
HOMEWORK 2: MATH 265, L Keshet (Final version) Due in class on September 29, 2010

NOTE: Most problems on this assignment are straightforward. Problem 4 may take a bit more time and
effort.

Problem 1: In each case, solve the following second order ODEs for y(t):

(a) y′′ + 2y′ − 3y = 0, and y(0) = 1, y′(0) = 2

(b) y′′ − 9y′ + 20y = 0 and y(0) = 1, y′(0) = 0

(c) y′′ − 2y′ + 5y = 0 and y(0) = 1, y′(0) = 1.

(d) y′′ − 2y = 0 and y(0) = 0, y′(0) = 2.

Solution to Problem 1:

(a) The characteristic equation is r2 + 2r − 3 = 0. This factors into (r + 3)(r − 1) = 0 so has solutions
r = 1,−3. The general solution is thus y(t) = C1e

t+C2e
−3t. We find C1, C2 from the initial conditions.

We need to find y′(t) by differentiating y(t): we get y′(t) = C1e
t−3C2e

−3t. Using the initial conditions,
we have y(0) = 1,⇒ 1 = C1 + C2 and y′(0) = 2 ⇒ 2 = C1 − 3C2. Solving these equations leads to
C2 = −1/4 and C1 = 5/4 so the solution is y(t) = 5

4et + 1
4e−3t

(b) The characteristic equation is r2 − 9r + 20 = (r − 4)(r − 5) = 0, so the roots are r = 4, 5 and the
general solution is y(t) = C1e

4t + C2e
5t. Then the initial conditions mean that y(0) = 1 = C1 + C2

and y′(0) = 0 = 4C1 + 5C2. Solving these for C1, C2 leads to y(t) = 5e4t − 4e5t.

(c) The characteristic equation is r2 − 2y + 5 = 0. This has the complex roots r = 1 ± 2i so the general
solution is y(t) = C1e

t sin(2t) + C2e
t cos(2t). We also need the derivative y′(t) = et(C1 sin(2t) +

2C1 cos(2t) + C2 cos(2t) − 2C2 sin(2t)). Then we use the initial conditions: 1 = y(0) = C2 and 1 =
(2C1 + C2) (we used the facts that e0 = 1, sin(0) = 0, cos(0) = 1). This tells us that C2 = 1, C1 = 0 so
the solution is y(t) = et cos(2t).

(d) Characteristic equation: r2 − 2 = 0 so r = ±
√

2 and y(t) = C1e
√

2t + C2e
−
√

2t. The derivative:

y′(t) =
√

2C1e
√

2t −
√

2C2e
−
√

2t. Using the I.C’s: y(0) = 0 = C1 + C2 and y′(0) = 2 =
√

2C1 −
√

2C2.

Solving for constants leads to y(t) =
√

2
2 e

√
2t −

√
2

2 e−
√

2t.

Problem 2: Consider the differential equation ay′′ + by′ + cy = 0. Suppose that the two functions y = f1(t)
and y = 1

2 [f2(t) + f1(t)] are both solutions to this equation. Show that the function f2(t) is also a solution.

Solution to Problem 2: We could just use the superposition principle, but the point of the question is to
establish this from first principles.

Since one of the solutions is 1
2 [f2(t) + f1(t)], it must be true that this function satisfies the ODE, i.e.

when we compute its derivatives and plug it into the left hand side, we should get zero. Thus,

a
d2

dt2
1

2
[f2(t) + f1(t)] + b

d

dt

1

2
[f2(t) + f1(t)] + c

1

2
[f2(t) + f1(t)] = 0.

1



Let us rewrite this as
1

2
[(af ′′

2 + bf ′
2 + cf2) + (af ′′

1 + bf ′
1 + cf1)] = 0 where we have simply rearranged

terms. But we are told that f1 is a solution so it must satisfy (af ′′
1 + bf ′

1 + cf1) = 0. Subtracting this from
the last equation leaves us with it must be true that 1

2 [(af ′′
2 + bf ′

2 + cf2)] = 0 so af ′′
2 + bf ′

2 + cf2 = 0 so we
see that f2 is also a solution.

