
Chapter 1, Exercise 22

Let N = {1, 2, 3, . . .} denote the set of positive integers. A subset S ⊂ N is said
to be in arithmetic progression if

S = {a, a+ d, a+ 2d, a+ 3d, . . .}

where a, d ∈ N. Here d is called the step of S.
Show that N cannot be partitioned into a finite number of subsets that are in

arithmetic progression with distinct steps (except for the trivial case a = d = 1).
[Hint: write

∑

n∈N
zn as a sum of terms of the type za

1−zd .]

Solution

Suppose that we can partition N into disjoint arithmetic progressions S1, . . . , Sn,
where Sj has smallest element aj and step dj . Then we have

∞
∑

j=1

zj =
z

1− z

for all |z| < 1. We also have

∑

j∈Sj

zj =

∞
∑

k=1

zaj+kdj

= zaj

∞
∑

k=0

zkdj

=
zaj

1− zdj

Since the Sj form a partition of N, we get, for |z| < 1, that

z

1− z
=

n
∑

j=1

zaj

1− zdj
.

Without loss of generality, assume d1 is the largest of {d1, . . . , dn}, Because the
dj are distinct, it follows that dj < d1 for j 6= 1. Consider the root of unity
ζ = e2πi/d1 . For this root of unity we have 1− zd1 = 0, but 1− zdj 6= 0 for any
j 6= dj . Thus the right hand side of the above equation is unbounded as z → ζ
from inside the unit disk. But 1− ζ 6= 0 so the left hand side remains bounded
as z → ζ from inside the unit disk. Therefore, the left hand side is not equal to
the right hand side and no such partition exists.
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Chapter 1, Exercise 25

Part a

Evaluate the integrals
∫

γ

zn

for all integers n. Here γ is any circle centered at the origin with the positive
(counterclockwise) orientation.

Solution

We can parameterize γ via the parameterization z(t) = e2πit, where t goes from
0 to 1. Under this parameterization, the integral becomes:

2πi

∫ 1

0

e2πint · e2πit dt.

Which is

2πi

∫ 1

0

e2πi(n+1)t .dt

This integral can be written as

2πi

∫ 1

0

cos(2π(n+ 1)t) + i sin(2π(n+ 1)t) dt

Both trigonometric functions will run through an integer number of periods, and
therefore the integral will vanish unless n+1 = 0, in which case the integrand is
1 and the integral evaluates to 2πi. So for integers n 6= −1 the integral is zero;
for n = −1 the integral is 2πi.

Part b

Same question as before, but with γ any circle not enclosing the origin.

Solution

Let γ be any such circle. We can parameterize γ with the parameterization
γ(t) = z0 + re2πit where |z0| > r. In the region enclosed by γ, the function zn

has the explicit primitive 1
n+1z

n+1 for n 6= −1. Therefore, the integral along γ
is zero by Corollary 3.3.

If n = −1, then we have, after parametrizing,

∫ 1

0

(z0 + re2πit)−1e2πit.

This is
∫ 1

0

z0(1 + r/z0e
2πit)−1e2πit.
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Since |r/z0| < 1, this has a power series expansion

∫ 1

0

z0

∞
∑

j=0

(−r/z0)
je2πi(j+1)t

and by absolute convergence of the sum, we can interchange the sum and inte-
gral. Because j+1 is a positive integer for any nonnegative integer j, each term
in the sum integrates to 0 and the integral is 0.

Part c

Show that if |a| < r < |b|, then
∫

γ

1

(z − a)(z − b)
dz =

2πi

a− b
,

where γ denotes the counterclockwise circle centered at the origin, of radius r,
with the positive orientation.

Solution

For this problem, it is best to perform a partial fraction decomposition on
1

(z−a)(z−b) . We rewrite

1

(z − a)(z − b)
=

1

a− b

(

1

z − a
−

1

z − b

)

.

We then evaluate

1

a− b

∫

γ

1

z − a
dz −

1

a− b

∫

γ

1

z − b
dz.

The second integral vanishes, as we computed in part b. For the first integral,
we parameterize γ by γ = re2πiθ:

r2πi

a− b

∫ 1

0

(re2πit − a)−1e2πit dt

Now, r > |a|, so we can pull out re2πit to get

r2πi

a− b

∫ 1

0

−
1

re2πit
(1−

a

r
e−2πit)−1e2πit dt

which gives

r2πi

a− b

∫ 1

0

1

r

∞
∑

j=0

ajr−je−2πit(j+1) dt

As before this integral vanishes unless j = 0, so we get

r2πi

r(a− b)
=

2πi

a− b
.
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Chapter 2, Problem 1

Here are some examples of analytic functions on the unit disc that cannot be
extended analytically past the unit circle. The following definition is needed.
Let f be a function defined in the unit disc D, with boundary circle C. A point
w on C is said to be regular for f if there is an open neighborhood U of w and
an analytic function g on U , such that f = g on D ∩ U . A function f defined
on D cannot be continued analytically past the unit circle if no point of C is
regular for f .

Part a

Let

f(z) =

∞
∑

n=0

z2
n

for |z| < 1.

Notice that the radius of convergence of the above series is 1. Show that f cannot
be continued analytically past the unit disc. [Hint: Suppose θ = 2πp/2k, where
p and k are positive integers. Let z = reiθ ; then |f(reiθ)| → ∞ as r → 1.]

Solution

Let θ = 2πp
2k

, and let z = reiθ. Then we have

f(z) =
k−1
∑

n=0

r2
n

e
2πi∗2np

2k +
∞
∑

n=k

r2
n

.

Where we used the fact that the exponent was an integer multiple of 2πi for
n ≥ k. There are only k summands in the first sum, so the first sum is bounded
by k in absolute value for |r| < 1. As r → 1 from the left, the sum is therefore
bounded from below by

∑

n r
2n − k, which is unbounded as r → 1. Thus

f(z) cannot be analytically extended to any ball containing a point of the form

e2πip/2
k

. Since points of this form are dense in the unit circle, f(z) is not regular
at any point of the unit circle.

Part b

Fix 0 < α < ∞. Show that the analytic function f defined by

f(z) =

∞
∑

n=0

2−nαz2
n

for |z| < 1

can be continuously extended to the unit circle, but cannot be analytically
continued past the unit circle. [Hint: There is a nowhere differentiable function
lurking in the background. See Chapter 4 in Book I.]
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Solution

The function f(z) =
∑

∞

n=0 2
−nαz2

n

converges absolutely and uniformly in the
disc |z| < 1; by Abel’s theorem, the function f can be extended continuously to
the unit circle and is given by f(z) =

∑

∞

n=0 2
−nαz2

n

on the unit circle |z| ≤ 1.
For 0 < α < 1, The function f(z), restricted to the unit circle z = e2πiθ, is given
by

∑

∞

n=0 cos(2
n2πθ)+ i sin(2n2πθ). This is a nowhere differentiable Weierstrass

function. Thus the function f(z) is nowhere differentiable on the unit circle and
therefore cannot be analytically extended past the circle.

For non-integer α > 1, we can define the operator T by Tf(z) = zf ′(z).
Letting k < α < k + 1, we take the function T kf , which an be expanded for
z < 1 as a power series:

Tf(z) =
∞
∑

n=0

2−n(α−k)z2
n

.

By the previous argument, this cannot be analytically continued past the unit
circle. Since Tf(z) is analytic wherever f(z) is analytic, it follows that f(z)
cannot be extended past the unit circle either.

For integers α = k, and for |z| < 1, T kf is given by

∞
∑

n=0

z2
n

which cannot be analytically extended past the unit circle by part a.
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