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Abstract

Decomposing Matrices, Tensors, and Images
by
Elina Mihaylova Robeva
Doctor of Philosophy in Mathematics
University of California, Berkeley

Professor Bernd Sturmfels, Chair

In this thesis we apply techniques from algebraic geometry to problems arising from
optimization and statistics. In particular, we consider data that takes the form of a matrix,
a tensor or an image, and we study how to decompose it so as to find additional and seemingly
hidden information about its origin and formation. We show that the practical uses of such
decompositions are complemented by appealing algebraic and geometric structure.

In Chapter [2| of this thesis we focus on matrix shaped data. The singular value decompo-
sition, which lies at the core of modern algorithms and can be found efficiently, is not always
enough to capture the structure of the data. Often times the matrix at hand as well as
the elements of its decomposition are required to have a certain positivity structure, and we
need to design algorithms and theory to exploit this structure. Statistical mixture models,
for instance, are based on finding a nonnegative decomposition of a nonnegative matrix. We
study the algebraic and geometric properties of such decompositions in Section 2.1 Another
type of decomposition of a nonnegative matrix, which is useful in convex optimization as well
as quantum information theory, is positive semidefinite decomposition. Here we require the
elements of the decomposition to be positive semidefinite matrices of a given size. We explore
this notion in Section [2.2] One of the most appealing properties of a nonnegative matrix is
that we can think of it in terms of a pair of nested polyhedra. We rely on this geometric
interpretation when studying nonnegative and positive semidefinite decompositions.

In Chapters [3] and [4] we turn our attention to data in the shape of a tensor. It is even
more crucial in this case than in the matrix case to find a decomposition, not only because
it provides hidden information about the data, but also because it allows us to store the
tensor more concisely. However, one of the biggest obstacles in the field is that finding a
decomposition of a general tensor is NP-hard. Inspired by the spectral theorem and the
singular value decomposition for matrices, we study tensors whose decomposition consists of
elements with an orthogonality structure. We call such tensors orthogonally decomposable,
or odeco. One of their best properties is that, like matrices, odeco tensors can be decomposed
efficiently. In Chapter [3] we study the spectral properties of such tensors. We give a formula
for their eigenvectors and singular vector tuples. We note that computing these for a general



tensor is hard both algebraically and computationally. In Chapter [d] we study the variety of
orthogonally decomposable tensors, and we give polynomial equations that cut it out. We
do this by showing that a tensor is orthogonally decomposable if and only if a given algebra
that arises from it is associative, yet another appealing property of odeco tensors. Despite
all of these appealing properties, odeco tensors constitute a very low-dimensional variety.
This is why in Section we conclude our study of tensors by generalizing the notion of
orthogonally decomposable tensors to that of frame decomposable tensors, which now cover
the space of all tensors.

In Chapter [5| we study super-resolution imaging. The aim here is, given a low-resolution
blurred image, to increase the resolution and remove the blur. This is achieved by decompos-
ing the image into a sum of simpler images, one for each point source of light. We encode the
locations of the point sources of light and their intensities in a discrete measure, and propose
a convex optimization problem in the space of measures to find this unknown measure. We
show that in the absence of noise and in the case of a one-dimensional image, the global
optimum of this optimization problem recovers the true locations.
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Chapter 1

Introduction

When we observe a signal, it is often useful to decompose it into simpler meaningful parts.
This allows us to discover additional seemingly hidden information about its origin.

In the famous Netflix Prize problem [152], we observe a partially filled matrix with each
row corresponding to a user, each column corresponding to a movie, and each entry indicating
the rating a given user assigns to a given movie. Up to a small error this matrix can be
written as the sum of a few rank-one matrices. It turns out that these correspond to the
different traits users have, such as whether they like romance, what age they are, or whether
they like animated movies. Finding these rank-one matrices is what allows Netflix to predict
users’ future ratings based on the ratings they have provided in the past.

