UBC Math 322; notes by Lior Silberman

3.4. Actions, orbits and point stabilizers (handout)
In this handout we gather a list of examples of group actions. We find the orbits, stabilizers,

3.4.1. G acting on G/H. Let G be a group, H a subgroup. The regular action of G on itself
induces an action on the subsets of G.
e Let C = xH be a coset in G/H and let g € G. Then gC is also a coset: gC = g(xH) =
(gx)H. Accordingly G acts on G/H.
(1) Orbits: for any two cosets xH,yH let g = yx~'. Then g(xH) = yx~'xH = yH so there is
only one orbit.
e We say the action is transitive.
(2) Stabilizers: {g | gxH =xH} = {g | gxHx ' =xHx'} = {g| g € xHx™'} =xHx"! Stabg (xH) =
xHx~! — the point stabilizers are exactly the conjugates of H.

PROPOSITION 178. Let G act on X. For x € X let H = Stabg(x) and let f: G/H — O(x) be
the bijection f(gH) = gx of Proposition Then f is a map of G-sets: for all g € G and coset
C € G/H we have

f(g-C)=g-f(C)
where on the left we have the action of g on C € G/H and on the left we have the action of g on
f(C)eO(x) CX.

3.4.2. GL,(R) acting on R".
e For a matrix g € G = GL,(R) and vector v € R" write g - v for the matrix-vector product.
This is an action (linear algebra).
(1) Orbits: We know that for all g, g0 = 0 so {0} is one orbit. For all other non-zero vectors
we have:

CLAIM 179. Let V be a vector space, u,v € V be two non-zero vectors. Then there is
a linear map g € GL(V) such that gu = v.

We need a fact from linear algebra

FACT 180. Let V,W be vector spaces and let {u;};.; be a basis of V. Let {w;},.; be
any vectors in W. Then there is a unique linear map f:V — W such that f(u;) = w;.

PROOF OF CLAIM. Complete u,v to a bases {#;};c;,{vi};c; (41 = u, vi =v). There
is a unique linear map g: V — V such that gu; = v; (because {u;} is a basis) and similarly
a unique map i: V — V such that hy; = u;. But then for all i we have (gh)y; =v; =1dy;
and (hg)u; = u; = Idu;, so by the uniqueness prong of the fact we have gh =1d = hg and

g € GL(V). O
(2) Stabilizers: clearly all matrices stabilizer zero. For other vectors we compute:
0 0
Staber, e () = g 1g | | =[]} = {g _ (h Q) | h€GL1(R),ue R’“} .
" 0 0 u 1
1 1
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EXERCISE 181. Show that the block-diagonal matrices M = { (l(; ?) | he GLn_l(R)} are a

1

are a subgroup isomorphic to (R"_l,—i—). Show that Stabgy,, (k) (e,) is the semidirect product
M x N.

subgroup of GL,,(R) isomorphic to GL,,_; (R). Show that the matrices N = { (I"ul Q) |u e R™! }

3.4.3. GL,(R) acting on pairs of vectors (assume n > 2 here).

EXERCISE 182. If G acts on X and G acts on Y then setting g- (x,y) = (g-x,g-y) gives an
actionof Gon X x Y.

We study the example where G = GL,(R) and X =Y = R".
(1) Orbits:

(a) Clearly (0,0) is a fixed point of the action.

(b) If u # 0, v # 0, the previous discussion constructed g such that gu = vand hence
g (u,0) = (»,0) and g- (0,u) = (0,v). Since G- (u,0) C R" x {0}, we therefore get
two more orbits: {(u,0) | u# 0} and {(0,u) | u # 0}.

(c) We now need to understand when there is g such that g- (u;,u,) = (v;,v,). In hte
previuos discussion we saw that if {u;,u,} are linearly independent as are {v,v,}
then completing to a basis will provide such g. Conversely, if {u;,u,} are indepen-
dent then so are {gu,, gu, } for any invertible g (g preserves the vector space structure
hence linear algebra properties like linear independence). We therefore have an orbit

U, u the vectors are linearly independent .
L) | th linearly independ

(d) The case of linear dependence remains, so we need to consider the orbit of (u,u,)
where both are non-zero and u, = au; for some scalar a, necessarily non-zero. But
in that case g- (uy,u,) = (gu;,g(au;)) = (gu;,a(gu,)) so we conclude that the orbit

is contained in
{(uy,au,) |u; # 0}
Conversely, this is an orbit because if u;,u, are both non-zero then if gu; = u, then
8- (uy,auy) = (vi,av;).
Summary: the orbits are {(0,0)}, {(u,0) | u # 0}.{(0,u) | u # O}, {(uy, u;) | dim Span {uy,uy } =
and for each a € F* the set {(u;,au;) | u; # 0}.
(2) Point stabilizers:

(a) (0,0) is fixed by the whole group.

