
HOMEWORK 1: MATH 265, L Keshet Due in class on September 22, 2010

Problem 1: In each case, solve for y(t):

(a) y′ + 3y = 2et/2 with y(0) = 1.

(b) y′ − 4y = t with y(1) = 0.

(c) ty′ + 2y = sin t with y(π/2) = 0.

(d) t2y′ + 2ty = t3 + 1 with y(1) = 1.

Solution to Problem 1:

(a) The integrating factor is µ(t) = e3t. The solution is y(t) = 4
7e7t/2 + Ce−3t. Using the initial condition,

the constant is found and the solution is y(t) = 4
7e7t/2 + 3

7e−3t.

(b) The integrating factor is µ(t) = e−4t. Integration by parts is needed to find that the solution is
y(t) = − 1

16 − 1
4 + Ce4t Using the initial condition, we find the constant. The result is

y(t) = −
1

16
−

1

4
+

5

16e4
e4t

(c) The integrating factor is µ(t) = t2 (typo corrected). Integration by parts is needed to find that the
solution is

y(t) =
sin(t)

t2
−

cos(t)

t
+

C

t2

The constant is found to be C = −1 (typo corrected).

(d) The LHS is actually simply d(t2y(t))/dt so we do not need an integrating factor. We can simply

integrate both sides. We get y(t) = 1
t + t2

4 +C 1
t2 . Using the initial condition, we find that the constant

is C = −1/4.

Problem 2: Draw the direction fields for each of the below and sketch the solution curve corresponding to
the indicated initial condition.

(a) y′ = y − 2 cos(t) + 1, y(0) = 0

(b) y′ =
√

y − ty, y(0) = 2

Solution to Problem 2: For part (a) we note that the directions of tangent lines to solution curves will
all be flat (have slope zero) whenever 0 = y − 2 cos(t) + 1. We can sketch this set of points. It may be
easiest to first rewrite it as y = 2 cos(t) − 1, as we see that it is a cosine of amplitude 2 shifted down
the y axis by 1 (dotted line in Fig 1(a)). All along this locus, we sketch horizontal “dashes”. This locus
separates portion of the yt plane for which solutions are increasing (i.e. where y′(t) > 0) from the portion
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where solutions are decreasing (y′(t) < 0). We can go further by noting that the slope of tangent lines
will have a value M all along the locus M = y − 2 cos(t) + 1. We can similarly sketch such sets of points
(y = 2 cos(t) + M − 1) and assign to them directions of slope M for various values of M to get a fairly good
picture. The (computer generated) direction field, together with one solution curve satisfying the initial
condition is shown in Fig 1(a).

For part (b) the equation can be written as y′ =
√

y − ty =
√

y(1 − t
√

y). First we see that y always
has to be positive for real values, so only the first two quadrants are relevant. If t < 0 then (1 − t

√
y) is

positive. This means arrows have positive slope in the 2nd quadrant. On the curve (1− t
√

y) = 0 the slopes
are zero (dotted line in Fig 1(b)), and this curve separates the 1st quadrant into a portion with directions
of positive slope and a portion with directions of negative slope. Another way to express the same curve is
t = y−1/2. It has as asymptotes the y axis and the t axis. A table with a few other values can be used to
fill in the picture. The (computer generated) direction field, together with one solution curve satisfying the
initial condition is shown in 1(b).
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Figure 1: Solutions to parts (a) and (b) of Problem 2

Problem 3: The following equation, called the logistic equation, is often used to describe the growth of a
population N(t) ≥ 0 with limited resources:

dN

dt
= rN

(K − N)

K
.

Here r, K > 0 are constants (called the intrinsic growth rate and the carrying capacity, respectively).

(a) Define a new variable, y(t) = N(t)/K and rewrite the logistic equation in terms of this new variable.

(b) Sketch a direction field for t ≥ 0, y ≥ 0 and include on it the solution curves for initial condition
y(0) = 0, y(0) = 0.2, y(0) = 0.8, y(0) = 1.6. What happens as t → ∞? Interpret in terms of the
growing population (i.e. in terms of the original variable N(t).)

(c) Find a mathematical argument that supports the following statement: “Only solutions curves with
y(0) ≤ 1/2 have an inflection point.”
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Solution to Problem 3:

(a) Divide both sides of the equation by K, and write

1

K

dN

dt
=

d(N/K)

dt
= r

N

K
(1 − N/K).

Now sub in y(t) = N(t)/K to get
dy

dt
= ry(1 − y)

(b) See Fig 2.

(c) The ODE can be written as y′(t) = ry(1 − y) = ry − ry2. To understand where there are inflection
points on the solution curves y(t), we have to determine when the second derivative y′′(t) changes
sign. (At such points the concavity of the curve y(t) changes from up to down or vice versa. NOTE:
y′′(t) = 0 is necessary, but not sufficient to guarantee an inflection point. For example, the function
y(t) = t4 satisfies y′′(0) = 0 but is always concave up, i.e. has no inflection points anywhere, not
even at t = 0.) Taking a derivative of each side of the ODE with respect to time gives y′′(t) =
r(y′(t)) − 2ry(y′(t)) = ry′(t)(1 − 2y). (Avoid the common error of forgetting the y′(t) here -

it comes from the Chain Rule of calculus.) Using the ODE we can replace y′(t) by ry(1 − y) to
obtain y′′(t) = r[ry(1 − y)](1 − 2y). This means that we should examine the possibilities of inflection
points at y = 0, y = 1, y = 1/2 as all these are values at which the expression y(1− y)(1− 2y) changes
sign. But from the direction field of part (b) we know that any solution that starts at y = 0 never
changes, and the same for y = 1, so those values are constant, and have no curvature nor concavity,
and thus no inflection point. The only remaining possibility is that solution curves have an inflection
point when they go through the value y = 1/2. From the direction field, we know that solutions that
start in 0 ≤ y(0) ≤ 1 are increasing towards y = 1. Thus solution curves that start at y(0) < 1/2 will
increase, cross y = 1/2 and they all have an inflection point as they do so.
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Figure 2: Solution to problem 3b
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Problem 4: According to Torricelli’s Law, the height of fluid in a container above a hole (through which the
fluid is escaping) is governed by a differential equation:

dh

dt
= −k

√
h.