In astronomy, we often observe a very low-resolution blurred picture of distant galaxies.
In order to increase the resolution and recover the exact locations of the stars, we express the
picture as the sum of several simpler pictures, one for each star. The field of super-resolution
imaging provides tools to find such a decomposition.

In both of the above examples, the task at hand is achieved by decomposing the given
signal into a sum of simpler parts. Developing theory and algorithms for finding such de-
compositions is a major topic in statistics and computer science. The goal of this chapter is
to introduce to several different types of matrix, tensor, and image decompositions, which
are further studied in this thesis.

1.1 Matrices

Matrix decompositions lie at the core of modern algorithms in scientific computing. Given
a real m x n matrix M, its rank is the smallest number r such that there exist matrices
A e R™" and B € R™" satisfying

M = AB.

Equivalently, the rank of M is the smallest number r for which there exist vectors aq, ..., a,, €
R" (corresponding to the rows of A above) and by, ...,b, € R" (corresponding to the columns
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of B above) such that
M;j = (as, b;), forall 1 <i<m,1<j<n.

In practice, the observed matrices often have nonnegative entries (for example, contin-
gency tables or probability distributions). Moreover, the desired decomposition often imposes
additional structure on the vectors ay, ..., am,b1,...,b,. For instance, they may be required
to lie in a cone, such as the nonnegative orthant (nonnegative rank) or the cone of positive
semidefinite matrices (positive semidefinite rank). These two different versions of matrix
decomposition are studied in Chapter [2}

One of the most important and useful decompositions of a matrix is the singular value
decomposition. Given M € R"™*™ we decompose it as

'

T

M = E oU;
i=1

where uq,...,u, € R™ are orthonormal, vy,...,v, € R" are orthonormal, and oy,...,0,
are nonnegative real numbers. The singular value decomposition can be computed very
efficiently, which is why it is the most commonly used decomposition. In Chapters [3] and
we study a generalization of this decomposition to tensors, which has many appealing
properties.

1.1.1 Nonnegative matrices and nested polytopes

An important feature of nonnegative matrices is that they can be represented by pairs of
nested polyhedra. Here, a polyhedron is a finite intersection of closed halfspaces.

Definition 1.1.1. Let P C Q C R4 ! be two nested polyhedra such that P is bounded, i.e.
it is a polytope. Assume that P has vertex description

P = conv(vy,...,Un)
for some vy, ..., v, € R and Q has facet description
Q= {r e R" "z, w;) < 2;,Vj=1,...,n}

for some wy, ..., w, € R and z,...,2, € R. The slack matrix of the pair P,(Q, denoted
by Spq, is the m x n nonnegative matriz whose i, j-th entry is

[Spqli; = 2z — (vi, wy).

We remark here that the condition that P C () is equivalent to the condition (v;, w;) < z;,
for every ¢ and j. Therefore, the matrix Spg is nonnegative. We also remark that for
given P and @, one can define their slack matrix in many different ways, however all



CHAPTER 1. INTRODUCTION 3

properties of interest in this thesis such as rank, nonnegative rank, and positive semidef-
inite rank are preserved regardless of which way we define Spg. Moreover, the vectors
(—v1,1), .oy (=vp, 1), (wy, 21), ..+, (wy, 2,) € R? give a rank-d factorization of Spg, and
therefore Spg has rank at most d. In fact, it is easy to see that if P and @) are full-
dimensional polyhedra in R*~!, then Spg has rank exactly d.

Conversely, given a nonnegative matrix M € RZ;™, we now explain how to construct
polytopes P and () such that M = Spq. Firstly, if M does not have a zero row, one can
rescale its rows so that M1 = 1. This rescaling will not change the properties of M that we
study. In particular, it doesn’t change its rank, nonnegative rank, or positive semidefinite

rank.

Lemma 1.1.2 (Lemma 4.1 in [65]). Let M € RZ™ be a nonnegative matriz and assume
that M1 = 1. Let d = rank(M). Then there exist polytopes P C Q C R4t such that M is
the slack matriz of the pair P, ().