Problem 3: Find a value of the constant r such that both ert and tert are solutions to the ODE

ay′′ + by′ + cy = 0

Solution to Problem 3: We already know that for ert to be a solution, r must satisfy the quadratic

equation ar2 + br + c = 0, i.e. r = −b±
√

b2−4ac
2a . Now for the other function, y2(t) = tert to be a solution,

it too has to satisfy ay′′ + by′ + cy = 0 bf for all values of t. Computing the derivatives, we have y′
2(t) =

ert(1 + rt) and y′′
2 (t) = ert(2r + tr2). Now substitute these into the ODE to make sure we satisfy that ODE:

aert(2r + tr2) + bert(1 + rt) + ctert = 0. (This has to be true for all t, and is exactly what it means to say
that “tert is a solution”. )

Now let us simplify and see what this says. We cancel out a factor of ert and rearrange to get
a(2r + tr2) + b(1 + rt) + ct = (ar2 + br + c)t + (2ar + b) = 0.
The only way this can be true for all t is if the coefficient in front of t is zero, and the constant term is

zero.
We already know that the first term is zero (by the argument above) so it must be also true that 2ar+b = 0,
i.e. r = −b/a. Note that this happens exactly when the quadratic equation has equal roots, i.e. when
b2 = 4ac.

Problem 4: A patient is in the hospital on intravenous medication. We will denote by I(t) the rate at which
medication is infused (injected into the patient). Assume this is already corrected for weight of patient and
that it is immediately well-mixed in the bloodstream. Let c(t) denote the drug concentration (mg/L) in the
bloodstream at time t. The drug is broken down by the liver at a constant rate r ≥ 0 (per hr). Assume that
the ODE and initial condition that describes this situation is

dc

dt
= I(t) − rc, c(0) = 0.

(a) Suppose that I(t) is switched on at time 0, is constant for an hour (I(t) = Ī for 0 ≤ t ≤ 1hr) and then
switched off. Find the value of c(t) during and after this period of time. (Your answer will be in terms
of constants in the problem.

(b) Sketch the solution you got in part (a). (The sketch should be approximate but should be labeled
carefully.)

(c) Now suppose that for a second patient, the infusion rate is periodic and the decay rate is r = 1 per
hour, so that the ODE is

dc

dt
= 1 + sin(πt/6) − c, c(0) = 0.

Solve the ODE for c(t) sketch the solution.
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Solution to Problem 4:

(a) For the first hour we have that I(t) = Ī so the problem is then dc
dt = Ī − rc, c(0) = 0. This can be

solved by a number of methods, e.g. integrating factor, just like examples we have seen. The standard
form of the equation is dc

dt + rc = Ī, so the integrating factor is µ(t) = ert. The equation is then
d
dt [e

rtc(t)] = Īert, and integrating and other steps lead to c(t) = Ī
r (1− e−rt). This holds for 0 ≤ t ≤ 1.

At t = 1 the value of c is c(1) = Ī
r (1 − e−r) ≡ c1. (This is a constant that we have named c1.) For

t ≥ 1 the infusion is zero, so the ODE and initial condition is then

dc

dt
= −rc, c(1) = c1.

The solution is exponentially decreasing, c(t) = Ke−rt and we have that c1 = c(1) = Ke−r, so the

constant can be found: K = c1e
r = Ī

r (1 − e−r)er = Ī
r (er − 1). So for t ≥ 1, c(t) = Ke−rt =

[ Ī
r (er − 1)]e−rt. This is a decaying function that approaches c = 0 as t → ∞.

(b) See Fig 1.
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Figure 1: For problem 4 part (b). A sketch of c(t) for I(t) switched on at t = 0 and off at t = 1.

