any w € UveVn(Bd(x,r)) By, (v, R,,) (by (6.27)). Therefore by applying U-CF,(v, 3),
1

for each w € N, there exists oy g,/2: Vo — [0,1] such that o, g, /2 :
SUPP|Pu, k. /2] € Ba, (W, Rn),

|Bdn (w,Rn /2)

ES (Pwra2) S REP,

and @, g, /2 satisfies the Holder regularity condition (6.12). Hence by (6.27) and (6.28),
the function ¢,,: V,, — R defined by

Pn = glea]i’[( Pw,R/2
satisfies Jngpn‘Bd(gc n=1 supp,,[Jnpn] C Ba(x,2r),
pn=1on Vo(Ba(z,r)), & (pn) S Ry~ S r PRI, (6.29)

and

dn(vla U2> v

lon (V1) — on(v2)] < ( 7 > , forall v1,vy €V, (6.30)
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for all n € N so that 2CR,™ < r/2. To estimate the energy, we used the elementary
inequality 7" (maxwen Puw,r2) < Dopen &5 (Pw,r/2) (see Lemma 2.6(b)). By Lemma
6.20, (6.30), (6.5), and (6.7), there exists a subsequence {.J,, ¢n, tr of {Jn¢n}n which
converges uniformly to ¢, , € C(K). Then it is clear that ¢m| Baler) = 1 and supp|),. ] C

By(z,2r). Using weak monotonicity (Theorem 6.13) and dominated convergence theorem,
we obtain

& (Way) = RICTOEN (Mytpy,p) = lim RICTOED (MyTy,ion,)
(6.13) (6.29)
< liminf Rfk(ﬁ_df)gf"’“ (¢

Ng—>00

w) S i

Therefore 9, € F, NC(K) and it satisfies the desired bound on energy. O

6.4 Scaling limit of discrete energies and regularity

In the rest of this section, we suppose that Assumption 6.15 holds as in the previous
subsection. In this setting, we will construct an ‘improved’ p-energy type functionals on
(K,d,m), which verifies that F, N C(K) is an algebra. In the following main theorem
of this subsection, such a good (D—energy is constructed as a sub-sequential I'-limit of the

re-scaled discrete p-energies {Epn)}n N ¢

Theorem 6.22. There exist a constant C' > 1 (depending only on the constants associated
with Assumption 6.15) and &) : F, — [0, 00) such that the following hold:

(i) The functional EL(-)Y? is a semi-norm on F, and
O fly, < EXPYP < |fly, forall f € Fy (631)

Moreover, 55 satisfies p-Clarkson’s inequality: for any f,g € F,,

EV(f + g)V 0D 1 EL(f — o)D) < 2(EX(F) + EN(g)) /™Y ifp<2,
EV(f+9) + EN(f — g) < (EN()@D) 4 EF(g) /1)~ ifp>2,
(6.32)

In particular, EX(-)Y/? is uniformly convex.

(i) For any f € F, and 1-Lipschitz function ¢ € C(R), ¢ o f € F, and
E (o f) <ENS).
(iii) If f,g € F, N L>®(K,m), then f-g € F, and
& (f-9) <27 (gl E5CF) + 11 E5(9)).
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(iv) & is lower semi-continuous on LP(K,m). (Here we regard £, as a [0, 00]-valued
functional by defining E) (f) == oo for f € LP(K,m)\ F,.)

(v) Let T: (K,B(K),m) — (K,B(K),m) be a measure preserving transformation, i.e.,
T is Borel measurable and m(T—(A)) = m(A) for any Borel set A of K. Then
foT eF, forany f € Fp and E (f o T) =&} (f).

Proof. Let £, = E, be a I-cluster point of {5,§”>}n€N as the proof of Theorem 6.17(ii).

The comparability (6.31) is already shown there. If we consider g}gn)( )Y/P instead of
I, in the argument showing (6.25), then we obtain p-Clarkson’s inequality of &}

(ii) The proof is very similar to [Kig23, Theorem 3.21], but we will give the details
because the embedding F, C C(K) is used in [Kig23]. We start by an observation on
LP-approximation. Let f € LP(K,m) and let f, = J, (Mnf) for n € N, where J,,: R"» —
L°(K,m) be the operator defined in (6.9). We will prove ||f — full;» — 0 as n — oo.
Note that [M, f(2)]” < fz_ IfI" dm for all z € V,, by Jensen’s inequality. Then we have

/K \fol” dm = ;ﬁz M, f(2)]F m(dx) < /K IfI” dm < oo.

Let A : LP(K,m) — LP(K,m) be the Hardy-Littlwood mazximal operator, i.e., for f €
LP(K,m) and z € K,

() = sup]@  Jyymiay).

r>0

Since m is Ahlfors regular (by Assumption 6.15), .# is LP-bounded (see [HKST, Theorem
3.5.6] for example), i.e., there exists a constant C' > 0 such that

[ A fllpe < Clfllge  forall feLP(K,m).
For x € K, let z € V,, be the unique element such that x € IN(z Then, by (6.7),

m(Ba(z, %C’R;"))

AN f|(x),
() f(x)

()l = (M f(2)] <

where C' > 1 is the constant in (6.7). By VD of m and (6.7),
B 2CR. ™
| MBir2CRT)

nEN,z€Vy,z€ K m(K,)

< 0. (6.33)

Thus each f,, is dominated by C".Z|f| € LP(K,m) for some universal constant C’ > 0.

We next consider about m-a.e. convergence of {f,}. Since m is Ahlfors regular, the
Lebesgue differentiation theorem on (K, d, m) holds (see [HKST, Section 3.4] for example),
i.e., the set & (Lebesgue points of f) defined by

rl0

gfﬁ—{l’EK

lim f @)~ F@midy) = o}
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is a Borel set and m(K \ Zf) = 0. Let x € £} and let z € V], be the unique element such
that x € K,. Then we see that

1) = el < . @) = 5@ mfay) < “EAEZER)

r)— m(dy).
’ m<Kz) ]id(x,QC’R*n) |f( ) f(y)| ( y)

By (6.33), we get lim,_, |f(2) — fu(z) = 0 for all x € .%;. The dominated convergence
theorem deduces || f — f,| ., = 0.

We now finish the proof of the property (ii). It is enough to consider the case that
¢ € C(R) is a 1-Lipschitz function. Let {gx}r be a recovery sequence of f with respect to
&), i.e. gp converges in LP to f and

lim sup £ (gx) < & (f).

k—o00

We note that

||900f_90OJnankngLp
S HSO o f - 90 o JnankaL;D + HSO o Jnankf - 90 o JnankngLP
<f = Farllpe + 1 Mu (f = 96) Lo < f = foillp = 1f = grllr = 0 as & — oo,

and that

My, (0 T, M g0) (w) = f (T My gu(1)) p(d)

Ky

= ]{ 0 (M, g1 (w)) dp = o(My, gi(w))  for all w € V.

Therefore, we have

& (o f) <liminf £ (p 0 Jn, Mo, gr)

= liminf Rfk(ﬁ_df)gf"k (p o M,, gx)

k—o0

< lim inf Rf’“(ﬁ_df)ffnk(Mnkgk) < limsup g}gnk)(gk) <& (f)
k—o0

k—o00

(iii) This is immediate from Lemma 2.6(c). Indeed, let {fx}x, {gx}r be recovery
sequences at f,g € F, N L>®(K,m). Then we see that

< 2 (lglly m sup EP (M, £) + |17 limsup £ (M, )} (by Lenuma 2.6(c)
k—o0 k—o0
<27 (Ilgl E5CH) + 11 E5(9)).
(iv) This follows from an elementary fact on the I'-convergence [Dal, Proposition 6.8].
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(v) Let f € F, and let {f;}x be a recovery sequence at f. Since M,g = M,(goT)
for any n € N and g € LP(K, m), we have f oT € F,. Note that ||foT — froT|,, =
If = fell» — 0. Then

€, (f o T) <liminf &™) (M, (fi o T)) = lim inf £ (My, fi) < & (f).

The converse &) (f) < &, (foT) can be shown by considering a recovery sequence at foT.
We complete the proof. O

Combining Proposition 6.21 and Theorem 6.22(iii), we can show the density of F, N
C(K) in C(K). The density of F, NC(K) in F, requires a long preparation and will be
shown in Section 7.

Proof of Theorem 6.17(iv). By Proposition 6.21, F, N C(K) separates points of K. We
note that, by Theorem 6.22(iii), F, N C(K) is a sub-algebra of C(K). So by Stone-
Weierstrass theorem, F, N C(K) is dense in C(K) with respect to the uniform norm. [

6.5 Poincaré type inequalities and partition of unity

In this subsection, we prove Poincaré type inequality and provide a partition of unity with
low energies.

Since we have no energy measures, which play the role of “[V f|” dm”, at this stage,
we need to describe “p-energy on a given subset of K7 in terms of re-scaled discrete
p-energies. The following lemma allows us to get the desired Poincaré inequality from

U-PL(3).
Lemma 6.23. There ezists a constant C' > 0 (depending only on p and the doubling
constant of m) such that the following holds: for any x € K, r > 0 and f € LP(K,m),

o 1
fB . If (z) — de(x’T)|pm(dw) < C'lim inf — = Z ‘Mnf(w) - ff(é’,?

n— 00 m(Kg(y 7") weVn(By(z,r))

‘m(K,),

where we set f(é’";? = Uwev, Bu(ar)) K, (n € N) for ease of notation.

Proof. Let v € K, r > 0 and f € LP(K,m). For each n € N, let f,, .= J,(M,f), where
Jo: R — LO(K,m) is the same as in (6.9). We observe that, for large n € N so that
K C By(x,2r),

p

1 ’ P ~ 1
—= > Mafw) = freo| m(Ku) = —=me Y. [ ’fn ~ Jre| dm
m(Kzg,r)) wEVn(B4(z,r)) o m(Kg(“’)) wEVn (B4(z,r)) Kuw o
Z][ fn_ff(g(c"?}pdm
Bg(z,r) ’

Z ][ ‘fn - (fn)Bd(x,r)|p dm7
By(z,r)
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where we used the volume doubling property of m in the second line, and Lemma A.3
in the last line. Since ||f — f,|/;» — 0 by the same argument as in Theorem 6.22, the
dominated convergence theorem yields

lim }fn - (fn)Bd(x,’r)’p dm = f

"0 J By(x,r) Ba(z,r

) ’f - de(x,r)’p dm;

which proves our assertion. [

Now we prove a (p, p)-Poincaré-like inequality.

Lemma 6.24. There exist constants C' > 0 and A > 1 (depending only on the constants
associated with Assumption 6.15) such that for allx € K, r >0 and f € LP(K,m),

n—o0

/B - | = fou@n|” dm < CrPlim inf 5;,@”%(% iy (F)- (6.34)
d\T,r

Proof. Let v € K, r > 0 and f € F,. Let [?;,(fﬁ) be the same as in the previous lemma
for each n € N. Let C' > 1 be the constant in Definition 6.4 and choose R, > 0 so that
R,R;™ = 2Cr. Note that R, 1 +00 as n — oco0. Since {Kw}we\/ is a partition of K,

there exists a unique ¢, € V,(By(z,r)) such that z € K,,. For all w € V,(By(z,r)), by
(6.5), (6.7), and picking a point y € By(z,r) N K,,

dn(cn,w) < CRIYA(pn(cn), pr(w)) < ORE (d(, pn(cn)) + d(z,y) + d(y, pa(v)))
R

< CRICR™"+r+CR;") =2C" + 7"

Hence we have V,,(Bqy(z,7)) C By, (c,, Ry,) for all large enough n € N. By U-PL,(53), for
all large n € N,

—1 ~
r-(n Mnf(w) - (Mnf> dp, (Wn,Rn pm(Kw)
m<K£7T)> wEVn%(z,r)) ‘ B (st )}

1 ~
S Ty 2 T = O | ()

vEBy,, (¢n,Rn)
SR N M f(w) = (Mo f) By, ()|
vEBy,, (cn,Rn)

§ defR;ndeﬁan (Mnf> S ridf+ﬂRf(ﬁidf)gG” (Mnf)

n%p,Bq,, (cn,Ap1Rn) p,Ba,, (cn,Ap1Rn)

For any v € By, (¢n, Ap1R,), by (6.5) and (6.7),
j%v g Bd(I, QCR;TL + CAPIR,LR*_”) g Bd(l‘, (QCQAPI + 1)7“),

for all large n € N so that 2CR;™ < r. Let Ap; := 2C%Apy + 1. Combining with Lemma
A3, we get

DD Mo () = S

< () 0
m (Kx,r ) weVy (Bg(x,r))

Vo (Ba(a, Apyry) ()
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Letting n — oo and using Lemma 6.23 complete the proof. [

We conclude this section by constructing partition of unity with continuous functions
of controlled energy.

We need the following elementary properties of SPF , which are consequences of (6.32)
and ‘Leibniz rule’ in Theorem 6.22(iii). This is an analogue of [FOT, Theorem 1.4.2(i)]
and [MR, I-Exercise 4.16] in the theory of Dirichlet forms.

Proposition 6.25. (i) For f € F,, we have
& (h) <& (f), Yhed{lfl.f5f}

Furthermore, there exists a constant C,, > 1 depending only on p such that for any

f:g S ]:297
E(fAg)+&(f Vg <Cp(E(f)+ & (9)- (6.35)

(ii) Let ¢, M > 0 and let f,g € F, be non-negative functions such that f + g > ¢ and
f < M. Then there exists a constant D,y depending only on p,c, M such that

r L r r
&l ( - g) < Do (EN(F) +€1(9). (6.36)

Proof. (i) The first assertion immediately follows from the Lipschitz contractivity since
Ih(x) — h(y) < |f(z) — f(y)| for all h € {|f|, f*,f"} and x,y € K. The estimate (6.35)
can be shown by noting that

(f+g9+1f—4d),

N | —

f/\g—%(f+g—|f—9|), fVg=

and using (6.32).
(ii) Define p: R — R by

o(z) = (—ch +c 03)11{x<c} + x_l]l{xZC}, (r € R).

Then we easily see that ¢ € C'(R) and [¢'(z)] < ¢* for all z € R. Since f + g > ¢, we
have o(f + g) = ﬁ. By the Leibniz rule and Lipschitz contractivity,

g,,( f ) = &,(f o +9) <27 (I &0 +9) + I0f + ) E(1))

f+yg
< PTIMPE,(f + g) + 27 PE(f)
<P 4 2P MP)EL(f) + 47T MPE,(g),

which shows (6.36). O

Following a standard argument (for example, [Mur20, Lemma 2.5]), we construct a
good partition of unity using the cutoff functions of Proposition 6.21.
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Lemma 6.26. Let ¢ € (0,1) and let V' be a mazimal e-net of (K,d). Then there exists a
family of functions {1, },cv that satisfies the following properties:

(i) As a function ) ., 1, =1;

(ii) For any z € V, we have ¢, € F, N C(K) with 0 < ¢, < 1, 9,
supp[tp.] € Ba(z,5¢/4);

(ili) If z €V and 2/ € V' \ {z}, then 1,

‘Bd(z,€/4) =1 and

|Bd(z,e/4) =0.

(iv) There exists a constant C' > 1 (depending only on the constants associated with
Assumption 6.15) such that for all z € V,

.l < Ce®tP. (6.37)
Proof. For z € V| we define the ‘Voronoi cell’ R, as

R, = {J; eK ’ d(x,z) = mind(aj,v)},

veV

and write RY* for its e/4-neighborhood, i.e. o= U,er. Ba(z,e/4). As shown in
[Mur20, Lemma 2.5}, we know that |J,.,, R. = K,

Ba(z,€/2) € R. C Ba(2,¢)

and

By(z,/4) N R = for v,w € V with v # w.

For z € V, we fix a maximal £/8net N, of R.. Then, by R. C By(z,¢), there exists a
constant M > 0 (depending only on the doubling constant) such that sup,cy, #N, < M.
By Proposition 6.21, for any z € V and any w € N,, we have a non-negative function
pw € Fp, NC(K) satistying

Pl pywessy =1 supblpw] C Ba(w,e/4), 0<p, <1, & (p) S

Next, define ¢, = maxyen. pp. Since |J Bd(w,5/8) DO R., we have ¢Z|R = 1.
From supp|p,| € Ba(w,e/4) and N, C R, we have supp|p.| C R, Using the triangle

inequality of £ ()P and (6.35), we see that

wWEN,

r p— l r
E(¢.) = (ggvx pw) (Avar M (pw) < - (6.38)
’LUGNZ
Note that ), .\ ¢, > 1 since %‘R = 1. Now we define {4, }.cv by
o8
Y, ==——— =€V
ZwEV ¢w
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Then the property (i) is clear. The conditions (ii) and (iii) follow from By(z, 6/4)073;/4 =
whenever z, 2/ € V satisfy z # 2/. We will show the condition (iv). Note that ¢, (z) =0
whenever z € By(z,5e/4) and By(w, 5e/4) N By(z, 5e/4) # 0. Hence

—1

weV;Bg(w,5e/4)NBy(z,5¢ /4)#0

The metric doubling property implies that there exists a constant M (depending only on
the doubling constant) such that

sup #{w € V' | By(w,5¢/4) N By(z,5e/4) # 0} < M.

zeV

Set V(2) = {w € V' | By(w,5e/4) N By(z,5¢/4) # 0} \ {z}. By (6.36) and (6.38),

& W) S & (6.) +6F< > %)

weV (z)

<E D)+ M Y & (du) S0

weV(z)

This completes the proof. O

7 Comparison with Korevaar—Schoen energies

In this section, we will give a characterization of J, in terms of fractional Korevaar—Schoen
energies. The associated function spaces are also called Lispchitz—Besov spaces. For
Dirichlet forms on fractals endowed with nice heat kernel estimates, such characterizations
are well-known (cf. [GHLO3, Jon96, Kum00, PP99]?).

In this section, we will always assume that the metric measure space (K, d, m) satisfies
Assumption 6.15. The following main result in this section claims that our (1, p)-Sobolev

space J, coincides with the critical fractional Korevaar-Schoen space 35 {)o in this setting
(recall Deﬁnltlon 1.3).

Theorem 7.1. Let (K,d,m) be a metric measure space satisfying Assumption 6.15.
Then, there exists a constant C' > 1 (depending only on the constants associated with
Assumption 6.15) such that

cU <hm1nf/]{3( )Mm(dy)m(dm)

rl0

< SUP/ ][ Mm(dy)m(dx) < Clff%  for all f € LP(K,m).
r>0 Bgy(x,r r P
(7.1)

2The proofs in these works rely on two-sided heat kernel estimates.
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In particular, F, = Bﬁ{fg and

EES .

_ P
< lirﬁ(i)nf/[( ]id(m) Mm(dy)m(d@ for all f € LP(K,m).

Moreover, B/p = s,, where s, is the critical exponent defined in (1.2).

Before moving to the proof, let us make a remark on Sobolev embeddings for F,,.

Remark 7.2. Combining the above characterization of F, and the methods of [BCLS],
we immediately obtain analogues of the classical Sobolev embeddings (see also [Bau22+,

Theorem 4.3]). Indeed, we can easily check the truncation properties, namely the condi-
tions (HZ) and (H,) in [BCLS], of || from (7.1), and apply [BCLS, Theorems 3.4 and

9.1] by choosing a family of operators {M,} as

—~

Mrf(x)::][ fdm forr >0, feLP(K,m), zeK.
Bg(z,rp/P)

We will not write the details because we do not use these results in this paper. Fur-
thermore, a straightforward modification of [AB23+, Theorems 4.2 and 4.3], where the
authors modify the arguments in [HIX00, Section 8] to fit with fractal settings in the case
p = 2, yields Rellich—-Kondrachov type compactness results in this context.

The proof of Theorem 7.1 will be divided into two parts. We start by showing

@) = F) )
sup | ]idw) IO (agymar) < 13,

>0
To get this bound, we will use a standard argument using “Poincaré inequality”.

Lemma 7.3. There exists a constant C' > 0 (depending only on the constants associated
with Assumption 6.15) such that for all Borel set U of K and f € LP(K,m),

m f(x) = fF@)l o
hm/U]éd(w) ————"m(dy)m(dz) < C'lim lim 5;7&n(UT)(f),

{0 B rl0 n—oo

where Us denotes the 6-neighborhood of U, i.e., Us = U, ep Ba(y, ) for § > 0. Moreover,

Sup/Kde(mm) ’f(x)r_—ﬂf(yﬂm(dy)m(dg;) < O|f|§.—p.

r>0
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Proof. Let r > 0 and let N, C U be a maximal r-net of U (with respect to the metric d).
Note that By(z,r) C By(y,2r) for y € N, and « € By(y,r). We see that

/ ]idm Mm(dy)m(dx)

Ny /Bd (i) ]id () ( fo) m(dy)m(dx)

/B ) ]i o B V) — Tl w(dy)p(dz)  (by VD)

/B ][B { }f de(y 2r } + ‘f(y) _rf[;Bd(v,2r)| }m(dy)m(dx)
yEN a(y,2r) a(y,2r)

S Z thOIOIf S;V (Ba(y.24r)) (F)- (by Lemma 6.24) (7.2)

YyEN,

yGN

For any y € N, and w € V,,(Bq(y,2Ar)), it is immediate that w € V,,(Uaa,). The overlap
of {V,(Bal(y, 2A7’))}ye . can be controlled in the following manner. Let y € N, and let

n € N be large enough so that CR;™ < r, where C' > 1 is the constant in Definition 6.4.
Then we easily see that {p,(w)}wev, (B,,24r) C Ba(y, (2A 4+ 1)r). In particular, we have

max #{y € N, | w € Vi (Ba(y,24r))} <sup#{y € N, |z € By(y, (2A+ 1)r)} <1,
weVy rxeK
(7.3)

where we used the metric doubling property in the last inequality.
Let us go back to the estimate on 3y liminf, o %?&n(Bd(yQAr))(f). By (7.3),

D lim &Y 5oy (f) < M D0 ET 5 0a)(F) S lim £ Vs () (T4)

yeN, n—oo n—)ooyeNT

Combining with (7.2) and taking the limsup, we get the first assertion.
In the case U = K, by considering |f|% instead of liminf, . Sg&n(%m)(f) in (7.4),

we get )
[ 4 BT agyman < 1,
K J By(z,r) r P

Taking the supremum completes the proof. O

Next we move to the converse bound:

i @)= F@P
hmlnf/K]é(x,r) 5 (dy)m(dz) Z |f1%,

rl0

Our approach is similar to [Bau22+, Theorem 5.2] but we give a local version as well.
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Lemma 7.4. There exists a constant C' > 0 (depending only on the constants associated
with Assumption 6.15) such that the following hold. For allU C K and f € F,,

n—o0 610 rl0

lim sup E(V @ (f) < Clim lim inf /U(; ]{Bd o |f(gg)T_—ﬁf(y)’771(dy)m(dac), (7.5)

where Us denotes the d-neighborhood of U. Furthermore, for all f € LP(K,m),

A% <C’hm/]{9 V(x)r_—ﬁf(yﬂm(dy)m(dx). (7.6)

rl0

Proof. Let r € (0,1) and fix a maximal r-net N, (U) C U of U. Let N, be a maximal
r-net of (K, d) such that N, (U) C N,. We first observe that, by (6.5) and (6.7), for large
enough n € N,

K, UK, C By(z,5r/4) whenever z € K, {v,w} € E, and v € V,(Ba(z,7)) .

Therefore, for all large n € N and f € LP(K,m),

(n) ()
Exnan (1) S D &R Batesrimn -

ZENy(U)

To estimate Sp Vi (By(z5r/ay) ([ ), We consider ‘discrete convolution operators’. (Such
type approximation is originally considered by Coifman and Weiss [CW].) Let {¢,, }.cn,
satisfy the conditions (i)-(iv) in Lemma 6.26 and define a linear operator A,: LP(K,m) —
LP(K,m) by

Arf = Z de(z,r/ll),@Z)z,r? f € LP(K’ m)
z€N,
Note that A, f € F, NC(K). We can show that A, is a bounded linear operator whose
norm ||A,||;,_.;, has a uniform bound with respect to r. Indeed, for any f € LP(K,m),

Mmmz/
K

p

Z de(z,r/4)wz,T($) m(dx)

zZEN,
p—1
= /K > \de<z,r/4>\%,r<x>> (Z wz,r(a:)) m(dz)  (by Hélder’s inequality)
2€N, ZEN,

1 P .. , . .

= /K Z%;r m(Bd(z, r/4)) /Bd(z,r/4) If] dm) Y, () m(dz) (by Holder’s inequality)
1 p

S /K zg (Bd(z T/4)> /;d (z,r/4) |f| dm) ﬂBd(Z,T)@j) m(dx)

_ (Bd(z 7“)) P dm, su - . L »
—z%\f: m(Ba(z,7/4)) /der/4) A dm 5 (mg}?#{ €N, | w € Balz, /4)}) If1Zs -
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Since sup,cx #{z € N, | © € By(z,7/4)} S 1 by the metric doubling property, we get
VA, fll 1oz < Co, where Cy > 0 is a constant depending only on the doubling constant
of m.

For g € C(K), we easily show that A,g — ¢ in the uniform norm as r | 0 by virtue
of the uniform continuity of g. Indeed, for any € > 0 there exists r(¢) > 0 such that
lg(x) — g(y)| < € whenever d(z,y) < 3r(¢)/2. Then for all r < r(g),

g(x) = Arg(@) < Y 9(@) = gpaersmler(@) = D |9(@) = gBaersn|n ().

2EN, 2€Ny;d(z,z)<5r/4

Let x € K and z € N, such that d(z,z) < 5r/4. Since d(x,y) < 3r/2 for any y €
By(z,r/4), we have

19(2) — gBaemsa)] < ][ @)~ g mldy) < =

Hence

lg(z) — Arg(z)| < € Z Vor(z) =€, Vr<r(e),

ZENT

which implies sup,c g |9(z) — Arg(x)] — 0 as r | 0. In particular, ||g — A,gl/;, — 0 as
rJ 0 when g € C(K).

Now we can show that ||f — A, f||;,, = 0Oasr | 0. Let ¢ > 0, f € LP(K,m) and
ge € C(K) such that || f — g:||;», < e. Then we have

Hf - A'erLp < “f - g€||LP + “96 - ArgsHLp + HArge - Arf”/;p
<e+ Hgs - Args”[,p + Coe,

and hence
limsup || f — A, f];» < (14 Co)e.
0

This shows ||f — A, f||., — 0.

