HOMEWORK 5: MATH 265 Due in class on Oct 27

Problem 1: Improper integrals.
(a) Consider the integral $I=\int_{1}^{\infty} \frac{1}{t^{p}} d t$. Show that this improper integral converges for $p>1$ and find its value. Show that it diverges for $p=1$. What happens when $p<1$?
(b) Consider the integral $I=\int_{0}^{\infty} e^{-(5-k) t} d t$. Does this integral converge? To what value and under what condition(s) if any.
(c) Consider the integral $I=\int_{0}^{\infty} \frac{x}{10^{5}} d x$. Determine whether this integral converges or diverges and explain why.

Problem 2: A Comparison Theorem states the following two facts:
(1) If $0 \leq g(x) \leq f(x)$ and $I_{1}=\int_{0}^{\infty} f(x) d x$ converges, then $I_{2}=\int_{0}^{\infty} g(x) d x$ also converges.
(2) If $0 \leq g(x) \leq f(x)$ and $I_{2}=\int_{0}^{\infty} g(x) d x$ diverges, then $I_{1}=\int_{0}^{\infty} f(x) d x$ also diverges.

Use these theorems, together with the results of Problem 1 to determine which of the following integrals converges and briefly explain your answer.
(a) $I=\int_{1}^{\infty} \frac{1}{1+x^{3}} d x$
(b) $I=\int_{1}^{\infty} \frac{1}{\sqrt{x-0.5}} d x$

Problem 3: Show the detailed steps in computing the Laplace transform of the following functions. (You can check your answer using a table of Laplace transforms, but you are required to actually do the integration to verify your answers.)
(a) $f(t)=K t$ where K is a constant.
(b) $f(t)=e^{-t / \tau}$ where τ is a constant.
(c) $f(t)=\sin (a t)$ and $f(t)=\cos (a t)$ (Note: you will find that this double integration by parts will allow you to find both of these "together".)
(d) Let $f(t), g(t)$ be acceptable functions. Verify that $\mathcal{L}\{a f(t)+b g(t)\}=a \mathcal{L}\{f(t)\}+b \mathcal{L}\{g(t)\}$, i.e. show (using the appropriate integrals) that the Laplace transform is linear.

Problem 4: Suppose that $F(s)=\mathcal{L}\{f(t)\}$ is the Laplace transform of $f(t)$. In class we showed that

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)
$$

(a) Show that $\mathcal{L}\left\{f^{\prime \prime}(t)\right\}=s^{2} F(s)-s f(0)-f^{\prime}(0)$. (Note: sorry that the notes in class had a confusion in the last two terms! please correct it.. the scanned lecture notes are correct.)
(b) Let $f^{(n)}(t)$ be the nth derivative of the function $f(t)$ and let $M_{n}=\mathcal{L}\left\{f^{(n)}(t)\right\}$ be its Laplace transform. Show that $M_{n}=s M_{n-1}-f^{(n-1)}(0)$.
(c) Bonus: Use the above recursion relation between M_{n} and M_{n-1} to arrive at the general "formula" for $\mathcal{L}\left\{f^{(n)}(t)\right\}$.

Problem 5:

(a) Find the Laplace transform for the following (discontinuous) function:

$$
f(t)= \begin{cases}0, & 0 \leq t<3 \\ 2, & t \geq 3\end{cases}
$$

(b) Prove the following theorem about shift (translation) of the Laplace transform:

$$
\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a)
$$

(c) Use your result in part (b) to find the inverse Laplace transform for the $F(s)=\frac{1}{6(s-1)^{3}}$.

Problem 6: Find the solution to the following ODEs using the Laplace transform
(a) $y^{\prime \prime}-3 y^{\prime}+2 y=12 e^{4 t}$ with $y(0)=1, y^{\prime}(0)=0$.
(b) $y^{\prime \prime}+y^{\prime}-2 y=4 e^{t}+1$ with $y(0)=1, y^{\prime}(0)=0$. (Note: this is the example we discussed in class where there is a "hard way" to do the algebra and a somewhat easier way.)
(c) $y^{\prime \prime}+4 y^{\prime}-5 y=t e^{t}$ with $y(0)=1, y^{\prime}(0)=0$. (Hint: the shift theorem will be useful. There will be some algebra in this one.)

