Math 440/508 Quiz 8 Solution

Name:

SID #:

1. Explain whether there exists an analytic branch of the logarithm on the domain

$$\Omega = \mathbb{C} \setminus \{ z = x + ix^2 : x \ge 0 \}.$$

If yes, give an explicit formula for the logarithm.

(10 points)

Solution. The domain Ω is simply connected, so we know that there is an analytic branch of the logarithm. The issue is to define the function " $z \mapsto \arg(z)$ " so that it is continuous on this domain.

The circle |z| = r intersects the curve $\{x + ix^2 : x \ge 0\}$ at a unique point $z_0(r) = x_0(r) + i(x_0(r))^2$, where

$$x_0^2 + x_0^4 = r^2$$
, i.e. $x_0(r) = \frac{1}{\sqrt{2}}\sqrt{\sqrt{1 + 4r^2} - 1}$.

Let $\theta_0(r)$ denote the unique value of $\arctan(x_0(r))$ that lies in $[0, \frac{\pi}{2})$.

Given $z = x + iy \in \Omega$ with |z| = r, we define

$$\arg_{\Omega}(z) = \theta,$$

where θ is the unique value of $\arctan(y/x)$ lying in $(\theta_0(r), \theta_0(r) + 2\pi)$. We note that this defines a continuous function on Ω . An analytic branch of the complex logarithm on Ω is then given by

$$\log_{\Omega}(z) = \log|z| + i \arg_{\Omega}(z).$$