With these preparations, we can estimate g}f)@n(Bd(z 5T/4))(f). For z € N, and x €
By(z,3r/2), we easily see that

A f(x) = fBy(er/a) + Z (fBatwar/t) = [Bazr/2)) Yua ()

WEN,NBy(z,11r/4)

We note that there exists a constant M € N depending only on the metric doubling
property such that
sup # (N, N By(w, 11r/4)) < M.

wENr

Also, since

wEVi(Ba(z5r/4)) K, C By(z,3r/2) for all large n € N, we see that

Mn(Arf) = de(z,r/4) + Z (de(w,r/4) - de(z,r/Zl))anw,r on Vn (Bd(z7 57"/4))

weN,NBy(z,11r/4)
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Hence we have

c(n) (n)
5p,vn(3d(z,5r/4 (Arf) = Vn(Bd(z 5r/4)) Z (de(w,r/4) - de(z,r/ﬁl))Mn@Dw,r
weN,NBy(z,11r/4)
-1 pg(n)
< M? Z |de(w,r/4) - de(z,r/4)’ gp,Vn(Bd(Z,5T/4)) (ww,r)
wEN,NBy(z,11r/4)
St Z |\ Batwr/ay = [Bacsr/n)| - (7.7)

wEN,NBy(z,117/4)

For z,w € N, with w € By(z,11r/4), we note that By(z,7/4) U Bg(w,r/4) C By(w,3r)N
Bi(z,3r). Let v € {z,w}. By Hélder’s inequality and dg-Ahlfors regularity of m,

f f (f(2) — () mdy)m(dz)
By(v,r/4) J Bg(w,3r)

it xr) — Pm(dy)m(dx
< ]id(wm Jidw,gr) () — F@) m(dy)m(dz)
< / " ]i o @) = S m(dym(ae)

< / " f o V) = @ iy

rdf‘de(w,r/ll) - de(z,r/4)|p S (‘de(w,r/ll) - de(w,ZSr)‘p + | Baqwsr) — de(z,r/4)|p>

S 1@ - S m(dym(ds),
Bg(w,3r) J Bg(z,97)
and thus (7.7) yields

a(n)
gp,vn(Bd(z,sr/z; (A f)

r=p Pm m(dz). .
< /B ()]i P mdgym(dz).  (78)

wENTﬂBd z,11r/4)

p
ré |de(v,r/4) - de(w,Sr)|p =Tr

In particular,

Let us fix 6 > 0. Then, for all small enough » > 0 and z € N,(U), we have
Uwen,nByz11r/a) Ba(w, 3r) € Us. Summing (7.8) over z € N,(U), we obtain

glgvrgn(U)(Arf) S Z ngr%/ (Bg(z,5r/4)) (Arf)

2ENy(U)

< (9r)* / ][ I = S midymn) (7.9)

where we used the metric doubling property in order to control the overlap of { By(w, 3r) |
w € N, N By(z,11r/4)} in the second inequality. We remark that (7.9) holds for large
enough n € N so that R, ™ < er for some fixed small € > 0.
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The estimate (7.5) is trivial when liminf,jo [, f5 . % (dy)m(dz) = oo, so
we suppose that this liminf is finite. Pick a sequence {rk}keN such that r, | 0 as £ — oo

13520/(]5 Frm gttt =t [ S i,

If f € F,, then (7.9) Wlth U = K and Lemma 7.3 tell us that

ity % [ f )W;ﬂfmm<dy>m<dx>5|f|%p<w-
ACN k

In particular, {A,, /of}ren is bounded in F,. Hence, by taking a subsequence, we can
assume that f = A,, 9 f converges weakly in F, to some function f, € F,. Since F, is
continuously embedded in LP(K,m), we have fo, = f. By Mazur’s lemma and (7.9), we
obtain (7.5).

We next consider the case f € LP(K,m) and U = K. Similarly to the previous case, we
assume that liminf, o [, f5 ., V@S 1 (dy)m(dz) < oo and pick a sequence {ry }ren

of positive numbers converging to 0 and realizing this liminf. By (7.9),

Ao flo < /K ]{Bd(w’rk)wm(dwm(dz),

which implies the boundedness of {A,, /o f }ren in F, since we suppose

. f(x) — fly)”
klggo/}(]{gd(x,rk) 7 m(dy)m(dx) < oo

Similar arguments using Mazur’s lemma as in the previous paragraph yield (7.6). O

Proof of Theorem 7.1. The desired comparability follows from Lemmas 7.3 and 7.4.

We prove /p = s,. Since F, = 35 é’;, it is immediate that
p < s, = Sup{s >0 | (K, d, m) contains a non-constant functlon}
p

To prove the converse, let s > #/p and let f € F, 2 B;  such that |f|fp >0, 1ie fis
a function in J, that is not constant. Let A, = Ap-n o, where A, (r > 0) is the same
operator as in the proof of Lemma 7.4. Then, by (7.9) with r = R_"/9 for large enough
n € N and Theorem 6.22, we have

e [f ] V@ =T gy

*

Since lim inf,, 4, EF( nf) Z %, >0, lettlng n — oo yields

p
limignf/ ][ ( ) m(dy)m(dz) = oo whenever f € F, \ Rlg,
r By(x,r)

which completes the proof. O
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Finally, we can prove the density of F, NC(K) in F,.

Proof of Theorem 6.17(v). For simplicity, let .7?,, =F,N C(K)”'pr. The inclusion j-:p -
F, is obvious. So, we will prove F, C F,.
By Theorem 7.1, we know that F, = BY?. Let f € F, and let A, (r > 0) be the

operators defined in the proof of Lemma 7.4. Then A, f € F,NC(K) C F,. By (7.9) with
U = K, we have

_ P
.15, S s [ ) = FWE 1 gym(an) < I, < oo.
P r>0 J K J By(z,r) r P
Combining with ||A, f|l;, < If|l.», we conclude that {A, f},~¢ is bounded in F,. Let
{A,, f}ren be a convergent subsequence of {A, f},~¢ (with respect to the weak topology

of F,). Applying Mazur’s lemma, we get

f € {convex combinations of {A,ﬂkf}kel\;}|| 8 CFN C(K)”'”FP — f“p’

which completes the proof of Theorem 6.17. Il

The following corollary concerns the case p = 2.

Corollary 7.5. Suppose that Assumption 6.15 holds with p = 2. Then (X, F,) is a
m-symmetric reqular Dirichlet form on L*(K,m).

Proof. We know that £ is a non-negative quadratic form on F, since £ is a I-limit
of non-negative quadratic forms (see [Dal, Theorem 11.10]). Since F3 is a Hilbert space,
(€3, F») defines a m-symmetric Dirichlet form on L?(K, m). By Theorem 6.17, the Dirich-

let form (£}, Fy) is regular. O

8 Self-similar sets and self-similar energies

From this section, we move to the case of self-similar sets. The main result in this section
ensures the existence of a “good” p-energy reflecting geometric properties of the underlying
space such as self-similarity and symmetry.

8.1 Self-similar sets and related notations

First, we give definitions of self-similar structure and related notations from the viewpoint
of weighted partition theory by following [KigO1, Kig20].
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Definition 8.1 (Shift space). Let S be a finite set with #S > 2. For convention, we
set SO := {¢}, where ¢ is an element called the empty word. The collection of one-sided
infinite sequences of symbols S is denoted by X(5), that is,

X(9) ={w=wiwows -+ |w; € S for any i € N},

which is called the one-sided shift space of symbols S. We define the shift map o :
X(S) — X(S5) by o(wiws - -+) = waws - -+ for each wiwy--- € ¥(S). The branches of o
are denoted by o; (i € S), i.e. 0; : £(S) — X(9) is defined as o;(wiws -+ +) = iwjws - - -
for each ¢ € S and wywy -+ € X(9). For w = wywse--- € X(S) and k € Z>(, we define
(Wl = w1+ w, € S*. For w = wywy -+ € X(S) and 7 = 17y -+ € B(S), define the
confluent w A7 € (J,5o S* of w and 7 by

WAT =w;---wg, where k=min{n | [w], # [7].} — 1.
If £ =0, then w A 7 is defined as the empty word ¢ (see also Definition 8.3).

We use ¥ to denote 3(S) when no confusion can occur. We always consider ¥ = SN
as a compact metrizable space equipped with the product topology. It is known that, for
any a € (0,1), the function d,: ¥ x X — [0, 00) defined by

{amin{nuw]n#[ﬂn}l if w 7é T,
do(w, T) =

8.1
0 ifw=r, (8.1)

gives a metric on ¥ and its topology coincides with that of X.

Definition 8.2 (self-similar structure). Let (K, O) be a compact metrizable space without
isolated points, where O is the collection of open sets. Let S be a finite set with #5 > 2
and let {F;};cs be a family of continuous injections from K to itself. Then (K, S, {F;}ics)
is called a self-similar structure if there exists a continuous surjection x: ¥ — K such
that F; o x = yoo; for all i € S. The map y is called the canonical projection (or coding
map) of (K., S, {Fi}ies).

We provide standard notations and facts about self-similar structures.

Definition 8.3. Let (K,S,{F;}ics) be a self-similar structure. Define W, = S¥ =
{wy--wy, | wyeStorie{l,....k}} for k € N and Wy = [Jo, Wr. We also set
Wo = {¢}, where ¢ is the empty word, and W, = J,~o Wi. For w = wyws - --wy, € W,
the length fw|y, of w is defined as
[y, = k.
If no confusion can occur, then we write fu| for |y, for simplicity.
For k > n >0 and w = wyws - - - wy, € Wy, define [w],, € W,, by

(W], = wy - wy. (8.2)

We also define i* :== i---i € W, for each i € S and k € Z>. For w € W, and n € N,
define

S™(w) = {v € Wi ‘ (V] = w}.
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We use S(w) to denote S'(w) for simplicity.

For w = wiwy - - - wy, € W, we define
Fyi=F, 0F, 0 0F,, (8.3)
and K, = F,,(K). We also define 0, = 0y, 0 0y, 0 - - 0 0y, and X, == 0,(X).
Remark 8.4. We also use W,,(S) and 3,(S) to denote W,, and ¥, respectively.

Proposition 8.5 ([Kig00, Proposition 1.3.3]). If (K, S, {F;}ics) is a self-similar structure,
then its canonical projection x is uniquely determined in the following way: for any w =
Wilg ++ + € Z,

{X(w>} = ﬂ Koy ooy, (8-4>

k>0
We prepare fundamental notations on self-similar structures.
Definition 8.6. Let £ = (K, S, {F;}ics) be a self-similar structure. Define
Cr= U (K;NK;), Co=x"(Cz) and P,= U a"(Cr).
i#jes n>1
Also, define Vy = x(Py).

Remark 8.7. Usually the notation Vj is used to denote V. We employ V, in order to
avoid a conflict of notations. We use V,, to denote the vertex set of G,,.

The set V, describes the ‘boundary’ of K in the following sense.

Proposition 8.8 ([Kig01, Proposition 1.3.5(2)]). Let £ = (K, S,{F;}ics) be a self-similar
structure. If ¥, N3, = 0, then K, N K, = F,(Voy) N F,(Vo).

We next recall a class of natural measures on a self-similar structure, which is called
self-similar measures.

Proposition 8.9 (e.g. [KigO1, Proposition 1.4.4] and [Hut81]). Let (6;);cs satisfy 0; €
(0,1) foralli € S and ), 4 0; = 1. Then there exists the unique Borel regular probability
measure m on K such that, for every A € B(K),

m(A) = Z 0;m(F;(A)).

Such the measure m is called self-similar measure on K with weight (0;);cs.

We introduce a useful notation. Let (a;)ics € (0,00)° be a sequence of positive
numbers. For w = wyw; - - - wy, € W, define
Aoy = Ay Aoy * * * gy

ke
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Proposition 8.10 ([Kig09, Theorems 1.2.4 and 1.2.7]). Suppose that K # V. Let m be a
self-similar measure with weight (6;);cs. Then m(K,,) = 0., for anyw € W,. Furthermore,
if v#£w e W, with K, U K,, # K, for some z € {v,w}, then m(K, N K,) = 0.

In practice, many examples of self-similar structure are realized as self-similar sets in
RP. The main object in this paper, namely the planar Sierpiniski carpet in Section 10,
also belongs to this class, so we provide the setting of it here. Let D € N. Let S be a
non-empty finite set and let (r;),es € (0,1)°. For each i € S, let f;: RP — RP be an
ri-similitude, i.e. the map f; is given by fi(x) = r;,Uz + ¢; (x € RP) for some U; € O(D)
and ¢; € RP. Here, O(D) denotes the orthogonal group in dimension D. Let K be the
unique non-empty compact subset of R” such that J, ¢ fi(K) = K and let F; = fi’ K
Such K is called the self-similar set associated with the iterated function system {f;};cs.
It is easy to check that (K, S, {F;}ics) is a self-similar structure.

The reader can find many examples (and figures) of self-similar sets in fundamental
textbooks on fractal geometry (see [KigO1, Section 1] for example), so we skip concrete
examples here.

We next recall the famous open set condition, which is introduced by Moran [Mor46].
The self-similar set (K, S, {F;}ics) in R satisfies the open set condition if there exists a
bounded open non-empty subset O of R” such that

UJF0)cO and F(O)NF;(0)=0 fori#jeSs.
€S

This condition allows us to determine the Hausdorff dimension of K with respect to the
Euclidean metric. Let d be the normalized Euclidean metric of RP so that diam(K, d) = 1.
Let d¢ > 0 be the number satisfying

S =1, (8.5)

€S

and suppose that (K,S,{F;}ics) satisfies the open set condition. Then, by Moran’s
theorem (see [Mor46, Hut81] or [KigOl, Corollary 1.5.9]), the Hausdorff dimension of
(K,d) is d;. Moreover, there exists a constant C' > 1 such that

C™'m(A) < H¥*(A) < Om(A) for all A € B(RP),

where H% is the dg-dimensional Hausdorff measure (with respect to the metric d) and
m is the self-similar measure with weight (Tf f)l.e ¢ For a proof of this result, see [Kig01,
Theorem 1.5.7] for example.

8.2 Self-similar p-energy

We now provide a general construction of self-similar energies. To state the result, we
introduce the notion of closed invariant sub-cone with respect to the renormalization.
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Definition 8.11. Let (K, S,{F;}ics) be a self-similar structure and let m be a Borel-
regular probability measure on K. Let p € (1,00) and p = (p;)ics € (0,00)%. Let F be a
linear subspace of LP?(K,m) with fo F; € F forany i € S and f € F.

(1) For any functional E: F — [0, 00), define S,E: F — [0,00) by

S,E(f) =Y pE(foF) for feF.

€S

(2) Let U C {£: F — [0,00) | £Y/7 is a semi-norm}. The set U is said to be a closed
invariant sub-cone with respect to S, if it satisfies the following conditions (a)-(c).
(a) ay BN + ay E® € U for any a;,ay > 0 and BV, E? c Y.

(b) If {EM™} y © U and limy, o EM(f) = E(f) exists for any f € F, then
Eel.

(c) S,E €U for any E € U.

ne

The following theorem gives a self-similar energy as a fixed point of S, [Kig00, Theorem
1.5]. In Section 10, we will apply this theorem with D = F, and E = Spr (in Theorem 6.22)
to get a “canonical” self-similar p-energy on the Sierpinski carpet. The condition (PSS)
in the following theorem plays a crucial role in the existence of a self-similar p-energy. It
is not hard to see that this condition is necessary for the conclusion to hold and hence
can be thought of as a pre-self-similarity condition.

Theorem 8.12 ([Kig00, Theorem 1.5]). Let (K,S,{F;}ics) be a self-similar structure
and let m be a Borel-regular probability measure on K. Let p € (1,00) and let D be a
linear subspace of LP(K,m). Suppose that there exists a functional E: D — [0,00) such
that E(+)Y? is a semi-norm and (D, |- ||p) is a separable Banach space, where || f|p =
11l 2oy + E(f)"/?. In addition, we suppose that the following condition (PSS) holds.

(PSS) It holds that f o F;, € D for any f € D and i € S. Furthermore, there exist
p=(pi)ics € (0,00)% and C > 1 such that for any k € Z>q and f € D,

CTE(f) < > puE(f o Fy) < CE(f), (8.6)

weWp,
where we set py = 1.
Then there ezists E,: D — [0, 00) satisfying the following conditions (i)-(iii).

(1) &E()YP is a semi-norm and CT'E(f) < &E,(f) < CE(f) for every f € D, where
C > 1 is the same as in (8.6).

(i) &, is self-similar, i.e. for every f € D and k € Z>y,

E(F) =D pu&p(foFu). (8.7)

weWy,
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(ili) IfU is a closed invariant sub-cone with respect to S, and E € U, then £, € U.

Proof. This result follows from [Kig0O0, Theorem 1.5] by choosing T',u, V' in the notation
of [Kig00, Theorem 1.5] as S,, E, U respectively. O

Next we will explain how to apply Theorem 6.22 in the self-similar setting. To this
end, we introduce a sequence of finite graphs equipped with a family of projective maps
(Definition 6.1) associated with the underlying self-similar structure. Let us fix R, €
(1,00) and let (K,S,{F;}ics) be a self-similar structure. We also fix a metric d on K
so that the metric topology induced by d coincides with the original topology of K and
diam(K,d) = 1. Then, by [KigO1, proposition 1.3.6], we have

lim max diam(K,,d) = 0. (8.8)

n—oo weWny,
For n € N, define a graph G,, = (V,,, E,,) by setting
V, ={weW,|R™<diam(K,,d) < R,"""'} (8.9)

and
E,={{v,w} eV, xV, |v#w K,NK, #0}. (8.10)
(The vertex set V,, is the same as A% _, in [Kig20, Definition 2.3.1].) For k,n € N with

k <mnand w € V,, define 7, ;(w) as the unique element of V} such that [w], = v. Then it
is immediate that the map m, ;: V,, — Vj is surjective. Also, we note that ¥ = |_|w€Vn Yw
for each n € N.

We next introduce a partition K, (w € W,) associated with the self-similar struc-
ture. Let N, := #S and enumerate S as {i(1),...,i(N,)}. Define IN(i(j) (j=1,...,N,)
inductively as follows. Let I~(i(1) = Kju). For j=1,..., N, — 1, define

J
Kigny = Kigiy \ | Kiw- (8.11)
k=1

Then I?i(j) (j = 1,...,N,) are pairwise disjoint and Ujvzl I?i(j) = K. Suppose that a

family {IN(w}w is chosen so that it satisfies the following conditions:

eUmS’n W7n
U l?w:K for each m € {1,...,n},
'LUEWNL

K,NK, =0 forany distinct v, w € U W, with Jv| = u],

m<n

and
Kw:UKwZ- forany me {1,...,n—1}, we W,, and i € S.

i€S
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We now define {[?v}vew L, A follows. Let w € W,, and [?wi(l) = Ky N I?w. For
j=1,..., N, — 1, we inductively define
Kuigi1) = (Kwi(j—l—l) \ U sz‘(k)> N K,.
k=1

This construction yields a family {IN(w}w o, Satisfying the conditions (ii) and (iii) in
Definition 6.4.

As in Lemma 6.6, let m,,(v) = m(l?v) for each n € N and v € V,,, where m is a fixed
self-similar probability measure. We note that, by Proposition 8.10, m,(v) = m(K,) for
all v € V,, if K # V,. Also, the self-similarity of m implies that (m,),ey is consistent
under K # ).

We now introduce the analogue of Assumption 6.15 when the underlying space is a
self-similar set.

Assumption 8.13. Let p € (1,00). Let (K, S, {F;}ics) be a self-similar set such that K
is connected, #K > 2 and K # Vy. Let (1;)ies € (0,1) so that F; is an r;-similitude.
Let d be the normalized Euclidean metric on K so that diam(K,d) = 1 and let m be a
self-similar probability measure with weight (Tf f)Z. cs € (0,1)%, where d; is the Hausdorff
dimension of (K, d). Let R, € (1,00), let {G,, = (Vi,, Ey) bnen, Tk (n, k € N with k& < n)
and K,, (w € W,) be defined as above in (8.10), (8.9), and (8.11). Let my,(w) = m(f(w)
for w € W,,. We consider the following geometric and analytic conditions.

e Geometric conditions: The measure m is dg-Ahlfors regular. In addition, {G, },en
is R,-scaled and R,-compatible with (K, d), i.e. (6.3), (6.4), (6.5) and (6.7) hold.

e Analytic conditions: The sequence {G,, }nen satisfies U-PL,(3) and U-CF, (0, 3) for
some > 0 and ¥ € (0, 1].

Obviously, Assumption 8.13 for a self-similar set (K, S, {F;}ics) implies Assumption
6.15. Note that the Banach space F, is separable by Theorem 6.17(iii). Now the following
corollary is immediate from Theorems 6.17, 6.22 and 8.12.

Corollary 8.14. Suppose that a self-similar set (K, S, {F;}ics) satisfies Assumption 8.13
and let (£}, F,) be the p-energy on (K,d,m) in Theorem 6.22. In addition, assume that
the p-energy 511; satisfies the pre-selfi-similarity condition (PSS) in Theorem 8.12. Then
there exists a ‘canonical p-energy’ (E,, F,) satisfying the conditions (i)-(iii) in Theorem
8.12. Furthermore, F, NC(K) is dense both in (C(K), | -|l.) and in (Fy, |- || £,)-

Remark 8.15. In light of Theorem 6.22(i), the pre-self-similarity condition (PSS) can be
regarded as a property of (1, p)-Sobolev space F,, and its semi-norm |-| 7,

9 Associated self-similar energy measures

In this section, we construct energy measures associated with a ‘canonical p-energy’ as
constructed in Corollary 8.14 and study its basic properties. Our construction follows an

83



approach of Hino that heavily depends on the self-similarity of both the underlying space
and the energy [Hin05, Lemma 4.1].

First, we fix our framework in this section.

Assumption 9.1. Let (K, S, {F;}ics) be a self-similar structure equipped with a com-
patible metric d such that diam(K,d) = 1 and such that K is connected. Let m be a
Borel-regular probability measure on K. Let p € (1,00) and let (D, |-|5) be a non-empty
semi-normed space such that D is a linear subspace of LP(K,m). Let £,: D — [0, 00).

(1) Let |-llp = |lp + [l lzp(m), which defines a norm on D. The normed space
(D, |- ||lp) is a reflexive Banach space. Furthermore, {f € D | |f|, =0} = Rl.

(2) &,(+)Y/P is a semi-norm on D and there exist a constant C' > 1 and a weight
p = (pi)ies € (0,00)° such that, for any f € D and m € Zsy,

CHf < &) SO, and E(f) = Y puplfo

’wEWm

Furthermore, for any f € D and 1-Lipschitz function ¢ € C(K),

pofeD and E(pof)<E(f).

We always suppose Assumption 9.1 in this section. (Note that the assumptions in
Corollary 8.14, namely Assumption 8.13 and (PSS) imply Assumption 9.1.) In this setting,
we can introduce energy measures with respect to (&,,D) in the following manner Let
f € D and n € Z>o. Define a finite measure m{" (f) on W, by setting m{™ (f)({w}) =
puw&p(f o F,) for each w € W,,. Due to the following equalities:

Z m () ({o}) = pu sz ) o Fy) =m{"(f)({w}),

veS(w) €S

we can use Kolmogorov’s extension theorem (see [Dud, Theorem 12.1.2] for example) to
get a finite Borel measure m,(f) on ¥ = SN such that

m,(f)(Xw) = puép(f o Fy) for any n € Zso and w € W),.

Clearly, m, (f)(%) = &(f).

Now we define a measure I',(f) on K as T),(f) = x.(m,(f)), where x is the coding
map of (K, S,{F;}ics) (recall Definition 8.2). Note that I',(f) is a finite Borel-regular
measure on K (see [Dud, Theorem 7.1.3] for example). We shall say that I',(f) is the
Ey-energy measure of f. To summarize, the self-similarity of £, (on a self-similar structure
(K, S,{F;}ics)) is enough to define p-energy measure I',(-).
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9.1 Basic properties of self-similar energy measures

We record some fundamental properties of energy measures I',( - ).

Proposition 9.2. Let f € D. Then I')(f) =0 if and only if f is constant.
Proof. 1t is clear from T',(f)(K) = E,(f), &(f) < |fIp and |[flp =0 < f € Rl. O

It is natural to consider that T',( - )(A)Y/? also behaves like the LP-norm. The following
proposition corresponds to the triangle inequality of “T",(- ) (dx )P,

Proposition 9.3. For any fi, fo € D and g € B, (K),

</]{gd]-—‘p<fl + f2>>l/p < (/Kgdl“p(f1>)1/p + (/}(ngp(fQ))l/p. (9.1)

In particular, for all A € B(K),
Dplfi + Fo) (V7 < Ty ) (A7 + Ty (fo) (A). 92)
Proof. First, we prove (9.2) when A is a closed set of K. Let fi, fo € D and define
Cp={weW, |S,Nnx (4 #0}, necN.

Then, as seen in the proof of [Hin05, Lemma 4.1], one can show that {Ecn}n>1 is a
decreasing sequence and oy S, = X H(A), where S¢, = {w € 3(S) | W], € Cu}.
Indeed, for any a € (0, 1), we easily see that

Ye, = {w ey ‘ dists, (w,x’l(A)) < a”’l},
where d,, is the metric defined in (8.1). Hence (oS¢, = {w € T | dists, (w, x '(4)) =

0} = x"'(A). Using the triangle inequalities of &,( - )Vp and of the fP-norm on C,,, we see
that

1/p 1/p
(Z Pubp f1 +fa)o K, )) < (Z Pw<gp(f1OFw)l/p-l—gp(fQOFw)l/p)p)

weCn welCy
1/p 1/p
S(pré’p(flon)) (pr fro Fy ) :
weClCly, weCly,

and hence
w, (o + f2) (Se,) < mu(h) (Se,) !+ my(f) (Se,) .

Letting n — oo, we obtain (9.2) for any closed set A.
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Next, let A € B(K). Since I',( f1+ f2) is Borel-regular, there exists a sequence {F}, },,>1
of closed subsets of K such that F,, C A and lim,_,o, I';(f1 + f2)(Fn) = Tp(f1 + f2)(A).
Then, for any n € N,

Lp(fr + o) (F)? S Tp(fi) ()2 4 Ty fo) (Fa) /P < Ty (fi) (A)YP + Ty o) (A)V7.
We get (9.2) by letting n — oo.
Finally, we prove (9.1). Let N € N. Let a; > 0 and A; € B(K) such that h =

Zf\il a;14, < g. Then, (9.2) together with the triangle inequality of the ¢’-norm on
{1,..., N} implies

(/KhdF,,(flJrﬁ))l/pS (/Khdr,,<f1>>l/p+</Khdrp<f2>)l/p
<(/ ngp<f1>>1/p+ (f ngp<f2>)1/p-

Taking the supremum over h, we obtain (9.1). O]

The following proposition gives the self-similarity of our energy measures.

Proposition 9.4. For anyn € N and f € D,
Fp<f> = Z pw(Fw)*(Fp<f o Fw>)a (9-3>

weWny
that is, Tp(f)(A) = 3 ew, Pulp(f o Fu)(Fy(A)) for any A € B(K).