where k ≥ 0 is a constant. Suppose the height of the fluid is initially h(0) = h0. How long does it take for
the fluid to drain to the level of the hole?
Solution to Problem 4: Solve the DE using separation of variables

dh
√

h
= −kdt

∫ h(T )

h0

h−1/2 dh =
h1/2

(1/2)

∣

∣

∣

∣

h(T )

h0

= −k

∫ T

0

dt = −kT

2
(

√

h(T )−
√

h0

)

= −kT

h(T ) =

(

√

h0 − k
T

2

)2

.

The tank will be empty when h(t) = 0, i.e. when
(√

h0 − k t
2

)2
= 0. Solving this equation for the time t, we

get

k
t

2
=

√

h0, ⇒ t =
2
√

h0

k
.

Problem 5: Set up the following two problems as initial value problems (i.e. differential equation and initial
condition) and solve each one.

(a) In the LR circuit shown in Fig 3(a), R, L, V ≥ 0 are constant. Find the current i(t) given that i(0) = 0.

(b) In the RC circuit shown in Fig 3(b), R, C ≥ 0 are constant and the voltage is time dependent,
V (t) = e−t. Find the charge on the capacitor q(t) given that q(0) = 0.
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Figure 3: For problem 5 (a) and 5 (b)

Solution to Problem 5 We will use the circuit equation L di
dt +Ri(t)+ q(t)

C = V (t) for both parts, but some
circuit elements are missing in each part of the question.
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(a) The ODE for circuit (a) is L di
dt +Ri(t) = V =constant. We write it in the standard form di

dt + R
L i(t) = V

L .

The we find that the integrating factor is µ(t) = eRt/L and we get the solution i(t) = V
R + Ce−Rt/L.

Using the initial condition i(0) = 0 we get i(t) = V
R (1 − e−Rt/L).

(b) There is a resistor and capacitor; recall that i(t) = dq/dt so, the equation we want is R dq
dt +

1
C q(t) = V (t).

We are also told that V (t) = e−t. In standard form the ODE is dq
dt + 1

RC q(t) = e−t

R . The integrating

factor is µ(t) = et/RC and the solution works out to q(t) = C
1−RC e−t+Ke−t/RC where K is an arbitrary

constant. Using the initial condition leads to the final answer q(t) = C
1−RC [e−t − e−t/RC ].

Problem 6: Consider a stirred tank reactor that initially contains a volume V (0) = V0 of water. Now suppose
that a stock solution of salt (at concentration S gm/Litre) is pumped in at rate Fin = F Litres/hr and the
well-stirred mixture is pumped out at a slightly faster rate, Fout = (F + f) Litres/hr where f > 0. [Note
that the volume of the fluid will not be constant.] Let C(t) denote the concentration of salt inside the tank.

(a) Set up this problem as a differential equation problem for the volume of fluid V (t) and the salt
concentration C(t).

(b) Determine the volume of fluid V (t) for t > 0. Over what period of time 0 ≤ t ≤ T is this result valid?

(c) Use your result in (b) to set up one ODE that depends only on the variable C(t) and solve that
equation.

Solution to Problem 6

(a) The volume equation: dV/dt = Fin − Fout = −f . (Note that this tells us the volume is decreasing, as
f > 0. For the salt equation, we still need to use conservation of mass, but note that the volume is
not constant d[V (t)C(t)]/dt = SFin − C(t)Fout.

(b) From (a) V (t) = −ft + V0, but this is reasonable only for t ≤ V0/f as later on, the tank has drained.
(A negative volume is meaningless here!)

(c) From (a,b) (b) we have (using the product rule) d[V (t)C(t)]/dt = V (t)dC/dt + C(t)dV/dt = SFin −
C(t)Fout = SF − C(t)(F + f). We know both V (t) and dV/dt from (a). Substitute in dV/dt to get
−fC(t)+V (t)dC/dt = SF −FC(t)−fC(t). Cancel common terms: V (t)dC/dt = SF −FC(t). Divide
through by V (t) = V0 − ft and rearrange terms. The equation we get (in standard form) is:

dC

dt
+ C

F

V0 − ft
=

SF

V0 − ft
.

We find that the integrating factor is µ(t) = exp
[

∫

F
V0−ft

]

The integral is done by substitution:

u = V0 − ft, du = −fdt, so µ(t) = exp [−(F/f) ln(V0 − ft)] = exp
[

ln(V0 − ft)−F/f
]

= 1
(V0−ft)F/f .

[Remark: I will not usually show such details, and it is up to you to review integration

and calculus techniques required to handle these old technical steps]. Thus, the general
solution is C(t) = S + K(V0 − ft)F/f where K is an arbitrary constant. Using the initial condition
that C(0) = 0 we get

C(t) = S

[

1 −
(

(V0 − ft)

(V0)

)F/f
]

This solution is valid only as long as 0 ≤ t ≤ V0/f .
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