Math 440/508 Quiz 11 Solution

SID \#:

1. Suppose that f_{n} is a sequence of holomorphic functions on a complex domain G. Assume (a) $f_{n} \rightarrow f$ uniformly on all compact subsets of G, and (b) $f \not \equiv 0$.

Fix any disc \mathbb{D} such that $\overline{\mathbb{D}} \subseteq G$ and f is nonzero on $\partial \mathbb{D}$. Show that there exists $N \geq 1$ such that for every $n \geq N, f_{n}$ and f share the same number of zeros in \mathbb{D}, counting multiplicity.

Solution. One can use either Rouché's theorem or the argument principle for this problem. Here is the solution using Rouché's theorem.
Since f is nonzero on $\partial \mathbb{D}$, there exists $\delta>0$ such that $|f(z)| \geq \delta$ for $z \in \partial \mathbb{D}$. Since $f_{n} \rightarrow f$ uniformly on $\partial \mathbb{D}$, there exists $N \geq 1$ such that

$$
\sup _{z \in \partial \mathbb{D}}\left|f_{n}(z)-f(z)\right|<\delta \quad \text { for all } n \geq N
$$

Therefore,

$$
\left|f_{n}(z)-f(z)\right|<\delta \leq|f(z)| \leq|f(z)|+\left|f_{n}(z)\right| \text { on } \partial \mathbb{D}
$$

which is the hypothesis of Rouché's theorem. The conclusion of the theorem is precisely the conclusion required by the problem.