Proof. The proof is exactly the same as in [Shi+, Theorem 7.5] although the generalized
Sierpinski carpets are considered in [Shi+]. O

Energy measures inherit ‘nice’ properties of the self-similar p-energy &,. Here, we
focus only on the Lipschitz contractivity.

Proposition 9.5. Let f € D and let p: R — R be a 1-Lipschitz function. Then, for any
g€ gg+(}(%

/Kngp<900f>§/Kngp<f>-

In particular, for any A € B(K),
Ip{po f(A) S Tp(f)(A).

Proof. Similar arguments in the proof of Proposition 9.3 tells us that the following is
enough: for any n € N and A C W,

Z/)wgp((ﬁoof)on) < prgp(fon)~

wEA weEA

This is immediate from Assumption 9.1(2-c). O
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9.2 Chain rule of energy measures and strong locality

We next show chain rule of energy measures. The following ‘weak locality’ of energy
measures corresponds to the condition (H5) in [BV05], which is a consequence of the
self-similarity of energies.

Lemma 9.6. Let U be an open subset of K. If f,g € D satisfy f = g m-a.e. on U, then
Lp{(AIU) = Tp(g) (U).

Proof. By the inner regularity of I',(f) and I',(g), it suffices to show I',(f)(A) = T',(g)(A4)
for any closed subset A of U. Pick 6 € (0,distqy(A, K \ U)) and N € N so that
maxyew, diam(K,,d) < 6 for any n > N. For n € N, define C,, = {w €V, |
Yo N X 1(A) # 0}. Since fo F, = go F, (m-a.e. on K) for any w € C,, with n > N, we
have

HEe,) = Z Puwp oF,) = Z pwgp(g oF,) = mp<g>(20n)'

Letting n — oo proves I',(f)(A) = I',(g)(A), which completes the proof. O

The following theorem states the chain rule of our energy measures, which is the main
result in this section.

Theorem 9.7 (Chain rule). For any ¥ € C'(R) and f € DNC(K),

Lyp(P o f)(dx) = [V'(f(2))"Ty(f)(d), (9.4)
that is,

[p(Wo f)(A) = /A W (f @) Tp(f)(da)  for any A € B(K).

Proof. The idea is very similar to [BV05, Proposition 4.1]. We present a complete proof
because the framework of [BV05] is slightly different from our setting. Let f € DNC(K),
U € C'(R) and € > 0. Then there exists § > 0 such that

W' (f(z)) — W' (f(y)) <e forany z,y € K with d(z,y) < d.

Let {x;},es be a family such that z; € K (j € J), #J < oo and K =
Jj € J, we define ¥;: R — R by

%0 = e /ﬂ) (wrtree ") v e e

Then, it is clear than ¥; € C*(R) and |[¥)(¢)] < 1 for all ¢ € R. We note that if s € R
satisfies [U'(s) — U'(f(x;)) < e, then

ey Ba(zj,0). For

v )
(I\If’(f(xj))l el 1) V) = e e
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In particular,

W (f(x))
W (f ()] + e

V'(f(=))
W(f(25))] + €

Set a; = |U'(f(x;)) + € for simplicity. By Lemma 9.6, Proposition 9.5 and the outer
regularity of energy measures, for any £ € B(K) with £ C By(z;,0), we see that

Tp(W o fY(E) = Ty(a;(¥; 0 f))(E) = afT,(T; 0 f)(E) < (W'(f(x;))] +2) T, (F)(E).
Therefore, for E € B(K) with E C By(z;,6),

U,(f(x)) = and  W)(f(r)) = for any x € By(x;,9).

L(E o 1)E) < [ WU TNE) + [ [(W (@) + )~ W @I Ty )

W' (f () +e
/|\IJ (f)(dx) + / / pst~tds
W’ (f(2))

/ (s ()(dz) + & - Cpu T () (E), (9.5)

Ly (f)(dz)

where C), vy is a constant depending only on p and sup,e ;(x [¥'(2)-

Now let A € B(K) and let J = {1,...,N}. We inductively define A; by A; =
AN By(z1,0) and Ajyq = (AN By(xj41,0)) \ A; so that A = |_|;V:1 A;. By summing (9.5)
with £ = A; over j and letting ¢ | 0, we obtain

L'y / ' (f (f)(dzx) for any A € B(K). (9.6)

Next, we prove the converse inequality of (9.6). For n € N, we define a closed set F,
of K by F,, .= {z € K | |[W'(f(x))] > n~'}. Note that J,5; F, = {¥' o f # 0}. For each
n € N there exists 9,, > 0 such that

1
|\II/(f<‘T>) - \Iﬂ(f(y))’ < 2_ for any x,y < K with d(l‘,y) < Op.
n
Pick I,, € N so that max,ecw, diam(Ky,d) < d,. Let

Ffi={oe K| W(f(@) > n '} = (0o )7 ([0, 00)),

Fy = {o e K| (@) < —n7} = (o ) (o0, —n71]),
and W, [FE] .= {w e W, | K, N FX #(}. Then, we easily see that

F,=F UF, C ( U Kw) U ( U Kw),
weWy,, [Fi] weWy, [Fry]
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and W(7(5) > (20)" (rsp, W) < ~(20)") for any y € Useu, iy K (rsp
Y € Upew, (7] K,). Since f(K,) is a connected subset of R, f and ¥’ o f are uniformly

continuous on K, we can pick §;, > 0 and a collection of open intervals {I,,},,cy, (F£] SO
that
f((Kw)s,) € 1, and tinlf W' (t)] > 0 for any w € W, [EF] LW, [F.].
Elw

Since ¥ € C'(R), ¥ is strictly increasing or strictly decreasing on each I,. Applying
the inverse function theorem (e.g. [Jost, Theorem 2.7]), we get the inverse functions
Ty: V(I,) = Rof U. For any w € W, [F,/JUW, [F] and any £ € B(K) with E C K,,

by Lemma 9.6 and the inequality (9.6) as measures,

/\\IJ )(dx) /]\IJ Iy(Yy,oWo f)(de)
< | L @)W (f (@) Tp(¥ o f)(dx)

E

= /E AT, (Vo f) =T, (Vo f)(E).

A similar covering argument as in the previous paragraph yields, for any A € B(K),

/AOF ' (F(x))P Tp(f)(dx) < Tp(To fY(ANF,).

By letting n — oo, we get

[ e = [ W)
ST,W o f)(AN (W0 f £ 0}) < T, {0 o f)(A).

which together with (9.6) implies the assertion. O

As an immediate consequence of Theorem 9.7, we can prove the following theorem
called energy image density property.

Corollary 9.8. For any f € DNC(K), it holds that the image measure of I',(f) by f is
absolutely continuous with respect to the one-dimensional Lebesque measure £ on R. In
particular, T,(f)({x}) =0 for any v € K.

Proof. The proof is essentially the same as in [Shi+, Proposition 7.6] although the gen-
eralized Sierpinski carpets are considered in [Shi+]. See also [CF, Theorem 4.3.8] for the
case p = 2. (Let us remark that the reflexivity of D is needed to follow the argument of
[Shi+, Proposition 7.6].) O

Finally, we can show the ‘strong locality in a measure sense’.
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Corollary 9.9. Let f,g € DNC(K). If (f—g)|a is constant for some Borel set A € B(K),
then Ty (F)(A4) = T, (g)(4).

Proof. Let f € DNC(K) and let A € B(K). Suppose that f|4 = ¢ for some ¢ € R.
Then, by Corollary 9.8, we have I',(f) (f*({c})) = 0, which implies that I',(f)(A) = 0.
Combining this result and Proposition 9.3, we finish the proof. [

Remark 9.10. Theorem 9.7, Corollaries 9.8 and 9.9 are restricted to the functions in
DNC(K). One might expect that these statements can be extended to (DN C(K)” ' HD) N
L*>(K,m), but there is a possibility of m L I',(f). Indeed, for canonical Dirichlet forms on
many fractals, such a singularity is expected [Hin05, KM20]. We need to consider quasi-
continuous modification of function in D with respect to our p-energy &, and establish
some fundamental results on nonlinear potential theory associated with &,. We will not
obtain such results in this paper because it is not needed for our purpose.

9.3 Minimal energy-dominant measures

We conclude this section by giving a natural extension of the notion called minimal energy-
dominant measure (cf. [Hinl0]). Let &, satisfy Assumption 9.1 and let I',(-) denote the
associated energy measures.

Definition 9.11. A Borel-regular finite measure v is called minimal energy-dominant
measure of (€,, D) if the following two conditions hold.

e (Domination) For every f € D, we have I',(f) < v.

e (Minimality) For another Borel-regular finite measure v/ satisfying the above ‘dom-
ination’ property, we have v < /.

In Dirichlet form theory, the existence of such a measure is shown in [Nak85, Lemma
2.2]. We verify the existence of minimal energy-dominant measure of (£,, D) in Lemma
9.13 later. To prove it, we need the following lemma (cf. [Hinl0, Lemma 2.2]).

Lemma 9.12. Let v be a Borel-reqular finite measure on K and let f, f, € D(n € N)
such that E,(f — fn) — 0 as n — oo. Suppose that I'y(f,) < v for any n € N. Then
D, (f) < v.

Proof. Let A € B(K) such that v(A) = 0. Then we have I',(f,)(A4) = 0 for any n € N.
We also note that I',(f — f,)(A4) <& (f fn) — 0. By Proposition 9.3,

CulF) (A7 < T () (A) 2+ Tylf = ) (AN =Ty = Fu) (AP = 0,

which proves our assertion. |
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We now prove the existence of minimal energy-dominant measure (cf. [Hinl0, Lemma

2.3]).

Lemma 9.13. Suppose that {f, € D}nen is a dense subset of D. Let {ay,}nen be a se-
quence of positive numbers such thaty ", an&y(fn) converges. Then v =" a,I'y{fn)
defines a minimal energy-dominant measure of (€,, D).

Proof. By the definition of v, we note that I',(f,)(A) = 0 for any n € N and A € B(K)
with v(A) = 0. Hence the density of {f,}nen and Lemma 9.12 imply T',(f) < v for any
f € D. So it is enough to show the minimality of v. Let v/ be another Borel-regular
measure on K such that I',)(f) < v/ for any f € D. If A € B(K) satisfies v/(A) = 0, then
we have I',(f,)(A) = 0 for any n € N. Now it is immediate that v(A) = 0, which means
v < V' and we finish the proof. O

The next proposition corresponds to [Hinl0, Lemma 2.4]. This states that any two
minimal energy-dominant measures are mutually absolutely continuous.

Proposition 9.14. Suppose that D is separable with respect to || - ||p. Let v be a minimal
energy-dominant measure of (£,,D) and let A € B(K). Then v(A) = 0 if and only if
Ly(f)(A) =0 for any f € D.

Proof. 1t is clear that, for A € B(K), v(A) = 0 implies I',(f)(A) = 0 by the ‘domination’
property of v.

For the converse, suppose that A € B(K) and I')(f)(A) = 0 for any f € D. Let
{fn}nen be a dense subset of D and let {a,},en be a sequence of positive numbers such
that Y7 | a,&,(fn) converges. (For example, a, = 27" (€,(f,) "' A1).) Then, by Lemma
9.13, the new measure v/ := >~ a,I',(f,) is also a minimal energy-dominant measure of
(&5, D). Hence Proposition 9.14 tells us that v and v/ are mutually absolutely continuous.
The assumption I',(f) (A) = 0 for any f € D implies v/(A) = 0, and thus v(A) = 0. This
completes the proof. O

9.4 Estimates of energy measures

In this subsection, we investigate ‘local behavior of p-energy’, which will be described
in terms of &y -energy measures. Throughout this section, we suppose Assumption 8.13
and the pre-self-similarity condition (PSS) in Theorem 8.12 (with D = F, and E(-) =
|-|I}p). Hence, by Corollary 8.14, there exists a self-similar p-energy (&,, F,) satisfying
Assumption 9.1. Let I',(f), f € F,, denote the energy measure with respect to (&,, F,).

The following lemma gives behaviors of ‘p-energy on each cells’.

Lemma 9.15. For any f € F,, w € W, and n € N,

puwp(f 0 Fu) < Tp(f)(Ky) < Z pu&p(f o ).

VEWp ; Ky MK #0
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Proof. The lower bound is immediate from ¥, C x !(K,). The upper bound follows
from y~}(K,) C UweWn;KmKw;A(ZJ P O

Hereafter in this subsection, we will assume the following extra conditions to control
the ‘geometry of {wv | v € V,,} for all w € W,. Recall that (K, S, {F;}ics) is a self-similar
set such that F; is an r;-similitude for each ¢ € S. We suppose that there exists a sequence
(1;)ies of positive integers such that the following hold: for each 7 € S,

r; = R4, (9.7)

and
0; = Rii(ﬁ_df). (9.8)

Remark 9.16. The condition (9.7) involves the notion of rationally ramified self-similar
structure in [Kig09]. It might be hard to deal with the graph approximation G,, when we
have no such a condition. Indeed, the proof below does not work if {wv | v € V,,} is not a
subset of V;,, for some m > n. We can avoid such a situation by assuming (9.7). On the
other hand, condition (9.8) seems to be natural once one knows how to determine 5 in a
practical situation. For details, see Section 10.

We obtain the following (p, p)-Poincaré inequality in this setting.

Theorem 9.17. Suppose that (9.7) and (9.8) hold. Then there exist constants Cp > 0
and Ap > 1 (depending only on the constants associated with Assumption 8.13) such that

/ ‘f(y) — de(z7T)|p m(dy) < C’prﬁ/ dU,(f) for any f € Fp,x € K,r > 0.
Bg(z,r) By(z,Apr)
(9.9)

Proof. Let m € Z>p, w = w; ... w,, € W, and f € F,. By the change-of-variable formula,
for any n € N and z € V,,

1 1

My f o Fu(z) = m/ (foFy)(z)dm = (K m(Ky) /w fdm = M) f(wz),

z

where we used Proposition 8.10 in the first and second equalities. Recall V,, = {v € W, |
R;" < diam(K,,d) < RZ""'}. Then we note that V¥ = {wv | v € V,,} C V,,1i(w), Where
* * n +( )
l(w) :==>""" L, Therefore, we see that
éN}E”)(f oF,) = R:}(ﬁ_df)gfn (Mn+l(w)f(w .)) — R;l(w)(ﬂ_df)gxﬁi(w))(f) _ ngzgilvti(w))(f)a

where M, i) f(we): V,, = R denotes the function defined as v +— M, 1) f(wv). In
particular, we obtain

EVVl P (F) = puE(" (f 0 Fu) < pulf o Fulte S puly(f 0 Fu) S Ty(f)(Ku),  (9.10)

where we used Lemma 9.15 in the last inequality
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Let x € K, r > 0 and let A > 1 be the constant in Lemma 6.24. Then there exists
ng = no(r, A) such that U,cv. 5, @.ar) Kw © Ba(z,24r) for any n > no. Next we let
l, = maxyey, [(w) € N. For any n > ng V I, we see that

- - (9.10)
EN oy D) S D & () S > TN

weVn (Ba(z,Ar)) WEVpy (Ba(z,Ar))
ST (Bd(:):, 2Ar)),

where we used Lemma 6.10 (L, < o0) in the last inequality. Combining with Lemma
6.24, we get the desired Poincaré inequality (9.9). O

The next two propositions obtain bounds on p-energy measure expressed using the
underlying metric and measure. By using (9.9) instead of (6.34) in the proof of Lemma 7.3,
we immediately achieve the following ‘local behavior of p-energy in terms of (fractional)
Korevaar—Schoen expression’.

Proposition 9.18. In the same setting of Theorem 9.17, there exists a constant C' > 0

(depending only on the constant associated with Assumption 8.13) such that for any Borel
set U of K and f € F,

limsup/ ]éd o |f(x);—/Bf(y)vgm(dy)m(dm) < CT(f)(U). (9.11)

rl0
Proof. The same argument using a maximal r-net N,.(C U) of U to get (7.2) yields
p
‘r P
U J Bgy(z,r) r yGNr

Since ZyeN,. L,24pr) S Luna,, by the metric doubling property, we get (9.11). OJ

We record a converse bound to the previous result (A corresponding bound in the case
p = 2 plays an important role in [Mur23+]).

Proposition 9.19. In the same setting of Theorem 9.17, there exists a constant C' > 0

(depending only on the constant associated with Assumption 8.13) such that for any Borel
set U of K and [ € F,

L,(f)(U) < Clim liminf/U ]i ( )Mm(dy)m(dx). (9.12)

510 rl0 rp

Proof. Let U € B(K), 6 > 0 and f € F,. Then Lemma 7.4 tells us that

n—00 rl0

p
lim sup E(V o (f) < Colim mf/ ][ (y)| m(dy)m(dx), (9.13)
Us J By(x,r)
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where Cjy > 0 is independent of U, 4, f. Let m € N be large enough so that UweV ) € Us
(R;™*1 < § is enough). Then we see that

Lp(NH(U) < my(f) U Yo | = Z PuwEp(f o Fiy)

wWEVim (U) weVm (U)
Y n+l
Z P Lim 5( (foFy,) = Z lim Sp Jw(w))(f)7
wEVm(U nroo WV (U) "7

where V' and [(w) are the same as in the proof of Theorem 9.17. For w € V,,(U), we
observe that V" C Vi) (Us). Therefore,

L,(f)(U) < liminf Z 5 nH D(f) < hmsupg ()

n—o0
wEVm (U) neo

Combining with (9.13) for Us, we obtain (9.12). O

Remark 9.20. Once we get energy measures and Poincaré inequality, minor modifications
of the proof of [Mur23+, Theorem 2.9] shows the following result: for any uniform domain
U of K in the sense of [Mur23+, Definition 2.3] and f € F,, we have I',(f)(0U) =

10 Self-similar energies on the Sierpinski carpet

10.1 Checking all assumptions

In the rest of the paper, we focus on the planar standard Sierpinski carpet and we will
prove the main results.

First, recall the definition of the Sierpinski carpet.
Definition 10.1 (Planar Sierpiniski carpet). (1) Let a. = 3, N, = 8,5 = {1,..., N}
and define ¢; € R? as
¢ =(-1,-1)=—g5, ¢ =1(0,-1)=—gs,
g3 =(L—-1)=—q7, q=(1,0)=—gs.

Let f;: R? — R?4 € S denote the similitude f;(z) = a;'(x — ¢;) + ¢;. Let K be
the unique non-empty compact subset such that K = J,c¢ fi(K) and set F; = f;| K
Let d denote the normalized Euclidean metric on K so that diam(K,d) = 1. The

self-similar structure (K, S, {F;}ics) is called the planar standard Sierpinski carpet
(PSC for short). Let m be the self-similar measure with weight (1/N,,...,1/N,).

(2) Let
O, ={-1}x[-1,1], fr=[-1,1x{1}, ‘r={1}x[-1,1], ¥¢g=[-1,1]x{-1},

so that V() = 8[—1, 1]2 == EL UET U ER U fB.
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(3) Let Dy be the dihedral group of order 8 (the symmetry of the square), i.e.

Dy ={Ry,Sy | k=0,1,2,3},

where i i i i
R cos Tﬂ —sin 7“ and S cos 7” sin ?’T
k= . 11 k = .
sin %” CoS %“ sin %’r — COoS %”

Then it is clear that ®(K) = K for all & € D,.

Hereafter, we let (K, S, {F;}ics) be PSC, d be the normalized metric, and m be the

self-similar measure on K as given in Definition 10.1. Let us fix a partition {[?w}wEW as

constructed in Section 8. Note that intgz K, C I?w C K, for all w € W,. To construct
a ‘canonical’ p-energy on PSC, we need to check Assumption 8.13, especially ‘Analytic
conditions’, and (8.6). Recall that the approximating graphs {G,, = (V,,, E,,) }nen in (8.9)
are given by

Vo=W,=5", E,={{v,u} eV, xV,|v#wK,NK,#0},

and that M, : LP(K,m) — R"" in (6.8) is defined as
M, f(w) =1 fdm for fe€ LP(K,m) and w € W,,.
KU)

The following theorem is the main result of this subsection whose proof is divided into
several steps.

Theorem 10.2. PSC satisfies Assumption 8.13 for all p € (1,00), that is,

(a) (K,d,m) is de-Ahlfors reqular, where dg = log N, /log a, = log8/log3. In addition,
the sequence of graphs {G,, = (V,., Ey) tnen equipped with the projective map m, x (1 <
k < n), which is defined as the map V,, D wiwsy -+ w, — wiws - - wy, = [w]y € Vi,
is as-scaled and a,-compatible with (K, d).

(b) The sequence {Gy,}nen satisfies U-PL,(dy(p)) and U-CF,(0,dy(p)) for some ¥ €
(0, 1], where dy(p) = log N.p(p)/log a. and p(p) € (0,00) is given later (see (10.3)).

(c) fok, € Fp for alli € S and f € F,. Furthermore, the semi-norm |f|z =
1/
<af(dw(p)7df)8f”(Mnf)) ’ satisfies the following: there exists C' > 1 such that for
alln e N and f € F,

CHf%, < p)" D If o Fult, < CIff% .

’LUGWTL

We start by observing the geometry of PSC, namely Theorem 10.2(a). The next
proposition gives a collection of geometric properties of PSC.
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Proposition 10.3. (i) Foralln € Z>q and distinct v,w € W,,, we have m(K,,) = N "
and m(K, N K,) =0.

(ii) There ezists a constant C' > 1 (depending only on a.) such that the following hold:
for alln € Z>o and w € W,,, there exists v € K,, satisfying

By(x,C ta;™) C K, C By(x,Ca.™).
In particular, (6.7) holds.

(iii) There exists Car depending only on a, and N, such that
Conr™ <m(By(x,r)) < Carr™  forallz € K, r € (0,1],
i.e., (K,d,m) is de-Ahlfors regular.

(iv) The sequence of graph {G,}nen equipped with the projective maps {m,i | n,k €
N,k < n} is a.-scaled.

(v) The sequence of graph {Gp}nen equipped with the projective maps {m,x | n,k €
N,k < n} is a,-compatible.

(vi) For any ® € Dy, there exists a bijection 1¢: W, — W, such that |re(w)| = w| and
CID(Kw) = Kryw) for any w € W,. Moreover, Ug,, = F;lw) odokF, € Dy.

7 (
In particular, Theorem 10.2(a) holds.

Proof. The properties (ii), (vi) are easy and (iii) is a consequence of (i), (iii). So we will
prove (i), (iv) and (v).
(i) This follows from V, # K and Proposition 8.10.

(iv) Recall that d,, denotes the graph distance of G,,. Let n,m € N and w € W,,. Let
cn(w) = wl5" ! € Vi Then it is clear that By, ,,, (ca(w),a?™") C 7, Ly m(w). (The set
Trtmam (W) is the same as S™(w) in [Kig20, Definition 3.5.3(1)].) Since we can easily see
that diam (7, {,, (W), dpim) < 247, we obtain m,{,, .(w) € By,,,. (ca(w),3al). Hence

we have (6.3) with 4; = 3V a,. Also, the bound on the diameter of 7, ,, () implies
(6.4) with A = 4. This completes the proof.

(v) Note that the conditions in Definition 6.4(ii), (iii) are already verified. Let p,(v) =
F,(Fi(1,1)) € K, for n € N and v € V,,. Then the condition in Definition 6.4(iv) is
evident. So we will prove the Hélder comparison (6.5). Let v,w € V,, with v # w. Pick a
path [2(0),...,2(l)] in G, such that {z(0),2(])} = {v,w} and | < d,(v,w). Then

l
d(pn(’l}),pn(w)) S diam (U Kz(j)7 d) S 2la;n’
§=0

which implies the upper bound in (6.5) (with C' = 2).
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The desired lower bound requires a geometric observation. Let m;: R* — R (i = 1,2)
denote the projection map of R? onto i-th coordinate, i.e. m;(xy,1s) = x; for (1, 15) € R2
Then we observe that

d
n(,l)? ’LU) . za*—n—17
2

which implies d(p,(v), pn(w)) > (2v/2a,)"'d, (v, w)a;™. Therefore, (6.5) holds with C' =
2\/5(1*. O

1 (pn (V) = m1(Pa (W) V a2 (P (V) = ma(pa(w))] =

We next move to Theorem 10.2(b). Thanks to Propositions 6.8 and 6.12, checking
U-capp,<(dw(p)) and U-BCL™(dy — dy(p)) is enough for this purpose. The planarity is
crucial to ensure df — dy(p) < 1 for all p € (1,00). We start with the definition of dy(p)
which is the quantity called p-walk dimension of PSC (see Definition 10.6). This value is
closely related with the following behavior of discrete p-capacities.

Theorem 10.4 ([BK13, Lemma 4.4]). Let p € [1,00). Define

c™ = sup capzf’"+m (Tt (W), Vit \ T (Ba,, (0, 2))).- (10.1)

D n+m,m
meN,weVy,

Then there ezists a constant C > 1 (depending only on p, L. ) such that

ct-ciclm < clrm < - efmel™  for alln,m € N. (10.2)
In particular, the limit
Tim (C™) ™" = p(p) € (0, 00) (10.3)
exists, and
Clpp)™" < C]g”) < Cp(p)™™ foralln e N. (10.4)

We call p(p) the p-scaling factor of PSC.

Remark 10.5. (1) The work [BK13] has dealt with a slightly different version of e,

but this is not an issue because the value M, is uniformly comparable with CZ()”) (cf.
Lemma 2.12, Lemma 10.9 and the last line in [BK13, page 66]).

(2) In [Kig20], Kigami has introduced refined versions of (10.1). See also the val-
ues Enpn(w, T M), Enipmmn and Enppm, which are called conductance constants, in

[Kig23]. Our C,S") corresponds to & ,,, in his notation.
(3) The sub-multiplicative inequality in (10.2):
n+m n m
cimtm < ¢ -cel™  for all n,m € N,

is shown in various general frameworks by using combinatorial modulus (see [BK13,
Proposition 3.6], [CP13, Lemma 3.7] and [Kig20, Lemma 4.9.3] for example). It
is rather difficult to show the converse, namely the super-multiplicative inequality.

Indeed, the argument in [BK13, Lemma 4.4] requires the planarity and symmetries
of PSC.
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Definition 10.6. Let p > 1. Define

log N..p(p)

dw(p) = log a

(10.5)

We call dy,(p) the p-walk dimension of PSC.
The next proposition is a collection of properties concerning ‘analytic conditions’.
Proposition 10.7. (i) dif — dy(p) <1 for allp € [1,0).
(ii) The sequence {Gy,}nen satisfies U-cap, <(dy(p)) for all p € [1,00).
(iii) The sequence {Gy}nen satisfies U-BCL,(dr — dy(p)) for all p € (1,00).
The Loewner type condition (iii) requires a few steps, so we first prove (i) and (ii).
Proof of Proposition 10.7(i) and (ii). (i) Since d; < 2 and d,(p) > p (see [Shi-+, Proposi-
tion 3.5 or [Kig20, Lemma 4.6.15]), we have df — dy(p) <2 —p <1 for all p > 1.

