7.  $x = \cosh t$ ,  $y = \sinh^2 t$ . Parabola  $x^2 - y = 1$ , or  $y = x^2 - 1$ , traversed left to right. 10.  $x = \cos t + \sin t$ ,  $y = \cos t - \sin t$ ,  $(0 \le t \le 2\pi)$ The circle  $x^2 + y^2 = 2$ , traversed clockwise, starting and ending at (1, 1).



Fig. R-11

- 14.  $x = t^3 3t$   $y = t^3 12t$   $\frac{dx}{dt} = 3(t^2 - 1)$   $\frac{dy}{dt} = 3(t^2 - 4)$ Horizontal tangent at  $t = \pm 2$ , i.e., at (2, -16) and (-2, 16). Vertical tangent at  $t = \pm 1$ , i.e., at (2, 11) and (-2, -11).
  - Slope  $\frac{dy}{dx} = \frac{t^2 4}{t^2 1} \begin{cases} > 0 & \text{if } |t| > 2 \text{ or } |t| < 1 \\ < 0 & \text{if } 1 < |t| < 2 \end{cases}$ Slope  $\rightarrow 1$  as  $t \rightarrow \pm \infty$ .



Fig. R-14

17.  $x = e^t - t$ ,  $y = 4e^{t/2}$ ,  $(0 \le t \le 2)$ . Length is

$$L = \int_0^2 \sqrt{(e^t - 1)^2 + 4e^t} dt$$
  
=  $\int_0^2 \sqrt{(e^t + 1)^2} dt = \int_0^2 (e^t + 1) dt$   
=  $(e^t + t)\Big|_0^2 = e^2 + 1$  units.

**23.**  $r = 1 + 2\cos(2\theta)$ 



Fig. R-23

## **26.** Area of a small loop:

$$A = 2 \times \frac{1}{2} \int_{\pi/3}^{\pi/2} (1 + 2\cos(2\theta))^2 d\theta$$
  
=  $\int_{\pi/3}^{\pi/2} [1 + 4\cos(2\theta) + 2(1 + \cos(4\theta))] d\theta$   
=  $\left(3\theta + 2\sin(2\theta) + \frac{1}{2}\sin(4\theta)\right)\Big|_{\pi/3}^{\pi/2}$   
=  $\frac{\pi}{2} - \frac{3\sqrt{3}}{4}$  sq. units.

**28.**  $r \cos \theta = x = 1/4$  and  $r = 1 + \cos \theta$  intersect where

$$1 + \cos \theta = \frac{1}{4\cos \theta}$$
  
$$4\cos^2 \theta + 4\cos \theta - 1 = 0$$
  
$$\cos \theta = \frac{-4 \pm \sqrt{16 + 16}}{8} = \frac{\pm \sqrt{2} - 1}{2}.$$

Only  $(\sqrt{2}-1)/2$  is between -1 and 1, so is a possible value of  $\cos \theta$ . Let  $\theta_0 = \cos^{-1} \frac{\sqrt{2}-1}{2}$ . Then

$$\sin \theta_0 = \sqrt{1 - \left(\frac{\sqrt{2} - 1}{2}\right)^2} = \frac{\sqrt{1 + 2\sqrt{2}}}{2}.$$

By symmetry, the area inside  $r = 1 + \cos \theta$  to the left of the line x = 1/4 is

$$A = 2 \times \frac{1}{2} \int_{\theta_0}^{\pi} \left( 1 + 2\cos\theta + \frac{1 + \cos(2\theta)}{2} \right) d\theta + \cos\theta_0 \sin\theta_0$$
  
$$= \frac{3}{2} (\pi - \theta_0) + \left( 2\sin\theta + \frac{1}{4}\sin(2\theta) \right) \Big|_{\theta_0}^{\pi}$$
  
$$+ \frac{(\sqrt{2} - 1)\sqrt{1 + 2\sqrt{2}}}{4}$$
  
$$= \frac{3}{2} \left( \pi - \cos^{-1}\frac{\sqrt{2} - 1}{2} \right) + \sqrt{1 + 2\sqrt{2}} \left( \frac{\sqrt{2} - 9}{8} \right) \text{ sq. units.}$$

Fig. R-28

2. Let  $S_1$  and  $S_2$  be two spheres inscribed in the cylinder, one on each side of the plane that intersects the cylinder in the curve *C* that we are trying to show is an ellipse. Let the spheres be tangent to the cylinder around the circles  $C_1$  and  $C_2$ , and suppose they are also tangent to the plane at the points  $F_1$  and  $F_2$ , respectively, as shown in the figure.



