Some examples of 2 nd order linear ODEs with complex and repeated roots

1 Oscillatory solutions

1.1 Pure oscillations, no damping

Let us consider the equation

$$
y^{\prime \prime}+6 y=0, \quad y(0)=2, y^{\prime}(0)=1
$$

The characteristic equation is $r^{2}+6=0$ which has complex conjugate roots $r=i \sqrt{6}$. The roots have zero real part and $\sqrt{6}$ imaginary part and thus solutions are of the form

$$
y(t)=c_{1} \cos (\sqrt{6} t)+c_{2} \sin (\sqrt{6} t)
$$

We can use the initial conditions to solve for the constants $2=y(0)=c_{1} \cos (0)+c_{2} \sin (0)=c_{1}$ so $c_{1}=2$. Also, $y^{\prime}(t)=-c_{1} \sqrt{6} \sin (\sqrt{6} t)+c_{2} \sqrt{6} \cos (\sqrt{6} t)$ so $1=y^{\prime}(0)=-c_{1} \sqrt{6} \sin (0)+c_{2} \sqrt{6} \cos (0)=c_{2} \sqrt{6}$ so $c_{2}=\sqrt{6} / 6$. The solution is thus

$$
y(t)=2 \cos (\sqrt{6} t)+\frac{\sqrt{6}}{6} \sin (\sqrt{6} t)
$$

1.2 With damping

Now let us see what happens when we add damping. We modify the problem slightly to include damping with coefficient 2, i.e. consider the initial value problem

$$
y^{\prime \prime}+2 y^{\prime}+6 y=0, \quad y(0)=2, y^{\prime}(0)=1
$$

Find the solution.

Begin by finding the characteristic equation: $r^{2}+2 r+6=0$ which has complex conjugate roots

$$
r=-1 \pm i \sqrt{5}
$$

Solutions have the form

$$
y(t)=c_{1} \exp (\sigma t) \cos (\omega t)+c_{2} \exp (\sigma t) \sin (\omega t)
$$

where σ, ω are the real and imaginary parts of r. We have that $\sigma=-1$ and $\omega=\sqrt{5}$ so that

$$
y(t)=c_{1} \exp (-t) \cos (\sqrt{5} t)+c_{2} \exp (-t) \sin (\sqrt{5} t)
$$

Use the initial conditions to find the constants c_{1}, c_{2}. We have a system of two equations for these as follows:

$$
c_{1}=2,-c_{1}+c_{2} \sqrt{5}=1
$$

We find that $c_{1}=2, c_{2}=3 / 5 \sqrt{5}$ Thus

$$
y(t)=2 \mathrm{e}^{-t} \cos (\sqrt{5} t)+3 / 5 \sqrt{5} \mathrm{e}^{-t} \sin (\sqrt{5} t)
$$

Let's look at the plot

plot of the solution in the case with damping

2 Repeated roots

2.1 Example A

Now consider the equation

$$
y^{\prime \prime}+2 y^{\prime}+1 y=0, \quad y(0)=1, y^{\prime}(0)=3
$$

The characteristic equation is $r^{2}+2 r+1=(r+1)(r+1)=0$ which has roots $r=-1,-1$, i.e. repeated real roots. The solution is then in the form

$$
y(t)=c_{1} e^{-t}+c_{2} t e^{-t}
$$

The initial conditions lead to the equations for $c_{1}, c_{2}: c_{1}=1,-c_{1}+c_{2}=3$ so $c_{2}=4$ and we have

$$
y(t)=e^{-t}+4 t e^{-t}
$$

The graph of this solution looks as follows:

plot of a solution with repeated roots of the characteristic eqn. and $y(0)=1, y^{\prime}(0)=3$

2.2 Example B

Now consider the same equation, but with a different pair of initial conditions, i.e.

$$
y^{\prime \prime}+2 y^{\prime}+1 y=0, \quad y(0)=1, y^{\prime}(0)=-3
$$

We get the same general solution, but the two constants have to satisfy $c_{1}=1,-c_{1}+c_{2}=-3$ which leads to $c_{1}=1, c_{2}=-2$ and the solution is then $y(t)=e^{-t}-2 t e^{-t}$, which is shown in the next plot.

plot of a solution with repeated roots of the characteristic eqn. and $y(0)=1, y^{\prime}(0)=-3$