(ii) By virtue of a similar argument to the last part in Lemma 5.7, it is enough to
estimate discrete p-capacities for large enough R, say R > 2a, + 1. Let n € N, x € V,
and R € [2a, + 1,diam(G,,)). Let n(R) € 7Z be the unique integer such that

2a ) <R < 2a? n(R)+1

Then 1 < n(R) < n since R > 2a, and R < 2a’.

For each w € Vyg), let ¢,: V, — [0,1] satisfy gpw‘sn ") = 1, supp[<p ] C
Usevs ity oy 5™ (0) and EF7 (0w) = capy o (8™ (w), V\S" " By, (w, 2))).
Let

N(z,R) = {w € Vyr) | Ba,(z,R) N S (w) #£ 0}

Since G,, is metric doubling and its doubling constant depends only on a, V,, we easily see
that #N (z, R) < 1, where the bound also depends only on a, N,. Let ¢ = Zwe/\/(z R) Pu-

Then gp’Bdn(%R) = 1, supp[y] € By, (x,2R) and E"(p) < (#N(x,r))p_lcz()") < p(p)™™.
Since p(p)™™" = = (P)) < #By, (z, R)/R™®)  we get U-cap, < (dy(p)). O

Let us introduce some useful notations and a new graph approximation as a prepara-
tion to prove U-BCL,(d; — dy(p)). Recall that

L,:= sup degg (w) <8
neN,weVy,

We also define
Ef = {{v,w} € E, | v # w, #(K, N K,) > 2},

and G# = (V,,, E¥) (see Figure 10.1). We use d# to denote the graph distances of G7#.
Then d#(v,w) < 2 for all {v,w} € E, \ E¥. Therefore, by Proposition A.4, discrete

p-energies Sf’” and 5PG” are uniformly comparable. In particular, we obtain the following
comparability of discrete p-capacity and p-modulus.
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Figure 10.1: The graphs G; (left) and G (right)

Proposition 10.8. Let p > 0. Then there ezists a constant C' > 1 (depending only on
p, L) such that the following hold.

(i) For any n € N and non-empty disjoint subsets A, B of V,,,
C'_lcapfﬁ(A,B) <cap,"(4,B) < C’capgﬁ(A,B).
(ii) For any n € N and non-empty disjoint subsets A, B of V,,
C~'ModS* (A, B) < Mod®" (A, B) < CModS* (A, B).

Proof. The statement (i) is immediate from Proposition A.4. The second assertion follows
from (i) and Lemma 2.12. O

We next consider the ‘p-conductance between opposite faces’ whose behavior is the
same as CZ(;"). For A C K and n € N, define

Wo[A] = {w e W, | K,NA% 0},

Lemma 10.9 ([Shi+, Lemma 4.13]). There exists a constant C > 1 depending only on
p, L, such that

C™'p(p)™" < Mody™ (W[0], Walts]) < Cp(p)™  for alln € N,
whenever {l1,ls} = {ly,lr} or {l1,0} = {lr,(p}.

The following notation and result are needed to describe ‘local symmetry’ of PSC. For
{v,w} € E# define
lyw = Ky N Ky,

We let R, : R? = R? be the reflection in the line containing Cy -

Proposition 10.10. For any {v,w} € E,,, there exists a bijection 7, : U, cn S"({v, w}) —
Unen S"({v,w}) such that Ryw(K.) = K ) for all z € |,y S"({v,w}), where
S"({v,w}) = S"(v) U S™(w) = {z € Whan | [2]lm € {v,w}}. Moreover, 7,,(S"(v)) =

S™(w) for alln € N.
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Proof. We observe that for any {v,w} € E,, there exists a unique ® € D, such that
Fyo®o0F;'=7R,, on K,. Then it is easy to see that

Tow(2) = {wﬂb(zmﬂ ) e =0, for z € U (S™(v) U S™(w)),

VT (Zma1 -+~ 2) if 2], = w, et

is the map satisfying the required properties. O

We recall a useful fact on combinatorial modulus due to Kigami.

Lemma 10.11 ([Kig23, Lemma C.4]). Let p > 0. Let G; = (Vi, E;) (i = 1,2) be two
graphs with deg(G;) < oo and let H: Vi — 22 be a function such that #H (v) < oo for
all v € V. Let ©1,04 be two path families of paths in G, Gy respectively such that for
each 0 € Oy, there exists 0' € Oy such that 0" C |J,co H(v). Then

Mod{* (©;) < C’(sup #H(U))p sup #{v € Vi | v € H(v)}ModS?*(6s). (10.6)

veVy v'eVa

where C' > 0 is a constant depending only on p,deg(Gy) and deg(G3).

With these preparations, we now check U-BCL,(d; — dy(p)) for PSC. The following
lemma is a key ingredient.

Lemma 10.12. Let p > 1 and let L > 1. There exists a constant ¢ > 0 (depending
only on p, L, L) such that the following hold: for any k,m € N and v,w € V,, with
dp(v,w) < L,

Modf””*’“ ({6 € Path(S*(v), S¥(w); Gipm) | diam(6, dyrm) < 2Lak}) > cp(p)~*.  (10.7)

Proof. The idea goes back to [BK13, Lemma 4.4]. (See also [Kig23, Theorem 4.8].) We
first note that

Ok (v, w) == {0 € Path(S*(v), S*(w); Giym) | diam(0, dyr) < 2La*} # 0

since diam(S*(z2), dy1py) < 2a¥ for all k € N and z € W.,.

If v = w, then Of(v,w) contains
{[vz(0),...,vz(1)] | [2(0), ..., 2(1)] € Path(Wy[(L], Wi [lr]; Gy) }-
Therefore, by Lemmas 2.3(ii) and 10.9, we get
Mod*+ (O (v, w)) > C~p(p)~*,

where C' > 1 is the same constant as in Lemma 10.9.
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For v, w € V,, with v # w, we fix a simple path v = [2(0), z(1),..., z(])] in G# (NOT
in G,,!) such that 2(0) = v and 2(!) = w. We will prove

p(p)~* < Mody*+m ({0 € (v, w) ‘ 6 C Lljosk(z(j))}>.

For ease of notation, set

Ok (v, w;7y) = {9 € Path(S*(v), S*(w); Grym)

6 C LiJSk(z(j))}

For j € {0,...,1}, we inductively define H,;): Vi — 2"%+m in the following manner: define
H,0)(2) = {2(0) - 2,2(0) - 75,(2)} for x € Vj;

and
H.(j11)(2) = 7oy 241y (Ha)(2)) 5

where 7,y .11y 1 S*({2()), 2(j+1)}) = S¥({2(j), 2(j+1)}) is the bijection in Proposition
10.10. (Recall that Sy € Dy is the reflection in the line {y = z}.) We now define
H: Vi — 2%m by

Then we claim the following;:

For any 6 € Path(W,[01], Wi [(r]; Gi), there exists a path 6 € Oy (v, w;7)
such that 6’ C U H(z). (10.8)

z€0

Since T, (Wi[l1]) = Wi[ls] and 7, (Wy[lr]) = Wi[lr], we observe that 7g,(6) is a path
in Gy, joining Wy[lg] and Wi[lr] for any 6 € Path (Wk[éL],Wk[fR];Gk). Hence, for any
J€{0,...,1} and ¢1,¢, € {{r,, (g, g, {1} with €1 # ly, H.(;)(0) contains a path joining

{z € Sk(Z(j)) | K.N/t # (7)} and {z € Sk(z(j)) ’ K. Nty # @}.
Combining with the fact that
{ZaTz(j),z(j—&—l)(Z)} S Ek+m fOI' all z & (Sk(2<j)) U Sk(Z(j + 1))) N Wk+m[€z(j),z(j+1)]7

we obtain (10.8) (See also Figure 10.2) .
Lemma 10.11 together with (10.8) yields

ModS* (W [0L], Wi[lr]) < 2PT1C" - ModSr+m (O (v, w; 7)),
14 P

where C” > 0 is the same constant as in Lemma 10.11. Combining with Lemma 10.9, we
obtain Modg”“+m (Bk(v,w;7)) Z plp)~".
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Sk (’U)\

Figure 10.2: The subset | J,., H(z) drawn in red. Each big box corresponds to a copy of
Gk in Gk+m.

Since diam(Sk(z), dk+k|) < 2a* for all z € W, and k € N, we have
Or(v,w;v) C {0 € Path(S*(v), S*(w); i) | diam(8, dyim) < 2lal }.
We obtain the required estimate by choosing a path v with [ € [d,, (v, w), L] and applying
Lemma 2.3(ii). O
Combining with a geometric observation, we immediately obtain U-BCL,(d; — d(p)).

Proof of Proposition 10.7(iii). Let K > 0,n € Nand 1 < R < diam(G,,). Let B; (i = 1,2)
be balls in G,, with radii R such that disty, (B;, B2) < kR. Choose n(R) € Z so that

2a" P < R < 2q"BFL,

By R < diam(G,) and diam(G,,) < 2a?, we then have n > n(R).
First, we suppose R > 3. Then n(R) > 0. It is a simple observation that there exist
w(1), w(2) € V,—p(r) such that

‘SMB) (w(i)) € By and  ‘S™(w(i)) contains the center of B;" for each i = 1,2.
Then, we have

distq, (S”(R) (w(1)), S"H (w(2))> <R+KR+R<202+r)a, - a"®).
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This together with a similar argument to Proposition 10.3(v) implies d,,_(r)(w(1),w(2)) <
2-2[(2+ Kk)a,| = L(k). By Lemmas 2.3(ii) and 10.12,

Mod;" ({0 € Path(By, By; G,) | diam(6,d,,) < L(k)R})

> Mod§” ({0 € Path (5" (w(1)), $"™ (w(2)); G,) | diam(6, dy) < L(x)R})

> Modf’"({e € Path (" (w(1)), 5" (w(2)); G,) | diam(0, d,) < 2L(k)a2 ™ })

> CLp(p)” n(B) — o=l (di—du(p)) > C1(2a,) dtdwp) . Ri—d w(p), (10.9)

)
)

where C' > 0 is the same constant as in (10.7) (with L = L(k)).
Let us consider the case 1 < R < 3 to complete the proof. By (2.2) in Lemma 2.4,

ModS" ({0 € Path(By, Bx; G,,) | diam(6, d,) < L(x)R}) > (L(v)R)"*
> 3—PL(H>1—PRdf—dw(P)7

where we used df — dy(p) < 1 (Proposition 10.7(i)) and R < 3 in the last inequality. [

Once we know U-BCL,(df —d,(p)) for PSC (and observe some fundamental geometric
conditions), we can apply Theorem 6.22 so that we get 5'11; on PSC. Our desired self-similar
p-energy &£, will be obtained by applying Theorem 8.12 to 55 . The important hypothesis
(8.6) in Theorem 8.12 will be verified with the help of an wunfolding argument, which
is heavily inspired by [Hinl3, subsection 5.1]. In order to get a self-similar p-energy by
applying Corollary 8.14, the remaining condition we have to check is the pre-self-similarity
condition (PSS) in Theorem 8.12, i.e., there exists C' > 1 such that

A <o) Y f o Fuly < C|ff forany f € F, and n € N. (10.10)

weWn,

In the rest of this subsection, we will prove the following stronger condition (PSS’) in-
cluding the self-similarity of the domain:

(PSS’) (10.10) holds and F, NC(K) ={f € C(K) | fo F; € F, NC(K) for any i € S}.
Proposition 10.13. PSC satisfies (PSS’) for any p € (1,00).

The proof of the above proposition is long, so we will divide into several steps. First,
we prove the following easy bound:

(0)" > [foFuls SIfl%, for any f € LP(K,m). (10.11)

wEWn

Here we regard ||z as a [0,00]-valued functional defined on LP(K,m), which satisfies
fl, < oo if and only if f € F,.
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Proof of (10.11). Since m is the self-similar measure with equal weight, we have M, (f o
F,)(v) = Myymf(wov) for n,m € N and w € V,,,, v € V,,. Therefore,

P Y ES(foFu) =Y Euin () < EFr(f),

weWn weWn,

which together with the weak monotonicity (Theorem 6.13) implies (10.11). O]

The reverse inequality is much harder and requires the notion of unfolding of functions.
We will use a modified version of the argument using unfolding operators in [Hinl3,
subsection 5.1] to show the self-similarity of the domain and the converse estimate:

A% < p(p)" Z |f o Ful%, forany f € 75, (10.12)

wEWn
where we set Fy = {f € C(K) | fo F; € F,NC(K) for any i € S}.

Definition 10.14 (Folding maps and unfolding operators). (1) Forn € N,let ¢,,: R —
[0,00) be the periodic function with period 4a,™ such that

5.(t) = t+1 for t € [-1,—1+4 2a;"],
U =t —1+4a;™ forte[—142a;", —1+4a;"].
Define ¢™: [—~1,1]? — [0,2a;"]? by
P (@, y) = (Bal2), Buly))  for (z,y) € [-1,1]%,
For w € V,,, define ¢,,: K — K, by

ouw(r) = (go["”Kw)_l (p"(x)) forz € K.

(2) For {v,w} € E¥, let H,,, be the line containing ¢, ,,. Then H,,, splits R? into the
two closed half spaces, which are denoted by G, ,, and G, and satisty K, C G,
and K,, € G,,. We remark that the order of v and w is important in the notations

Gv,w; Gw,v~

(3) For f € LP(K,m) and w € W, define Z,,(f) = f o v,. The map Z,, is called an
unfolding operator. For {v,w} € E¥, define E,,,(f) = Z,(f)1q,.,

Remark 10.15. For w € W,, define

N(w) = = ui and {v,w} € B} U {w}.
Then gpw‘ o) satisfies
‘ ( ) T ifz e Kw,
w r) =
Pl Ky Row(z) if 2 € K, for some v € N(w) \ {w}.

For other basic properties of ¢,,, we refer to [BBKT, Lemma 2.13].
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To provide a quantitative (localized) energy estimate for =, (f) by following [Hin13], we
make the help of Korevaar—Schoen type bounds given in Section 7. (Note that we cannot
use results in Section 9.4 because we have no energy measures at this stage.) Recall that,
by Theorem 7.1, there exists a constant C' > 1 such that, for any f € LP(K,m),

Cfty, < Tyt // f(x) = f ) m(dz)m(dy) < CIfl5.
i {(z,y)eK x K|d(z,y)<r}
(10.13)

Let us introduce some notations for simplicity. For f € LP(K, m) and § > 0, define
Bpalf) = a7 ] (@) = S ) m(dz)m(dy)
{(z,y)eKXK|d(z,y)<d}
— g | (@)~ F@)P m @ m(ddy).
{(z,y)eKxK|d(xz,y)<d}
For A, A € B(K), we also define

Eys(f; Av, Ag) = 5~ in) // (@) — ) m(dz)m(dy).

{(z,y)€A1 x Az|d(z,y)<d}

For simplicity, we write E, ;(f; A) for E,s(f; A, A). Since m is the self-similar measure
with weight (a;%, ..., a;%), we have

E,s(f; Kyw) = p(p)" Epars(f o F,) for any w € V,.

(Note that p(p)ra; ™ ®) — g—2nd: ) Additionally, we have 1,0k, (Row)sm(ds) =
1x,ux,m(dx) for any {v,w} € E¥.

The following estimate on localized energies of =,(f) is a key ingredient.

Lemma 10.16. Letn € N, z € W,,, 6 > 0 and f € LP(K,m). Then, for any {v,w} € E,,
Eps(Z=(f); Ko Ku) < By (E:(f)i Ko) < p(0)" Epans(FZf).
In particular, there exists a constant C' > 0 such that
B < COHWp(p)IF: I for any f € LP(K,m), n € N and 2 € W,

Proof. This lemma corresponds to [Hinl3, Corollary 5.4]. For v,z € W,,, we see that

EP,& (EZ(f)7 Kv)

= ¢ () // (FrfoFtow.)(@) = (FIf o Fo' o g.)(y)] m(dx)m(dy)
{(z,y) €Ky x Ky ld(z,y) <5}

— g | FA (P @) = P2 () md)(dy)
{(z,y)eK.xK.|d(z,y)<d}

= Pﬁ(f; Kz) = p(p>nEp,afé<F,:f)a
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where we used [BBKT, (2.22)] (with v = p|,. ) in the second equality. Furthermore,

Ep,é (Ez(f)7 KU> Kw)

= g~ et ) // |(f o 92) (@) = (f o9z 0 0,) ()| m(dz)m(dy)
{(z,y) Ky X Kuwl|d(z,y)<d}

=g | E- (D) — ED) (2ulo)| mldrym(dy)
{(z,y) €Ky x Ky |d(x,y) <}

<g- e |f =L (1)(@) ~ ZO) m{demldy) = Bya(-(7): K.
{(zy) e Ko x Kold(z,y) <6}

where we used (¢, 0 v,)(y) = ¢.(y) for y € K, in the first identity, d(z, p,(y)) < d(x,y)
for (x,y) € K, x K,, in the fourth line.

Next we give an estimate for [=,(f)| 7 Let n € Nand z € W,. For small enough
0 > 0, we observe that

p5 ~—'z Z 6»—42 Z KU,K )

veW, {v,w}eE,

Therefore, we have Ej,5(Z.(f)) < (1+ La)p(p)" > pew,, Epans(F} f), which implies
o(5-1)) S plo)" T (2 )W)

Combining with (10.13), we get our assertion. O

We also need the following approximation.

Lemma 10.17. Let F' be a non-empty subset of K. Suppose that f € F,NC(K) satisfies
f(x) =0 for any x € F. Then there ezist f, € F, NC(K) (n € N) such that supp[f,] C
K\ F for alln € N and f, converges in F, to f as n — oo.

Proof. We first consider the case that f is non-negative, i.e., let us suppose that f &
F, NC(K) satisfies f| »=0and f > 0. Since f is uniformly continuous, for any n € N
there exists r,, > 0 such that

1
— i 11 F, = B .
f(z) < - orall z € F, ngJF a(x, )

Define f,, € F, NC(K) by
fn= (f—n_l) V0.

Then we immediately have f,(x) = 0 for x € F,, and supp[f,,] C K \ F. Furthermore, by
Theorem 6.22(ii) (or (10.13)), we have

‘fn|].‘p < C’|f]fp for all n > 1,
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where C' is independent of f and n. It is also clear that sup,cp |[f(x) — fu(z) — 0 as
n — oo and hence ||f — f,||;» — 0. Since {f,},>1 is a bounded sequence in F,, there
exists a subsequence {f,, }x>1 such that f,, converges weakly in F, to f as k — oo.
Applying Mazur’s lemma, we get ¢, € F, NC(K) (n > 1) such that supp[g,] C K \ F and
1/ = gnllz, — 0, which proves our assertion.

For general f € F,NC(K) satisfying f | » = 0, we obtain the assertion by applying the
above result for f*. O

Next we prove a Fatou type lemma for localized Korevaar—Schoen energies.

Lemma 10.18. Let f, fy € F, (k € N) such that fi, converges in LP(K,m) to f as k — oo.
Suppose supyey |fil, < 00. Then, for anyn € N and {v,w} € E,,

limsup E, 5(f; Ky, K,,) < liminflimsup E, 5(fn; Ky, Ky).
510 n—00 510

Proof. First, we prove the following claim: for any g¢,¢9x € F,(k € N) such that
limg o0 g — gk|fp = 0, we have

lim %Ep,é(gk; K, K,) = %Em(g; K,, K,). (10.14)

k—o0

This is immediate since
lim : U _ Tim . p| < lim — O 1/p
lgﬂlep,é(gavaKw) lgﬁ]lEp,é(gkaKmKw) = lgﬁ)lEp,é(g gn7Kv7Kw)

<l E,;(9 = 90)"" < lg — 94l 5, -
510 P
The rest of the proof is a standard argument using Mazur’s lemma (Lemma A.2).
Let fi € F,(k € N) be a sequence converging in L” to some f € F,. By extracting a
subsequence { fi }r if necessary, we can assume that
lim lim B, (fi; Ky, Kp) = lim lim B, 5( fi; Ky, Ko).-
k' —o0 610 oo 640
Since F,, is reflexive, there exists a subsequence, which is also denoted by {fi }x, such
that f,, converges weakly in F, to f. By Mazur’s lemma, there exist finite subset I; C

[7,00) NN (j € N) and

{A,(j)

such that g; == > .cp )\,(ﬁj;)fk/ € F, (j € N) satisfies [|f — gjl| - — 0 as j — oo. By the
triangle inequality of LP-norm, we see that

A > 0for k€ I and > MY = 1}
JEN

k}/EIj

T B, 5(9;: K. )7 <y A;J;)%Epﬁ(fk/;m,f(w)”p.
k’GI]'
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Letting j — oo and using (10.14), we obtain
m . p < lim T . 1/p
lélﬁ)lEp,é(f)KvaKw) = kll_rgolging,&(fk 7KvaKw) ’

proving our assertion. [

Now we can estimate the unfolding map =, ,,(f) for {v,w} € E¥.

Lemma 10.19. Letn € N, {v,w} € E¥ and f € .7-"1;9. Iff|£ =0, then for any z € W,
with K, C G, we have 7
lgﬁ)l Ep,5 (:v,w(f); Kva Kz) = 0.

Proof. This lemma corresponds to a weaker version of [Hinl3, Lemma 5.6]. Let n € N
and {v,w} € Ef. Let f € F} satisfy f‘ew = 0. Note that =,(f) € F,NC(K) by Lemma
10.16. Applying Lemma 10.17 for Z,(f), we get a sequence f; € F,NC(K)(k € N)
such that supp[fx] € K \ ¢, and fi converges in F, to Z,(f). Set g = Z,(fr) and
hi == Zy0(fr) for k > 1. For ¢ < disty(H, ., supp|gx]), we see that

Eps(h) = Eps(ge; K N Gow) < Eps(g)-
Combining with Lemma 10.16 and (10.13), we obtain
s, S T Eyain) < T Bpo() < CORV)po)" 2 il
By (10.11), there exists a constant C’ > 0 without depending on n, k such that
il < C"(F#W) fl%,

In particular, for each fixed n € N, {h}x>1 is bounded in F,. Note that hj converges
in LP(K,m) to Z,.,(f) as k — oo. Hence, by Lemma 10.18, for any z € V,, such that
K. C Gy

EEp,J(Euw(f); Kva Kz) < h_m mEp,&(hk; Kva Kz)

510 b o0 010
If § < disty(Hyw,supplgr]), then we have Ej,s(hg; Ky, K.) = 0. Therefore, we obtain
lims o Ep5(Zp0(f); Ky, K,) = 0. This completes the proof. O

Finally, we can prove the bound (10.12) and complete the proof of Proposition 10.13.

Proof of Proposition 10.15. The estimate (10.11) is already proved. In particular, F, =
{feF | foF, e F,¥ie S} Toprove (10.12), let f € F. Let us fix n € N. Then, for
small enough 6 > 0, we observe that

Eos(f) =Y Eps(fiKo)+ Y Eps(fi Ko, Ky). (10.15)

weWn, {v,w}eE,
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We obtain upper bounds for E, 5(f; K,, K,,) by dividing into the following two cases.
Case 1: {v,w} € E#; Define h; € C(K) (i = 0,1) by

ho =Z,(f) and hy =Z,,(f — ho).

It is easy to see that f|, UK. = (ho + h1)| Uk, and that (f —ho)|, = 0. Since

hy € F, NC(K) by Lemma 10.16 and f € F7, it is also immediate that f — hy € F.
Hence, by Lemmas 10.16 and 10.19,

%Ep,zs(f; Kva Kw) < 2p—1 %(Epﬁ(ho; Km Kw) + Ep,é(hl; Kva Kw))
< 27 p(p)" lim Eps(E ).
Case 2: {v,w} € E, \ E¥; Clearly, there exists 2(i) € V,, (i = 1,2, 3) such that {z(1), 2(3)} =

{v,w}, {z(i),2(i+ 1)} € EF for i =1,2 and K,;) € G.(j)..(2) for {i,7} = {1,3}. Now we
define h; € C(K) (i = 0,1,2) by

ho = Za@)(f); = Zayz0)(f —ho) and hy = Zaz)20)(f = ho)-

Then we have f‘u3:1Kz<i) = (ho+h1 + h2>‘u3:1Kz(i) and (f — ho) =

Hence, by Lemmas 10.16 and 10.19,

€2(1),2(2)V2(2),2(3)

2
T . 171 .
im B,(f; Ko, Ku) <37 155120 Eys(hj; Ky, Ku)
]:
< SP_IP(p)n%EM (F;(z)f)'

From (10.15) and above observations, we obtain

i < 2 n 1o *
lgﬁ)l Ep,é(f) = (1 + L*)p<p) & l;ﬂ;l EP,5(FU f)7

which together with (10.13) proves (10.12). Note that (10.12) implies 75 = F, N C(K).
We complete the proof. O

Proof of Theorem 10.2. (a) and (c) are proved in Proposition 10.3 and 10.13 respectively.
(b) follows from Propositions 10.7, 6.8 and 6.12. O

We are now ready to prove the first four main results stated in the introduction
(Theorems 1.1, 1.2, 1.4 and 1.5).

Proof of Theorem 1.1. Theorem 10.2 implies Assumptions 6.15 and 8.13. Therefore by
Theorem 6.17 we obtain the conclusions (i) and (ii). The existence of self-similar energy
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with the desired properties follows from Corollary 8.14 except for properties (iv), (v), (vi),
(vii) and (ix).

The properties (iv), (v) and (ix) are shown by choosing suitable closed invariant sub-
cones. Indeed, we can show that

E: F,— [0,00), EYP is a semi-norm and for any f,g € F,,
U™ =S E | E(f+ )V D 4 E(f — g) ) <2(E()) +E9) Vi pe (1,2, ¢,
E(f+9) +E(f —g) <2EHYED + E(gV D) if p € (2,00)

yhe — g E: F,—[0,00), EYP is a semi-norm and
P E(po f) <E&(f) for any f € F, and 1-Lipschitz function ¢ € C(K) [’
and
Yvm— ) g E: F,—[0,00), EVYP is a semi-norm and
P E(fod)=E&(f) for any f € F, and ® € D,

are closed invariant sub-cones. Here we only prove S, (Z/{;ym) C U™ Let & € Dy and
f € Fp. Note that f o ® € F, since £ (f o @) = E77(f). For any E € U™, by virtue of
Proposition 10.3(vi),

S,E(fo®) =p(p)Y E(fo®oF)=p(p)> E(fo Fryw o Usw)

€S €S
=p(p) Y_E(f 0 Fryw) = p(p) _E(f 0 F}) = S,E(f),
€S JjES

which shows S,E € Z/{;ym.

Since &) € U™ NUSP NUY™ by Theorem 6.22, we have £, € U™ NUP N U™
(Theorem 8.12(iii)).

(vi) (spectral gap) This follows from applying Lemma 6.24 with r = 2 diam(K, d).

