7. $x=\cosh t, y=\sinh ^{2} t$.

Parabola $x^{2}-y=1$, or $y=x^{2}-1$, traversed left to right.
10. $x=\cos t+\sin t, y=\cos t-\sin t,(0 \leq t \leq 2 \pi)$

The circle $x^{2}+y^{2}=2$, traversed clockwise, starting and ending at $(1,1)$.
11. $x=\frac{4}{1+t^{2}} \quad y=t^{3}-3 t$
$\frac{d x}{d t}=-\frac{8 t}{\left(1+t^{2}\right)^{2}} \quad \frac{d y}{d t}=3\left(t^{2}-1\right)$
Horizontal tangent at $t= \pm 1$, i.e., at $(2, \pm 2)$.
Vertical tangent at $t=0$, i.e., at $(4,0)$.
Self-intersection at $t= \pm \sqrt{3}$, i.e., at $(1,0)$.

Fig. R-11
14. $x=t^{3}-3 t \quad y=t^{3}-12 t$
$\frac{d x}{d t}=3\left(t^{2}-1\right) \quad \frac{d y}{d t}=3\left(t^{2}-4\right)$
Horizontal tangent at $t= \pm 2$, i.e., at $(2,-16)$ and $(-2,16)$.
Vertical tangent at $t= \pm$, i.e., at $(2,11)$ and $(-2,-11)$.
Slope $\frac{d y}{d x}=\frac{t^{2}-4}{t^{2}-1} \quad \begin{cases}>0 & \text { if }|t|>2 \text { or }|t|<1 \\ <0 & \text { if } 1<|t|<2\end{cases}$
Slope $\rightarrow 1$ as $t \rightarrow \pm \infty$.

Fig. R-14
17. $x=e^{t}-t, y=4 e^{t / 2},(0 \leq t \leq 2)$. Length is

$$
\begin{aligned}
L & =\int_{0}^{2} \sqrt{\left(e^{t}-1\right)^{2}+4 e^{t}} d t \\
& =\int_{0}^{2} \sqrt{\left(e^{t}+1\right)^{2}} d t=\int_{0}^{2}\left(e^{t}+1\right) d t \\
& =\left.\left(e^{t}+t\right)\right|_{0} ^{2}=e^{2}+1 \text { units }
\end{aligned}
$$

23. $r=1+2 \cos (2 \theta)$

Fig. R-23
26. Area of a small loop:

$$
\begin{aligned}
A & =2 \times \frac{1}{2} \int_{\pi / 3}^{\pi / 2}(1+2 \cos (2 \theta))^{2} d \theta \\
& =\int_{\pi / 3}^{\pi / 2}[1+4 \cos (2 \theta)+2(1+\cos (4 \theta))] d \theta \\
& =\left.\left(3 \theta+2 \sin (2 \theta)+\frac{1}{2} \sin (4 \theta)\right)\right|_{\pi / 3} ^{\pi / 2} \\
& =\frac{\pi}{2}-\frac{3 \sqrt{3}}{4} \text { sq. units. }
\end{aligned}
$$

28. $r \cos \theta=x=1 / 4$ and $r=1+\cos \theta$ intersect where

$$
\begin{aligned}
& 1+\cos \theta=\frac{1}{4 \cos \theta} \\
& 4 \cos ^{2} \theta+4 \cos \theta-1=0 \\
& \cos \theta=\frac{-4 \pm \sqrt{16+16}}{8}=\frac{ \pm \sqrt{2}-1}{2}
\end{aligned}
$$

Only $(\sqrt{2}-1) / 2$ is between -1 and 1 , so is a possible value of $\cos \theta$. Let $\theta_{0}=\cos ^{-1} \frac{\sqrt{2}-1}{2}$. Then

$$
\sin \theta_{0}=\sqrt{1-\left(\frac{\sqrt{2}-1}{2}\right)^{2}}=\frac{\sqrt{1+2 \sqrt{2}}}{2}
$$

By symmetry, the area inside $r=1+\cos \theta$ to the left of the line $x=1 / 4$ is

$$
\begin{aligned}
A= & 2 \times \frac{1}{2} \int_{\theta_{0}}^{\pi}\left(1+2 \cos \theta+\frac{1+\cos (2 \theta)}{2}\right) d \theta+\cos \theta_{0} \sin \theta_{0} \\
= & \frac{3}{2}\left(\pi-\theta_{0}\right)+\left.\left(2 \sin \theta+\frac{1}{4} \sin (2 \theta)\right)\right|_{\theta_{0}} ^{\pi} \\
& +\frac{(\sqrt{2}-1) \sqrt{1+2 \sqrt{2}}}{4} \\
= & \frac{3}{2}\left(\pi-\cos ^{-1} \frac{\sqrt{2}-1}{2}\right)+\sqrt{1+2 \sqrt{2}}\left(\frac{\sqrt{2}-9}{8}\right) \text { sq. units. }
\end{aligned}
$$

Fig. R-28
2. Let S_{1} and S_{2} be two spheres inscribed in the cylinder, one on each side of the plane that intersects the cylinder in the curve C that we are trying to show is an ellipse. Let the spheres be tangent to the cylinder around the circles C_{1} and C_{2}, and suppose they are also tangent to the plane at the points F_{1} and F_{2}, respectively, as shown in the figure.