Let *P* be any point on *C*. Let  $A_1A_2$  be the line through *P* that lies on the cylinder, with  $A_1$  on  $C_1$  and  $A_2$  on  $C_2$ . Then  $PF_1 = PA_1$  because both lengths are of tangents drawn to the sphere  $S_1$  from the same exterior point *P*. Similarly,  $PF_2 = PA_2$ . Hence

$$PF_1 + PF_2 = PA_1 + PA_2 = A_1A_2,$$

which is constant, the distance between the centres of the two spheres. Thus C must be an ellipse, with foci at  $F_1$  and  $F_2$ .

The two curves  $r^2 = 2 \sin 2\theta$  and  $r = 2 \cos \theta$  intersect where 18.

$$2\sin 2\theta = 4\cos^2 \theta$$
  

$$4\sin\theta \cos\theta = 4\cos^2 \theta$$
  

$$(\sin\theta - \cos\theta)\cos\theta = 0$$
  

$$\Leftrightarrow \quad \sin\theta = \cos\theta \text{ or } \cos\theta = 0.$$

i.e., at  $P_1 = \left[\sqrt{2}, \frac{\pi}{4}\right]$  and  $P_2 = (0, 0)$ . For  $r^2 = 2\sin 2\theta$  we have  $2r\frac{dr}{d\theta} = 4\cos 2\theta$ . At  $P_1$  we have  $r = \sqrt{2}$  and  $dr/d\theta = 0$ . Thus the angle  $\psi$  between the curve and the radial line  $\theta = \pi/4$  is  $\psi = \pi/2$ . For  $r = 2\cos\theta$  we have  $dr/d\theta = -2\sin\theta$ , so the angle between this curve and the radial line  $\theta = \pi/4$  satisfies  $\tan \psi = \frac{r}{dr/d\theta}\Big|_{\theta=\pi/4} = -1$ , and  $\psi = 3\pi/4$ . The two curves intersect at  $P_1$  at angle  $\frac{3\pi}{4} - \frac{\pi}{2} = \frac{\pi}{4}$ . The Figure shows that at the origin,  $P_2$ , the circle meets the lemniscate twice, at angles 0

and  $\pi/2$ .



Fig. 6-18

11. 
$$\frac{dy}{dx} = \frac{3y}{x-1} \Rightarrow \int \frac{dy}{y} = 3\frac{dx}{x-1}$$
$$\Rightarrow \ln|y| = \ln|x-1|^3 + \ln|C|$$
$$\Rightarrow y = C(x-1)^3.$$

Since y = 4 when x = 2, we have  $4 = C(2-1)^3 = C$ , so the equation of the curve is  $y = 4(x-1)^3$ .



Fig. C-8

If Q = (0, Y), then the slope of PQ is

$$\frac{y-Y}{x-0} = f'(x) = \frac{dy}{dx}.$$

Since |PQ| = L, we have  $(y - Y)^2 = L^2 - x^2$ . Since the slope dy/dx is negative at *P*,  $dy/dx = -\sqrt{L^2 - x^2}/x$ . Thus

$$y = -\int \frac{\sqrt{L^2 - x^2}}{x} \, dx = L \ln\left(\frac{L + \sqrt{L^2 - x^2}}{x}\right) - \sqrt{L^2 - x^2} + C.$$

Since y = 0 when x = L, we have C = 0 and the equation of the tractrix is

$$y = L \ln\left(\frac{L + \sqrt{L^2 - x^2}}{x}\right) - \sqrt{L^2 - x^2}.$$

Note that the first term can be written in an alternate way:

$$y = L \ln\left(\frac{x}{L - \sqrt{L^2 - x^2}}\right) - \sqrt{L^2 - x^2}.$$

8.

18. Since  $f(x) = \frac{2}{\pi(1+x^2)} > 0$  on  $[0, \infty)$  and  $\frac{2}{\pi} \int_0^\infty \frac{dx}{1+x^2} = \lim_{R \to \infty} \frac{2}{\pi} \tan^{-1}(R) = \frac{2}{\pi} \left(\frac{\pi}{2}\right) = 1,$ 

therefore f(x) is a probability density function on  $[0, \infty)$ . The expectation of X is

$$\mu = E(X) = \frac{2}{\pi} \int_0^\infty \frac{x \, dx}{1 + x^2}$$
$$= \lim_{R \to \infty} \frac{1}{\pi} \ln(1 + R^2) = \infty.$$

No matter what the cost per game, you should be willing to play (if you have an adequate bankroll). Your expected winnings per game in the long term is infinite.