MATH 253 — WORKSHEET 25
MASS AND CENTER OF MASS

Find the center of mass of the region inside 22 +y? = 2y and outside 22 + %2 = 1 if the density is inversely
proportional to the distance from the origin.

Solution: Note that 22 +¢? =2y <= 22+ (4> —2y+1) =1 < 22+ (y—1)? = 1 which is also a
circle, so the region is

R={(z,y) |2+ 212>+ (y-1)> <1} ={(z,9) [2® +¢> > 1, 2° +1° < 2y} .

(1) We first find the total mass. The density is proprtional to \/ﬁ so the mass is
z2+y
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Tempting to switch to polar coordinates. Then the region R is given by R = {(r, 0) | r?>1, 7% < 2rsin 0},
that is {(r,0) | 1 <r < 2sinf}. Note that 2sinf > 1 only if sinf > %, only if £ <0 <7 —%, so the
region can be written as

We therefore get the integral
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(2) We next find Z. Since the region and the density are both symmetric about the y-axis the average
x coordinate is = 0.
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(3) Finally,
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