Math 121 Practice Problem Set 1 for the second midterm (Based on Chapter 8 and Sections 9.1-9.4)

1. Determine whether the sequence

$$
a_{1}>\sqrt{2}, \quad a_{n+1}=\frac{a_{n}}{2}+\frac{1}{a_{n}}, \quad n=1,2,3 \cdots
$$

has a limit. If it does, then find the limit.
2. Do the following series

$$
\sum_{n=10}^{\infty} \frac{(-1)^{n-1}}{\ln \ln n} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{n^{2} \cos (n \pi)}{1+n^{3}}
$$

converge absolutely, converge conditionally or diverge?
3. Find the area of the region inside the curve $r^{2}=2 \cos 2 \theta$ and outside $r=1$.
4. Identify the curve whose polar equation is given by $r=\sec \theta \tan \theta$.
5. Find the intersections of the pair of curves $r=\theta, r=\theta+\pi$.

6 . Find the volume of the solid obtained by rotating about the x-axis the region bounded by that axis and one arch of the cycloid $x=$ $a t-a \sin t, y=a-a \cos t$.
7. Does the alternating series test continue to hold if the assumption

$$
\left|a_{n+1}\right| \leq\left|a_{n}\right| \quad \text { for all } n \geq N
$$

is dropped? Prove this statement if it is true, or give a counterexample.

