4. $\lim _{n \rightarrow \infty} \frac{(-1)^{n} n^{2}}{\pi n(n-\pi)}=\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{1-(\pi / n)}$ does not exist. The sequence diverges (oscillates).
5. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2^{n}-n}$ converges absolutely by comparison with the convergent geometric series $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$, because

$$
\lim _{n \rightarrow \infty} \frac{\left|\frac{(-1)^{n}}{2^{n}-n}\right|}{\frac{1}{2^{n}}}=\lim _{n \rightarrow \infty} \frac{1}{1-\frac{n}{2^{n}}}=1
$$

19. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln \ln n}$ converges by the alternating series test, but the convergence is only conditional since $\sum_{n=1}^{\infty} \frac{1}{\ln \ln n}$ diverges to infinity by comparison with the divergent harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$. (Note that $\ln \ln n<n$ for all $n \geq 1$.)
20. Since $r^{2}=2 \cos 2 \theta$ meets $r=1$ at $\theta= \pm \frac{\pi}{6}$ and $\pm \frac{5 \pi}{6}$, the area inside the lemniscate and outside the circle is

$$
\begin{aligned}
& 4 \times \frac{1}{2} \int_{0}^{\pi / 6}\left[2 \cos 2 \theta-1^{2}\right] d \theta \\
& =\left.2 \sin 2 \theta\right|_{0} ^{\pi / 6}-\frac{\pi}{3}=\sqrt{3}-\frac{\pi}{3} \text { sq. units. }
\end{aligned}
$$

Fig. 6-10
6. $r=\sec \theta \tan \theta \Rightarrow r \cos \theta=\frac{r \sin \theta}{r \cos \theta}$
$x^{2}=y \quad$ a parabola.
28. Let $r_{1}(\theta)=\theta$ and $r_{2}(\theta)=\theta+\pi$. Although the equation $r_{1}(\theta)=r_{2}(\theta)$ has no solutions, the curves $r=r_{1}(\theta)$ and $r=r_{2}(\theta)$ can still intersect if $r_{1}\left(\theta_{1}\right)=-r_{2}\left(\theta_{2}\right)$ for two angles θ_{1} and θ_{2} having the opposite directions in the polar plane. Observe that $\theta_{1}=-n \pi$ and $\theta_{2}=(n-1) \pi$ are two such angles provided n is any integer. Since

$$
r_{1}\left(\theta_{1}\right)=-n \pi=-r_{2}((n-1) \pi)
$$

the curves intersect at any point of the form $[n \pi, 0]$ or $[n \pi, \pi]$.
22. If $x=f(t)=a t-a \sin t$ and $y=g(t)=a-a \cos t$, then the volume of the solid obtained by rotating about the x-axis is

$$
\begin{aligned}
V & =\int_{t=0}^{t=2 \pi} \pi y^{2} d x=\pi \int_{t=0}^{t=2 \pi}[g(t)]^{2} f^{\prime}(t) d t \\
& =\pi \int_{0}^{2 \pi}(a-a \cos t)^{2}(a-a \cos t) d t \\
& =\pi a^{3} \int_{0}^{2 \pi}(1-\cos t)^{3} d t \\
& =\pi a^{3} \int_{0}^{2 \pi}\left(1-3 \cos t+3 \cos ^{2} t-\cos ^{3} t\right) d t \\
& =\pi a^{3}\left[2 \pi-0+\frac{3}{2} \int_{0}^{2 \pi}(1+\cos 2 t) d t-0\right] \\
& =\pi a^{3}\left[2 \pi+\frac{3}{2}(2 \pi)\right]=5 \pi^{2} a^{3} \operatorname{cu} . \text { units. }
\end{aligned}
$$

Fig. 4-22