(b) g(u,0) = (u,0) iff gu = u, so this is the case solved before. Similarly for g (u,au) =
(u,au) which holds iff gu = u.

©) g (gn_l ,gn) = (gn_l ,gn) holds iff the last two columns of g are e

h O
StabGLn(]R) (gn—17€n> = {g = (y 12) | he GLn—Z(R)vy S M27n—2(R)} .

n—1>€n SO

EXERCISE 183. Show that the block-diagonal matrices M = { (g IQ> | he GL,_» (R)} are a
(V)
subgroup of GL,,(R) isomorphic to GL,,_»(R). Show that the matrices N = { <I”)72 %) lye MzJ,_z(]R)} ~
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are a subgroup isomorphic to (Rz(”_z) , —i—) . Show that Stabgy, (r) (gn_1 , gn) is the semidirect prod-
uct M x N.

3.4.4. GL,(R) and PGL,(R) acting on "' (R).

DEFINITION 184. Write P*~!(R) for the set of 1-dimensional subspaces of R” (this set is
called “projective space of dimension n —17).

e Let L € P !(R) be a line in R” (one-dimensional subspace. Let g € GL,(R). Then
g(L) ={gv|v €L} is also a line (the image of a subspace is a subspace, and invertible
linear maps preserve dimension), and this defines an action of GL,(R) on P"~!(R) (a
restriction of the action of GL,(R) on all subsets of R” to the set of subsets which are
lines).

(1) The action is transitive: suppose L = Span{u} and L' = Span{v} for some non-zero
vectors u,
vv. Then the element g such that gu = v will also map gL = L.

(2) Suppose L = Span{e, }. Then gL = L means ge, spans L, so ge, = ae,, for some non-zero
a. It follows that

h
Stabg, (k) (F - ¢,) = {g = <u

g) |heGL,_(R),ac R uc R”‘l} .

e Repeat Exercize|l181|from before, now with M = { (g g) |he GL,—1(R),a € R* }

GL,_1(R) x R*.

This can be generalized. Write

Gr(n,k) = {L C R" | L is a subspace and dimg»L =k} .

Then GL,(R) still acts here (same proof), the action is still transitive (for any L,L’, take bases

{u;}*_, C L, {v;}*_, c L, complete both to bases of R” and get a map), and the stabilizer will have
the form M x N with M ~ GL,_(R) x GL(R) and N >~ (M ,_¢(R), +).

3.4.5. O(n) acting on R". Let the orthogonal group O(n) = {g € GL,(R) | g'g =1d} act on
R".

e This is an example of restriction the action of GL,(R) to a subgroup.

(1) Orbits: we know that if g € O(n) and v € R” then ||gv|| = ||v||. Conversely, for each
a>0{veR"||vw| =a} is an orbit. When a = 0 this is clear (just the zero vector) and
otherwise let u, vboth have norm a. Let u; = é
v, v = éy and complete u;,v; to orthonormal bases {u;},{v;} respectively. Then the
unique invertible linear map g € GL,(R) such that gu; = v; is orthogonal (linear algebra
exercize) and in particular we have g € O(n) such that gu; = v, and then gu = g (au;) =
agu) = ayy =
vy,
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3.4.6. Isom(RR") acting on R”". Let Isom(RR") be the Euclidean group: the group of all ridig
motions of R" (maps f: R" — R”" which preserve distance, in that || f(u«) — f(v)|| = |Ju —v|])-
(1) The action is transitive: for any fixed a € R" the translation T,x = x + a preserves dis-
tances, and for any u,v we have T,,_, (1) = v.
(2) The point stabilizer of zero is exactly the orthogonal group!

PROOF. Let f € Isom(RR") satisfy f(0) = 0. We show that f preserves inner products.
For this first note that for any x,

IF @I = llf &) =0l = £ (x) = fFO)| = [lx— Ol = [|x]|

Second since H)_C—XHZ = |lx]* + Htz —2(x,y) we have the polarization identity

1
() = 5 [l + > = =]
so that

W0 = 5 [P+ - 7@ - o]

= 5 [l ol = = 1]

Now let {¢;};_, be the standard orthonormal basis. It follows that u; = f(e;) also
form an orthonormal basis, and we let g € O(n) be the map such that ge; = u;. Finally, let
x € R" and let a; = (x,¢;). Then x = };a;e; and since

(f(x),u;) = (f(x), fe;)) = (x,¢;) = a;

that also
fx) =Y aw; =Y aige; =g (Zaz—z) = gx
i i i

so that f agrees with g. U

EXERCISE 185. Let V = {T, |a € R"} C Isom(R") be the group of translations. This is a
subgroup isomorphic to R”, and O(n) is the semidirect product O(n) x V.

EXERCISE 186. The orbits of Isom(R") on the space of pairs R"” x R" are exactly the sets
Da={(xy) | [x=y|=a} (@=0).
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