Math 121 Assignment 9

Due Friday April 9

- Practice problems:

- Try out as many problems from Sections 9.5-9.6 as you can, with special attention to the ones marked as challenging problems. As a test of your understanding of the material, work out the problems given in the chapter review. You may skip the ones that require computer aid.

■ Problems to turn in:

1. Find the centre, radius and interval of cnvergence of each of the following power series.
(a) $\sum_{n=0}^{\infty} \frac{1+5^{n}}{n!} x^{n}$
(b) $\sum_{n=1}^{\infty} \frac{(4 x-1)^{n}}{n^{n}}$.
2. Expand
(a) $1 / x^{2}$ in powers of $x+2$.
(b) $x^{3} /\left(1-2 x^{2}\right)$ in powers of x.
(c) $e^{2 x+3}$ in powers of $x+1$.
(d) $\sin x-\cos x$ about $\frac{\pi}{4}$.

For each expansion above, determine the interval on which the representation is valid.
3. Find the sums of the following numerical series.
(a) $\sum_{n=0}^{\infty} \frac{(n+1)^{2}}{\pi^{n}}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n(n+1)}{2^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n 2^{n}}$,
(d) $x^{3}-\frac{x^{9}}{3!\times 4}+\frac{x^{15}}{5!\times 16}-\frac{x^{21}}{7!\times 64}+\frac{x^{27}}{9!\times 256}-\cdots$
(e) $1+\frac{x^{2}}{3!}+\frac{x^{4}}{5!}+\frac{x^{6}}{7!}+\frac{x^{8}}{9!}+\cdots$
(f) $1+\frac{1}{2 \times 2!}+\frac{1}{4 \times 3!}+\frac{1}{8 \times 4!}+\cdots$
4. This problem outlines a srategy for verifying whether a function f is real-analytic. Recall the nth order Taylor polynomial of f centred at c :

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}
$$

and set $E_{n}=f(x)-P_{n}(x)$.
(a) Use mathematical induction to show that

$$
E_{n}(x)=\frac{1}{n!} \int_{c}^{x}(x-t)^{n} f^{(n+1)}(t) d t
$$

provided $f^{(n+1)}$ exists on an interval containing c and x. The formula above is known as Taylor's formula with integral remainder.
(b) Use Taylor's formula with integral remainder to prove that $\ln (1+$ x) is real analytic at $x=0$; more precisely, that the Maclaurin series of $\ln (1+x)$ converges to $\ln (1+x)$ for $-1<x \leq 1$.