(c) We put the function in standard form dc
dt + c = 1 + sin(πt/6) and find as above that the integrating

factor is µ(t) = et. Similar steps lead to d
dt [ce

t] = et(1 + sin(πt/6)). We must integrated both sides.
This requires integration by parts for one term. See below for a reminder how to do this.

Then

[cet] =

∫

[et(1 + sin(πt/6))]dt + K = et

[

1 +
−6π cos(πt/6) + 36 sin(6πt)

36 + π2

]

+ K

Thus c(t) =

[

1 +
−6π cos(πt/6) + 36 sin(6πt)

36 + π2

]

+ Ke−t.

At time t = 0 we have 0 = c(0) =

[

1 +
−6π

36 + π2

]

+ K.

(where we have used that sin(0) = 0, cos(0) = 1, e0 = 1.) Thus K = −
[

1 + −6π
36+π2

]

and

c(t) =

[

1 +
−6π cos(πt/6) + 36 sin(6πt)

36 + π2

]

−
[

1 +
−6π

36 + π2

]

e−t
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A sketch is shown in Fig 2.
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Figure 2: For problem 4 part (c). A sketch of c(t) for I(t) = 1 + sin(πt/6) and r = 1

Integration by parts This is treated in any standard calculus book. Set u = ex, dv = sin(x)dx You
will find that you need two steps, each involving a similar integral with either the sine or cosine function. In
the second step, you need u = ex, dv = cos(x)dx Calling these integrals I1, I2 we have

I1 ≡
∫

ex sin(x)dx = −ex cos(x) +

∫

ex cos(x)dx, AND I2 ≡
∫

ex cos(x)dx = ex sin(x) −
∫

ex sin(x)dx

Thus I1 = −ex cos(x) + I2, while I2 = ex sin(x) − I1. Solve these for I1, I2 to get

I1 ≡
∫

ex sin(x)dx =
1

2
ex(sin(x) − cos(x)) + C

and similarly for I2.

Problem 5: A student solves a certain linear homogeneous differential equation of second order (e.g. y′′ +
p(t)y′ + q(t)y = 0) and finds two solutions: y1(t) = 2et and y2(t) = et−1. Now he would like to find
the constants c1 and c2 such that the solution y(t) = c1y1(t) + c2y2(t) also satisfies the initial conditions
y(0) = 1, y′(0) = 1. The student encounters some difficulty. What is the difficulty, and why does it occur?
(Trace the steps that the student might be making and help figure out why he/she runs into problems).
Solution to Problem 5: The two functions cannot form a fundamental set of solutions since they are
actually both constant multiples of the same exponential function: y2(t) = et−1 = 1

eet = 1
2ey1(t) = ky1(t)

for a constant k. Another way to say the same thing is that the wronskian of these functions is zero:
W = y1y

′
2 − y2y

′
1 = (2et)(et−1)′ − (2et)′(et−1) = (2et)( et

e )′ − (2et)′( et

e ) = 2
e [(et)(et)′ − (et)′(et)] = 0.

(Remember that e is just a constant.)

Problem 6: Unlike linear ODEs, for which we have results guaranteeing the existence and “good behaviour”
of solutions, nonlinear ODEs can have all kinds of problems. Consider the simple (nonlinear) ODE

dy

dt
= y2, y(0) = y0.
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Solve this ODE using separation of variables. Show that the solution can “blow up” (become undefined) at
some finite time. For what value of y0 will the solution “blow up” when t = 2?

Solution to Problem 6: The solutions by separation of variables is as follows:

dy

dt
= y2, ⇒

dy

y2
= dt, ⇒

∫

1

y2
dy =

∫

y−2dy =

∫

dt + C, ⇒ −y−1 = t + C ⇒ y(t) = −
1

t + C
.

Using the initial condition y(0) = y0, we find that the constant is C = −1/y0 so we arrive at the solution
y(t) = 1

(1/y0)−t . There is a problem when the denominator is zero, which will happen when t = (1/y0). For

example, if the initial condition is y(0) = y0 = 1/2, then the solution “blows up” when t = 2.
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