
MATH 322: PROBLEMS FOR MASTERY

Part 1. Problems

1. Introduction and concerete examples

1.1. Congruences and modular arithmetic.
(1) Find all solutions to the congruence 5x ≡ 1 (7).
(2) Evaluate:

(a) [3]6 + [5]6 + [9]6, [3]7 + [5]7 + [9]7, [2]13 · [5]13 · [7]13.
(b) ([3]8)

n (hint: start by finding ([3]8)
2).

(3) Linear equations.
(a) Use Euclid’s algorithm to solve [5]7x = [1]7.
(b) Solve [5]7y = [2]7 by multiplying both sides by the element from (a).

(c) Solve


2x+ 3y + 4z = 1

x+ y = 3

x+ 2z = 6

in Z/7Z (imagine all numbers are surrounded by brackets).

1.2. The symmetric group.
(1) Notation

(a) Let σ =

(
1 2 3 4 5 6
5 2 4 1 3 6

)
, τ =

(
1 2 3 4 5 6
2 3 4 5 6 1

)
in S6. Compute στ , τσ, σ−1, τ−1,

στσ−1.
(b) Compute the cycle structure of the each of the permutations in part (a).

(2) (more cycles)

(a) Decompose σ =

(
1 2 3 4 5 6 7 8
5 3 7 1 4 8 2 6

)
into cycles

(b) Let τ = (12). Find the cycle structure of τσ, τ(τσ) and see how the cycles split and merge.
(c) Let ρ = (53478). Find the cycle structure of ρσρ−1.

2. Groups

2.1. Definitions: groups, subgroups, homomorphisms.
(1) Which of the following are groups? If yes, prove the group axioms. If not, show that an axiom fails.

(a) The “half integers” 1
2Z =

{
a
2 | a ∈ Z

}
⊂ Q, under addition.

(b) The “dyadic integers” Z[ 12 ] =
{
a
2k
| a ∈ Z, k ≥ 0

}
⊂ Q, under addition.

(c) The non-zero dyadic integers, under multiplication.
(2) [DF1.1.9] Let F =

{
a+ b

√
2 | a, b ∈ Q

}
⊂ R.

(a) Show that (F,+) is a group.
(b) Show that (F \ {0} , ·) is a group.
RMK: Together with the distributive law, (a),(b) make F a field.

(3) Let G be a commutative group and let k ∈ Z.
(a) Show that the map x 7→ xk is a group homomorphism G→ G.
(b) Show that the subsets G[k] =

{
g ∈ G | gk = e

}
and

{
gk | g ∈ G

}
are subgroups.

RMK For a general group G let Gk =
〈{
gk | g ∈ G

}〉
be the subgroup generated by the kth

powers. You have shown that, for a commutative group, Gk =
{
gk | g ∈ G

}
.

Date: Last updated November 5, 2015.
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2.2. Cyclic groups; order of elements.
(1) Let κ = (123456) be an 6-cycle in Sn. Find the subgroup 〈κ〉.
(2) For each n ∈ Z find the subgroup 〈n〉.
(3) For each σ ∈ S4 find the subgroup 〈σ〉.

(4) Let ζ = e2πi/n ∈ C be a root of unity of order n. Let g =

(
0 1
−1 ζ + ζ̄

)
. Show that g ∈ GL2(R) has

order n (hint: diagonalize).
(5) Let σ = κrκs ∈ Sn where κr, κs are disjoint cycles of length r, s respectively.

(a) Show that σk = κkrκ
k
s .

(b) Show that σk = id iff κkr = κks = id iff k is divisible by both r, s.
(c) Show that the order of σ is the least common multiple of r, s.
(d) (Number theory) Show that the least common multiple of r, s satisfies lcm(r, s) = rs

gcd(r,s)

(e) Generalize (a),(b),(c) to the case where σ is a product of any number of disjoint cycles.

