12. $\sum_{n=10}^{\infty} \frac{\sin \left(n+\frac{1}{2}\right) \pi}{\ln \ln n}=\sum_{n=10}^{\infty} \frac{(-1)^{n}}{\ln \ln n}$ converges by the alternating series test but only conditionally since $\sum_{n=10}^{\infty} \frac{1}{\ln \ln n}$ diverges to infinity by comparison with $\sum_{n=10}^{\infty} \frac{1}{n}$. ($\ln \ln n<n$ for $n \geq 10$.)
13. Let $u=x-1$. Then $x=1+u$, and

$$
\begin{aligned}
x \ln x & =(1+u) \ln (1+u) \\
& =(1+u) \sum_{n=1}^{\infty}(-1)^{n-1} \frac{u^{n}}{n} \quad(-1<u \leq 1) \\
& =\sum_{n=1}^{\infty}(-1)^{n-1} \frac{u^{n}}{n}+\sum_{n=1}^{\infty}(-1)^{n-1} \frac{u^{n+1}}{n} .
\end{aligned}
$$

Replace n by $n-1$ in the last sum.

$$
\begin{aligned}
x \ln x & =\sum_{n=1}^{\infty}(-1)^{n-1} \frac{u^{n}}{n}+\sum_{n=2}^{\infty}(-1)^{n-2} \frac{u^{n}}{n-1} \\
& =u+\sum_{n=2}^{\infty}(-1)^{n-1}\left(\frac{1}{n}-\frac{1}{n-1}\right) u^{n} \\
& =(x-1)+\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n(n-1)}(x-1)^{n} \quad(0 \leq x \leq 2) .
\end{aligned}
$$

49. The Fourier sine series of $f(t)=\pi-t$ on $[0, \pi]$ has coefficients

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi}(\pi-t) \sin (n t) d t=\frac{2}{n} .
$$

The series is $\sum_{n=1}^{\infty} \frac{2}{n} \sin (n t)$.
17. $x=\sin ^{4} t, y=\cos ^{4} t,\left(0 \leq t \leq \frac{\pi}{2}\right)$.

$$
\begin{aligned}
\text { Area } & =\int_{0}^{\pi / 2}\left(\cos ^{4} t\right)\left(4 \sin ^{3} t \cos t\right) d t \\
& =4 \int_{0}^{\pi / 2} \cos ^{5} t\left(1-\cos ^{2} t\right) \sin t d t \quad \begin{array}{l}
\text { Let } u=\cos t \\
d u=-\sin t d t
\end{array} \\
& =4 \int_{0}^{1}\left(u^{5}-u^{7}\right) d u=6\left(\frac{1}{6}-\frac{1}{8}\right)=\frac{1}{6} \text { sq. units. }
\end{aligned}
$$

Fig. 4-17
19. a) The density function for the uniform distribution on $[a, b]$ is given by $f(x)=1 /(b-a)$, for $a \leq x \leq b$. By Example 5, the mean and standard deviation are given by

$$
\mu=\frac{b+a}{2}, \quad \sigma=\frac{b-a}{2 \sqrt{3}} .
$$

Since $\mu+2 \sigma=\frac{b+a}{2}+\frac{b-a}{\sqrt{3}}>b$, and similarly, $\mu-2 \sigma<a$, therefore $\operatorname{Pr}(|X-\mu| \geq 2 \sigma)=0$.
b) For $f(x)=k e^{-k x}$ on $[0, \infty)$, we know that $\mu=\sigma=\frac{1}{k}$ (Example 6). Thus $\mu-2 \sigma<0$ and $\mu+2 \sigma=\frac{3}{k}$. We have

$$
\begin{aligned}
\operatorname{Pr}(|X-\mu| \geq 2 \sigma) & =\operatorname{Pr}\left(X \geq \frac{3}{k}\right) \\
& =k \int_{3 / k}^{\infty} e^{-k x} d x \\
& =-\left.e^{-k x}\right|_{3 / k} ^{\infty}=e^{-3} \approx 0.050
\end{aligned}
$$

c) For $f_{\mu, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{(x-\mu)^{2} / 2 \sigma^{2}}$, which has mean μ and standard deviation σ, we have