(vii) (strong locality) This is a consequence of the self-similarity (viii). Set A; =
supp,,|f] and Ay := supp,,[g — alk]. Since disty(A;, A2) > 0, we can choose N € N so
that sup,,> x ,ew, diam(K,,d) < distq(A;, Az). Then, for any n > N,

5p(f—i—g) :5p(f—|—g—a]lK) = p(p)" Z 8(f°Fw+(9_a]lK)on)

wGWn

=p()" Y Y. E(foFu+(g—alk)oF,)

1€{1,2} weWy,; KwNA; #0

=p)" Y &UeF)+p" Y. &(lg—alk)oF,)

wWEW,; KyyNAL#£D WEWp; KyyNAsZ£D
= p(p)" Z Ep(foFy)+pp)" Z gp((g —alg)o Fw) =& (f) + &(9),
’wEWn UJEWn
which is our assertion. O
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Proof of Theorem 1.2. The existence of energy measures follows from the construction
described after Assumption 9.1, which in turn follows from Theorem 1.1. Properties (ii),
(iii), (iv) follow from Propositions 9.3, 9.5 and 9.4 respectively. The assertions in (vi)
follow from Theorem 9.7 and Corollary 9.9. It remains to prove (i) and (v).

(i) The property I';(f) (K) = &,(f) is immediate from the definition of I',(f). In order
to prove the second assertion, note that for any w € S",n € N, f € F,, by (v)

L () (Fu(K)) = p(p)" > Uy (f o Fu)(Fu(K) N Fy(K)). (10.16)
WEWn: Fo ()N Fy (K)#£0

If u# w and u,v € W, then F,(K) N F,(K) C V, which has energy measure zero by
Remark 9.20. Therefore T',(f)(Fy(K)) = p(p)"T,(f o Fu)(Fu(K)) = p(p)"Ey(f o Fy,) for
any w e Wy,,neN, feF,

(v) Let A € B(K) be a closed set, and let f € F,, & € D,. For each n € N, define

C, = {wGWn

“L(A) £ @} and Chg = {w e W,

(@A) £ 0}
Also, define
Yo, = {w ey { (w], € C’n} and X¢, , = {w ey ‘ w], € Cmq)}.

Then 74|c, gives a bijection between C,, and C,, 4.
By Proposition 10.3(vi) and &,(f o @) = &,(f), we have

my(f 0 @) (Ze,) = p(p)" D E(fo @0 Fy) = p(p)" D E(f © Fraw) © Unw)
weCh weChp
D)"Y E(f o Frw) = o) S & m(f) (Za)-
weCr veCy o

Letting n — oo, we obtain I')(f o ®)(A) = ®,I',(f)(A) since (N, X, = X '(A) and
Muen 2o = X (®71(A)) as seen in the proof of Proposition 9.3. Hence we obtain
O, T, (f)(A) =T,(f o ®)(A) for any closed set A of K.

Recall that both measures I',(f o ®) and ®,I',(f) are Borel-regular. In particular, for
any A € B(K), there exists a sequence {4, },en of closed subsets of K such that A, C A
and I',(f o ®)(A,) = I'y(f o ®)(A) as n — oco. For any n € N,

Lp(f o @)(An) = 0.1,(f)(An) < .1 () (A).

Hence we have I',(f o ®)(A) < &,I',(f)(A). The converse inequality can be shown in a
similar way. O

Proof of Theorem 1.J. As mentioned earlier, Assumption 6.15 follows from Theorem 10.2.
The desired conclusion then follows from any application of Theorem 7.1. OJ
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Proof of Theorem 1.5. The Poincaré inequality and capacity upper bounds follow from
Theorem 9.17 and Proposition 6.21 respectively after verifying the assumptions using
Theorem 10.2. 0

Remark 10.20. (1) It seems that there is no obstacle to extend Theorems 1.1, 1.2, 1.4
and 1.5 to the class called planar generalized Sierpiriski carpet (PGSCs for short),
which is the planar case of Barlow—Bass’s generalized Sierpiriski carpets [BB99]>.
Indeed, the original unfolding argument in [Hinl3] wad done for all generalized
Sierpiniski carpets. In addition, the proof of super-multiplicative inequality in [BK13,
Lemma 4.4] seems to work for PGSCs. The planarity is crucial to ensure the estimate
df—dy,(p) < 1for any p € (1,00) and to follow the argument in [BK13, Lemma 4.4].
If one can prove super-multiplicative inequalities for higher-dimensional examples,
then Theorems 1.1, 1.2, 1.4 and 1.5 seem to be extended to these examples as long

as di — dy(p) < 1 holds.

(2) In [KKS+], under suitable assumptions, the existence of p-energies satisfying general-
ized contraction properties, which generalize Lipschitz contractivity and Clarkson’s
inequality, is shown. One of the main results in [KS+] says that a p-energy &,
satisfying generalized contraction properties is differentiable in the following sense:
for any f,g € F,, the function R 3 ¢ +— &£,(f + tg) € [0,00) is differentiable. The
derivative £&,(f +tg)|,_, can play the role of p [, Vf(z)P 3V f(z),Vg(z)) dz in
the Euclidean setting, so such the differentiability allows us to introduce the no-
tion of p-harmonic functions (in a weak sense). We will not deal with generalized
contraction properties in this paper because these properties are not needed for our
purpose.

10.2 Quasi-uniqueness of energies

In this subsection, we present an axiomatic approach to our Sobolev space. We con-
sider self-similar p-energies and the corresponding Sobolev space satisfying some natural
conditions. Under these conditions, we prove that the domain of self-similar p-energies
is uniquely determined and the corresponding semi-norm is uniquely determined up to a
bi-Lipschitz modification. We first introduce a list of desired properties for the self-similar
p-energies (and the associated energy measures) on PSC.

Assumption 10.21 (Canonical self-similar p-energy). Let (K, d,m) be the Sierpinski
carpet as given in Definition 10.1. Let .%, be a subspace of L’(K,m) and let &,: %, —
[0,00) be a functional (called self-similar p-energy) that satisfy the following conditions.

(a) {f e F :E(f) =0} ={f € LP(K,m) : f is constant m-almost everywhere}. For
any a € R and f € .%,, we have

E(f +alk) =&(f),  &laf) =" (f)-

3Precisely, the nondiagonality condition [BB99, Hypotheses 2.1(H3)] has been strengthened later in
[BBKT]. For a detail explanation on this change, we refer the reader to [Kaj10].
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(b) The functional f ~ &,(f)'/? satisfies the triangle inequality on .%,. In addition,
: p
the function | - | 5, : %, = [0,00) defined by |- |5, (f) == (IfIsy + &) " is

a norm on %, and (%, || - || ) is a uniformly convex Banach space.

(c) (Regularity) The subspace %, NC(K) is dense in C(K) with respect to the uniform
norm and is dense in the Banach space (%, [ - || 7).

(d) (Symmetry) For every ® € D, and for all f € .%,, we have f o ® € .#, and
E,(f o @) = &,(f).

(e) (Self-similarity) There exists p € (0,00) such that the following hold: For every
feF,ies, wehave folF, € %, and

PY_E(foF)=8(f)
icS
Furthermore, #, NC(K) ={f € C(K) | fo F; € #, for all i € S}.
(f) (Unit contractivity) f* Al e %, for all f € .%, and &,(fT A1) < &,(f).

(g) (Spectral gap) There exists a constant Cy,, € (0, 00) such that
1 = Ficl i my < Caap&p(f) for all f € F,.

Remark 10.22. (1) We do not claim that this assumption is the “optimal” axiom
for self-similar p-energies. It would be desirable weaken Assumption 10.21 for the
purposes of the axiomatic characterization in Proposition 10.25. For instance, we
conjecture that Assumption 10.21(g) in Proposition 1.6 is not necessary.

(2) If (&,,.%#,) satisfies the above assumptions, especially the self-similarity condition
Assumption 10.21(e), then the arguments in the first part of Section 9 yields the
associated self-similar measures. We use I'¢ () to denote these measures.

For convenience, we set
¢, (K,d,m) =€, = {(&, %) | (&, .%,) satisfies Assumption 10.21}
By Theorem 1.1, we know that &, # () for any p € (1,00). Recall that p(p) > 0 denotes

the p-scaling factor of PSC (see (10.3)) and dy(p) is as defined in (10.5).

We shall say that a constant C' > 0 depends only on p and the geometric data of PSC
if C'is a constant determined by a., Ny, L., p, p(p).

Let us introduce the notion of p-capacity associated with (&,,.#,) € €,. For two
disjoint subsets A, B C K such that disty(A, B) > 0, we define

Capg (A, B) = inf {&,(f) | f € #, NC(K) such that f > 1on A, f <0on B}.

Note that by Assumption 10.21(c), the set {f € #,NC(K)|f>1on A, f <0on B} is
non-empty. It is immediate from Assumption 10.21(a) that Cap, (A4, B) = Capg (B, A).

Now we can show non-triviality of p-capacities. Recall that ¢1, (resp. fr) denotes the
left-line (resp. right-line) segment of K.
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Lemma 10.23. Let p € (1,00) and (&,,.%,) € €,. We have

0< Capg (gL,ER) < 00, (1017)

0< mf{ »(f)

feZnNCK f\e :O/fdm—1}<oo (10.18)

Proof. By Assumption 10.21(h), for every f € .%,, we have fT Al € %, and &,(fT A1) <
é,(f). As a consequence,

Capg ({1, lr) = mf{ ‘fe (K)af‘gLEOaf‘gRELOSfS1}'

Note that the set {f € .Z, NC(K ‘ f‘z =0, f|£ =1,0< f <1} = .%,.(L,R) is non-
empty, which can be verified by Assumptlon 10. 21((: f). In particular, Capg, (0, lr) < 0.

We let .7 ,(L, R) be the closure of .%,.(L,R) with respect to the norm || - |7, -

To show Capg ({1, (r) > 0, let u, € F,.(L,R) for each n € N such that &,(u,) <
Capg, ({1, fr) +n~" and define g, € C(K) by

gn = Z ]1K+ Z *Un

i€{3,4,5} i€{2,6}

Then g, € .%#,NC(K) by Assumption 10.21(e) and thus g, € .%#,.(L,R). By Assumption
10.21(a,e),
gp(gn) = 2ﬁ(ggp(un) < Qﬁ(cap@@p(gth) + n_l)a
which together with 0 < g, < 1 implies that { gn}TEN is bounded in .%,. Hence Assumption
10.21(g) yields a subsequence {ny }reny and goo € #,(L, R) such that g,, converges weakly
to goo in %, By Mazur’s lemma there exists a sequence g; € conv{gy, }x>; (j € N) such
that g; converges to g, in .%,. Therefore, we have
Ep(goo) = hm é (g]) < limsup 2p(Capg (fr, fr) + 5 ') = 20 Capy (1, lr).
j—o0
It Capg, (fr,¢r) = 0, then g, should be a constant function by virtue of Assumption
10.21(a). This is a contradiction since gos(z) = 1 m-ae, on U;cz.45 Ki and goo(2) = 0
m-a,e, on Ui€{1,7,8} K;. Consequently, we get Capg ({1, r) > 0.
Lastly, we prove the lower bound in (10.18). Assumption 10.21(c,f) ensures that

Fpawe(L) = {f € F,NC(K) ' fl, = (),/dem ~ 1} 40,

and hence infrez 1) & (f) < 00. Let .F ) ae(L) denote the closure of %, ae(L) with
respect to the norm || - ngp Then vadm =1 for all v 6 pave(L). Let v, € Fpave(L)
for each n € N such that &,(v,) < infrez, . .1)&(f) +n~" and define h, € C(K) b



By Assumption 10.21(a,e), we have h,, € .%, NC(K) and

6ylh) = 376(0n) <35(_jnt  8,() 407 ).

FETpave(L)
Besides, [, hn,dm = 3/8. By Assumption 10.21(g), we also have
1AnllZe gy S 1n = () &[0y + 1) < Cap(Ep, Fp) Ep(hn) + m(K).

From these estimates, {h, }nen is @ bounded sequence in .%, and hence, by Assumption
10.21(b), we get a subsequence {h,, }reny and ho € %, so that hy, converges weakly to

heo in .%,. Mazur’s lemma yields a sequence h; € conv{h,, }r>;(j € N) such that ﬁj
converges to he, in .%,, and we then have

Ep(hoo) = lim & (h ) < limsup3ﬁ( inf  &,(f) +j_1) =3p inf &,(f),
Jj—o0 j—oo EFp,ave E:/p ave(L)
and [ hoo dm = lim;_, fKﬁj dm = 3/8. If infsez . .1)&,(f) =0, then hy should be
a constant function by Assumption 10.21(a). Since h; = 0 on ;g\ (345 Ki» We have
hoo = 0, which contradicts [, hoo dm = 3/8. This proves infrez . & (f) > 0. O

For a p-energy (&,,.%#,), we define the quantities considered in Lemma 10.23.

Definition 10.24. Let p € (1,00) and (&, ;) € €, We define x(), 0(&;) € (0,50)
by setting
x(&,) = mf{&,(f) | f € F,NC(K). f|, =0,f|, =1},

and

o(&) = 1nf{ ‘fe C(K), f, zo,/dem:1}.

In the case p = 2, x(&3) in the above definition is the same as ||&3|| in [BBKT, (4.41)].

The following proposition characterizes the p-energy using the axioms in Assumption
10.21.

Proposition 10.25 (Quasi-uniqueness of p-energy). Let p € (1,00). There exist C,, ¢; >
0 (that depend only on p and the geometric data of PSC) such that for all (&,, #,) € €,
and [ € Z,

&(f) > ao(é sup/ ]{Bm wa(p( ald m(dy) m(dz)

r>0

&) < Cux&) msup [ ]{3 V@) T ) ),

rl0

In particular, any two p-energies (&,,.%,), (@%,ﬁzp) € €&, are comparable; that is j\p =
Fp = BPP (K d m) and there exists C' > 0 such that C1E(S) < E,(f) < CE,(f) for
all f € F,
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We start with a comparison between (&) and x(&,).
Lemma 10.26. For any p € (1,00) and (&,,.%,) € €,, we have o(&,) < 2Px(&,).

Proof. Let f € %, NC(K) be such that f’zL = O,f‘gR =1 and &,(f) < x(&,) + . Then
by Assumption 10.21(d,g), the function g := 27 (f + (1 — f) 0 S,) satisfies g € Z,NC(K),
g|£L =0, [9dm =27 and &,(g9) < &,(f). This implies 0(&,) < &,(29) < 2°6,(f) <
2P(x(&),) +€). Letting € | 0, we obtain the desired estimate. O

We next obtain Poincaré inequalities for (&,,.%,) satisfying Assumption 10.21. The
following lemma is a key estimate. Recall that the self-similarity of (&, .%#,) allows us to
get the associated energy measures I'g (- ).

Lemma 10.27. Let n € N,v,w € W, be such that {v,w} € E¥ and let f € F,. Then

i, = fral” < 2/07 Vo (&) 715" [ (F)(EL) + T (F)(EW)] -

Proof. By Assumption 10.21(c), it suffices to assume that f € .#,NC(K). By replacing f
with fo® for some ® € D,, we may assume that F, '(K,NK,) = (., F, ' (K,NK,) = lx.
Without loss of generality, we assume that fr, — fx, # 0. The function h == fo F, —
(foFy,)oS, € F,NC(K) satisfies [, hdm = fx, — wa’h‘EL =0 and

Ey(h) < (&(f o F)YP + &,(f o F,,)MP)P < 20/0=D(&,(f o F) + &,(f o Fyy)).  (10.19)

By the arguments in Lemma 9.15, we know that p"&,(foF,) < T'g (f)(K) for all z € W,.
Hence (10.19) yields the desired inequality. O

The following proposition shows the uniqueness of the scaling factor p in Assumption
10.21(e) and gives a global Poincaré inequality.

Proposition 10.28 (Poincaré inequality: global version). Let p € (1,00) and (&,,.%,) €
¢,. Then
p=p(p),

where p is the constants in Assumption 10.21(e). Furthermore, there exists C; > 0
(depending only on p and the geometric data of PSC) such that

/ If(2) — fxlP m(dz) < Co(&,) 7 E,(F) for all f € Z,. (10.20)
K

Proof. First we show p < p(p). Let f € %, NC(K). Recall that M, f(w) = wa fdm =
[ [ o Fydm for we W,. By U-PL(dy(p)) for {G, = (W, E,)}nen and diam(G,) < af,
there exists Cyp; > 0 (depending only on p(p) and other geometric data of PSC) such
that

D fa(w) = ful’ma(w) < Cupip(p)* D IMnf(v) = Mo f(w), (10.21)

weWn, {v,w}eE,
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where m,,(w) = m(K,) = a;"%. We note that the dominated convergence theorem and
the uniform continuity of f imply

/ = fulPdm = tim 3" [f(w) — FaPma(w). (10.22)
wEWn

By Lemma 10.27, we have

D IMufw) = Muf(w)P < Y 20 Vo(&) 715 [T (F)(K) + D, () (o)

{v,w}ekE, {v,w}eE,

<o)L 5 Y Tl
weWn,
< o(&,) /DL L 5TrE (), (10.23)

where we used sup,cj ey #{w € Wy, | v € Ky} < 4 in the last inequality. By (10.21),
(10.22) and (10.23), we obtain

/ I~ Sl dm < Cuo(&)™ (m (p(0)5™)") £,(7). Tor all [ € 7, NC(K). (10.24)
K n—oo

where C) = 27/(P=D+2], C’Upl This implies p < p(p) (otherwise, by (10.24), we have
f = fx m-ae. for all f € .#,NC(K) which contradicts Assumption 10.21(a,c)).

Next we show p > ,o(p). Let ¢ > 0 and choose h € %, N C(K) such that h{zL =
0’h|éR =1 and &,(h) < x(&,) +e. Let Wye = {w=w---w, € W, : w, € {2,4,6,8}}
and W,, = W, \ W, .. For w € W, ., we define N(w) = {u € W, : K, N K,, # 0}.
Similarly for w € W, ,, we define N(w) = {u € Who: KuNK, #0}. Given any function
f: W, = R, we define f: Wno—>Randf€C( ) as

- 1

f(w) = #N—(w)ue;(w)f(w),
and
(f(w) it weW,,,
f(wl ceewpo11) + f(wl Wp_13) — f(wl Wp_11) ) h if w, = 2,
F’LZ-]?E f(wl .- wn_17) + f(wl wn_15) — f(wl U)n_17) h if Wy = 6,
f(wl s wn,13) —+ f(wl . wn,15) — f(wl : wn,13) ho Rl if Wy = 4,
\f(wl ceewpo11) + f(wl Wp_17) — f(wl wyp_11) ) ho Ry if w, =S8.

(10.25)
We will show that &,(f) < "gp(h)ng#(f). Note that by Assumption 10.21(d,e), we have
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e F, NC(K) and

AAGE S M |f(w e wa3) = Flwrw, 1) +

w=w1 - Wn EWp ,wp=2

S EW|fwn e wa15) = Flwg w7 +

w=w1 - Wn EWn, ,wp=06

S am|fwnws) - fluyw3) ¢

W=w1 - Wn EWn,wn=4

> E(W)|f(wy - wp 1 T) = flwy - wpq1)]

w=w1 - Wp EWp ,wn =8

For any u,v € W,,, and w € W,, . satisfying {u,w},{v,w} € E¥, and for any v’ € N(u)
we easily see that d7 (w,v’) < 3. For any such u,v,w, Jensen’s and Holder’s inequalities
imply that

F) - F)

p 1 A NP
< R, 0, =)

< Y W) f)

u’,fu’EBd# (w,4)
n

<6 Z f(ur) = f(ug)”  (since df (uy,up) < 6).

{u1 7u2}€E# JUL,U2 GBd# (w,4)

In particular, we get

&N <7 6m) (67 sup  #B,e (0,4)) €5 (f). (10.26)

keN,veWy,

Recall that there exists Ch,. > 1 depending only on the geometric data of PSC such that
C’fgclep(p)’k < capg”c (Wk[fL], Wk[ﬁR]) < Cfacep(p)’k, for all k € N.

(See Lemmas 10.9 and 2.12.) Now let us choose f € R"» such that f‘w ) = 0, f‘w ] =
1and EF7 (f) < E%(f) < Chacep(p) ™. Then the function | € Z,NC(K) defined in (10.25)

satisfies ﬂ = O,]?' = 1. Hence we have from (10.26) that
o R

0 < X(&) < &(f) <P plp) ™ (x(8,) +¢) <6p_10face sup  #B (v, 4)>' (10.27)

kEN,veEW)

By letting n — oo in (10.27) and using the fact that sup,cy ,ew, #Bdﬁ (v,4) < 00, we
k
obtain p > p(p). This concludes the proof of p = p(p).

The desired global Poincaré inequality for f € ., N C(K) is evident from p = p(p)
and (10.24). By virtue of the regularity (Assumption 10.21(c)), we can extend it to any
function in .%,. OJ
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The following lemma is a Poincaré inequality on finite graphs.

Lemma 10.29. Let G = (V, E) be a connected graph with #V = n and diameter D.

Then
Sl = A" <nDt > |f(v) = f(w)l,

veV {v,w}eFE
where f =13 f(v).

Proof. By Jensen’s inequality,

Sy = <ot >0 If ) = fw)”.

veV v,weV

For v,w € V', by using a path of length at most D, we obtain

) = flw)P < D7 N |f(wr) = flu)”.

{ul,ug}EE

Combining the above two estimates implies the desired inequality. OJ

The self-similarity of the p-energy along with the global Poincaré inequality implies
the following local version.

Proposition 10.30. Let p € (1,00). There exists Cp € (0,00) (depending only on p and
the geometric data of PSC) such that, for all (&,,.%,) € €,, f € F,,x € K,r >0, we
have

/B ( )\f(y)—de(m,mlpm(dy)gﬁpo(é;)1rdw<p>rgp<f>(3d(x,2r)). (10.28)

Proof. For r > 0, let n(r) € Z, be the smallest non-negative integer n such that r > a,™
and let W (z,7) == Wy (Ba(z, 1)) = {w € Wy : KuwNB(xz,7) # 0} for simplicity. Then,
there exists N; € N (depending only on a, L,) such that

U K, C By(z,2r), #W(z,r) <Ny, forallze K,r >0. (10.29)

weW (z,r)

For any w € W,,, by Proposition 10.28 and Lemma 9.15, we have

/ F(W) — freo mldy) = a;™ /K (f o Fu) () — (F o Fu) il m(dy)

w

< Cia;" o (8,) 7 E)(f o Fy) < Ci(a?p) "T, (f)(Kyw), (10.30)
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where C > 0 is the constant in (10.20). Furthermore, for each z € K,r > 0, the induced
subgraph of Gf(r) with vertex set W (z,r) is connected (and hence has diameter at most
Ny). For any ¢ € R,

/ W|f<y> ¢ midy)
< ¥ / y) — d” m(dy)

weW (z,r)
<o S ([ 1) = el mtan) + ml e~ )
weW (z,r) w
(10.30)
<y (T ) + M fw) — ). (10.31)

weW (z,r)

If c = m Zwew(w) M,y f(w), then by Lemma 10.29, (10.29), and Lemma 10.27,

Z ’Mn(r)f<w) - C‘p

weW (z,r)
<Ny > Moy f (1) = My f (0)]
u,veVV(ac,r):{u,v}EEi’&(T>
<IN Y [PadNK) + T ) (K]
u,veW (z,r){u, ’U}EEn(T)
< 2/PINPLo(&,) 7 5" g, (f) (Ba(z, 2r)). (10.32)
The desired conclusion follows from Lemma A.3; (10.29), (10.31) and (10.32). O]

The following lemma is a lower bound on p-energy which is a consequence of the
Poincaré inequality (10.28).

Lemma 10.31. Let p € (1,00). There exists ¢, > 0 (depending only on p and the
geometric data of PSC) such that

V) — s
0(8)sup / ]i(m) i mldy) m(de) < &,(f) (10.33)

for all (&,,%,) € €, and [ € .7,

Proof. Let r > 0 and let N C K denote a maximal r-net of (K, d). Then

b () — f(2)"m m(dzx
/ Jid@,r) () — (@) mldy) m(de)

< Cppr 0= $° / . /B ) = T ) mid). (10.34)

neN v Bd
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For any n € N,r > 0, we have from Proposition 10.30 that

[ i@ - s midey miay)
B(n,2r) J B(n,2r)

< 277 m(By(n, 2r))/ |f(9€) - de(n,2r)‘pm<dx)

Bg(n,2r)
< QI ®) O (8,) Tt ®IT . () (By(n, 4r)). (10.35)
There exists C' that depends only on a,, L, such that > _\ 1,4 < C (by the metric

doubling property of (K,d)). This along with (10.34) and (10.35) implies the desired
estimate. 0J

Lastly, we prove an upper bound on p-energy by using the self-similarity instead of a
suitable partition of unity (cf. Lemma 7.4).

Lemma 10.32. Let p € (1,00). There exists C,, > 0 (dependmg only on p and the
geometric data of PSC) such that for any (.%,, é"p) € €, and f € #,, we have

5) < Cox(8) limsn [ f V) = SO 14y ().

rl0

Proof. Let h € %, N C(K) be such that h|£L = O’h‘eR = 1 such that &,(h) < 2x(&,).
Let Wi e, Who, N( ) be the same notations as in the proof of Proposition 10.28. To any
function f € .#,, we define a function f,,: W, , — R as

fulw) = ]{J L dan

We note that #N(w) < 4 for all w € W, ,. We define f.: K — R by specifying F{;ﬁ for
allw=wy---w, € W, as

w) if we W,,,
wy - Wyl falwry - wp_13 wy Wyl if w, = 2,
Erfn fo(wy - w,_15 Wy Wh1 T if w,, = 6,

=

Il
AN

) h
) h
‘wWp_13))ho Ry if w, =4,
))hoRy ifw,=8.
(10.36)
For w € W,,, let q,, = F,,(q1). For u,v € W,,,,w € W, such that {u, w}, {v,w} € E¥
we have sup,cx. ur,uk, A(qw, ) < V5 -a;". This along with Jensen’s inequality implies
that there exists C' > 0 (depending only on p and the geometric data of PSC) such that
for all u, v, w as above, we have

) — Fulo)? < Cay 2 /

Bd(‘]wyca:n

(
(
(w ..
(

wy - - .wn_l]_

?”?H:*H?’

(fal ) —
(fal ) —
(fa(wr - wn15) —
(fa( ) —

wl--.wn 17

[ ) = o mid) midy)
) J Bi(quw,Cay™)
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Therefore by Assumption 10.21(d,e) and the bounded overlap of By(qw, Ca, "), w € Wi,
we have

E(fa)= D P"E(Fufn)

wWEWny e
~néa 72ndf . P d d
< ; Lo /B ) = S ) iy
< Cox(4 / Lo 1) = S gy (), (10.37)

where Cy > 0 is a constant depending only on p and the geometric data of PSC. By
setting r, = 2C3~™ and using p = p(p), we have

6(5) < Cn(&) | ]fg( )Wm(dwm(dm.

