Math 440/508 Quiz 5 Solution
Name:
SID \#:

1. Express the integral

$$
\int_{0}^{\pi} \frac{d \theta}{a+\sin ^{2} \theta} \quad \text { in the form } \quad \oint_{|z|=1} \frac{f(z)}{z-z_{0}} d z
$$

and then use the Cauchy integral formula to evaluate it. Here $a>1$ is a fixed constant.

Solution. We write

$$
\begin{aligned}
\int_{0}^{\pi} \frac{d \theta}{a+\sin ^{2} \theta}=\int_{0}^{\pi}\left[a+\frac{1}{2}(1-\cos (2 \theta)]^{-1} d \theta\right. & =\frac{1}{2} \int_{0}^{2 \pi}\left[a+\frac{1}{2}(1-\cos \varphi]^{-1} d \varphi\right. \\
& =\int_{0}^{2 \pi}[(2 a+1)-\cos \varphi]^{-1} d \varphi
\end{aligned}
$$

where the second step uses the change of variable $\varphi=2 \theta$. Set $z=e^{i \varphi}$. Then, $d \varphi=\frac{1}{i} \frac{d z}{z}$, and

$$
\cos \varphi=\frac{e^{i \varphi}+e^{-\varphi}}{2}=\frac{z+1 / z}{2}
$$

Substituting these into the integral above, we obtain

$$
\int_{0}^{\pi} \frac{d \theta}{a+\sin ^{2} \theta}=\frac{1}{i} \oint_{|z|=1} \frac{2 d z}{2(2 a+1) z-z^{2}-1}=-\frac{2}{i} \oint_{|z|=1} \frac{\frac{1}{z-z_{1}} d z}{z-z_{0}}
$$

where

$$
\begin{aligned}
& z_{0}=2 a+1-2 \sqrt{a^{2}+a}, \text { and } \\
& z_{1}=2 a+1+2 \sqrt{a^{2}+a}
\end{aligned}
$$

are the two roots of the polynomial $z^{2}-2(2 a+1) z+1$. Note that z_{1} lies outside the unit disk and z_{0} lies in its interior. Therefore by the Cauchy integral formula with $f(z)=1 /\left(z-z_{1}\right)$, we obtain

$$
\int_{0}^{\pi} \frac{d \theta}{a+\sin ^{2} \theta}=-\frac{2}{i} 2 \pi i \frac{1}{z_{0}-z_{1}}=\frac{\pi}{\sqrt{a^{2}+a}}
$$

