Lior Silberman’s Math 100 25
10. MULTIVARIABLE CALCULUS (24/11/2022)

Goals.

(1) 3d space: coordinates and graphs
(2) Partial derivatives
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Math 100C — WORKSHEET 10
MULTIVARIABLE CALCULUS

1. PLOTTING IN THREE DIMENSIONS

5+

(1) Plot the points (2,1,3), (—2,2,2) on the axes pro-
vided. |
(2) Let f(z,y) = V"
(a) What are f(0,—1)? f(1,2)? Plot the point (0, 1, f(0,1))
on the axes provided.
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(b) What is the domain of f (that is: for what (z,v)

values does f make sense?
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(c) What is the range of f (that is: what values does
it take)?
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(4) Which plane is this?
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2. PARTIAL DERIVATIVES
0.2 9 . df
(5)a) Let f(x) = 22* — a* — 2. What is 27
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(b) Let f(x) = 2z* — y*> — 2 where y is a constant.
What is %7
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(c) Let f(z,y) = 2z* — y* — 2. What is the rate
of change of f as a function of = if we keep y

constant?
Shll ¢y
PO = S B _

Name : "{giﬂ? olorvebve A + w.rt %
(d) What is 3£7

%ﬂfr 0 -3y -0 ==dy



Oy W;‘oz

Sometings have  ¥,y) whe Y,y indgerdesd

i} A
0«4'5;(-1 UA

Shatine Pk 4§09 w}wg y 15 o ﬁlnfrlv’on
¥ (" dfforababion alorg Curte "/ “imy lresh A"

C‘“B“b' Oﬁ (N‘n Y =4l), usng cha rulo)

(Asicte: 4 03’&)




(7) One model in labour economics has a production
function @ = [aK° + (1 — a)E’] 2 Here a,0 >0
are parameters (o < 1), K is the capital and F is

woy lpw  the labour.
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(b) Find the margmal product of labour: g% =
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(6) Find the partial derivatives with respect to both z, y
of

(a) g(z,y) = 3y*sin(z + 3)
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(8) We can also compute second derivatives. For exam-

ple fzy = (gi ) = %;m f. Evaluate:
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(9) You stand in the middle of a north-south street (say
Health Sciences Mall). Let the x axis run along the
street (say oriented toward the south), and let the
y axis run across the street. Let z = z(z,y) denote
the height of the street surface above sea level.

(a) What does gz = 0 say about the street?
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(b) What does & = 0.15 say about the street?
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(c) You want to follow the street downhill. Which
way should you go? |
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