If fe.#,NC(K), then f, converges to f uniformly in K (by uniform continuity of K)
and thus fn also converges to f uniformly. Since (F, || - || 5 ) is a reflexive Banach space,

j/‘; has a subsequence that converges weakly in .%#, to f. By Mazur’s lemma, we obtain

&,(f) < limsup &,(f,) < Cox(&, thUp/]i Iy wa(p)( ald m(dy) m(dx).

n—00 rl0

The case f € .#, can be shown by Assumption 10.21(c), Proposition 10.30 and the above

estimate. O
Proof of Proposition 10.25. This follows from Lemmas 10.31 and 10.32. O
Proof of Proposition 1.6. This follows from Proposition 10.25 and Theorem 1.4. OJ

11 The attainment problem for Ahlfors regular con-
formal dimension on the Sierpinski carpet

In this section, we obtain partial results towards the attainment problem, namely the last
main result Theorem 1.8.

11.1 Newton-Sobolev space N'”

We start by recalling the theory first-order Sobolev spaces on metric measure spaces based
on the notion of upper gradients. A comprehensive account of this theory can be found
in [HKST] (see also [BB, Hei]).
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Hereafter, we let (X,0, ) be a metric measure space in the sense of [HKST], i.e.,
(X, 0) is a separable metric space and p is a locally finite Borel-regular (outer) measure
on X. In addition, we always assume that p(O) > 0 whenever O is a non-empty open
subset of X.

Definition 11.1 (Curves in a metric space). (1) A continuous map v: I — X, where
I is an interval of R, is called a curve in X. If [ is a closed interval, then v is called a
compact curve. For any subinterval [a/, b'] C I, the subcurve ~y (o’ ] is the restriction
of v to [d/, V']

(2) For a compact curve 7: [a,b] — X, its length ¢(~y) (with respect to the metric p) is
defined by

U(y) = Sup{z 0(y(ti1), 7 (t:))

keN, {ti}ﬁ-‘;OQRs.t. a:t0<t1<"'<tk:b}.

For a curve v: I — X (I is not assumed to be a closed interval), define its length
by
() = sup{l(y') | 7 is a compact subcurve of 7}.

A curve 7 is said to be rectifiable (with respect to the metric p) if {(y) < co. The
set of all compact rectifiable curves is denoted by T'yeet = Irect (X, 6).

It is known that every compact rectifiable curve ~: [a,b] — X admits a (orientation
preserving) arc-length parametrization : [0,€(y)] — X that satisfies ﬁ(é(v‘h t])) = ()
for each t € [a, b] (see [HKST, (5.1.6)] for example).

Definition 11.2 (Line integral on a metric space). Let v € Iy be a compact curve and
let p € £, (X). The line integral of p over v is defined by

o)
/pds ::/0 p(F(t)) dt, (11.1)

where 7 is the arc-length parametrization of v. If v € ['.ot, then we define

/pds = sup{/ pds
Y v

Definition 11.3 (Modulus of curve families). Let p € (0,00) and let I be a subset of
[rect- A non-negative Borel function p € %, (X) is said to be admissible for T if

inf/pds > 1.
~vel 5

P’ is a compact subcurve of 'y} .

The p-modulus of I is defined as
Mod,(T") = inf{||p||ip(#) | p is admissible for I'}.

We shall say that a property of curves holds for Mod,,-a.e. curve if the p-modulus of the
set of curves for which the property fails to holds is zero.
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The corresponding properties to the discrete case in Lemma 2.3 are also true for p-
modulus on (X, 0, ) [HKST, Section 5.2]. The next notion of minimal p-weak upper
gradient of a function u plays the role of ‘(Vu|’. The notion of weak upper gradients was
introduced in [HK98], where it was called ‘very weak gradients’.

Definition 11.4 (Upper gradients). Let p € (0,00), u: X — R and g € #,(X). (Here,
both u and ¢ is defined on every points of X.) The Borel function ¢ is called a p-weak
upper gradient of u if

u(z) —u(y)| < /gds for Mod,-a.e. v € I'ject, (11.2)

gl
where x,y are endpoints of . If (11.2) holds for every compact rectifiable curve, then g
is called an upper gradient of u.

A p-weak upper gradient g of u is said to be a minimal p-weak upper gradient if it
is p-integrable with respect to the measure pu and if ¢ < ¢’ p-a.e. in X whenever ¢’ is a
p-integrable p-weak upper gradient of u. Such the minimal p-weak upper gradient of u is
denoted by g,.

If {g | g is a p-integrable upper gradient of u} # ), then the existence and uniqueness
(up to a p-null set) of minimal p-weak upper gradient are established by a standard
argument (so-called the direct method) in calculus of variations (see [HKST, Theorem
6.3.20 and Lemma 6.2.8]). We also recall that ||gu||ﬁp(#) is the smallest LP(X, p)-norm
among all p-integrable p-weak upper gradient of u. For other basic properties on upper
gradients, we refer to [BB, Hei, HKST].

For a locally Lipschitz function u: X — R, we define its lower pointwise Lipschitz
constant function lipu: X — [0,00) as

lipu(z) = liminf sup M, (11.3)

{0 yEB(x,r) r
which gives a typical example of upper gradients (see [HKST, Lemmas 6.2.5 and 6.2.6]).

Proposition 11.5. If u: X — R is a locally Lipschitz function, then lipu € B, (X) is
an upper gradient of u.

Now we can define the function spaces NP and N1» , which are called Newton-Sobolev
spaces and introduced in [Sha00]. Let p € [1,00) and let

N'P(X,0, 1)

) B u is p-integrable (with respect to u) and there
o {u X = [-00,09] ‘ exists a p-integrable p-weak upper gradient g of u [’ (11.4)

which is clearly a vector space (over R). We equip N LP(X,0,u) with the seminorm
|- ||N17P(X,9,p) given by

||u||N1,P(X,9,u) = HUHLP(N) + ||9u”Lp(u) . (11.5)

To get a normed space, we next consider a quotient space of NP (X,0,u).
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Definition 11.6 (Newton-Sobolev space N'?). Let p € [1,00). For f,g € Nl’p(X,H,u),
we define an equivalence relation f ~ni» g by [[f = gllyin(xg,)- Let us denote the
equivalence class of f with respect to ~ 1., by [f]y1». Define

NYP(X,0, 1) = NY(X,0, 1)/ ~no -
We consider N'?(X, 0, 1) as a normed space equipped with the quotient norm associated

with the seminorm defined in (11.5), which is also denoted by || || y1.s(x g, We also use
|- [ je o1 |- ||N1,p(u) to denote || - ||N1,p(X,9,p)-

For any p € [1,00), N'P(X,0, 1) is a Banach space [HKST, Theorem 7.3.6].
Remark 11.7. If (K,d,m) is PSC given in Definition 10.1, then [HKST, Proposition
7.1.33] implies that NP(K, d,m) is trivial, i.e., NYP(K,d,m) = LP(K,m). This triviality
is due to the fact that Mod,(I'yect (K, d)) = 0. Such triviality of 1-modulus is proved by
[LP04] and one can find a proof in [MT, Proposition 4.3.3] for all p > 1.

We recall Poincaré inequalities based on the notion of upper gradient.
Definition 11.8. Let p € [1,00). The metric measure space (X, 0, u) is said to satisfy
the (p, p)-Poincaré inequality if there exist Cp € (0,00), Ap € [1,00) such that for any
reX,r>0,uec N"(X,0,u) and for any p-weak upper gradient g of u, we have

/ o) [u(y) = wsyeal wldy) < CrF / g" dp. ((p, p)-P1"®)
By (z,r

Bg(w,APT)
where ug,(z,),u = fBg(rC »y wdp. In addition, (X, 0, ) is said to satisfy the (1, p)-Poincaré

inequality (or p-Poincaré inequality for short) if for any z € X,r > 0,u € N”’(X, 0, 1)
and for any p-weak upper gradient g of u, we have

1/p
][ u(y) — wpy (o)l 1(dy) < Cr (][ q° du) . (p-PIU#)
B@(I,T) Bg(:D,APT)

The constants Cp, Ap in (p, p)-PI"® (resp. p-PI"¢) are called the data of (p,p)-PI"¢ (resp.
p-PI"¢). (Here ‘ug’ stands for upper gradient to distinguish it from Poincaré inequality
corresponding to energy measures as shown in Theorem 9.17 or Poincaré inequality on
graphs as shown in Theorem 4.2).

11.2 Lipschitz partition of unity and localized energies

In this subsection, we provide analogue results in Section 9.4. We focus on an upper
bound on the “energy measure” g? dp because we do not use lower bounds in this paper.

We work in the same settings as in the previous section, i.e., (X,60) is a separable
metric space and p is a locally finite Borel-regular (outer) measure on X which is positive
on any non-empty open subset of X. In addition, we let p € (1,00) throughout this
subsection.

The following Lipschitz partition of unity is a well-known tool to approximate arbitrary
functions in N*P(X,d, m) with Lipschitz functions (see [HKST, pp. 104-105]).
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Lemma 11.9. Let (X,0) be a doubling metric space. Let {x; : i € I} be a mazimal r-
separated subset for some r > 0. Then there exists C; > 0 depending only on the doubling
constant of (X,0) and a collection of C4/r-Lipschitz functions @;: X — [0,1] such that
Y icr i = 1 and supp|e;] C By(x;,2r;) for alli € 1.

The next lemma provides an estimate for upper gradients of discrete convolutions.

Lemma 11.10. Suppose that (X, 0, ) is volume doubling. Let {z; :i € I} be a maximal
r-separated subset of (X, 0) and let {p;}ier denote a Lipschitz partition of unity satisfying
the properties described in Lemma 11.9. For a p-integrable function u: X — R, define
U X - R as

up(z) = ZUBB(%7T)7MQOZ'(ZE), where upy (= f wdp for all i € I. (11.6)

i€l

There exists C' > 0 depending only on the doubling constant of v such that

lipu,(z) < C’r_lj[ w(z) = upywar)u| 1(dz)  for allz € X. (11.7)

By (CE,4’I’),/L

Proof. In this proof, we write up,(z,) = UBy(a,r),, for simplicity. For any =,y € X with
O(z,y) < r, we have p;(x) V ¢;(y) # 0 only if 0(z;,z) < 3r and therefore By(z;,r) C
By(z,4r) whenever p;(z) V ¢;(y) # 0. Hence for all z,y € X such that 0(x,y) < r, we
have

Z UBg(xi,r)(QOi(x) - %‘(y))

i€l

D (Usytaur) = Usyean) (i(2) = 9i(v)
<Y Uy — UByean) (i) — i(y))]

1€1,0(x,x;)<4r

<crtmy Y f 10~ )] )

i€1,0(x,z;)<4r

ur (@) — ()] =

< Cyr10(x,y) ][ (u(2) — wpy oaey)| (d2).

Byg(x,4r)

In the second and third line, we used Lemma 11.9. In the last line, we used the fact that
w is a doubling measure and that the set of #{i € I | 6(z;,z) < 4r} is bounded by a
constant that depends only on the doubling constant of (X, #). O

It is well-known that the p-energy of a function in NP (X, 0, ) is bounded from above
by a Koreervaar-Schoen type energy. We say that a function u: X — R is the Korevaar-
Schoen-Sobolev space K S (X,0,u) if u € LP(X, p) and

lim sup /X f )~ ) ) < o

el0
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In the following proposition, we control the LP-norm of the minimal p-weak upper
gradient on arbitrary sets using a Korevaar-Schoen type energy. The statement and its
proof is a slight extension of that of [HIKST, Theorem 10.4.3] which deals with the case
B=X.

Proposition 11.11. Let (X, 0, ) be volume doubling. There exists C > 0 such that for
allu € KSY(X,0, ), there exists t € N¥P(X, 0, 1) such that © = u p-almost everywhere
and such that its minimal p-weak upper gradient gy satisfies, for any Borel set B C X,

[ dhdn<Climsw [ e f )~ ul ply) plde). (11.)
B el B By(y,e)

Proof. For each n € N, consider a maximal n~!-separated subset of (X,6) and the cor-
responding Lipschitz partition of unity as given in Lemma 11.9. Let v, = u,-1 denote
the function defined in (11.6). Then by [HKST, Proof of Theorem 10.4.3], we have
limy, o0 [ [on — 4" dp = 0 and, by Lemma 11.10 and Jensen’s inequality, there exists
C1 > 0 depending only on p and the doubling constant of p such that

lim [ lipwv,(z)? p(dz) < C;lim 5 p][ u(y) — u(@)? p(dy) p(de) < co. (11.9)
n—oo |y el0 Boy(z,e

Hence {v, }nen is bounded in N2 Therefore by Mazur’s lemma and [HKST, Proposition
7.3.7, Theorem 7.3.8], there exists u € Nl’p(X, 0, 1) such that u = u p-almost everywhere
and g € A, (X) satisfies the following properties. The function ¢ is a p-weak upper
gradient of w and is a limit in LP(X, ) of a sequence {g;};en such that g; is a convex
combination of elements in the sequence {lipv;};en for all j and for any n € N all but
finitely many elements of g; are finite convex combinations of lip v; with j > n. Hence by
Lemma 11.10, we conclude

/ ghdp < / g’ dp < limsup/ (lip v,)?P dp
B n— 00
< C’hmsup/ £ p][ —u(x)]” u(dy) p(dz).
By (y,e)

el0

11.3 Loewner metric and measure

Definition 11.12 (Loewner space). Let p € (1,00) and let (X, 6, 1) be a metric measure
space such that is metric doubling. The metric measure space (X, 0, 1) is said to be p-
Loewner if p is p-Ahlfors regular with respect to 6 and p-Poincaré inequality p-PI"¢ holds.
If (X,0,p) is p-Loewner for some p € (1,00), then 6 is called a Loewner metric and p is
called a Loewner measure.
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The original definition of Loewner spaces due to Heinonen and Koskela [HIK98, Defi-
nition 3.1] is based on lower bounds on modulus. However, this gives an equivalent one
by virtue of [HK98, Theorems 5.7 and 5.12]. This celebrated work identified Loewner
spaces as the abstract setting where much of the nice properties of quasiconformal maps
on Euclidean spaces are available.

The next result is an observation due to Cheeger and Eriksson-Bique [CE]. It states
that any metric and measure attaining the Ahlfors regular conformal dimension is a
Loewner space. We recall this short argument as it plays a key role in rest of this section.

Proposition 11.13 ([CE, §1.6]). Let (K,d,m) be the planar Sierpiriski carpet in Defi-
nition 10.1. Suppose that the Ahlfors reqular conformal dimension of (K,d,m) (dimarc
for short) is attained, i.e., there exists a metric 0 € J(K,d) equipped with a dimagc-
Ahlfors regular measure p with respect to 0. Then (K, 0, 1) is a dimarc-Loewner space.
Conversely, every Loewner space attains the Ahlfors reqular conformal dimension.

Proof. This result follows from the dimagrc-combinatorial Loewner property of PSC, which
is proved in [BK13, Theorem 4.1]. As explained in [CE, §1.6], dimagrc-combinatorial
Loewner property along with dimarc-Ahlfors regularity implies dimyrc-Loewner property
in the sense of [HK98, (3.2)]. This is due to a result of Haissinky [Hai09, Proposition B.2]
comparing combinatorial and continuous versions of modulus and a different equivalent
definition of the Loewner property in Heinonen and Koskela’s celebrated work [HK98,
Definition 3.1, Theorems 5.12 and 5.7]. Heinonen attributes the converse result to Bonk
and Tyson [Bon, Theorem 15.10] (see also [Tys98]). O

Recall from Definition 1.7 that the Ahlfors regular conformal dimension concerns the
existence of a metric # € J(X,d) and p-Ahlfors regular measure on (X,0). It is well-
known that the measures and metrics satisfying these conditions determine each other;
that is p can be recovered from 6 and 6 can be recovered from p (up to a bounded
multiplicative constant). We recall this in Lemmas 11.14 and 11.16.

Lemma 11.14. Let p € (1,00) and let (X,0, 1) be a metric measure space. If p is p-
Ahlfors regqular with respect to 0, then there ezists a constant C' > 1 (depending only on p
and the doubling constant of 8) such that

C™ ' (B) < u(B) < CF(B)  for all Borel set B € B(X), (11.10)
where A, denotes the p-dimensional Hausdorff measure with respect to the metric 0.

We also note that, by Lemma 11.14, the Ahlfors regularity can be regarded as a
property on metrics (and the corresponding Hausdorff measures).

Conversely, David—Semmes deformation theory ([DS90] for example) allows us to con-
struct a corresponding metric associated to a given Ahlfors regular measure p that is
bi-Lipschitz equivalent to the original Loewner metric. See also [Hei, Chapter 14] or [MT,
Section 7.1]. To describe this we recall the definition of a maximal semi-metric.
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Definition 11.15. A function 7 : X x X — [0, 00) is said to be a semi-metric, if it satisfies
all the properties of a metric except possibly the property that r(x,y) = 0 implies z = y.

Let h: X x X — [0,00) be an arbitrary function. Then there exists a unique maximal
semi-metric dj, 1 X x X — [0, 00) such that dy(z,y) < h(z,y) for all z,y € X [BBI, Lemma
3.1.23]. We say that dj, is the mazimal semi-metric induced by h. More concretely, dj, can
be defined as follows. Let h(z,y) = min(h(z,y), h(y, z)). Then

N-1
dp(z,y) = inf {Zﬁ(mi,xiﬂ) :NeNzy=x,2y = y} . (11.11)

i=0
To following lemma follows easily from the definitions.

Lemma 11.16. Let p € (1,00) and let (X,d) be a metric measure space. If 6 €
J(X,d) and p be a measure such that p is p-Ahlfors regular on (X,60). Let h(x,y) =
w(By(z,d(z,y))V? for all z,y € X and let d;, denote the mazimal semi-metric. Then dj,
18 bi-Lipschitz equivalent to 0, that is, there exists C' > 1 such that

C'0(z,y) < dp(z,y) < CO(z,y) forallz,y € X.
In particular dy, € J(X,d) and p is p-Ahlfors regular on (X, dy).

In the rest of this paper, we discuss the structures of metrics and measures that attain
the Ahlfors regular conformal dimension of the Sierpinski carpet if exist. In view of
Lemma 11.16, we focus on optimal measures. We introduce the standing framework in
the remaining part:

Assumption 11.17. Let (K, d, m) be the planar Sierpinski carpet in Definition 10.1. Let
dy = log 8/ log 3 and p = dimarc (K, d, m). We suppose the attainment of dimarc (K, d, m).
Let 0 € J(K,d) and let pu be a Borel-regular measure on K such that p is p-Ahlfors regular
with respect to 6.

Remark 11.18. By the results of [[KX1.04, Tys00] (see also [MT, Section 4.3] for a review
of related results), we know that

§p:dimARc(K, d,m) < df. (11.12)

Also, by [Kig20, Theorem 4.7.6], we have dy(p) = dj.

B. Kleiner [Kle+] observed than any optimal measure p is mutually singular to the
self-similar measure m. Although we don’t need this fact, it helps us to elucidate that
the comparison of norms on Theorem 1.8(i) does not follow comparison of corresponding
semi-norms as the LP(m) and L”(u) norms are not comparable.

Proposition 11.19 (due to Bruce Kleiner). Under Assumption 11.17, the measures m
and p are mutually singular.
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Proof. This proof by contradiction uses a ‘blow-up’ argument. Assume to the contrary
that p is not singular to m. Let u = p, + pus denote the Lebesgue decomposition of

) . dpia
with respect to m, where y, < m, p, L m and p, # 0 by assumption. Let f = %= For
m-almost every = € K, we have ([KM20, Proposition A .4])

i HeBal@ 1) (11.13)
r10 m(Bgy(x,r))
and for m-almost every x € {y € K : f(y) > 0}, we have ([IXM20, Proof of Lemma 3.1])
1
lim—/ f(y) — f(x) m(dy) = 0. 11.14
o B oo f(y) = f(@) m(dy) (11.14)

Since o # 0, there exists © € {y € K : f(y) > 0} such that both (11.13) and (11.14)
hold. Pick w € ¥ such that x(w) = z and set w, := [w], € W, for all n € N. Define a
sequence of probability measures p,, and metrics 6,, : K x K — [0,00) as

 (Fy, (A)) (P, (), Fu,(v))
fin(A) == Ky On(1,y) = Gam (K, .0)

where 6 € J(K,d) is such that p is p-Ahlfors regular in (K,0) and p is as given in
Assumption 11.17. By (11.13) and (11.14), the sequence of measures p, converges to
f(z)m in the topology of weak convergence. Furthermore, it is easy to verify that there
exists a homeomorphism 7 : [0,00) — [0,00) such that the identity map Id : (K,0,) —
(K,d) is an n-quasisymmetry for all n € N. By the same argument as [[KM23, Proof
of Proposition 6.18] using Arzela-Ascoli theorem, there exists a subsequence {6, }ren of
{0, }nen converging uniformly to 6 € C(K x K). This along with diam(K,6,) = 1 implies
that 6 is a metric on K, Id : (K, 8) — (K, d) is a -quasisymmetry and hence 8 € J (K, d).
This implies that the measure f(z)m is p-Ahlfors regular in (X, 5) Therefore by Lemma
11.16, we obtain p = d; which contradicts (11.12). O

for all n € N,

11.4 Identifying self-similar and Newtonian Sobolev spaces

In this subsection, we will compare different notions of energies (€,(f) and [, g} du) and
Sobolev spaces (F, and N'?) on the Sierpiriski carpet under assuming the attainment
of its Ahlfors regular conformal dimension. Throughout of this subsection, we always
suppose Assumption 11.17.

We recall the following two different Poincaré inequalities.

Theorem 11.20. There exist C, A > 1 such that for all x € K,r > 0, we have

/ ‘f — f36(17,,)#|p dp < C’rp/ g? du  for all f € NYP(K,0, 1), (11.15)
By (z,r) By(z,Ar)

/ ‘f - de(x7r)7m’p dm < C’rdpr(f>(Bd(x,Ar)) forall f € F,(K,d,m). (11.16)
By(z,r)

4We clarify this assumption in all statements where the attainment is used because whether this
assumptions is true or not is a big open problem in the field.
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Proof. The first one (11.15) follows from Proposition 11.13. The second one (11.16) follows
from Theorem 9.17 with § = d,(p) = ds (see also Remark 11.18). O

The following is a two-weight Poincaré type inequality, which is the key ingredient to
compare two different worlds (self-similar and Loewner).

Proposition 11.21. Suppose Assumption 11.17. There exist C; A > 1 such that for all
xr e K,r >0, we have

inf/ If —of’dm < Crdf/ g? du  for all f € NYP(K,0,1) NC(K), (11.17)
a€R By(z,r) Bg(z,Ar)
inf / If —off du < CrPT,(f)(Ba(x, Ar))  for all f € Fp(K,d,m)NC(K).

By(z,r)

aeR

(11.18)

Proof. In this proof, each function in N'P(K,0,u) N C(K) (or F,(K,d,m) N C(K)) is
considered as a pointwisely defined continuous function on K. Fix p; € (p, 00). To prove
(11.17), by [Hei, Lemma 4.22] and dg-Ahlfors regularity of (K, d, m), it suffices to show
the following weak type estimate: There exist C;, A; € (1, 00) such that

inf supt”m ({y € Ba(z,7) : |f(y) — o > t}) < Clrdf/ g5 dp (11.19)
a€R t>0 Bg(x,Axr)

for all f € N'?(K,0,u) NC(K), where g; is the minimal p-weak upper gradient of f.

Let Ap € [1,00) denote the constant in (p, p)-PI"¢ as given in Definition 11.8. Since
0 € J(K,d), by [MT, Lemma 1.2.18], there exists A € (1, 00) such that for all z € K,r > 0
, there exists s > 0 satisfying

By(x,r) C By(z,s) C By(x, (14 2Ap)s) C By(x, Ar). (11.20)

By (p, p)-PI"¢ and p-Ahlfors regularity of (K6, 1), there exists Cy > 1 such that

1
fooranof fdu‘é—/ r-f fdu‘du
By(y,s) Byg(x,2s) /L(B@(y,S» By(x,2s) By(z,2s)

1/p N
< (O </ g du) for all f € N'"?(K,0,u),
Bg(m,QAPS) ( )
11.21

where gy is the minimal p-weak upper gradient of f. By a similar argument, there exists
C3 > 1 such that for all z € K,s > 0,y € By(x,s),i € Z>o, f € N'P(K,0, 1), we have

1/p
][ fdu —][ fdu‘ < Oy (/ g du) . (11.22)
BG(y727is) BQ(y’ziiils) Bg(y,AP27iS)
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Note that (K,#) is connected since (K,0) is homeomorphic to (K,d). By the reverse
doubling property [Hei, Exercise 13.1] of m with respect to the metric 6, there exists
¢4 € (0,1) such that for all y € K, s > 0, we have

> (m(Byly,27%s))\ """ 1
042( m(gg(w)) ) <3 (11.23)

In order to show (11.19), for any f € N*(K,0, ) NC(K), we choose v = fBg(x 28) fdpu.

1/p
If t <205 < Il Ba(w.Ar) g? du) , the estimate (11.19) follows from the dg-Ahlfors regularity

1/p
of (K,d,m). Therefore, it suffices to consider the case t > 2C, ( Il Ba(e,Ar) g? d,u) . By

(11.20), (11.21), we have

{y € Ba(x,r) : |f(y) —a| >t} C {y € By(w,r) : ‘f(y) —]{B( )fdu

> t/2} (11.24)

1/
for all t > 20, (fB ear) 97 d,u> " By (11.24), for any y € By(z,r) such that

1/p
)f y) — fBg(a),Qs) fdu‘ >t > 20, <de(x7Ar) g? du) , we have

—ig 1/p1
Z ( Bzf,y&;lzis))))) t<t/2  (by (11.23))

<

f(y) —]é( )fdu’ (by (11.24))

- 1/p
=G (/ gy du) by (11.22)).
’ ; BQ(y,APQ*is) f ( ( ))

Therefore there exists C5 > 1 such that following property holds: For each y € By(z,r)

/p
that satisfies fBe (2.25) fd,u‘ >t > 20, (fB (z.Ar) 97 d,u> there exists i, € Z>
such that

m(By(y,5Ap2 "s)) < Cst Pir / g7 dp. (11.25)

By (y,APZ_iy S)

By the 5B covering lemma [Hei, Theorem 1.2], there exists a pairwise disjoint collection
of balls {By(y;, Ap2~"is) | j € J} such that

{yeBd@:,r) : ‘f(y)—fB( L

> t} - U Bg(yj,E)Ainiij).