We give a brief outline of the proof of this lemma. First, we show that we can find a
factorization M = AB such that A € RP*? B € R%*? and in addition A1 = 1 and B1 = 1.
To do that, first choose d linearly independent rows of M and define B to equal the d x q
submatrix of M with these rows. Since M has rank d, then, one can uniquely find the matrix
A so that M = AB. Now, since the rows of B are a subset of the rows of M and M1 =1,
then, B1 = 1. Therefore, 1 = M1 = AB1 = Al.

Next, we construct the following cones P C Q C R% We define P to be the convex cone
spanned by the rows of A and Q to be the convex cone with facets defined by functionals
arising from the columns of B. The bounded polytopes P and () are then obtained by
intersecting the cones P and Q with the hyperplane 2z, =1 — Zf:_ll x;. See Figure .

By deriving the explicit definition of P and ) from this construction, we can see that M
is the slack matrix of P, () and that they are both bounded.

1.1.2 Cones and cone rank

A (convex) cone in R™ is a subset C' C R™ such that ax + Sy € C for any z,y € C' and any
positive scalars o and 5. Our two main examples of cones will be the nonnegative orthant
RZ, inside R", and the cone of k£ x k£ symmetric positive semidefinite matrices S_’ﬁ inside the
space S¥ of k x k symmetric matrices with real entries.

Let C' C R™ be a convex cone, and assume that R™ is equipped with an inner product
(-,). The dual cone to C'is the set

C* ={w € R"|(v,w) >0 for all v € C}.

It is also a convex cone. If C'is equal to its dual cone, then C' is self-dual. It is easy to see
that the nonnegative orthant RZ is self-dual, where R" is equipped with the Euclidean dot
product. We claim that the cone of positive semidefinite matrices S_’ﬁ is also self-dual. Here
S* is equipped with the trace inner product given by (A, B) = trace(AB) for A, B € S*.
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Figure 1.1: The two cones (one in red and one in dashed blue) emerging from the rows of A
and the columns of B, and the hyperplane that cuts them. This is how we obtain P and @)
from the matrix M = AB.

To prove this claim, let A € S* be such that trace(AB) > 0 for all B € S%. Let B be the
rank-one matrix B = vv? where v € R* is any vector. Then,

0 < trace(AB) = trace(Avv”) = v” Av.

Thus, for every v € R¥, v Av > 0, i.e. A € 8%, Therefore, (S%)* C S¥. Now, let A be any
matrix in Sﬁ and let B € Sﬁ. Then, using the spectral theorem and the fact that positive
semidefinite matrices have nonnegative eigenvalues, we can write A = UUT and B = VV7T.
Thus, trace(AB) = trace(UUTVVT) = trace(((UTV)TUTV)) > 0 since this is a positive
semidefinite matrix.

1.1.2.1 Nonnegative rank

Given a nonnegative matrix M € R, its nonnegative rank, denoted by rank, (M), is the
smallest positive integer r such that there exist vectors ay, ..., am, by, ..., b, € RY, with

Mi‘ = <ai7bj>7 vz?]

Such a decomposition is useful when the application at hand requires that vectors aq, ..., a,,
by, ..., b, are nonnegative.
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Example 1.1.3 (Mixture models). In statistics, the joint distribution of two seemingly
dependent random wvariables X and Y is sometimes explained by a third hidden random
variable Z such that X andY are independent given Z. For example, consider the random
variables

0 person is bald 0 person does not watch football
X =<1 person has short hair Y =<1 watches 0 to 2 hours of football per week
2 person has long hair 2 watches > 2 hours of football per week.

