Math 440/508 Quiz 11 Solution

Name:

SID #:

1. Suppose that f_n is a sequence of holomorphic functions on a complex domain G. Assume (a) $f_n \to f$ uniformly on all compact subsets of G, and

(b) $f \not\equiv 0$.

Fix any disc \mathbb{D} such that $\overline{\mathbb{D}} \subseteq G$ and f is nonzero on $\partial \mathbb{D}$. Show that there exists $N \geq 1$ such that for every $n \geq N$, f_n and f share the same number of zeros in \mathbb{D} , counting multiplicity.

(10 points)

Solution. One can use either Rouché's theorem or the argument principle for this problem. Here is the solution using Rouché's theorem.

Since f is nonzero on $\partial \mathbb{D}$, there exists $\delta > 0$ such that $|f(z)| \ge \delta$ for $z \in \partial \mathbb{D}$. Since $f_n \to f$ uniformly on $\partial \mathbb{D}$, there exists $N \ge 1$ such that

$$\sup_{z \in \partial \mathbb{D}} |f_n(z) - f(z)| < \delta \quad \text{for all } n \ge N.$$

Therefore,

$$|f_n(z) - f(z)| < \delta \le |f(z)| \le |f(z)| + |f_n(z)| \text{ on } \partial \mathbb{D}_{\epsilon}$$

which is the hypothesis of Rouché's theorem. The conclusion of the theorem is precisely the conclusion required by the problem. $\hfill \Box$