Jj€J
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Hence
N L) Bt
Bg(x,QS) ]GJ
(11.25)

0 Y I "
jeg ¥ Bolyj,Ap2 %7 s)

< C5tp17’df/ g% dp
Bg(z,(1+Ap)s)

(11.20)
< C5t_p17‘df/ g% du,
By(x,Ar)

which concludes the proof of (11.19) and therefore (11.17).

The proof of (11.18) follows from a similar argument where the application of (p, p)-
PI"¢ in (K, 0, u) is replaced with (9.9) (with 8 = dy(p) = dt), which is the (p, p)-Poincaré
inequality for the self-similar energy on (K, d, m). O

The following result compares energy measures and energies in the Sobolev spaces.

Theorem 11.22. Suppose Assumption 11.17. Then we have
Fp(K,d,m)NC(K) = N"(K,0,u) NC(K).

We let 6, .= F,(K,d,m)NC(K). In addition, there exists C > 1 such that for any Borel
set B € B(K) and for all f € 6,, we have

OB < [ gpdu< CTL()(B) (11.26)

where gy denotes the minimal p-weak upper gradient of f. In particular,

CTE(f) < / grdu < CENf) for all f €C,. (11.27)
K
Furthermore, there exists Cy > 0 such that
CrM I Mlwew < I llg, < Cullfliyes  for all f € €, (11.28)

We start with a simpler condition to obtain comparability of measures whose proof is
in Appendix B.

Lemma 11.23. Let (X,d) be a doubling metric space. Let vy,vy be two finite Borel
measures on X satisfying the following property: There ezxist Cy € (0,00), A1 € (1,00)
such that for all x € X,r > 0, we have

v1(Ba(z, 1)) < Civa(Bg(z, Arr)).
Then there exists Cy > 0 such that
11 (B) < Core(B) (11.29)
for all Borel sets B C X.
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Next we compare energy measures on balls for the spaces N'(K, 0, 1) and F,(K, d, m).

Lemma 11.24. Suppose Assumption 11.17. Then the following are true:

(i) We have F,(K,d,m)NC(K) C N'P(K,0,u) NC(K). Moreover, there exist C' >
0,A > 1 such that for all f € F,(K,d,m)NC(K),z € K,r >0, we have

/ g du < CTp(f)(Bs(x, Ar)). (11.30)

(i) We have N'?(K,0,u) NC(K) C

Fo(K,d,m)NC(K). Moreover, there exist C' >
0,A > 1 such that for all f € F,(K,d,m) N

C(K),z € K,r >0, we have

LB <C [ g (11.31)

Bg(z,Ar)

Proof. (1) We will start with the proof of (11.30). To this end, let f € F,(K,d,m) N
C(K),z € K,r > 0 be arbitrary. For 0 < s < r, consider a maximal s-separated subset
N of By(z,r) in (K, 0), so that By(x,r) C UyenBy(y,s) C By(x,r + s). Therefore

]lBe(IvT)(y ﬂBe(y s) Z 1By (n,29) ]]-Bg(n,Qs)(Z)- (11.32)
nenN
By the doubling property and [HKST, Lemma 4.1.12], for any A > 1, there exists C)
depending only on A and the doubling constant of (K, 6) such that

Z ]lBg(n,)\s) < C/\]lBg(:c,r-‘,-)\s)- (1133)

neN

We will use Proposition 11.11 to show estimate the norm of the upper gradient. By
(11.18) in Proposition 11.21, there exist C, A; € (1, 00) such that for all f € F,(K,d, m)N
C(K), we have

[ 1= e )
S //|f (P LBy () (W) By (y,5) (2) pe(dy) p(d2)

/B( 2)/3( 2)!f(y)—J”(Z)V’u(dy) pu(dz) (by (11.32))

Ssr Z inf /39 n2e) If(y) — of’ u(dy) (by Lemma A.3)

a€R

< Zr )(By(n, Ays))  (by (11.18))

neN

< O\, (f)(By(z,r + Ars))  (by (11.33)). (11.34)
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By letting » — oo in (11.34) and using Proposition 11.11, we conclude that
Fpo(K,d,m)NC(K) C N""(K,0, 1) NC(K).

By (11.34) and (11.8) in Proposition 11.11, we obtain (11.30).

(ii) This is similar to part (i), except that we use Proposition 9.19 and (11.17) in place
of Proposition 11.11 and (11.18) respectively. O

Proof of Theorem 11.22. The estimate (11.26) follows from Lemma 11.24 along with
Lemma 11.23.

It remains to show (11.28). By normalizing the measures if necessary, we assume that
m and p are probability measures. For f € C(K) let f,, = fodm and f, = fodu
denote the averages of f with respect to m and p respectively. The proof of (11.18) with
r = 2diam(K, ) yields

/ If = ful" dp S Hf||]}p for all f € F,(K,d,m)NC(K). (11.35)
K

Note that for any f € F,(K,d,m)NC(K), we have

[ <2 (|fm|p+ / If—fmlpdu>
K K

< / AP dm+ || f][%,  (by (11.35) and Jensen’s inequality). (11.36)
K

Therefore the first estimate in (11.28) follows from (11.26) and (11.27). The proof of the
second estimate in (11.28) is similar. O

We observe two important consequences of Theorem 11.22. The first one states that
Loewner measures must be minimal energy dominant measures for the self-similar energy

(Eps Fp)-

Theorem 11.25. Suppose Assumption 11.17. Then u is a minimal energy dominant
measure for (€,,F,). Furthermore, there ezists C' € (0,00) and u € 6,, we have

C'T,(u)(B) < u(B) < CT,{(u)(B) for all Borel subset B C K. (11.37)

Proof. By Theorem 11.22, I',(f) < p for all f € %,. Combining with the density of
C(K)NF,(K,d,m) (Theorem 6.17(v)) and Lemma 9.12, we obtain the domination prop-
erty: I',(f') < p for all [ € F,(K,d,m).

By [HKST, Corollary 8.3.16] and a biLipschitz change of metric if necessary, we can
assume that 6 is a geodesic metric. Consider the function u(-) = p(zo,-) for some xy €
K. Since u is Lipschitz in (K,0) by [HKST, Lemma 6.2.6], we have u € N'?(K,0, 11).
Furthermore, by considering geodesics in (K, #), we can show that lipu = 1. By [HKST,
Theorem 13.5.1], we have that the minimal p-weak upper gradient g, of u satisfies g, = 1
p-almost everywhere. By (11.26) in Theorem 11.22, we have that ;1 < I',(u) and hence
4 is a minimal energy dominant measure and satisfies (11.37). OJ
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The second one is the identification of the two different Sobolev spaces F, (K, d, m)
and N'P(K, 0, p).

Theorem 11.26. Suppose Assumption 11.17. Then there exists a bounded, linear bijec-
tion v: Fp(K,d,m) — N'"P(K,0, ) satisfying

Crl ANz, < NelHllnis < Collfllz,  for all f € Fp(K,d,m), (11.38)

where Cy > 1 is the constant in (11.28). Furthermore if f € C(K)NF,(K,d, m), then
maps the equivalence class containing f in F,(K,d, m) to the equivalence class containing
fin N'P(K, 0, p).

Proof. We first note that %), is a dense linear subspace of both F,(K, d,m) and N'*(K, 6, )
by Theorem 6.17 and [HKST, Theorem 8.2.1]. Let tw: (%5, ||l£) — NY?(K,0,u) be
the inclusion map, i.e., o(f) = [f]nie for f € 6,, where [f]y1» is the equivalence
class defined in Definition 11.6. By (11.28) in Theorem 11.22, we have C;! 1z <
leo(F)lIxiw < Cillfllz, for all f € %,. Hence by [Meg, 1.4.14 Proposition| ¢ is an
isomorphism. By [Meg, 1.9.1 Theorem| and the density of %,, there is a unique ex-
tension ¢: Fp(K,d,m) — NUP(K,0,u) of 1y, which is also an isomorphism satisfying
CrH Nz, < el llyis < Collfllz, for all f € Fy(K,d,m). m

We conclude this subsection by extending the comparability result of energy measures
to all functions in Sobolev spaces through the above isomorphism.

Corollary 11.27. Suppose Assumption 11.17 and let v: F,(K,d,m) — N'P(K,0,u) be
the identification map in Theorem 11.26. Then there exists a constant C' > 1 such that
the following hold: for any f € F,(K,d,m) and any Borel set B € B(K),

CTTUINE) < [ gl du < CTLUNB) (11.30)
In particular,
CE(f) < / gy dp < CE(f)  for all f € Fp(K,d,m). (11.40)
X

Proof. By [HKST, (6.3.18)], for any u,v € N'"*(K,0, 1) and B € B(K), we have

1/p 1/p 1/p
(/ 95+vdu> < (/ gﬁdu> + (/ gfd,u) .
B B B

In particular, lim, . [5 62 dp = [ g% dp whenever limy, o [|[u — tp|[ 1, = 0. Let f €
Fp(K,d,m) and pick a sequence {fn}, C %, such that lim, oo |[f — fulz, = 0. By
(11.38), we then have lim,, . ||t(f) — ¢(fn)|| y1» = 0. Therefore, letting n — oo in (11.26)
for f, yields (11.39). O]
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We are now ready to prove Theorem 1.8.

Proof of Theorem 1.8. The first assertion follows from Theorems 11.22, 11.26 and Corol-
lary 11.27. The second assertion follows from Theorem 11.25. O

12 Conjectures and open problems

We conclude this paper by mentioning some related open problems and conjectures.

To construct a Holder continuous cutoff function with low energy and to obtain
Poincaré inequality, the condition df — < 1 (or equivalently ¢ < 1) was crucial. This is
because the conclusion of Theorem 3.2 fails without the condition ¢ < 1. However, it is
conceivable that capacity bounds imply Poincaré inequality without this restriction but
such a result would require a very different approach.

Problem 12.1. Relax the conditions df — # < 1 in Theorem 9.17 and { < 1 in Theorem
4.2.

Problem 12.1 is similar in spirit to the resistance conjecture for the case p = 2 and hence
it appears very challenging [Mur23+, §6.3].

In this paper, we confine ourselves to the planar standard Sierpinski carpet for sim-
plicity. As mentioned in Remark 10.20, the planar generalized Sierpinski carpets should
be similar, but we do not know other cases.

Problem 12.2. Construct Sobolev spaces, p-energies, energy measures for other examples
such as Sierpiriski cross [Kig09], subsystems of (hyper)cubic tiling [[Kig23], unconstrained
Sierpiriski carpets [CQ21+, CQ23+], boundaries of hyperbolic groups, Julia sets of con-
formal dynamical systems [Bon, Kle].

Our study also provides a partial result on the uniqueness of p-energies on the
Sierpinski carpet. It is natural to expect that such the uniqueness is true for all p.

Conjecture 12.3. For any p € (1,00), self-similar p-energy (see Assumption 10.21) is
unique up to multiplications of constants. We expect that the uniqueness is true for a
wide class of Sierpiniski carpets (e.g. generalized Sierpinski carpets).

We expect that Conjecture 12.3 follows from a converse estimate of Lemma 10.26.

Conjecture 12.4. For any p € (1, 00), there exists a constant C, > 0 depending only on
p and the geometric data of PSC such that

&
sup{X< ) ‘ (&), Fp) € %} < O, < 0. (12.1)
Furthermore, (12.1) implies the affirmative answer for Conjecture 12.3.
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Compared to our (1, p)-Sobolev space F,, the definition of energy measures on a self-
similar set heavily depends on the self-similarity. This is a difference from the case p = 2
(Dirichlet form theory) and is an obstacle to develop general theory. This motivates the
following question.

Problem 12.5. Define p-energy measures I',(-) without using the self-similarity and
establish their basic properties (cf. Theorem 1.2(ii),(iii) and (vi)).

It is also natural to expect that p-energy measures on typical fractals are mutually
singular with the underlying self-similar measures (cf. [Hin05, KM20] for the case p = 2).

Problem 12.6. For a self-similar set (K, d) satisfying Assumption 6.15 with 5 > p, show
that I',(f) L m for any f € F,, where m is the self-similar measure.

The next two problems are motivated by a desire to understand the dependence of the
Sobolev space F, and energy measures on the exponent p.

Problem 12.7. Let p,q € (1,00) be distinct. Let 1,1, be minimal energy-dominant
measures of (€,, F,), (&, F,) respectively. Are v, and v, mutually singular or absolutely
continuous?

We also do not know if there are inclusion relations among {F,},>1.

Problem 12.8. Let p,q € (1,00) be distinct. Determine the intersection F, N F,. In
particular, does F, N F, contain any non-constant function?

Towards the attainment problem of the Ahlfors regular conformal dimension, we expect
that the following variant of Theorem 1.8(ii) to be useful. This conjecture is an analog of
[IKM23, Theorem 6.54].

Conjecture 12.9. Let (K, d,m) be the Sierpinski carpet. Suppose that darc(K,d) is
attained. There exists h which is dyrc-harmonic (with respect to the self-similar dagc-
energy Eq,ne) on K\ Vy such that I'y, .. (h) is also an optimal measure.

A A collection of useful elementary facts

The following lemma corresponds to a 5B-covering lemma for graphs.

Lemma A.1. Let G = (V, E) be a graph, and let B = {B(z;,r;) | i € I} be a family of
balls such that r; > 0 for alli € I and R := sup;c;r; < +00. (Here, B(z,r) ={y €V |
d(x,y) <r}, where d denotes the graph distance of G.) Then there exists J C I such that

B(xj,r;) N B(zg, ) =0 for all j,k € J with j # k,

and

UE(SL’“ 7’1') Q U E(l’j, ?)T’j).

iel jeJ

Moreover, for any i € I there exists j € J such that B(z;,r;) C B(z;,3r;).
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Proof. For each r > 0, let || € Z>( denotes the unique non-negative integer such that
Ir] <r<|r|+1
For any x € V and r > 0, we have B(x,7) C B(z, |r] +107!). Moreover,
B(z,r) ={y €V |d(z,y) <r} = B(z,|[r] +107").
We write B; for B(z;, |r;] +107!) for simplicity. For each r € [0, R] N Z, define
I ={iel||r]=r}

Let I be a maximal subset of Ix such that {B; | i € I} are disjoint. Inductively,
we define {I},_,,}2_ as follows: given Ij,...,I;_ .., let Ir_ . be a maximal subset of
Ir_,, such that

{B; i€ I,_,,} are disjoint, (A1)

and

{B; |ie€Iy_,,} are also disjoint from {Bi

ie (J ]J’}. (A.2)

j=R—m+1

Now set J = Uf:o I3. This construction yields that {B; | j € J} are disjoint.

We will show that {B(z;,3r;) | j € J} covers |J,.; Bi. Let i € I. If i € J, then it is
immediate that B; C UjEJE(:r;j, 3r;) since

B; = B(xy, |ri| +107") = B(x;, 1) C B(ws, 3r;).

If not, then there exists k € J with |ry| > |r;| such that B; N By # (). (If such k& does
not exists, then I/, | U {i} satisfies (A.1) and (A.2). This does not happen due to the
maximality of [ {n J') Let z € B; N Bg. Then for any y € B;,

d(xy,y) < d(ag, 2) +d(z,25) + d(xi,y) < |re) + 7] + ] +3-107 <3[rp] +3-107"

Hence we have o
B; C B(xy,3|ri] +3-107Y) C B(xy, 3r), (A.3)

proving the lemma. 0

We heavily use the following version of Mazur’s lemma in this paper.

Lemma A.2 ([HKST, page 19]). Let (v,)nen be a sequence in a normed space V' con-
verging weakly to some element v € V. Then there exist a subsequence (vy, )i>1, a strictly
increasing sequence {my}r>1 of positive integers with my > k, and, for each k > 1,
(Nig)itk € [0, 1™ = L with S0 N = 1 such that Y i N xv,, converges strongly to v
as k — oo.
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The next lemma is very useful in some arguments about Poincaré type inequalities.
The proof can be found in [BB, Lemma 4.17] for example.

Lemma A.3. Let (X, o/, m) be a measure space and let E € o with m(E) > 0. If
we Ll (X,m),1<p<oo, then

loc
1/p 1/p
(][ fu — uE]pdm> < 2inf (][ lu — c|pdm) :
E ceR E

The following result state a kind of stability of discrete energies. A more general
version written in terms of rough isometry is well-known, but the next simple version is
enough for our purpose.

Proposition A.4. Let p > 0. Let G; = (V, E;) (i = 1,2) be connected graphs such that
Ey C Ey. Let d; be the graph distance of G;. Suppose that L, = deg(G1) < oo and that
there exists D, > 1 such that for any {x,y} € E; \ E2, we have

d2(x73/) S D*

Then for all f € RV,
EZ () < &) < Cpp.r.E52()),

where Cpp, . = 1+ L?P~ (fol \% 1).

Proof. Since Ey C Ey, it is immediate that £7>(f) < £51(f). To prove the remaining
inequality, for each {x,y} € E;\ Es, we fix a path [2;4(0), 24y(1), . .., 22y(Ds)] in G2 such
that 2,,(0) =z, 2, (D,) =y and

{zay(i — 1), 254 (0)} € B;U{{z,2} |z €V} foreachi=1,...,D,.
Noting that

sup #{{x,y} c kb | {zxy(z — 1),zxy(i)} = {2/, 4y} for some i} < L?P,

{xlvy/}EEQ

we have

EN =ENH+ D> If@) - f)l

{x,y}GEl \E2

<ER(f)+ (D V1) Z Z f (2ay (i = 1)) = f(2ay(D)|"
{z,y}€E1\ By i=1

< ES(f) + L3P (DP v 1)ES (),

which finishes the proof. O
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B Whitney cover and its applications

This section aims to prove Lemma 11.23. We will use the following version of Whitney
coverings.

Definition B.1 ([Mur23+, Definition 2.3]). Let (X, d) be a metric space and € € (0,1/2).
Let U be a non-empty proper subset of X such that U # X. A collection of balls
R = {B(x;,r;) | x; € Uyr; > 0,i € 1} is said to be an e-Whitney cover of U if it satisfies
the following conditions:

(1) The balls in R are pairwise disjoint.

(2) The radius r; satisfies

€
1+¢

dist(z;, X \ U), foreachi € I. (B.1)

r, =

(3) It holds that (J,.; B(w;,2(1 4+ ¢)r;) = U.
Remark B.2. From (B.1), we observe that B(z;,e™'(1+¢)r;) C U for all i € I.

The existence of such an e-Whitney cover of any non-empty open subset U of a given
metric space (X,d) for all £ € (0,1/2) is ensured by [Mur23+, Proposition 3.2 (a)]. The
following proposition states a basic overlapping property of Whitney covers on a doubling
metric space.

Proposition B.3 ([Mur23+, Proposition 3.2 (d)]). Let (X,d) be a metric space and let
U be a non-empty proper subset of X such that U # X . If (X,d) is metric doubling, then
for any € € (0,1/2) there ezists C > 0 (depending only on £ and the doubling constant
of (X,d)) such that the following hold: for any e-Whitney cover R = {B(z;,1;) | z; €
Uyri >0,i €1} of U, we have

Z Ip(a,e1r) < C.
iel
Now we can prove the desired lemma:

Proof of Lemma 11.23. By the outer regularity of measures vy and v, [HIKST, Proposition
3.3.37], it suffices to verify (11.29) for all open sets.

To this end, let U be an arbitrary non-empty open subset of X. Let us fix small
enough ¢ so that 0 < € < (34;)™! and choose a e-Whitney cover R = {B(x;,7;) | z; €
Ui > 0,0 € I} of U. Then we note that B(z;,3Ar;) C U for all ¢ € I. By the
bounded overlap property Proposition B.3, there exists Cy depending only on C, A; and
the constant associated to the doubling property of (X,d) such that

nU)< Y w(B3r) < > Cun(B(r;,3411:)) < Cans(U), (B.2)

B(zi,r;)ER B(zi,ri)ER

which concludes the proof. O
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C On the conductive homogeneity

In this section, we discuss relations between our framework (Assumption 6.15) and a no-
tion of the p-conductive homogeneity introduced in [Kig23]. More precisely, we will show
that a p-conductive homogeneous compact metric space with some additinal conditions
(see Assumption C.25 for the detail) satisfies Assumption 6.15. The converse direction
is rather delicate in a general setting. We only show that the planar Sierpinski carpet is
p-conductive homogeneous for any p € (1, 00).

C.1 Partition parametrized by a tree and basic framework

Let us start with the definition of partition parametrized by trees (see [[Kig23, Definitions
2.1, 2.2 and 2.3]).

Definition C.1 (rooted tree). Let T be an (non-directed) locally finite, infinite graph
without self-loops whose edge set is given by {v ~ w}, i.e. T is countable set and

v~w = w~v, #H{veT|v~wl<oo, and ww forall v,weT.

A graph T is called a tree if and only if there exists a unique simple path between v and
w for any v, w € T with v # w. Such the unique path between v and w is denoted by vw.
We write z € tw if 7w = [wy, . .., w,] and w(i) = z for some i =0,...,n. Let ¢ € T. The
tuple (7', ¢) is called a rooted tree with a root ¢. In order to clarify the edge structure,
we also use (7', ~) and (T, ~, ¢) to denote T" and (T, ¢) respectively.

The following gives fundamental notations on rooted trees.

Definition C.2. Let (T, ¢) be a rooted tree.

(1) For w € T, define 7: T'— T by

) wn if w# ¢ and ¢w = [wy, . .., wy),
m(w) = {¢ i — 6, (C.1)
Set
Sw)={veT|n(v)=w}\{w} (C.2)
and
N, = sup #S(w). (C.3)

weT

Moreover, for k > 1, we define S*(w) inductively as

S w) = | S*(v).
)

veS(w

For A C T, define S*(A) =], S¥(A).

wEA
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(2) For w € T and m > 0, define
| = min{n >0 | 7" (w) = ¢} (C.4)

and T,, = {w € T' | |, = m}. We also use [u| to denote |, if no confusion may
oceur.

(3) For w € T, define

T(w) ={v € T | there exists n > 0 such that 7" (v) = w}. (C.5)
For A C T, define T'(A) := [, ea T(w).
(4) Define
X(T) = {(wi)i>0 | wi € T; and w; = m(w;41) for all i > 0}. (C.6)
For w = (w;)i>0 € 2(T'), we write [w],, for w, € T,,. For w € T, define
Lu(T) = {(wi)izo € ¥ | wy = w} (C.7)
For A C T, define X4(T) == J,ea Zw(T). We also use 3, X, ¥4 to denote X(T'),

Yuw(T) and X 4(T) respectively when no confusion may occur.

Remark C.3. Strictly speaking, we should clarify the underlying rooted tree (T, ¢) in
the notations like 7 or S(-). We are going to use 7(-; (T, ¢)) or S(-;(T,¢)) if we need
such explicit notations.

Hereafter in this paper, (T, ¢) is a locally finite rooted tree satisfying #{v € T | v ~
w} > 2 forany we T,

Definition C.4 (partition). Let (K, O) be a compact metrizable topological space with-
out isolated points, where O is the collection of open sets. A family of non-empty compact
subsets { Ky, }wer is called a partition of K parametrized by (T, ¢) if and only if it satisfies
the following conditions:

(P1) Ky = K and for any w € T, #K,, > 2 and

K, = U K,.

veS(w)

(P2) For any w € %, (), K|}, is a single point.

Remark C.5. In the original definition of partition in [Kig20, Definition 2.2.1], the
following condition (P*) is also assumed:

(P*) For any w € T, K, has no isolated points.

Recently, [Sas23, Lemma 3.6] shows that (P*) is automatically implied by a combination
of (P1) and (P2). So, we can drop (P*) in the definition of partition parametrized by a
rooted tree.
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The following definition is a collection of basic notations used in [Kig20, Kig23].

Definition C.6. Let { K, },er be a partition of K parametrized by (7', ¢).

(1) For w € T, define
Ow=K,\ |J K (C.8)

’UGTM‘ \{w}

and
B,=K,n |J K. (C.9)
’L}ele‘\{’w}

The partition { K, }er is called minimal if O,, # @) for any w € T.

(2) For n € Z>g, define

E; = {{v,w} | v,w € Ty,v # w, K, N K, # 0}. (C.10)
Let us denote the graph distance of (T, E}) by dy. For w € T,,,n > 0 and M > 0,
define
Fy(w) ={veT,|d,(v,w) <M}, (C.11)
and for z € K,
Up(zin) = | U x. (C.12)
WETn;2E€Kw veT pr(w)
For A C T,, let d,, 4 be the graph distance of the subgraph (A, E;;(A)), where
E;(A) = {{v,w} € E} | v,w € A}, and define

Mb(w) = {ve A|d,alv,w) < M} (C.13)
Also, define I'y;(A) == J,eq T'mr(w).

(3) Define
L, = sup #I'1(w). (C.14)

weT

The partition { Ky }yer is called uniformly finite if L, < oo.

(4) Let x: X — K be the map defined by (5, K], = {x(w)} for each w € ¥. The
partition { Ky, }yer is called strongly finite if sup,cx #x ' ({2}) < oo.

Remark C.7. In [Kig20, Definition 2.2.11], the symbol E" is used to denote Ef. In
addition, the edge set E is considered to be directed in [Kig20] and [Kig23]. In this paper,
we consider non-directed graphs to simplify some notations (the definition of discrete
energies for example).

For details on basic topological properties of partitions, see [[Kig20, Chapter 2].
The following property is a consequence of the minimality, which will be used later.
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Lemma C.8. Let { Ky }wer be a minimal partition of K parametrized by (T, ¢). Let A, B
be subsets of T,, for some n € Z>q. Then K4 C Kp if and only if A C B.

Proof. 1t is clear that K4, C Kg if A C B. To prove the converse, suppose that K4 C Kp.
Let w € A. Then we clearly have () # Oy, C |J,cp K,. For any v,v’ € T with ¥,NX,, = 0,
we have K, N O, = 0 [Kig20, Lemma 2.2.2(2)]. This implies w € B and hence A C B. [

Now we recall the standing assumption [Kig23, Assumption 2.15].

Assumption C.9. Let (K, O) be a connected compact metrizable space and let { K, }per
be a partition parametrized by the rooted tree (T, ¢). Let d metrize the topology (K, O)
with diam(K,d) = 1 and let m be a Borel regular probability measure on K. There exist
M, € N and r, € (0,1) such that the following conditions (1)-(5) hold.

(1) K, is connected for any w € T, {Ky}wer is minimal and uniformly finite, and
inf,,>0 minger,, #S(w) > 2.

(2) There exist ¢; > 0, = 1,...,5, such that the following conditions (2A)-(2C) are
true.