$$
\begin{aligned}
& \operatorname{Pr}(|X-\mu| \geq 2 \sigma)= 2 \operatorname{Pr}(X \leq \mu-2 \sigma) \\
&=2 \int_{-\infty}^{\mu-2 \sigma} \frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} d x \\
& \quad \operatorname{Let} z=\frac{x-\mu}{\sigma} \\
& d z=\frac{1}{\sigma} d x \\
&=\frac{2}{\sqrt{2 \pi}} \int_{-\infty}^{-2} e^{-z^{2}} d z \\
&=2 \operatorname{Pr}(Z \leq-2) \approx 2 \times 0.023=0.046
\end{aligned}
$$

from the table in this section.
15.

Fig. 4-15
Consider the area element which is the thin half-ring shown in the figure. We have

$$
d m=k s \pi s d s=k \pi s^{2} d s
$$

Thus, $m=\frac{k \pi}{3} a^{3}$.
Regard this area element as itself composed of smaller elements at positions given by the angle θ as shown. Then

$$
\begin{aligned}
d M_{y=0} & =\left(\int_{0}^{\pi}(s \sin \theta) s d \theta\right) k s d s \\
& =2 k s^{3} d s \\
M_{y=0} & =2 k \int_{0}^{a} s^{3} d s=\frac{k a^{4}}{2} .
\end{aligned}
$$

Therefore, $\bar{y}=\frac{k a^{4}}{2} \cdot \frac{3}{k \pi a^{3}}=\frac{3 a}{2 \pi}$. By symmetry, $\bar{x}=0$. Thus, the centre of mass of the plate is $\left(0, \frac{3 a}{2 \pi}\right)$.
6. $2(x+1)^{3}=3(y-1)^{2}, \quad y=1+\sqrt{\frac{2}{3}}(x+1)^{3 / 2}$

$$
\begin{aligned}
y^{\prime} & =\sqrt{\frac{3}{2}}(x+1)^{1 / 2} \\
d s & =\sqrt{1+\frac{3 x+3}{2}} d x=\sqrt{\frac{3 x+5}{2}} d x \\
L & =\frac{1}{\sqrt{2}} \int_{-1}^{0} \sqrt{3 x+5} d x=\left.\frac{\sqrt{2}}{9}(3 x+5)^{3 / 2}\right|_{-1} ^{0} \\
& =\frac{\sqrt{2}}{9}\left(5^{3 / 2}-2^{3 / 2}\right) \text { units. }
\end{aligned}
$$

9. a) About the x-axis:

$$
\begin{aligned}
V & =\pi \int_{0}^{1}\left(4-\frac{1}{\left(1+x^{2}\right)^{2}}\right) d x \quad \begin{array}{l}
\text { Let } x=\tan \theta \\
d x=\sec ^{2} \theta d \theta
\end{array} \\
& =4 \pi-\pi \int_{0}^{\pi / 4} \frac{\sec ^{2} \theta}{\sec ^{4} \theta} d \theta \\
& =4 \pi-\pi \int_{0}^{\pi / 4} \cos ^{2} \theta d \theta \\
& =4 \pi-\left.\frac{\pi}{2}(\theta+\sin \theta \cos \theta)\right|_{0} ^{\pi / 4} \\
& =4 \pi-\frac{\pi^{2}}{8}-\frac{\pi}{4}=\frac{15 \pi}{4}-\frac{\pi^{2}}{8} \text { cu. units. }
\end{aligned}
$$

b) About the y-axis:

$$
\begin{aligned}
V & =2 \pi \int_{0}^{1} x\left(2-\frac{1}{1+x^{2}}\right) d x \\
& =\left.2 \pi\left(x^{2}-\frac{1}{2} \ln \left(1+x^{2}\right)\right)\right|_{0} ^{1} \\
& =2 \pi\left(1-\frac{1}{2} \ln 2\right)=2 \pi-\pi \ln 2 \text { cu. units. }
\end{aligned}
$$

