4. $\lim_{n \to \infty} \frac{(-1)^n n^2}{\pi n(n-\pi)} = \lim_{n \to \infty} \frac{(-1)^n}{1 - (\pi/n)}$ does not exist. The sequence diverges (oscillates).

18. $\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n - n}$ converges absolutely by comparison with the convergent geometric series $\sum_{n=1}^{\infty} \frac{1}{2^n}$, because

$$\lim_{n \to \infty} \frac{\left| \frac{(-1)^n}{2^n - n} \right|}{\frac{1}{2^n}} = \lim_{n \to \infty} \frac{1}{1 - \frac{n}{2^n}} = 1.$$

19. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln \ln n}$ converges by the alternating series test, but the convergence is only conditional since $\sum_{n=1}^{\infty} \frac{1}{\ln \ln n}$ diverges to infinity by comparison with the divergent harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$. (Note that $\ln \ln n < n$ for all $n \ge 1$.)

10. Since $r^2 = 2\cos 2\theta$ meets r = 1 at $\theta = \pm \frac{\pi}{6}$ and $\pm \frac{5\pi}{6}$, the area inside the lemniscate and outside the circle is

$$4 \times \frac{1}{2} \int_0^{\pi/6} [2\cos 2\theta - 1^2] d\theta$$

= $2\sin 2\theta \Big|_0^{\pi/6} - \frac{\pi}{3} = \sqrt{3} - \frac{\pi}{3}$ sq. units.

Fig. 6-10

6. $r = \sec \theta \, \tan \theta \Rightarrow r \cos \theta = \frac{r \sin \theta}{r \cos \theta}$ $x^2 = y$ a parabola. **28.** Let $r_1(\theta) = \theta$ and $r_2(\theta) = \theta + \pi$. Although the equation $r_1(\theta) = r_2(\theta)$ has no solutions, the curves $r = r_1(\theta)$ and $r = r_2(\theta)$ can still intersect if $r_1(\theta_1) = -r_2(\theta_2)$ for two angles θ_1 and θ_2 having the opposite directions in the polar plane. Observe that $\theta_1 = -n\pi$ and $\theta_2 = (n-1)\pi$ are two such angles provided *n* is any integer. Since

$$r_1(\theta_1) = -n\pi = -r_2((n-1)\pi),$$

the curves intersect at any point of the form $[n\pi, 0]$ or $[n\pi, \pi]$.

22. If $x = f(t) = at - a \sin t$ and $y = g(t) = a - a \cos t$, then the volume of the solid obtained by rotating about the *x*-axis is

$$V = \int_{t=0}^{t=2\pi} \pi y^2 dx = \pi \int_{t=0}^{t=2\pi} [g(t)]^2 f'(t) dt$$

= $\pi \int_0^{2\pi} (a - a \cos t)^2 (a - a \cos t) dt$
= $\pi a^3 \int_0^{2\pi} (1 - \cos t)^3 dt$
= $\pi a^3 \int_0^{2\pi} (1 - 3 \cos t + 3 \cos^2 t - \cos^3 t) dt$
= $\pi a^3 \Big[2\pi - 0 + \frac{3}{2} \int_0^{2\pi} (1 + \cos 2t) dt - 0 \Big]$
= $\pi a^3 \Big[2\pi + \frac{3}{2} (2\pi) \Big] = 5\pi^2 a^3$ cu. units.

Fig. 4-22