$\begin{array}{c} {\rm Math~100C-WORKSHEET~9} \\ {\rm EULER'S~METHOD} \end{array}$

1.	Compound	INTEREST	(Bernoulli	1683))

		1. COMPOUND INTEREST (BERNOULLI 1003)
(1)		pose you have a \$100 bank balance which earns an annual interest rate of 30%. Suppose the interest is paid once, at the end of the year. How much would your balance be at that time?
	(b)	Suppose instead that interest is paid four times a year. What is the quarterly interest <i>rate</i> ? What would the balance be at the end of the first quarter?
	(c)	Suppose further that interest is <i>compounded</i> : after every quarter the interest is added to the balance. What would be the balance at the end of the year?
	(d)	Suppose instead that interest is compounded $daily$ and that at a particular day the balance is y dollars. What is the balance the next day?
(2)	dolla	pose interest is compounded <i>continuously</i> and that at a particular time y the balance is $y(t)$ ars, where t is measured in years. What is the approximate interest rate for the period between times $t, t + h$ if h is very small?
	(b)	What is the balance at time $t + h$?

Date: 17/11/2022, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81.

• Rearranging and taking the limit $t \to 0$ we obtain the ODE y'(t) = 30%y(t). In general if the

interest rate is r we discover that $y(t) = y(0)e^{rt}$.

2. Further examples

From now on let the interest rate by r.

- (3) Suppose that in addition to the interest we also have a constant income stream of b dollars per month.
 - (a) What differential equation expresses our bank balance now?

(b) What is the general solution (hint: use an ansatz of the form $Ce^{rt} + B$). What is the solution that has $y(0) = y_0$?

(4) Suppose instead that our income stream is seasonal, so that the differential equation is $y' = ry + b\sin(2\pi t)$. Find the general solution and the solution satisfying $y(0) = y_0$ using an Ansatz of the form $Ae^{rt} + B\sin(2\pi t) + C\cos(2\pi t)$.

(5) (For numerical discussion) Suppose instead the *interest rate* is seasonal, so the equation is $y' = (r + a\cos(2\pi t))y$. Can you find a solution? What if $y' = (r + a\sin(2\pi t))y + b$?