(2A) For any w € T,
cr < diam(K,, d) < cor (C.15)

(2B) For any n € N and z € K,
Ba(x,csrl) C Upp, (1) C By(z, cqry). (C.16)

(In [Kig20], the metric d is called M,-adapted if the condition (C.16) holds.)
(2C) For any n € N and w € T, there exists x € K,, satisfying

Ky, 2 By(x,esrl). (C.17)

(3) There exist m; € N, v, € (0,1) and v € (0,1) such that

m(Ky) > ym(Krw) forany we T, (C.18)
and
m(K,) < yym(K,) forany we T and v € S™(w). (C.19)
Furthermore, m is volume doubling with respect to d and
m(Ky) = Z m(K,) forany weT. (C.20)
veS(w)

(4) There exists My > M, such that for any w € T, k > 1 and v € S*(w),
T, (v) N S (w) € T3 (v).
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(5) For any w € T', w(L's,11(w)) € Ty, (w(w)).

Remark C.10. A partition satisfying the conditions above except for the connectedness
of K,, and Assumption C.9-(3) exists if the compact metric space (K,d) is uniformly
perfect and metric doubling [Sas23, Proposition 3.11]. We can construct partitions (and
a measure) satisfying all conditions in Assumption C.9 for many concrete examples.

If a given partition { K, }yer satisfies Assumption C.9 with metric d and measure m,
then we also say that (K, d, m, { K, }wer) satisfies Assumption C.9 to denote metric d and
measure m explicitly.

The following is a collection of consequences of our framework: Assumption C.9.

Proposition C.11. Suppose that (K,d,m,{ K, }wer) satisfies Assumption C.9.

(i) Define
SF(w)? = {v e S™(w) | K,N B, # 0}. (C.21)

Then there exists mg > 1 such that S*(w) \ S¥(w)? # O for any w € T and k > my.

(ii) The measure m satisfies the following properties. There exists k > 0 such that if
v,w € T satisfy | = fw| and (v,w) € E},, then

m(K,) < km(Ky). (C.22)
For any v,w € T with v # w and | = fu,

m(K, N Ky) = 0. (C.23)
In particular, m(B,,) = 0. Moreover, for any w € T, M > 1 and k > Mmqg (mg

is the same as in (1)), Byp(w) = {v € S*¥(w) | Tpr_1(v) N S*¥(w)? # O} satisfies
S*(w) \ Byx(w) # 0 and

m U K, | >~y™Mm(K,). (C.24)

veES™ (Sk(w)\BM,k(w))

(ili) It holds that N, < +oo.

(iv) There exists a constant ¢ > 0 (depending only on r.,c; in Assumption C.9) such
that the following hold: for any w € T there exists x,, € O,, such that

O. 2 By (a:w, crt‘") :

Remark C.12. In [Kig23], the symbol 0S*(w) is used instead of S*(w)?. We employ
this notation to avoid conflict with notations used in graph theory.
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Proof. The statement (i) is proved in [Kig23, Proposition 2.16] and (iii) is shown in [Kig23,
Lemma 2.13]. The statements in (ii) except for (C.23) are proved in [Kig23, Proposition
2.16 and Lemma 2.14]. So, the rest is proving (C.23) and (iv).

Let v,w € T such that v # w and |v| = Jw| = n for some n > 0. Enumerate 7,, as

{z(1), 2(2), .. .,z(ln)} so that z(1) = v and 2(2) = w, where [,, = #T,,. Inductively, we
~ ~ ~

define K(;y by K.) = K.q) and K G+1) = K11y \ <U K ) Then {KZ(j)}j:1 is a

disjoint family of sets and U KZ(J) K. Therefore,

ln

J=1

On the other hand, Assumption C.9-(3) implies that

ln
j=1
Therefore, we conclude that m(Kz(j) \I?z(j)) =0 forall j €{1,...,1,}. In particular,

0= m(Kz(Q) \ I?Z@)) - m(Kw \ (K \ (K, N Kw))) = m(K, N K,),

which proves (C.23).

As mentioned in the remark after [Kig23, Assumption 2.15], by Assumption C.9-(2),
d is thick in the sense of [Kig20, Definition 3.1.19]. Since {K,}wer is assumed to be
minimal, (iv) follows from [Kig20, Proposition 3.2.2]. O

Let L € N. For x,y € K, define

nr(z,y) = max {k € Z>o (C.25)

there exist v, w € Ty with v € I',(w)
such that x € K, and y € K, '

Note that np(z,y) < np(x,y) whenever L < L’. The following proposition is a useful
characterization of (C.16) in terms of n(z,y).

Proposition C.13. Suppose that (K,d,m,{Ky,}wer) satisfies Assumption C.9. Then
there exists C' > 1 (depending only on r., M., c¢; in Assumption C.9) such that

- 1 nM* z,y) < d(ﬂf,y) < CTSM*(IJJ) fO’I” any x,y € K. (C26>

Proof. This follows from [Kig20, (2.4. 1)] (As mentioned in [Kig23, page 30; after Defi-

nition 6.7], we have 67, (z,y) = 7« M (9) i this setting, where 6%, is defined in [Kig20,
Definition 2.3.8]). O

147



Corollary C.14. Suppose that (K,d, m,{ K, }wer) satisfies Assumption C.9. Then there
exists ¢ > 0 (depending only on r., M, ¢; in Assumption C.9) such that

. n n € Lsg, v,we€l,, x#yeK
= >
inf {T* d(z,y) ‘ such that x € K, y € Ky and v & Ty, (w) | = “ (C.27)

Proof. Let n € Z>o and x # y € K. Assume that there exist v,w € T,, with v & 'y (w)
such that z € K, and y € K,,. Then we have n > ny;, (z,y). Combining with Proposition
C.13, we see that r;"d(z,y) > C~!, where C' > 1 is the constant in (C.26). O]

Since Assumption 6.15 includes the following chain condition of the underlying com-
pact metric space, we will assume this condition in addition to Assumption C.9.

Definition C.15. Let (X,d) be a metric space. For ¢ > 0 and z,y € X, a sequence
{x;}X, of points in X is said to be a e-chain between x and y if

NeN, zy=2, zy=y and  max 1}d(zi,xi+1)<€.

We also define
N-1
d.(z,y) = {Z d(x;, Tiq1) ‘ {z; i]iﬁl is an e-chain between x and y}.
i=0

We say that the metric space (X, d) satisfies the chain condition if there exists C' > 1
such that
d.(z,y) < Cd(xz,y) foralle >0and z,y € X. (C.28)

The metric space (X, d) is called geodesic if for all z,y € X there exists a continuous map
v: [0,1] — X satisfying

v0) ==z, ~(1)=y and d(y(s),7(t)) =|s —td(z,y) for all s,t € [0,1],

Proposition C.16 ([KM20, Proposition A.1)). Let (X,d) be a metric space such that
By(z, 1) is relatively compact for any x € X andr > 0. Then the following are equivalent:

(1) (X,d) satisfies the chain condition.

(2) There exists a geodesic metric p on X which is bi-Lipschitz equivalent to d, i.e. there
exists a constant C' > 1 such that

C™lp(z,y) < d(x,y) < Cp(z,y) forall z,y € X. (C.29)

Remark C.17. The proof of [KM20, Proposition A.1] provides us stronger results:

e If (X, d) satisfies the chain condition, then p(x,y) = lim. o d.(x,y) is a geodesic metric
and d < p < Cd, where C' > 1 is the same as in (C.28).
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e If the condition (2) in the above proposition holds, then d satisfies the chain condition
with d. < C%d, where C' > 1 is the same as in (C.29).

The following lemma is a consequences of the chain condition in terms of partitions.

Lemma C.18. Suppose that (K, d, m, { Ky }}wer) Assumption C.9 and that (K, d) satisfies
the chain condition.

(i) There exists a constant ¢ > 0 (depending only on r., M., ¢; in Assumption C.9 and
C >1in (C.28)) such that

ne€Zsy, keNvweTl,, c#yec K > .
such that v € K,, y € Ky and v & Uy 41)-1(w) | = 7
(C.30)

inf { (kr™) " d(x, y)

(ii) There ezists a constant C > 1 such that for any w € T and n € Z>,
diam(S™(w), dptpy) < Cr."

Proof. (i) By Proposition C.16 (and Remark C.17), there exist a geodesic metric p on X
and a constant C' > 1 (depending only on the constant in (C.28)) such that C~1p < d <
Cp. Let k € Nand v,w € T with |v| = jw| = n and v &€ Ty 41)-1(w). For z € K,
and y € K, let 7,y: [O 1] = X be a geodesic from z to y with respect to p. Since 7,
is continuous, for each j = 1,...,k — 1, there exist z; € T'j, 11 ( ) \FJ(M*H)_l and
t; € [0,1] such that ~,,(t;) € K.,. Then Corollary C.14 yields

d<fy<t])77<tj+1)) > CTZ for aan :Ou"'7k_ 17

where ¢ > 0 is the same as in (C.27), to = 0 and ¢, = 1. Since 7, is a geodesic, we easily
see that

k—

;_\
N

-1

p(v(t5), v(tjs1)) = C7HY d(v(t;), v(tj41)) = cC kT,

i=0 j

.
Il
=)

which implies disty(K,, K,,) > C'kr™ if we put C’ := cC~2.

(ii) Let n € Zso and w € T. Choose v,v" € S"(w) so that d,ip(v,v") =
diam(S™(w), dp1py). We can assume that diam(S™(w), d,1py) > M. Let k € N be
the largest integer satisfying k(M. + 1) — 1 < diam(S™(w), dptm), 1.e.

k= | (diam(S"(w), dnypuy) + 1)/ (M +1) .

By Lemma C.18, for any = € K, and 2’ € K,

T n n-tuf
d(z,x") > ckrl™ > 20L 1) (diam(S™(w), dpipy) + 1)1
c
> ———di Hw‘ 31

149



where ¢ > 0 is the same as in (C.30) and we used k& > 27 (diam(S™(w), dy4puf)+1)/ (Mo +1)
(since diam(S™(w), dn4yy) > M) in the second inequality.

On the other hand, we have d(z,2") < diam(K,,d) < cor™. Combining with (C.31),
we get
diam (S™(w), dp ) < 2¢7 (M + V)ear, ™.

We complete the proof. O

C.2 Conductance and neighbor disparity constants

Next we recall the definitions of conductance constants, neighbor disparity constants,
the notion of p-conductive homogeneity and the function space WP by following [Kig23].
Throughout this subsection, we fix p € (0, 00), a compact metrizable space K, a partition
{Ky }wer and a Borel regular probability measure m on K.

Definition C.19 ([Kig23, Definitions 2.17 and 3.4]). Let n € Zso, A C T, and A;, Ay C
A. Define ToorBe )
Epk (A, Az, A) == capy kSt (Sk(Al),Sk(Ag);Sk(A)).

For w € A and M € N, define

Entpr(w, A) = Epp({w}, A\ Ty (w), A), (C.32)
which is called the p-conductance constant of w in A at level k. We also define
Evipr = su;T) Entp (W, Thy).- (C.33)
we

Definition C.20 ([Kig23, Definitions 2.26 and 2.29]). Let n € N and A C T,,.
(1) For k € Zso and f: Ty, — R, define P, f: T, — R by

= ! v)m w
(Prah )W) = ) vg%w)ﬂ Jm(Ky), weT,

(Note that P, xf depends on the measure m.)

(2) For k € Z>, define
E (Purf)
opi(A) = sup  BEETL
f: SkE(A)—=R gp,Sk(A)(f)

which is called the p-neighbor disparity constant of A at level k.

(3) Let {A;}F_, be a collection of subsets of T}, and let Ny, Ng € N. The family {A;}¥,
is called a covering of (A, EX(A)) with covering numbers (Nr, Ng) if

k
A=JAi max#{i|z€ A} < Nr,

i=1
and for any (u,v) € EX(A), there exist | < Ng and {w(1),...,w(l + 1)} C A such
that w(1) = u, w(l+1) = v and (w(i),w(i+1)) € Ule Ex(A;) foranyi e {1,...,1}.
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(4) Let 7 CU,50{A | ACT,} and Ny, Ng € N. The collection ¢ is called a covering
system with covering numbers (N7, Ng) if the following conditions are satisfied.

(i) supge , #A < o0.
(ii) For any w € T and k € N, there exists a finite subset A4~ C ¢ such that .4
is a covering of (S*(w), E, ,(S*(w))) with covering numbers (Ny, Ng).
(iii) For any A € # and k € Zso with A C T, there exists a finite subset
AN C _Z such that A is a covering of (S*(A), E:,,(S*(A))) with covering
numbers (Np, Ng).

The collection ¢ is simply said to be a covering system if there exist Ny, Np € N
such that ¢ is a covering system with covering numbers (Np, Ng).

(5) Let # CU,5o{A| ACT,} be a covering system. Define

a{m =max{o,,(A)|Ae Z,ACT,} and a]'{; = sup aﬁm.

p
nGZEO

For basic properties on conductance constants and neighbor disparity constants, see
[Kig23, Section 2.2-2.4].

Now we can introduce the notion of p-conductive homogeneity and recall its charac-
terization.

Definition C.21 ([Kig23, Definition 3.4]). A compact metric space K (with a partition
{Ky}wer and a measure m) is said to be p-conductive homogeneous if there exists a
covering system _# such that

sup a;ié'M*W~C < 0. (C.34)
kEZZO

Theorem C.22 ([Kig23, Theorem 3.30]). A compact metric space K is p-conductive
homogeneous if and only if there exist c1,co > 0 and o(p) > 0 such that

cla(p)_k < Em,pi(v,T5,) < CQU(p)_k and cla(p)k < opkn < CQU(p)k (C.35)
forany k € Zso, n € N andv € T,,.

We also recall the “Sobolev” space WP due to Kigami.
Definition C.23 ([Kig23, Lemma 3.13]). Define

WP = {f € LP(K,m) | sup o,y £ (Puf) < 00}7

7"7171 p
neN

where P, f(w) = f,. fdm, w € T,.

Remark C.24. (1) The limits limg_,o, (EM*,M)_l/k and limy_s (azﬁ)l/k always exist

by [Kig23, Corollary 2,24 and Lemma 2.34]. If K is p-conductive homogeneous,
then, by (C.35), these limits must be equal to the constant o(p) in Theorem C.22.
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(2) Suppose that (K, d, m,{K, }wer) satisfies Assumption C.9). Then, by [Kig20, The-
orem 4.6.9]

dimare (K, d) = inf{p ‘ T Ear, i = 0}. (C.36)

If K is p-conductive homogeneous, then (C.36) tells us that p > dimarc(K,d) if
and only if o(p) > 1. However, there is a possibility that a;i > 1 for any p > 0

[Kig23, Proposition 2.31]. We need to avoid such a covering system _# in the case
of p < dimpagc(K, d). For details, see [Kig23, page 31].

(3) If opp1 S o(p)* for any k > 0, then

Wr = {feLp(K,m)

supo(p )”5 (InBR) (P, f) < oo}

neN

C.3 From Kigami’s framework

We now describe how to interpret partitions parametrized by a tree into the framework
introduced in Section 6. First, we fix our framework. Suppose that (K, d, m,{Ky }wer)
satisfies Assumption C.9 and let p € (1,00). In addition, suppose that m is dg-Ahlfors
regular with respect to d for some d; > 1 and that (K, d) is p-conductive homogeneous.
Let 7. € (0,1) be the constant in Assumption C.25-(1) and let o(p) > 0 be the constant
in Theorem C.22. Set R, :==r;! and

loga(p)

dy (p) =ds + log R

(C.37)

We will work under the following assumption.

Assumption C.25. Let p € (1,00). Let (K,d) be a compact metric space with
diam(K,d) = 1, let m be a Borel regular probability measure on K, and let { K, },er be
a partition parametrized by a rooted tree (T, ¢). We suppose the following conditions.

(1) (K,d,m,{Ky}wer) satisfies Assumption C.9.

(2) (K,d) satisfies the chain condition.

(3) m is Ahlfors regular with respect to d.
(4) (K d) is p-conductive homogeneous.
(5) df — dw(p) < 1.

Hereafter, we fix (K,d, m,{K,}wer) satisfying Assumption C.25. We consider a se-
quence of finite connected graphs G, = (T,,,EX), n € N. For n > k > 1, define
Tkt Ly — T} by

Toe(Wiwsy .. wy,) = wwy ... wy,  for w=wwsy...w, €T,.

Equivalently, 7,x = 7" *|r,, where 7 is the map in (C.1). Then it is clear that
{mr;1 < k < n} is a projective family (see Definition 6.1). Furthermore, we easily

152



see that 7}, (w) = S*(w) for any n € N, k > 0 and w € T,,. Define probability mea-

sures m,, on T,, by setting m,(w) = m(K,) for w € T,,. Then (m,,),>0 is consistent (with
respect to {m,x}) by (C.20) and W;ikjn(w) = S*(w).
The next theorem is the main result of this section.

Theorem C.26. Suppose that (K,d, m,{K,}wer) satisfies Assumption C.25. Let R, €
(0,1),de > 1,dw(p) > 0,{G}. }nen, {mni | 1 < k < n} be given as above. Then {G,} along
with {7, 1} satisfies Assumption 6.15.

Proof. We first show that {G,,} along with {m, s} is R.-scaled and R,-compatible with
(K,d). To this end, we introduce a new family {K, },er as follows. Set K, = K
and enumerate 7T, so that T,, = {w(1;n),...,w(l,;n)}, n € N. Inductively, we define

{{[?w}wETn | n e ZZD} by

j—1
Kuin) = Kum) N Krwny)  and Ky = (Kw(j;n) U Kw(l’%ﬂ)) N Ko(w(in))-
i=1
Then it is clear that {l?w}weTn are disjoint family of Borel sets and K, = Uves(w) K, for

any w € T.

Note that diam(ﬂgikm(w),d%k) < CRF for any w € T),, and k € Zsg, where C' >
1 is the same as in Lemma C.18(ii). For each w € T, choose p,(w) € O, so that
Ba(pn(w),cR;™) C O, C K,, where ¢ > 0 is the constant in Proposition C.11(iv).
Let ¢;(w) € Thypy be the element such that p,(w) € }?Ck(w) for each & > 0. Then we
immediately have dj,(cx(v),cp(w)) < 2CR* for any {v,w} € E}, i.e., (6.4) holds. Let
Ay > 1 and set By(w) = By, (cr(w), AT'RF) for k € Nand w € T. If A, is large enough
so that 2c,A7" < ¢, where ¢y > 0 is the constant in (C.15), then

Kpy(w) C Ba(pa(w), 247" RE % car™*) C© By(pa(w), cR") C Ky = K1 (),
which together with Lemma C.8 implies By(w) C ﬂ;i,w (w). Hence (6.3) holds by putting
Ay = CV (2c ¢y). Therefore {G,} along with {7, ;} is R.-scaled.

Next we show that {G,} along with {m, x} is R.-compatible with (K, d). It is imme-
diate from (C.15) that d(p,(v), pa(w)) < 2d, (v, w) X coR;™ for any v, w € T,,, which gives
the upper estimate of (6.5). The converse estimate d(p,(v), p,(w)) 2 d, (v, w)R,;™ follows
from Lemma C.18(i), and hence Definition 6.4(i) holds. The other properties (ii)-(iv) in
Definition 6.4 are obvious, so {G,} along with {m, x} is R.-compatible.

Lastly, we show U-PL,(3) and U-CF, (¢, 8) (for some ¢ € (0, 1].) By virtue of Proposi-
tions 6.8 and 6.12, it is enough to show that {G,, } satisfies U-AR(d;), U-BCL*" (d¢—d. (p))

and U-cap, <(dy(p)). Note that m,(w) = m(K,) = m(K,) by (C.20) and hence U-
AR(dy) is immediate from Lemma 6.6. Combining (C.35) and (6.3), we easily obtain
U-cap,, <(dw(p)). The rest of this proof will be devoted to U-BCL™(ds — d(p)). (The

argument is very similar to the proof of Proposition 10.7(iii).)

153



Let kK > 0, n € Nand 1 < R < diam(G,). Let B, = By, (z;,R), x; € T,,
i = 1,2, such that distyq, (B, B2) < kR. Recall that C' > 1 is a constant such that
diam(m n+kn( w), dpyr) < CRE. Choose n(R) € Z so that

2CR"™ < R < 20 R+

By R < diam(G,,) and diam(G,,) < 2Ca}, we then have n > n(R).

First, we consider the case of R > 2C. Then n(R) > 0. It is a simple observation that
there exist w(1), w(2) € T),_n(r) such that

S"® (w(i)) € B; and x; € S"P(w(i)) for each i = 1,2.
Then, we have
distq, ("0 (w(1)), $"® (w(2))) < R+ KR+ R <22+ k)R, - RO,

This together with Lemma C.18(i) implies that there exist w € T;,_nr) and M (k) € N
(depending only on k, R,, M, and the constants ¢; in Assumption C.9) such that w(i) €
LCarey(w). Set L(k) == (2M (k) +1)A; /(2C), where A; > 1 is the constant in (6.3). Using
Lemma 2.3(ii) and following a similar argument to (10.9), we can show that

Mod;" ({0 € Path(By, B>; Gy,) | diam(0,d,,) < L(k)R})
> Modg™ ({6 € Path(5"™ (w(1)), 5" (w(2)); G,) | diam(6, d,) < 2CL(x) R} )

> Modf’” (S”(R) (w(1)), SR (w(2)); S (Tarey (w)))
2 Epnry(w(1),w(2), Targey(w))  (by Lemma 2.12).

w
By [Kig23, (2.16)], (C.35) and a similar argument as the proof of [KiOQ% Lemma 3.32],
)

16)]
we have o€, g (w(1),w(2), Targey(w)) = 1. Since o B < Ré—dw() there exists a

P
constant ¢(k) > 0 (depending only on p, k, R., M, and the constants ¢; in Assumption
C.9) such that

Mod}" ({60 € Path(By, B»; G,,) | diam(0,d,,) < L(k)R}) > c(r) R4 )
Let us consider the case 1 < R < 2C to complete the proof. By (2.2) in Lemma 2.4,
ModS" ({6 € Path(By, B»; G,,) | diam(6, d,) < L(x)R}) > (L(x)R)"*
> (20)—pL(,{)1—def—dw(p)’
where we used df — dy(p) < 1 (Proposition 10.7(i)) and R < 2C in the last inequality. O
Corollary C.27. Suppose that (K,d, m,{K,}wer) satisfies Assumption C.25.

(i) It holds that WP = F, = B;lf;ép)/p. Moreover, there exist a constant C > 1 such that
for any f € LP(K,m),

f (=) = f)” \f(2) = f)”
igg/K ]id(m) ) m(dy)m(dx) < OI:LI)I/ ]id . wa S o S m(dy)m(dz).
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(ii) There exist constants C' > 1 and A > 1 such that for any f € LP(K,m), z € K and
R >0,

f (@) = f@)

/ f = fBam)| dm < CRdW(p)li_m/ ][ e mldy)m(dz).
By(z,R) 510 J By(z,AR) J By(x,s) shwiP

Proof. (i) Recall the definition of the normalized energy 5;”) in (6.20). The identity
WP = F, immediately follows from &M = o"EF (M, f). Hence Theorem 7.1 yields
the desired statements.

(ii) This follows from a combination of Lemmas 6.24, 7.3 and 7.4. O

C.4 Conductive homogeneity of the Sierpinski carpet

In this subsection, we prove the p-conductive homogeneity of the planar Sierpinski carpet.
Hereafter, let p € (1,00), let (K, S, {F;}ics) be the planar Sierpinski carpet, let {G,, }nen
be the sequence of finite graphs as in Section 10 and let m be the self-similar measure
on K with the weight (1/8,...,1/8). Recall that a, = 3, df = log8/log3, dy(p) =
log (8p(p))/log3 and P, f(w) = M, f(w) = f,. fdm for n € Zs, f € LP(K,m).

The following main theorem in this subsection follows from a combination of U-
PI,(dy(p)) and the self-similarity.

Theorem C.28. The Sierpinski carpet equipped with the self-similar measure with the
equal weight is p-conductively homogeneous for any p € (1,00). In particular, o(p) = p(p)
and JF, = WP.

Proof. First, we fix a choice of covering systems. Define ¢, ([Kig23, (4.15)]) by

i ={{v,w} | {v,w} € E; for some n € Z>o, #(K, N K,) > 2}.

By Theorem 10.2(a), we can choose a constant A > 1 so that the following statement
holds: For any k,l € N and {v,w} € _# N E}, there exists c,(v,w) € S*({v,w}) such
that S*({v,w}) C By, (ck(v,w), Aa}). Fix a large enough k, € N so that AApra,* < 1,
where Apy is the constant in U-PL,(dy(p)) (Theorem 10.2(b)). We note that, by choosing
R = 2diam(G,) in U-PL,(d(p)), there exists Cp; > 0 such that

> W) = fwl” < Coral™PET (f)  for any n € N and f € R™. (C.38)
yEW,
To prove the p-conductive homogeneity (C.34) with ¢ = ¢, it is enough to show that
agﬁf < p(p)™ for any n € N by (10.4). Let us fix | € Nand {v,w} € #,NE}. It is easy to
find (v/,w') € S*(v) x S* (w) satisfying {v/,w'} € #; and By, ., (ca(v',0'), \Apra?) C
S"({v,w}) since ‘there are a®*' copies of a n-cell along the intersection K, N K, . For
simplicity, set

By = Bay o, (cn(V,w'), Xal) and  ApiBy = Ba,,,.,. (cn(v,w), AApral).
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Let z1,2z0 € Wy, such that v = vz; and w' = wze. Similar to (6.17), we have from
U-PIL,(dw(p)) that for any f € LP(K,m) and n € N,

}f K, — [k,

n * W - Gn * n * G"’L *
"< Clai ) (@) df)gp,A;lIgZ,’w,<Mn+l+k* f) < Cip(p) * Ep,szl:i—cﬁ({v,w})(Mn+l+k*f>7

where ] > 0 is independent of f,n,v,w. In addition,

}fKU/ — K, "= ‘(f oFy)k —(fo FU)Kzl F= ‘(Mn-i-k* (fo Fv))WnJrk* - (Mn—l—k:* (fo Fv))gn(zl)
CES N Y |(Mu(f 0 ) @) = (Moean(F 0 Py,
TEW 4k
< (#"(21)) " Cpral I B gEnste (M, (f 0 ) (by (C.38))
< 02a>('<n+k*)(dw(P)*df)gﬁ’g:i:i*({vyw}) (Mn+l+k* f), (039>

P <

where Cy > 0 is also independent of f,n, v, w. Similar to (C.39), we have |wa, — fr.,

Coall ™ )_df)gfgzﬂ’i*( {%w})(MnHJrk* f). Combining these estimates, we show that

(Moiin ) smtre o) = (Mugtn, fsnrin )| = 1fxs = [l
<3 Ve, = el + [ = S+ Vi = T )
n * W — GTL * _ n * GTL *
< 3pca£ ) (p) df)gp,siﬁci({ww})(Mn+l+k*f> - 3p0/0(p> * E amin, {va})<Mn+l+k* f)a

p,ST R (

where C' = C} vV (5. This estimate implies a;if wn, < 3PCp(p)"tF+ for any n € N and

proves (C.34). O
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