2.3. The dihedral group and generalizations.
(1) Let D2n =

{
cεri | ε ∈ Z/2Z, i ∈ Z/nZ

}
and define

(
cεri

)
·
(
cδrj

)
= cε+δrδ(i)+j where

δ(i) =

{
i δ = [0]2

−i δ = [1]2
.

(a) Show that (D2n, ·) is a group. Write e for its identity element.
• This group is called the dihedral group. It is sometimes confusingly denoted Dn.

(b) Let c′ = c[1]r[0] and r′ = c[0]r1. Show that (c′)
2

= e, (r′)n = e and that (c′)ε(r′)i = cεri.
• Accordingly we write c, r for these elements from now on.

(c) Show that cr 6= rc so that D2n is non-commutative.
(d) Show that every g ∈ D2n can be written as a product of elements from S = {c, r}.

• We say the set {c, r} generates D2n.
(e) Show that the map i 7→ ri gives an isomorphism of Cn ' (Z/nZ,+) and the subgroup H of

D2n consisting of powers of r.
(f) Show that for every g ∈ D2n and h ∈ H we have ghg−1 ∈ H.
• We say H is normal in D2n.

2.4. Cosets and the index.
(1) H = {id, (12)} and K = {id, (123), (132)} are two subgroups of S3. Compute the coset spaces S3/H,

H\S3, S3/K, K\S3.
(2) Let H < G have index 2 and let g ∈ G. Show that gHg−1 =

{
ghg−1 | h ∈ H

}
= H.

(3) If H < G and X ⊂ H is non-empty then XH = H. In particular, hH = H for any h ∈ H.
(4) LetK < H < G be groups with G finite. Use Lagrange’s Theorem to show [G : K] = [G : H] [H : K].

2.5. Direct and semidirect products.
(1) Let G = GL2(R) be the group of 2× 2 invertible matrices. We will consider the subgroups

B =

{(
a b
0 d

)
∈ G

∣∣ad 6= 0

}
, A =

{(
a 0
0 d

)
∈ G

∣∣ad 6= 0

}
and N =

{(
1 b
0 1

)
| b ∈ R

}
.

(a) Show that these really are subgroups with A ' (R×)
2

= R× × R× and N ' R+. Evidently
N,A ⊂ B ⊂ G.

(b) Show that B = N oA(you need to show that B = NA, that A ∩N = {I}, and that N CB).

(c) Directly show that for any fixed a, d with ad 6= 0 we have
(
a 0
0 d

)
N =

{(
a b
0 d

)
| b ∈ R

}
,

demonstrating part of 2(c).

(2) Show that D2n = Rn C where R = 〈r〉 ' C2, C = 〈c〉 ' Cn.
For more semidirect products see also sheet on examples of group actions.
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3. Group actions

3.1. Basic definitions.
(1) Label the elements of the four-group V by 1, 2, 3, 4 in some fashion, and explicitely give the permu-

tation corresponding to each element by the regular action.
(2) Repeat with S3 acting on itself by conjugation (you will now have six permutations in S6).
(3) Find the conjugacy classes in D2n. Verify that the number of conjugacy classes equals the average

size of a centralizer (average over elements of D2n).
(4) Find the conjugacy classes of subgroups in S4.
(5) Suppose the group G acts on sets X,Y .

(a) Construct a natural action of G on the Cartesian product X × Y , and check this is an action.
(b) Find the orbits for the action of SX on X ×X.

3.2. Conjugation.
(1) Find the conjugacy classes in D2n.

4. p-groups and Sylow’s Theorems

(1) The group H =


1 x z

1 y
1

 | x, y, z ∈ F
 is called the Heisenberg group over the field F .

(a) Show that H is a subgroup of GL3(F ) (you also need to show containment, that is that each
element is an invertible matrix).

(b) Show that Z(H) =


1 0 z

1 0
1

 | z ∈ F
 ' (F,+).

(c) Show that H/Z(H) ' (F,+)
2 via the map

1 x z
1 y

1

 7→ (x, y).

