
Chapter 3, Exercise 14

Prove that all entire functions that are also injective take the form f(z) = az+b
with a, b ∈ C and a 6= 0.

Solution

Assume f is an entire injective function. Then f is nonconstant, so g(z) :=
f(1/z) has either a pole or an essential singularity at z = 0. We will show
first that the singularity at 0 cannot be an essential singularity. If it were an
essential singularity, then the Cazorati-Weierstrass theorem would imply that
the set g(B(0, 1) \ {0}) is dense in C. However, g(B(2, 1

2 )) is an open set by the
open mapping theorem. Therefore these two sets intersect, which shows that
g(z) and hence f(z) is not injective.

Therefore, the singularity at z = 0 must be a pole, implying that f(z)
is a polynomial. Suppose f(z) is a polynomial of degree m. Then f has m
roots, counting multiplicity. Evidently, if f has two distinct roots, then f is
not injective. Thus f(z) = c(z − z0)

m for some complex numbers c and z0.
However, for m ≥ 2 such functions are also non-injective: f(z0 + 1) = c =
f(z0 + e2πi/m). Thus m = 1 and f(z) is a linear polynomial (evidently c 6= 0
since f is nonconstant).

Chapter 3, Exercise 22

Show that there is no holomorphic function f in the unit disc D that extends
continuously to ∂D such that f(z) = 1/z for each z ∈ ∂D.

Solution

We will abuse notation a bit and let f be the continuous extension of this
function toD. Notice that f(z) is uniformly continuous onD sinceD is compact.
By uniform continuity we have

lim
r→1

∫

|z|=r

f(z) dz =

∫

|z|=1

f(z) dz.

We know that each integral
∫

|z|=r
f(z) dz is zero because f is holomorphic inside

D. However, we also know that

∫

|z|=1

f(z) dz = 2πi

because f(z) = 1
z on the circle where |z| = 1. This is a contradiction, so no

such function f can exist.
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Chapter 3, Problem 3

Suppose f is holomorphic in a region containing the annulus {z : r1 ≤ |z−z0| ≤
r2} where 0 < r1 < r2.

Show that

f(z) =

∞
∑

n=−∞

an(z − z0)
n,

where the series converges absolutely in the interior of the annulus.

Proof

Fix z, and let C1 and C2 be the inner and outer circles, respectively. Draw two
close, parallel line segments S1 and S2, separated by a distance δ, connecting
C1 and C2 so that the point z is not contained in the small region bounded
between the line segments S1 and S2. Without loss of generality suppose that
the minor arc between S1 and S2 runs clockwise from S1 to S2 along both C1

and C2.
Consider the contour Γ starting at the intersection point of C2 and S1,

moving counterclockwise along the major arc of C2 until running into the inter-
section of S2 and C2, then travelling along S2 until the intersection of S2 and
C1, then travelling clockwise around C1 until reaching the intersection of S1 and
C1, then travelling along S1 until reaching the intersection of S1 and C2. This
is a closed contour that encloses z but not z0. By using independence of path
together with the Cauchy integral formula, we get

1

2πi

∫

Γ

f(ζ)

ζ − z
dζ = f(z).

By taking the distance δ to go to zero, we see by uniform continuity that

1

2πi

∫

Γ

f(ζ)

ζ − z
dζ =

1

2πi

∫

C2

f(ζ)

ζ − z
dζ −

1

2πi

∫

C1

f(ζ)

ζ − z
dζ.

We will use this identity to write a Laurent series expansion for f(z) centered
at z0. First we will consider the C2 integral,

1

2πi

∫

C2

f(ζ)

ζ − z
dζ.

In order to expand this integral as a series, we rewrite

f(ζ)

ζ − z
=

f(ζ)

ζ − z0 + z0 − z

=
f(ζ)

ζ − z0

(

1

1− z−z0
ζ−z0

)

=
f(ζ)

ζ − z0

∞
∑

j=0

(

z − z0
ζ − z0

)j

.
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When we integrate this over C2, we get

1

2πi

∫

C2

f(ζ)

ζ − z0

∞
∑

j=0

(

z − z0
ζ − z0

)j

dζ.

We would like to interchange the integral and the sum. To do this, we appeal to
the dominated convergence theorem: because |ζ− z0| is greater than |z− z0| for
ζ ∈ C2, It follows that the series inside the integral is absolutely convergent (and

bounded above by the value
∣

∣

∣

f(ζ)
ζ−z0

∣

∣

∣
· 1

1−
∣

∣

∣

z−z0
ζ−z0

∣

∣

∣

), which in turn is bounded above

by a constant value not depending on ζ for ζ ∈ C2. Therefore, the dominated
convergence theorem applies and we can interchange the order of the integral
and the sum.

∞
∑

j=0

(z − z0)
j 1

2πi

∫

C2

f(ζ)

ζ − z0

(

z − z0
ζ − z0

)j

dζ.

We thus take

aj =
1

2πi

∫

C2

f(ζ)

ζ − z0

(

z − z0
ζ − z0

)j

dζ

giving the positive-degree terms in the Laurent series expansion. The sum is
absolutely convergent by an argument similar to the one allowing us to apply
the dominated convergence theorem.

A similar strategy for C1 gives the negative-degree terms in the Laurent
series expansion:

f(ζ)

ζ − z
=

f(ζ)

ζ − z0 + z0 − z

=
−f(ζ)

z − z0

1

1− ζ−z0
z−z0

=
−f(ζ)

z − z0

∞
∑

j=0

(

ζ − z0
z − z0

)j

Leaving us with the integral

−
1

2πi

∫

C1

−f(ζ)

z − z0

∞
∑

j=0

(

ζ − z0
z − z0

)j

.

By a similar argument to the one given before, the sum inside the integral is
absolutely convergent and the integrand is uniformly bounded, so the dominated
convergence theorem applies, and we can pull the sum out of the integral:

∞
∑

j=0

f(ζ)

(z − z0)j+1

1

2πi

∫

C1

(ζ − z0)
j
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so, for k ≤ −1, taking

ak =
1

2πi

∫

C1

(ζ − z0)
−(k+1)

gives the desired negative-degree terms in the Laurent series expansion. The
sum is absolutely convergent by an estimate similar to the one used to apply
the dominated convergence theorem.
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