Math 101 — SOLUTIONS TO WORKSHEET 29

THE RATIO TEST

(1) If the series converges, find its sum. Otherwise, state that it diverges.
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We rewrite the series as
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We rewrite the series as
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we now see that we have a convergent geometric series, which sums to
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This is a divergent geometric series (its ratio —% has magnitude greater than 1).
(2) Decide whether the following series converge:
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converges by the ratio test.
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diverges by the ratio test.
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For which values of  does Y ° jna™ converge?

Solution: Let a,, = nx™. Then
a n+1) |zt 1
an n|x| n n—oco

By the ratio test, the series converges iflz| < 1 and diverges if |z| > 1.
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— 0 < 1 so the series converges by the ratio test.
o0

If || = 1 then

lan| = n|z|" =n ——— oo so the series diverges by the divergence test. We conclude that the
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series converges exactly when |z| < 1, that is for x € (—1,1).
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