(d) Show that H is non-commutative, hence is not isomorphic to the direct product F 2 × F .
(e) Suppose F = Fp = Z/pZ with p odd. Then #H = p3 so that H is a p-group. Show that every

element of H(Fp) has order p.
(f) Find all conjugacy classes in H and write the class equation.

(2) Show that every group of order 35 is cyclic. Classify groups of order 10.
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Part 2. Solutions

1. Introduction and concerete examples

1.1. Congruences and modular arithmetic.
(1) Note that 3 ·5 = 15 = 14+1 so that 5 ·3 ≡ 1 (7). Thus 5 ·(3 + 7k) ≡ 5 ·3 ≡ 1 (7) and {3 + 7k | k ∈ Z}

are solutions. Conversely, if x is a solution then 5 (x− 3) ≡ 5x− 1 ≡ 0 (7) so 7|5 (x− 3). Since 7 is
prime and does not divide 5, we must have 7|x− 3 so x = 3 + 7k for some k ∈ Z.

(2) Evaluate:
(a) [3]6+[5]6+[9]6 = [3+5+9]6 = [14]6 = [2]6, [3]7+[5]7+[9]7 = [3]7, [2]13·[5]13·[7]13 = [70]13 = [5]13.
(b) ([3]8)

2
= [9]8 = [1]8. It follows that if n = 2k + ε we have ([3]8)

n
= ([3]8)

2k+ε
=
(
[3]28
)k

[3]ε8 and
hence that

([3]8)
n

=

{
[1]8 n even
[3]8 n odd

.

(3) Linear equations.
(a) See problem 1
(b) Suppose [5]y ≡ [2] in Z/7Z. Multiplying by [3] and using [3][5] = [1] we conclude that [y] ≡

[3][2] = [6]. Conversely, y ≡ [6] is a solution since [5][6] = [30] = [2].
(c) We use Gaussian elimination:

2x+ 3y + 4z = 1

x+ y = 3

x+ 2z = 6

⇐⇒


y + 4z = 2

x+ y = 3

−y + 2z = 3

⇐⇒


6z = 5

x+ y = 3

−y + 2z = 3

⇐⇒


z = −5 = 2

x+ y = 3

y = −3 + 2z

⇐⇒


z = 2

y = 1

x = 3− y = 2

. .

1.2. The symmetric group.
(1) Notation

(a) στ =

(
1 2 3 4 5 6
2 4 1 3 6 5

)
, τσ =

(
1 2 3 4 5 6
6 3 5 2 4 1

)
, σ−1 =

(
5 2 4 1 3 6
1 2 3 4 5 6

)
=(

1 2 3 4 5 6
4 2 5 3 1 6

)
, τ−1 =

(
2 3 4 5 6 1
1 2 3 4 5 6

)
=

(
1 2 3 4 5 6
6 1 2 3 4 5

)
, στσ−1 =

(
1 2 3 4 5 6
3 4 6 1 2 5

)
.

(b) σ = (1534)(2)(6), τ = (123456), στ = (1243)(56), τσ = (16)(2354), σ−1 = (4351)(2)(6),
τ−1 = (654321), στσ−1 = (136524).

(2)
(a) σ = (154)(237)(68).
(b) τσ = (154237)(68) and the two 3-cycles merged. τ(τσ) = σ and the 6-cycle 154237 breaks up

to two 3-cycles.
(c) ρσρ−1 = (137)(248)(65).

2. Groups

2.1. Definitions.
(1) Which are groups?

(a) 1
2Z is a group:

(
a
2 + b

2

)
+ c

2 = a+b+c
2 = a

2 +
(
b
2 + c

2

)
, 0

2 + a
2 = a

2 and −a2 + a
2 = 0

2 .
(b) Z

[
1
2

]
is a group.

(c) In Z[ 12 ] \ {0} note that 1 · x = x for all x, so if this was a group the identity element would be
1. Now consider 3 = 3

1 ; if this was a group there would be x such that 3x = 1 so that x = 1
3 .

