Chapter 1, Exercise 22

Let $\mathbb{N}=\{1,2,3, \ldots\}$ denote the set of positive integers. A subset $S \subset \mathbb{N}$ is said to be in arithmetic progression if

$$
S=\{a, a+d, a+2 d, a+3 d, \ldots\}
$$

where $a, d \in \mathbb{N}$. Here d is called the step of S.
Show that \mathbb{N} cannot be partitioned into a finite number of subsets that are in arithmetic progression with distinct steps (except for the trivial case $a=d=1$). [Hint: write $\sum_{n \in \mathbb{N}} z^{n}$ as a sum of terms of the type $\frac{z^{a}}{1-z^{d}}$.]

Solution

Suppose that we can partition \mathbb{N} into disjoint arithmetic progressions S_{1}, \ldots, S_{n}, where S_{j} has smallest element a_{j} and step d_{j}. Then we have

$$
\sum_{j=1}^{\infty} z^{j}=\frac{z}{1-z}
$$

for all $|z|<1$. We also have

$$
\begin{aligned}
\sum_{j \in S_{j}} z^{j} & =\sum_{k=1}^{\infty} z^{a_{j}+k d_{j}} \\
& =z^{a_{j}} \sum_{k=0}^{\infty} z^{k d_{j}} \\
& =\frac{z^{a_{j}}}{1-z^{d_{j}}}
\end{aligned}
$$

Since the S_{j} form a partition of \mathbb{N}, we get, for $|z|<1$, that

$$
\frac{z}{1-z}=\sum_{j=1}^{n} \frac{z^{a_{j}}}{1-z^{d_{j}}}
$$

Without loss of generality, assume d_{1} is the largest of $\left\{d_{1}, \ldots, d_{n}\right\}$, Because the d_{j} are distinct, it follows that $d_{j}<d_{1}$ for $j \neq 1$. Consider the root of unity $\zeta=e^{2 \pi i / d_{1}}$. For this root of unity we have $1-z^{d_{1}}=0$, but $1-z^{d_{j}} \neq 0$ for any $j \neq d_{j}$. Thus the right hand side of the above equation is unbounded as $z \rightarrow \zeta$ from inside the unit disk. But $1-\zeta \neq 0$ so the left hand side remains bounded as $z \rightarrow \zeta$ from inside the unit disk. Therefore, the left hand side is not equal to the right hand side and no such partition exists.

Chapter 1, Exercise 25

Part a

Evaluate the integrals

$$
\int_{\gamma} z^{n}
$$

for all integers n. Here γ is any circle centered at the origin with the positive (counterclockwise) orientation.

Solution

We can parameterize γ via the parameterization $z(t)=e^{2 \pi i t}$, where t goes from 0 to 1 . Under this parameterization, the integral becomes:

$$
2 \pi i \int_{0}^{1} e^{2 \pi i n t} \cdot e^{2 \pi i t} d t
$$

Which is

$$
2 \pi i \int_{0}^{1} e^{2 \pi i(n+1) t} . d t
$$

This integral can be written as

$$
2 \pi i \int_{0}^{1} \cos (2 \pi(n+1) t)+i \sin (2 \pi(n+1) t) d t
$$

Both trigonometric functions will run through an integer number of periods, and therefore the integral will vanish unless $n+1=0$, in which case the integrand is 1 and the integral evaluates to $2 \pi i$. So for integers $n \neq-1$ the integral is zero; for $n=-1$ the integral is $2 \pi i$.

Part b

Same question as before, but with γ any circle not enclosing the origin.

Solution

Let γ be any such circle. We can parameterize γ with the parameterization $\gamma(t)=z_{0}+r e^{2 \pi i t}$ where $\left|z_{0}\right|>r$. In the region enclosed by γ, the function z^{n} has the explicit primitive $\frac{1}{n+1} z^{n+1}$ for $n \neq-1$. Therefore, the integral along γ is zero by Corollary 3.3.

If $n=-1$, then we have, after parametrizing,

$$
\int_{0}^{1}\left(z_{0}+r e^{2 \pi i t}\right)^{-1} e^{2 \pi i t}
$$

This is

$$
\int_{0}^{1} z_{0}\left(1+r / z_{0} e^{2 \pi i t}\right)^{-1} e^{2 \pi i t}
$$

Since $\left|r / z_{0}\right|<1$, this has a power series expansion

$$
\int_{0}^{1} z_{0} \sum_{j=0}^{\infty}\left(-r / z_{0}\right)^{j} e^{2 \pi i(j+1) t}
$$

and by absolute convergence of the sum, we can interchange the sum and integral. Because $j+1$ is a positive integer for any nonnegative integer j, each term in the sum integrates to 0 and the integral is 0 .

Part c

Show that if $|a|<r<|b|$, then

$$
\int_{\gamma} \frac{1}{(z-a)(z-b)} d z=\frac{2 \pi i}{a-b}
$$

where γ denotes the counterclockwise circle centered at the origin, of radius r, with the positive orientation.

