Math 440/508 Quiz 8 Solution
Name:
SID \#:

1. Explain whether there exists an analytic branch of the logarithm on the domain

$$
\Omega=\mathbb{C} \backslash\left\{z=x+i x^{2}: x \geq 0\right\}
$$

If yes, give an explicit formula for the logarithm.
(10 points)
Solution. The domain Ω is simply connected, so we know that there is an analytic branch of the logarithm. The issue is to define the function " $z \mapsto \arg (z)$ " so that it is continuous on this domain.

The circle $|z|=r$ intersects the curve $\left\{x+i x^{2}: x \geq 0\right\}$ at a unique point $z_{0}(r)=$ $x_{0}(r)+i\left(x_{0}(r)\right)^{2}$, where

$$
x_{0}^{2}+x_{0}^{4}=r^{2}, \quad \text { i.e. } \quad x_{0}(r)=\frac{1}{\sqrt{2}} \sqrt{\sqrt{1+4 r^{2}}-1} .
$$

Let $\theta_{0}(r)$ denote the unique value of $\arctan \left(x_{0}(r)\right)$ that lies in $\left[0, \frac{\pi}{2}\right)$.
Given $z=x+i y \in \Omega$ with $|z|=r$, we define

$$
\arg _{\Omega}(z)=\theta
$$

where θ is the unique value of $\arctan (y / x)$ lying in $\left(\theta_{0}(r), \theta_{0}(r)+2 \pi\right)$. We note that this defines a continuous function on Ω. An analytic branch of the complex logarithm on Ω is then given by

$$
\log _{\Omega}(z)=\log |z|+i \arg _{\Omega}(z)
$$