But by unique factorization there is no way to write 1
3 in the form a

2k
where k ≥ 0 – if 1

3 = a
b

then b = 3a so b is divisible by 3.
(2)

(a) F is a non-empty subset of R closed under addition and subtraction, hence a subgroup.
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(b) 1 = 1 + 0
√

2 ∈ F \ {0} ⊂ R× so it’s enough to show closure. If a + b
√

2, c + d
√

2 6= 0 then(
a+ b

√
2
) (
c+ d

√
2
)

= (ac+ 2bd) + (ad+ bc)
√

2 ∈ F and the product is non-zero since R is a

field. Also a+b
√
2

c+d
√
2

=
(a+b

√
2)(c−d

√
2)

c2−2d2 = ac−2bd
c2−2d2 + bc−ad

c2−2d2
√

2 ∈ F \ {0} since the denominator is a
non-zero rational number (were c2 − 2d2 = 0 it would mean c2 = 2d2 and this violates unique
factorization since the number of factors of 2 of this number is odd on the right, even on the
left).

2.2. Cyclic groups.
(1) κ2 = (135)(246), κ3 = (14)(25)(36), κ4 = (153)(264), κ5 = (165432) and κ6 = id so 〈κ〉 =
{id, (135)(246), (14)(25)(36), (153)(264), (165432)}.

(2) In the first class we shows that 〈n〉 = nZ.
(3) Only one representative from each cycle structure is given. 〈id〉 = {id}, 〈(12)〉 = {id, (12)}, 〈(123)〉 =
{id, (123), (132)}, 〈(1234)〉 = {id, (1234), (13)(24), (1432)}, 〈(12)(34)〉 = {id, (12)(34)}.

(4) The matrix g is real and has characteristic polynomial z2 − (tr g)z + (det g) = z2 − (ζ + ζ̄)z + 1 =

(z − ζ)(z − ζ̄) since ζζ̄ = 1. We conclude that there is S ∈ GL2(C) such that g = S

(
ζ

ζ−1

)
S−1

(ζ−1 = ζ̄). We show by induction that gk = S

(
ζk

ζ−k

)
S−1: for k = 0 this is clear, and if true

for k then

gk+1 = gk · g = S

(
ζk

ζ−k

)
S−1S

(
ζ

ζ

)
S−1

= S

(
ζk

ζ−k

)(
ζ

ζ

)
S−1 = S

(
ζk+1

ζ−k−1

)
S−1 .

Thus, when k < n gk has eigenvalues ζk, ζ−k 6= 1 so isn’t the identity matrix while gn = S

(
1

1

)
S−1 =

I. It follows that g has order n exactly.

2.3. The dihedral group.
(1) Let D2n =

{
cεri | ε ∈ Z/2Z, i ∈ Z/nZ

}
and define

(
cεri

)
·
(
cδrj

)
= cε+δrδ(i)+j where

δ(i) =

{
i δ = [0]2

−i δ = [1]2
.

(a) For associativity, we start by noting that δ(a+b) = δ(a)+δ(b) for any a, b ∈ Z/nZ and regardless
of the value of δ, and that (δ + η)(i) = δ(η(i)) f or any δ, η ∈ Z/2Z and i ∈ Z/nZ. We thus
have: ((

cεri
)
·
(
cδrj

))
·
(
cηrk

)
=

(
cε+δrδ(i)+j

)
·
(
cηrk

)
= c(ε+δ)+ηrη(δ(i)+j)+k

= cε+δ+ηrη(δ(i))+η(j)+k

and (
cεri

)
·
((
cδrj

)
·
(
cηrk

))
=

(
cεri

)
·
(
cδ+ηrη(j)+k

)
= cε+(δ+η)r(δ+η)(i)+η(j)+k

= cε+δ+ηrη(δ(i))+η(j)+k .

