Math 121 Formula Sheet

1. Area as limit of Riemann sums:

The area R lying under the graph $y=f(x)$ of a non-negative continuous function f between the vertical lines $x=a$ and $x=b$ is given by

$$
R=\lim _{\substack{n \rightarrow \infty \\ \max \Delta x_{i} \rightarrow 0}} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x_{i},
$$

where $a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}<b$ is a partition of $[a, b]$ and $\Delta x_{i}=x_{i}-x_{i-1}$.

2. Trapezoid Rule

The n-subinterval trapezoid rule approximation to $\int_{a}^{b} f(x) d x$, denotes T_{n}, is given by

$$
T_{n}=h\left(\frac{y_{0}}{2}+y_{1}+\cdots+y_{n-1}+\frac{y_{n}}{2}\right), \quad \text { where } y_{i}=f\left(x_{i}\right) .
$$

If f has a continuous second derivative on the interval $[a, b]$ satisfying $\left|f^{\prime \prime}(x)\right| \leq K$ there, then the error in applying trapezoid rule is at most $K(b-a)^{3} /\left(12 n^{2}\right)$.

3. Midpoint Rule

If $h=(b-a) / n$, let $m_{j}=a+\left(j-\frac{1}{2}\right) h$ for $i \leq j \leq n$. The midpoint rule approximation to $\int_{a}^{b} f(x) d x$, denoted M_{n}, is given by

$$
M_{n}=h \sum_{j=1}^{n} f\left(m_{j}\right) .
$$

If f has a continuous second derivative on the interval $[a, b]$ satisfying $\left|f^{\prime \prime}(x)\right| \leq K$ there, then the error in applying midpoint rule is at most $K(b-a)^{3} /\left(24 n^{2}\right)$.

4. Simpson's Rule

The Simpson's rule approximation to $\int_{a}^{b} f(x) d x$ based on a subdivision of $[a, b]$ into an even number n of subintervals of equal length $h=(b-a) / n$ is denotes S_{n} and is given by

$$
S_{n}=\frac{h}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+2 y_{4}+\cdots+2 y_{n-2}+4 y_{n-1}+y_{n}\right) .
$$

If f has a continuous fourth derivative on the interval $[a, b]$ satisfying $\left|f^{(4)}(x)\right| \leq K$ there, then the error in applying Simpson's rule is at most $K(b-a)^{5} /\left(180 n^{4}\right)$.

5. Pappus's Theorem

(a) If a plane region R lies on one side of a line L in that plane and is rotated about L to generate a solid of revolution, then the volume V of that solid is given by

$$
V=2 \pi \bar{r} A
$$

where A is the area of R and \bar{r} is the perpendicular distance from the centroid of R to L.
(b) If a plane curve C lies on one side of a line L in that plane and is rotated about that line to generate a surface of revolution, then the area S of that surface is given by

$$
S=2 \pi \bar{r} s
$$

where s is the length of the curve C, \bar{r} is the perpendicular distance from the centroid of C to the line L.

6. The general normal distribution

A random variable X on $(-\infty, \infty)$ is said to be normally distributed with mean μ and standard deviation σ (where μ is any real number and $\sigma>0$) if its probability density function $f_{\mu, \sigma}$ is given by

$$
f_{\mu, \sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

7. Taylor polynomials and remainder

If the $(n+1)$ st derivative of f exists on an interval containing c and x and if

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}
$$

is the Taylor polynomial of degree n for f about $x=c$, then

$$
f(x)=P_{n}(x)+E_{n}(x),
$$

where

$$
E_{n}(x)=\frac{1}{n!} \int_{c}^{x}(x-t)^{n} f^{(n+1)}(t) d t
$$

8. Fourier series

If $f(t)$ is a period function with fundamental period T, is continuous with a piecewise continuous derivative, then for every t,

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n \omega t)+b_{n} \sin (n \omega t)\right), \quad \omega=\frac{2 \pi}{T},
$$

where

$$
\begin{aligned}
& a_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(t) \cos (n \omega t) d t \quad n=0,1,2, \cdots \\
& b_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(t) \sin (n \omega t) d t, n=1,2,3 \cdots
\end{aligned}
$$