Solution

For this problem, it is best to perform a partial fraction decomposition on $\frac{1}{(z-a)(z-b)}$. We rewrite

$$
\frac{1}{(z-a)(z-b)}=\frac{1}{a-b}\left(\frac{1}{z-a}-\frac{1}{z-b}\right)
$$

We then evaluate

$$
\frac{1}{a-b} \int_{\gamma} \frac{1}{z-a} d z-\frac{1}{a-b} \int_{\gamma} \frac{1}{z-b} d z
$$

The second integral vanishes, as we computed in part b. For the first integral, we parameterize γ by $\gamma=r e^{2 \pi i \theta}$:

$$
\frac{r 2 \pi i}{a-b} \int_{0}^{1}\left(r e^{2 \pi i t}-a\right)^{-1} e^{2 \pi i t} d t
$$

Now, $r>|a|$, so we can pull out $r e^{2 \pi i t}$ to get

$$
\frac{r 2 \pi i}{a-b} \int_{0}^{1}-\frac{1}{r e^{2 \pi i t}}\left(1-\frac{a}{r} e^{-2 \pi i t}\right)^{-1} e^{2 \pi i t} d t
$$

which gives

$$
\frac{r 2 \pi i}{a-b} \int_{0}^{1} \frac{1}{r} \sum_{j=0}^{\infty} a^{j} r^{-j} e^{-2 \pi i t(j+1)} d t
$$

As before this integral vanishes unless $j=0$, so we get

$$
\frac{r 2 \pi i}{r(a-b)}=\frac{2 \pi i}{a-b} .
$$

Chapter 2, Problem 1

Here are some examples of analytic functions on the unit disc that cannot be extended analytically past the unit circle. The following definition is needed. Let f be a function defined in the unit disc \mathbb{D}, with boundary circle C. A point w on C is said to be regular for f if there is an open neighborhood U of w and an analytic function g on U, such that $f=g$ on $\mathbb{D} \cap U$. A function f defined on \mathbb{D} cannot be continued analytically past the unit circle if no point of C is regular for f.

Part a

Let

$$
f(z)=\sum_{n=0}^{\infty} z^{2^{n}} \text { for }|z|<1
$$

Notice that the radius of convergence of the above series is 1 . Show that f cannot be continued analytically past the unit disc. [Hint: Suppose $\theta=2 \pi p / 2^{k}$, where p and k are positive integers. Let $z=r e^{i \theta}$; then $\left|f\left(r e^{i \theta}\right)\right| \rightarrow \infty$ as $r \rightarrow 1$.]

Solution

Let $\theta=\frac{2 \pi p}{2^{k}}$, and let $z=r e^{i \theta}$. Then we have

$$
f(z)=\sum_{n=0}^{k-1} r^{2^{n}} e^{\frac{2 \pi i * 2^{n} p}{2^{k}}}+\sum_{n=k}^{\infty} r^{2^{n}}
$$

Where we used the fact that the exponent was an integer multiple of $2 \pi i$ for $n \geq k$. There are only k summands in the first sum, so the first sum is bounded by k in absolute value for $|r|<1$. As $r \rightarrow 1$ from the left, the sum is therefore bounded from below by $\sum_{n} r^{2^{n}}-k$, which is unbounded as $r \rightarrow 1$. Thus $f(z)$ cannot be analytically extended to any ball containing a point of the form $e^{2 \pi i p / 2^{k}}$. Since points of this form are dense in the unit circle, $f(z)$ is not regular at any point of the unit circle.

Part b

Fix $0<\alpha<\infty$. Show that the analytic function f defined by

$$
f(z)=\sum_{n=0}^{\infty} 2^{-n \alpha} z^{2^{n}} \text { for }|z|<1
$$

can be continuously extended to the unit circle, but cannot be analytically continued past the unit circle. [Hint: There is a nowhere differentiable function lurking in the background. See Chapter 4 in Book I.]

Solution

The function $f(z)=\sum_{n=0}^{\infty} 2^{-n \alpha} z^{2^{n}}$ converges absolutely and uniformly in the disc $|z|<1$; by Abel's theorem, the function f can be extended continuously to the unit circle and is given by $f(z)=\sum_{n=0}^{\infty} 2^{-n \alpha} z^{2^{n}}$ on the unit circle $|z| \leq 1$. For $0<\alpha<1$, The function $f(z)$, restricted to the unit circle $z=e^{2 \pi i \theta}$, is given by $\sum_{n=0}^{\infty} \cos \left(2^{n} 2 \pi \theta\right)+i \sin \left(2^{n} 2 \pi \theta\right)$. This is a nowhere differentiable Weierstrass function. Thus the function $f(z)$ is nowhere differentiable on the unit circle and therefore cannot be analytically extended past the circle.

For non-integer $\alpha>1$, we can define the operator T by $T f(z)=z f^{\prime}(z)$. Letting $k<\alpha<k+1$, we take the function $T^{k} f$, which an be expanded for $z<1$ as a power series:

$$
T f(z)=\sum_{n=0}^{\infty} 2^{-n(\alpha-k)} z^{2^{n}}
$$

By the previous argument, this cannot be analytically continued past the unit circle. Since $T f(z)$ is analytic wherever $f(z)$ is analytic, it follows that $f(z)$ cannot be extended past the unit circle either.

For integers $\alpha=k$, and for $|z|<1, T^{k} f$ is given by

$$
\sum_{n=0}^{\infty} z^{2^{n}}
$$

which cannot be analytically extended past the unit circle by part a.