For identity,
(
c[0]r[0]

)
·
(
cδrj

)
= c[0]+δrδ(0)+j =

(
cδrj

)
. To invert

(
cδrj

)
, if δ = [0] them(

c[0]r−j
)
·
(
c[0]rj

)
= c[0]r−j+j = c[0]r[0] while if δ = [1] then(
c[1]rj

)
·
(
c[1]rj

)
= c[1]+[1]r−j+j = c[0]r[0] .
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(b) We show by induction that (r′)k = c[0]2r[k]n for all k ≥ 0. This is clear for k = 0, and if true
for k then

(r′)k+1 =
(
c[0]2r[k]n

)
·
(
c[0]2r[1]n

)
=
(
c[0]2+[0]2r[k]n+[1]n

)
=
(
c[0]2r[k+1]n

)
.

In particular, we see that (r′)
k 6= e for 0 < k < n while (r′)n = e. Thus r′ has order n. Finally,

(c′)ε(r′)k =
(
cεr[0]

)
·
(
c[0]2r[k]n

)
= cεr[0]+[k] =

(
cεr[k]

)
.

(c) By the formula for multiplicatio, rc = cr[−1]n 6= cr (if n > 2).
(d) This is part (b)
(e) By definition of multiplication in D2n, the map i→

(
c[0]ri

)
is a bijective group homomorphism.

(f) The subgroup H is commutative, so if g ∈ H we have ghg−1 = gg−1h = h. Otherwise, g = crj

for some j and then for h = ri we have

ghg−1 = crjrir−jc

= crjcr0 = r−j = h−1

by definition of multiplication in D2n. We conclude that if g /∈ H then the map h 7→ ghg−1 is
the map h 7→ h−1 which exchanges elements and their inverses, so preserves H since subgroups
are closed under taking inverses.

2.4. Cosets and the index.

(1) S3/H = {{id, (12)} , {(23), (132)} , {(13), (123)}}, H\S3 = {{id, (12)} , {(23), (123)} , {(13), (132)}}.
S3/K = K\S3 = {{id, (123), (132)} , {(12), (23), (13)}}.

(2) By assumption G/H consists of two cosets. Since H itself is one of them and the cosets cover G, it
follows that G−H is the other left coset. But H\G is also of size 2, and it also follows that G−H
is also the other right coset. Now let g ∈ G. If g ∈ H then H is the left coset g belongs to, so
gH = H. Also g−1 ∈ H and H is the right coset g−1 belongs to, so gHg−1 = (gH)g−1 = Hg−1 = H.
Otherwise, g /∈ H and then gH = G −H and Hg = G −H so gH = Hg. Multiplying on the right
by g−1 we find

gHg−1 = Hgg−1 = H .

(3) Since H is closed under multiplication, XH ⊂ H. Conversely fix x ∈ X. Then for any h ∈ H we
have x−1h ∈ H and hence h = x(x−1h) ∈ XH, so that H ⊂ XH.

(4) We have [G : K] = #G
#K = #G

#H ·
#H
#K = [G : H] [H : K].

2.5. Direct and semidirect products.

(1)

(a) Let f : R+ → GL2(R) be the map f(b) =

(
1 b
0 1

)
. This is evidently injective. It is also a group

homomorphism R+ → GL2(R):

f (b1 + b′) =

(
1 b+ b′

0 1

)
=

(
1 b
0 1

)(
1 b′

0 1

)
= f(b)f(b′)

so its image N is a subgroup, isomorphic to R+. Similarly, let g : (R×)
2 → GL2(R) be given by

g (a, d) =

(
a 0
0 d

)
. This is evidently injective (so a bijection on its image) and easily verified to

be a group homomorphism. It follows that the image A is a subgroup isomorphism to (R×)
2.

That B is a subgroup will follow from (b) and 2(b).
(b) By problem 2 it is enough to check that A normalizes N and that A ∩ N = {I}. The last

one is clear: if for x ∈ GL2(R) there are a, b, d such that x =

(
1 b
0 1

)
=

(
a 0
0 d

)
then b = 0,
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a = d = 1 and x = I2. For the other claim, let
(

1 b
0 1

)
∈ N and

(
a 0
0 d

)
∈ A. Then(

a 0
0 d

)(
1 b
0 1

)(
a 0
0 d

)−1
=

(
a ab
0 d

)(
a−1 0
0 d−1

)
=

(
1 abd−1

0 1

)
∈ N , so A normalizes N .