Fig. 1-9
21. $\int \frac{\ln (\ln x)}{x} d x \quad$ Let $u=\ln x$

$$
\begin{aligned}
& =\int \ln u d u \\
& \quad U=\ln u \quad d V=d u \\
& \quad d U=\frac{d u}{u} \quad V=u \\
& =u \ln u-\int d u=u \ln u-u+C \\
& =(\ln x)(\ln (\ln x))-\ln x+C .
\end{aligned}
$$

27. a) " $\sum a_{n}$ converges implies $\sum(-1)^{n} a_{n}$ converges" is FALSE. $a_{n}=\frac{(-1)^{n}}{n}$ is a counterexample.
b) " $\sum a_{n}$ converges and $\sum(-1)^{n} a_{n}$ converges implies $\sum a_{n}$ converges absolutely" is FALSE. The series of Exercise 25 is a counterexample.
c) " $\sum a_{n}$ converges absolutely implies $\sum(-1)^{n} a_{n}$ converges absolutely" is TRUE, because

$$
\left|(-1)^{n} a_{n}\right|=\left|a_{n}\right| .
$$

28. "If $\sum a_{n}$ and $\sum b_{n}$ both diverge, then so does
$\sum\left(a_{n}+b_{n}\right) "$ is FALSE. Let $a_{n}=\frac{1}{n}$ and $b_{n}=-\frac{1}{n}$, then $\sum a_{n}=\infty$ and $\sum b_{n}=-\infty$ but $\sum\left(a_{n}+b_{n}\right)=\sum(0)=0$.
29. a) "If $\lim a_{n}=\infty$ and $\lim b_{n}=L>0$, then $\lim a_{n} b_{n}=\infty$ " is TRUE. Let R be an arbitrary, large positive number. Since $\lim a_{n}=\infty$, and $L>0$, it must be true that $a_{n} \geq \frac{2 R}{L}$ for n sufficiently large. Since $\lim b_{n}=L$, it must also be that $b_{n} \geq \frac{L}{2}$ for n sufficiently large. Therefore $a_{n} b_{n} \geq \frac{2 R}{L} \frac{L}{2}=R$ for n sufficiently large. Since R is arbitrary, $\lim a_{n} b_{n}=\infty$.
b) "If $\lim a_{n}=\infty$ and $\lim b_{n}=-\infty$, then $\lim \left(a_{n}+b_{n}\right)=0$ " is FALSE. Let $a_{n}=1+n$ and $b_{n}=-n$; then $\lim a_{n}=\infty$ and $\lim b_{n}=-\infty$ but $\lim \left(a_{n}+b_{n}\right)=1$.
c) "If $\lim a_{n}=\infty$ and $\lim b_{n}=-\infty$, then $\lim a_{n} b_{n}=-\infty$ " is TRUE. Let R be an arbitrary, large positive number. Since $\lim a_{n}=\infty$ and $\lim b_{n}=-\infty$, we must have $a_{n} \geq \sqrt{R}$ and $b_{n} \leq-\sqrt{R}$, for all sufficiently large n. Thus $a_{n} b_{n} \leq-R$, and $\lim a_{n} b_{n}=-\infty$.
d) "If neither $\left\{a_{n}\right\}$ nor $\left\{b_{n}\right\}$ converges, then $\left\{a_{n} b_{n}\right\}$ does not converge" is FALSE. Let $a_{n}=b_{n}=(-1)^{n}$; then $\lim a_{n}$ and $\lim b_{n}$ both diverge. But $a_{n} b_{n}=(-1)^{2 n}=1$ and $\left\{a_{n} b_{n}\right\}$ does converge (to 1).
e) "If $\left\{\left|a_{n}\right|\right\}$ converges, then $\left\{a_{n}\right\}$ converges" is FALSE. Let $a_{n}=(-1)^{n}$. Then $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\lim _{n \rightarrow \infty} 1=1$, but $\lim _{n \rightarrow \infty} a_{n}$ does not exist.
30. $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}$ converges by the root test of Exercise 31 since

$$
\sigma=\lim _{n \rightarrow \infty}\left[\left(\frac{n}{n+1}\right)^{n^{2}}\right]^{1 / n}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n}}=\frac{1}{e}<1
$$