Now suppose that after asking 1200 people how much football they watch and what length
their hair is, we obtain the following contingency table

70 65 65
M= 180 210 210,
170 115 115

where the rows correspond to the three values X takes and the columns correspond to the
three values Y takes. The matriz M has rank 2, so X and Y are dependent. However, if we
are to record the answers for men and women separately, we would obtain

70 65 65 50 25 25 20 40 40
M= 1180 210 210| = |100 50 50| + {80 160 160
170 115 115 150 75 75 20 40 40

Since the two summands are rank-one matrices, we see that X and Y are independent given
gender. Define the variable Z to equal 1 if the person is female and 2 if the person is male.
Then the empirical joint probability distribution of X and Y is the 3 X 3 matriz

P(X,Y)=P(Z=1)P(X,Y|Z=1)+P(Z=2)P(X,Y|Z =2) =

1 1 11
116 6 6 6 [+ o] L 1
=_ |1 [lll]+_ 2 [122]_ L2112 2 4 1
T o3| l2v44 3 525250 = [3 3| |0 L| (L 2 2|>
L L 11 215 5 5
2 6 2 6

which has nonnegative rank 2. Finding the nonnegative decomposition of this matriz would
allows us to learn the hidden parameters of the distribution. In this case we would learn that
the amount of hair and the amount of football watched are independent given the gender of
a person.

Observe that the rank and nonnegative rank of a matrix M € RZ ™ satisfy the following
inequalities
rank(M) < rank, (M) < min{m,n}.
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We denote by Mg" " (for short M) the set of nonnegative m x n matrices of rank at most d
and nonnegative rank at most . We often call M, the r-th mizture model. It is a subset of
the variety V; of m x n matrices of rank at most d, defined by the vanishing of their (d + 1)-
minors. In fact, whenever d < r < min{m,n}, My, is a full-dimensional semialgebraic
subset of V,;. In addition to the equations defining V; coming from the (d + 1)-minors,
M, is cut out by some polynomial inequalities. In our work [105], described in Chapter
, we study the set Mg, for small values of d and r and attempt to find its semialgebraic
description. We rely heavily on the following geometric interpretation of nonnegative rank.

Lemma 1.1.4 (Lemma 2.2 in [116]). Let M € RZ;™ have rank d and let P € Q C R*!
be obtained as described in Lemmall.1.2. Then, M has a size v nonnegative factorization if
and only if there exists a polytope A with r vertices such that P C A C Q.

Nonnegative rank greater than 3. Nonnegative rank equal to 3.

Figure 1.2: The figure on the left depicts the two nested polytopes P and () that arise from
a matrix M of nonnegative rank greater than 3 since one cannot fit a triangle in between
them. The figure on the right depicts nested polytopes P and () arising from a matrix M of
nonnegative rank 3.

Suppose M has rank 3. Then, the polytopes P and  lie in R? and M has nonnegative
rank 3 if and only if we can nest a triangle in between P and @), as in Figure 1.2. In our
work [105], presented in Section , we exploit this geometric interpretation of nonnegative
rank. It is quite interesting to consider the matrices on the boundary of Ms 3, considered as
a subset of V;. They correspond to pairs of nested polygons P C ) C R? in between which
we can fit a triangle A, which cannot be moved in a rigid way while still remaining between
P and Q). We give a complete geometric and algebraic characterization of all such matrices.

1.1.2.2 Positive semidefinite rank

Given a nonnegative matrix M € RI™, its positive semidefinite rank (or psd rank) is the

smallest positive integer r such that there exist matrices Ay,..., A,,, Bi,..., B, € 8} such
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that
M;; = (A;,B;), forall1 <i<m,1<j<n.

Example 1.1.5. Consider the following 3 X 3 matrix

M =

[ R )

11
01
10

It satisfies rank(M) = rank (M) = 3. However, its psd rank is equal to 2 since it admits
the following size-two psd factorization

10 00 1 -1
weoa sl ae ]
00 10 11
mefo ] melod] mel)

Similarly to nonnegative rank, one can describe positive semidefinite rank via nested
polytopes.

Theorem 1.1.6 (Proposition 3.6 in [79]). Let M € RIF™ be a matriz of rank d and let
P C Q C R*! be obtained as in Lemma . Then, rank,s (M) is the smallest integer

r for which there exists an affine subspace L of 8" and a linear map m such that P C
T(LNST) CQ.