(c) Set X =

{(
a b
0 d

)
| b ∈ R

}
. Then for any b ∈ R we have

(
a 0
0 d

)(
1 b
0 1

)
=

(
a ab
0 d

)
∈ X

so
(
a 0
0 d

)
N ⊂ X. Conversely, we have

(
a b
0 d

)
=

(
a 0
0 d

)(
1 a−1b
0 1

)
∈
(
a 0
0 d

)
N so

X ⊂
(
a 0
0 d

)
N .

3. Group actions

3.1. Basic definitions.
(1) Say the elements are e, a, b, ab, numbered 1, 2, 3, 4. Then e corresponds to the identity, a corresponds

to (12)(34), b corresponds to (13)(24) and ab to (14)(23).
(2) Number the elements 1 to 6 along id, (12), (23), (31), (123), (132). Then id 7→ id, (12) 7→ (34) (56),

(23) 7→ (24)(56), (13) 7→ (23)(56), (123) 7→ (234), (132) 7→ (243).
(3) We consider the classes of ri and cri sepatately.

(a) In the first case, since 〈r〉 is commutative, there is no point in conjugating by rj and it’s enough
to find (

crj
)
ri
(
crj
)−1

= cric−1 = r−i .

We conclude that the conjugacy class of ri is
{
ri, r−i

}
. This has size 2 unless i = −i, which

happens when i = [0] or when i =
[
n
2

]
(the latter only when n is even).

(b) We know that any conjugate of cri is of the form crk for some k since we know the conjugates
of the elements of the form rk. Next,

rjcrir−j = cri−2j

so we see that the conjugacy class of cri includes at least all crk where k − i ∈ 2Z/nZ. When
n is odd, 2 is invertible so every k is of this form and

{
cri
}
i∈Z/nZ are all one class. When n is

even, we note that (
crj
)

(cri)(r−j) = cr−i−2j

but i− (−i− 2j) = 2i+ 2j is a multiple of 2, so we don’t get any new conjugate. We conclude
that when n is even we have the two classes{

cr2i
}
i∈Z/nZ ,

{
cr[1]+2i

}
i∈Z/2Z

.

(4) S4 has order 24, so its subgroups can have orders 1, 2, 3, 4, 6, 8, 12, 24.
(a) At orders 1, 24 there can be only one subgroup.
(b) A subgroup of order 2 must contain a unique element of order 2, which can have the cycle struc-

ture (12) or (12)(34) and these aren’t conjugate, so there are two conjugacy classes, represented
by 〈(12)〉, 〈(12)(34)〉.

(c) A subgruop of order 3 is generated by an element of order 3, which must have cycle structure
(123) so there is one conjugacy class, represented by 〈(123)〉.

(d) A subgroup of order 4 is either isomorphic to C4, in which case it has a generator of order
4, conjugate to (1234) or isomorphic to V , in which case every element has order 2. If we
contain (12) then the only elements of order 2 which commute with it are (34), and (12) (34),
so this must be the group. Otherwise we note that N = {id, (12)(34), (13)(24), (14)(23)} form a
subgroup isomorphic to V , so the classes are the one reprented by {id, (12), (34), (12)(34)} and
the only consisting of the normal subgroup N .

(e) By Cauchy’s Theorem, a subgroup of order 6 will contain an element of order 3, so up to conju-
gacy contains {id, (123), (132)}. It will also contain an element of order 2. Adding (12), (13) or
(23) gives S{1,2,3} ' S3 and this is clearly one conjugacy class. Adding (14), (24), (34) (they are
all conjugacy by (123)) gives all of S4 so this isn’t possible. The elements (12)(34), (13)(24), (23)(14)
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are all conjguate by (123) and adding them will give a copy of V so order divisible by 4. We
conclude that

{
S{1,2,3}, S{1,2,4}, S{1,3,4}, S{2,3,4}

}
is the conjugacy class at order 6.

