Math 440/508 Quiz 6 Solution

Name:

SID \#:

1. If f is holomorphic on $0<|z|<2$ and satisfies $f\left(\frac{1}{n}\right)=n^{2}$ and $f\left(-\frac{1}{n}\right)=n^{3}$ for all positive integers n, what kind of singularity does f have at 0 ? Give complete justification for your answer.

Proof. The singularity is essential. Since f is unbounded near 0 , it cannot have a removable singularity at the origin by Riemann's theorem. Therefore it only remains to eliminate the possibility of a pole.

Aiming for a contradiction, let us assume that f has a pole of order $m \geq 1$ at the origin. Thus, we may write

$$
f(z)=\frac{g(z)}{z^{m}} \quad \text { where } g \text { is holomorphic near the origin, with } g(0) \neq 0
$$

Set $z=1 / n$, which gives $n^{2}=g(1 / n) n^{m}$. Letting $n \rightarrow \infty$ and in view of the above requirement on g, we see that $m=2$. On the other hand, if we set $z=-1 / n$, the same procedure yields $-n^{3}=g(-1 / n) n^{m}$, which says that m must be 3 . Since the order of a pole m is uniquely defined, this is a contradiction.