Fig. C-2
Let P be any point on C. Let $A_{1} A_{2}$ be the line through P that lies on the cylinder, with A_{1} on C_{1} and A_{2} on C_{2}. Then $P F_{1}=P A_{1}$ because both lengths are of tangents drawn to the sphere S_{1} from the same exterior point P. Similarly, $P F_{2}=P A_{2}$. Hence

$$
P F_{1}+P F_{2}=P A_{1}+P A_{2}=A_{1} A_{2}
$$

which is constant, the distance between the centres of the two spheres. Thus C must be an ellipse, with foci at F_{1} and F_{2}.
18. The two curves $r^{2}=2 \sin 2 \theta$ and $r=2 \cos \theta$ intersect where

$$
\begin{array}{ll}
& 2 \sin 2 \theta=4 \cos ^{2} \theta \\
& 4 \sin \theta \cos \theta=4 \cos ^{2} \theta \\
& (\sin \theta-\cos \theta) \cos \theta=0 \\
\Leftrightarrow & \sin \theta=\cos \theta \text { or } \cos \theta=0,
\end{array}
$$

i.e., at $P_{1}=\left[\sqrt{2}, \frac{\pi}{4}\right]$ and $P_{2}=(0,0)$.

For $r^{2}=2 \sin 2 \theta$ we have $2 r \frac{d r}{d \theta}=4 \cos 2 \theta$. At P_{1} we have $r=\sqrt{2}$ and $d r / d \theta=0$. Thus the angle ψ between the curve and the radial line $\theta=\pi / 4$ is $\psi=\pi / 2$.
For $r=2 \cos \theta$ we have $d r / d \theta=-2 \sin \theta$, so the angle between this curve and the radial line $\theta=\pi / 4$ satisfies $\tan \psi=\left.\frac{r}{d r / d \theta}\right|_{\theta=\pi / 4}=-1$, and $\psi=3 \pi / 4$. The two curves intersect at P_{1} at angle $\frac{3 \pi}{4}-\frac{\pi}{2}=\frac{\pi}{4}$.
The Figure shows that at the origin, P_{2}, the circle meets the lemniscate twice, at angles 0 and $\pi / 2$.

Fig. 6-18
11. $\frac{d y}{d x}=\frac{3 y}{x-1} \Rightarrow \int \frac{d y}{y}=3 \frac{d x}{x-1}$
$\Rightarrow \ln |y|=\ln |x-1|^{3}+\ln |C|$
$\Rightarrow y=C(x-1)^{3}$.
Since $y=4$ when $x=2$, we have $4=C(2-1)^{3}=C$, so the equation of the curve is $y=4(x-1)^{3}$.
8.

Fig. C-8
If $Q=(0, Y)$, then the slope of $P Q$ is

$$
\frac{y-Y}{x-0}=f^{\prime}(x)=\frac{d y}{d x}
$$

Since $|P Q|=L$, we have $(y-Y)^{2}=L^{2}-x^{2}$. Since the slope $d y / d x$ is negative at P, $d y / d x=-\sqrt{L^{2}-x^{2}} / x$. Thus

$$
y=-\int \frac{\sqrt{L^{2}-x^{2}}}{x} d x=L \ln \left(\frac{L+\sqrt{L^{2}-x^{2}}}{x}\right)-\sqrt{L^{2}-x^{2}}+C .
$$

Since $y=0$ when $x=L$, we have $C=0$ and the equation of the tractrix is

$$
y=L \ln \left(\frac{L+\sqrt{L^{2}-x^{2}}}{x}\right)-\sqrt{L^{2}-x^{2}} .
$$

Note that the first term can be written in an alternate way:

$$
y=L \ln \left(\frac{x}{L-\sqrt{L^{2}-x^{2}}}\right)-\sqrt{L^{2}-x^{2}} .
$$

18. Since $f(x)=\frac{2}{\pi\left(1+x^{2}\right)}>0$ on $[0, \infty)$ and

$$
\frac{2}{\pi} \int_{0}^{\infty} \frac{d x}{1+x^{2}}=\lim _{R \rightarrow \infty} \frac{2}{\pi} \tan ^{-1}(R)=\frac{2}{\pi}\left(\frac{\pi}{2}\right)=1
$$

therefore $f(x)$ is a probability density function on $[0, \infty)$. The expectation of X is

$$
\begin{aligned}
\mu & =E(X)=\frac{2}{\pi} \int_{0}^{\infty} \frac{x d x}{1+x^{2}} \\
& =\lim _{R \rightarrow \infty} \frac{1}{\pi} \ln \left(1+R^{2}\right)=\infty
\end{aligned}
$$

No matter what the cost per game, you should be willing to play (if you have an adequate bankroll). Your expected winnings per game in the long term is infinite.