(f) There is no subgroup of order 8.
(g) By the reasoning of part (e), at order 12 we have exactly A4 generated by (123) and (12) (34).

(5) Suppose the group G acts on sets X,Y .
(a) Define g · (x, y) = (g · x, g · y). Then e · (x, y) = (e · x, e · y) = (x, y) and

g · (h · (x, y)) = g · (h · x, h · y) = (g · (h · x), g · (h · y)) = ((gh) · x, (gh) · y) = (gh) · (x, y) .

(b) We have σ · (x, x) = (σ(x), σ(x)). Since for all x, x′ ∈ X there is σ with σ(x) = x′, we conclude
that one orbit is the diagonal {(x, x) | x ∈ X}. The key idea is to see that we can extent partial
permutations: if x 6= y, x′ 6= y′ then there is σ with σ(x) = x′, σ(y) = y′.

4. p-groups and Sylow’s Theorems

4.1. p-groups.

(1) For a field F let H =


1 x z

1 y
1

 | x, y, z ∈ F
 is called the Heisenberg group over F .

(a) We have

1 x z
1 y

1

1 x′ z′

1 y′

1

 =

1 x+ x′ z + z′ + xy′

1 y + y′

1

 (so this is closed under ma-

trix multiplication). In particular,

1 x z
1 y

1

1 −x xy − z
1 −y

1

 =

1 0 0
1 0

1

 so each ele-

ment of H(F ) is invertible (hence H(F ) ⊂ GL3(F )), and the inverse belongs to H(F ). H(F )
contains the identity matrix (let x = y = z = 0) so it is non-empty.

(b)

1 x′ z′

1 y′

1

1 x z
1 y

1

 =

1 x+ x′ z + z′ + x′y
1 y + y′

1

. Fixing x, y, z we see that

1 x z
1 y

1

1 x′ z′

1 y′

1

 =

1 x′ z′

1 y′

1

1 x z
1 y

1


for all x′, y′, z′ iff x′y = xy′ for all x′, y′. If x = y = 0 this is of course an identity, but if one
of x, y is non-zero then choosing one of x′, y′ to be zero and the other 1 makes one of x′y, xy′

zero and the other non-zero, showing that

1 x z
1 y

1

 is non-central. To see that Z(H) ' F+

check that the bijection z 7→

1 0 z
1 0

1

 is a group homomorphism.

(c) Consider the map f

1 x z
1 y

1

 = (x, y). The first calculation of (a) shows that

f

1 x z
1 y

1

1 x′ z′

1 y′

1

 = f

1 x+ x′ z + z′ + xy′

1 y + y′

1


= (x+ x′, y + y′) = (x, y) + (x′, y′)

= f

1 x z
1 y

1

+ f

1 x′ z′

1 y′

1

 ,
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that is that f is a group homomorphism H(F ) → (F+)
2. The kernel is exactly the set of

elements such that x = y = 0, that is the center. The first isomorhpism theorem then says that
f induces an isomorphism between H/Ker(f) = H/Z(H) and its image. But since all x, y are
possible, f is surjective and the claim follows.

(d) We saw that Z(H) 6= H.

(e) We show by that for k ≥ 0,

1 x z
1 y

1

k

=

1 kx kz +
(
k
2

)
xy

1 ky
1

. This is clear for k = 0

(both sides are the identity). We continue by induction:1 x z
1 y

1

k+1

=

1 x z
1 y

1

k1 x z
1 y

1

1

=

1 kx kz +
(
k
2

)
xy

1 ky
1

1 x z
1 y

1


=

1 (k + 1)x kz +
(
k
2

)
xy + kxy

1 (k + 1)y
1


=

1 (k + 1)x kz +
(
k+1
2

)
xy

1 (k + 1)y
1


since

(
k
2

)
+ k =

(
k
2

)
+
(
k
1

)
=
(
k+1
2

)
. In particular, for k = p we get1 x z

1 y
1

p

=

1 px pz + pp+1
2 xy

1 py
1

 =

1 0 0
1 0

1

 .
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