Sept 20,2010 Second Order linear ODE's
Mass on a spring.

Well take y positive in downwards direction.

Assume: . mass m (kg) moves vertically

- $y(t)$ (meters) is vertical displ. from equal.
- damping force proportional to veloce. and impedes veloce.

$$
F_{\text {damp }}=-c v
$$

- spring force $F_{\text {spring }}=-k y$ (opposite to
- Forces : units of Newtons. displacer).
- mass of spring negligible.

Deriv an $O D E$ for $y(t)$
Use:
Newton's Ind law Net Fore = mass : accel.
define veloce $v(t)=\frac{d y}{d t}$
accel $a(t)=\frac{d t}{\frac{d^{2} y}{d t^{2}}}$
$y(t)$ and its derivatives:

$$
\frac{m a+k c v+k y=0}{m \frac{d^{2} y}{d t^{2}}+c \frac{d y}{d t}+k y=0}
$$

describes the displ. $y(t)$ ODE: and order. Linear "constant coefficients" m, c, k constants.
Remark:
one solution is just $y(t)=0$

$$
\begin{aligned}
& y^{\prime}(t)=0 \\
& y^{\prime \prime}(t)=0
\end{aligned}
$$

want to cenderstand all possible solus $l y(t)$ to the above ODE.

Another example of 2ndorder linear ODE from sept 8:

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{G}=0^{\hbar^{\text {no }} \text { applied }} \text { voltage. }
$$

$L, R, C \geqslant 0$ constants
$q(t)$ - charge on capacitor
Remark: Simple solution: $q(t)=0, \quad i(t)=0$ we want to find all other solus.

Let us discurs more generally:

$$
a \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+c y=0
$$ linear $O D E$

"homogeneous" eq
a, b, c constants no explicit $f(t)$ in equation.

Solviy? Try solus of 'form $y=e^{r t}<\sqrt[\text { a type of sold }]{\text { for }}$

$$
\begin{aligned}
& y(t)=e^{r t} ; \\
& y^{\prime}(t)=r e^{r t \prime} \quad \text { plug into * } \\
& y^{\prime \prime}(t)=r^{2} e^{r t} \\
& a r^{2} e^{r t}+b r e^{r t}+c e^{r t}=0
\end{aligned}
$$

lin eq.

$$
\frac{d y}{d t}=r y
$$

recall $e^{r t} \neq 0$ so can cancel if \Rightarrow
$\begin{gathered}\text { charactivitic } \\ \text { en. }\end{gathered} \rightarrow \mathrm{ar}^{2}+\mathrm{Br}+c=0$ quad. egn in r

$$
r_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \begin{aligned}
& \text { two } \\
& \text { possible } \\
& \text { values }
\end{aligned}
$$

i. both $f_{1}(t)=e^{r_{1} t}$ and $f_{2}(t)=e^{r_{2} t}$ would satisfy $O D E$.
Lin $O D E \Rightarrow$ Superposition Principle
for a Linear ODE like if $f_{1}(t)$ and $f_{2}(t)$ are both solus. then also

$$
y(t)=\underbrace{c_{1} f_{1}(t)+c_{2} f_{2}(t)}_{N} \cdot c_{1}, c_{2} \text { constants }
$$

is also a sola.
Proof: see book.
"Linear superposition of WW 2

$$
\frac{f_{1}(t), f_{2}(t)^{\prime \prime}}{\text { amental set of solus" }]}
$$

$($ fine print $\rightarrow)$

Example: Solve $2 y^{\prime \prime}+y^{\prime}-y=0 \quad$ (Find $\cdot y(t)$) assume $y(t)=e^{r t}$ ply in

$$
2 r^{2} e^{y t}+r e^{p t}-e^{y^{\prime} t}=0
$$

char.egn $\quad 2 r^{2}+r-1=0$

$$
r=-1 \pm \sqrt{1+4 \cdot 2}=-1, \frac{1}{2}
$$

Solus: $e^{-t}, e^{\frac{1}{2} t}$
All solus can be expressed as superposition.

$$
y(t)=c_{1} e^{-t}+c_{2} e^{\frac{1}{2} t}
$$

"general.
sola"
need two I.C.'s to find C_{1}, C_{2}
ese. $y(0)=3 \quad y^{\prime}(0)=-1$
Find C_{1}, c_{2}.

Using Initial Conditions to solve Znalorder, Lin. $O D E$
Example for Sept 20
Solve $2 y^{\prime \prime}+y^{\prime}-y=0$
Ind order linear $O D E$

$$
\underbrace{y(0)=3 \quad y^{\prime}(0)}_{\text {initial conditions }}=-1
$$

Look for solutions of form $y(t)=e^{r t}$. Plug \check{y} and its derivatives into the $O D E$, cancel common factor of $e^{r t}$ to get
$2 r^{2}+r-1=0 \quad$ characteristic ecu.

$$
r=\frac{-1 \pm \sqrt{1+4 \cdot 2}}{2 \cdot 2}=\frac{-1 \pm \sqrt{9}}{4}=\frac{-1 \pm 3}{4}=-1, \frac{1}{2}
$$

Solutions:

$$
f_{1}(t)=e^{-t}, f_{2}(t)=e^{\frac{1}{2} t}
$$

so $y(t)=c_{1} e^{-t}+c_{2} e^{\frac{1}{2} t}$
Now use $I_{0} C_{s}^{\prime}$ to find C_{1}, C_{2}
\leftrightarrow the general solution Concludes two arbitrary
constants constants, C_{1}, C_{2})

$$
\begin{align*}
& y(0)=3 \quad \Rightarrow \quad 3=c_{1} e^{0}+c_{2} e^{0}=c_{1}+c_{2} \tag{1}\\
& y^{\prime}(0)=1 \Rightarrow \text { note } y^{\prime}(t)=-c_{1} e^{-t}+\frac{1}{2} c_{2} e^{\frac{1}{2} t} \\
& \Rightarrow \quad 1=y^{\prime}(0)=-c_{1} \cdot e^{0}+\frac{1}{2} c_{2} e^{0} \\
& \text { We have two (egebraic for }=-C_{1}+\frac{1}{2} c_{2} \tag{2}\\
& =-C_{1}+\frac{1}{2} C_{2}
\end{align*}
$$

We have two (egus for the two constants:
$\left.\begin{array}{l}\text { (1) } \begin{array}{c}c_{1}+c_{2}=3 \\ \text { (2) }\end{array} \quad-c_{1}+\frac{1}{2} c_{2}=-1\end{array}\right\}$ solve for c_{1}, c_{2}
$(1)+(2):$

$$
\begin{aligned}
& \frac{3}{2} c_{2}=12 c_{2}=\frac{4}{3} \\
& c_{1}=3-c_{2}=3-\frac{4}{3}=\frac{5}{3}
\end{aligned}
$$

So the solution we want is $\quad y(t)=\frac{5}{3} e^{-t}+\frac{4}{3} e^{\frac{1}{2} t}$