Positive semidefinite rank greater than 2. Positive semidefinite rank equal to 2.

Figure 1.3: The left figure depicts the polytopes coming from a matrix M which has psd
rank greater than 2 since one cannot fit an ellipse between P and (). The right figure shows
the polytopes arising from a matrix M which has psd rank 2.
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Consider a matrix M € RZ;™ of rank 3. It gives rise to two nested polygons P C Q C R
According to Proposition 4.1 in [79], the matrix M has psd rank 2 if and only if we can fit
an ellipse between the two polygons P and @), see Figure 1.3

Section [2.2]is based on joint work with Kaie Kubjas and Richard Robinson titled Positive
semidefinite rank and nested spectrahedra [104]. We study the geometry of the space Py,
of matrices of rank at most d and psd rank at most r. We give a complete semialgebraic
description of its boundary when d = 3 and r = 2 and we give partial results towards a
description for general rank d and psd rank r =d — 1.

1.2 Tensors

A natural generalization of matrices, tensors have direct applications in modern data analysis.
Studying the spectral properties and decompositions of tensors is of utmost importance to
being able to handle information that comes in more than two dimensions.

A tensor T of order d and format ny X ng X -++ X ng is an n; X ny X -+ X ng table
with entries in a field K, which will be R or C in this thesis. The vector space of tensors
of this format is denoted by K™ ® K™ ® --- ® K". Given such a tensor T, its entries are
denoted by T;, ;,, where 1 <14; <n; for all j. A tensor T'€ K" ® --- ® K" is symmetric if
T; =T for any permutation o of {1,2,...,d}.

Lyeesld 0-(1)7"'7io'(d)

1.2.1 Tensor decompositions

Similar to matrix decomposition, tensor decomposition has numerous applications in statis-
tics, neuroscience, signal processing, computer vision, data analysis, and others [101].

A symmetric tensoris an n x n X --- X n (d times) tensor 1" such that 7T; = Tiouy--ia(@
for any permutation o on {1,...,d}. The space of such tensors is denoted by S¥(K"). Given
a symmetric tensor T € S¢(K"), a symmetric decomposition is an expression of the form

r
— E ®d
i=1

where v; € C". The smallest r for which such a decomposition exists is the symmetric rank
(or Waring rank) of T. The tensors of the form v®? are rank-one symmetric tensors.
For an ordinary tensor 7' € K™ ® - -- ® K" a decomposition is an expression of the form

T=> oM@ @
=1

1..id

where v%j ), e ,vg ) € K™. The smallest r for which such a decomposition exists is the rank

of T', and the tensors of the form vgl) ® - ® vfd) are rank-one tensors.
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Example 1.2.1. Suppose X1, Xo, and X3 are discrete random variables such that X; takes
values in {1,2,...,n;}. Their joint probability distribution is the tensor P € R™ @R" ®@ R"3
such that Py, ;,., = P(x1 = i1, Xo = i9, X3 = i3). Now suppose that Xy, Xo, X3 are indepen-
dent given a random variable Z taking values in {1,...,r}. Then, given that Z = k, the
joint distribution of Xy, Xo, X3 is a rank one tensor

P(X1, X, X3|Z = k) =P(X1|Z = k) @ P(Xs|Z = k) @ P(X3|Z = k),

and, therefore the total joint distribution of X1, Xo, X3 1s a rank r tensor

P=> P(Z=k) P(X;, X5, Xs|Z = k) =
k=1

<

P(Z=k) - P(Xy|Z=k)@P(Xs|Z =k) @ P(X3|Z = k).
k=1
Therefore, if we observe P, finding its decomposition allows us to discover the hidden pa-
rameters of the distribution of X1, Xo, and Xs.

In both the symmetric and the ordinary case, if the elements of the decomposition of T’
are allowed to have complex entries, there exists a positive integer, called the generic rank,
such that the set of tensors of this rank is Zariski dense in the set of all tensors of a given
format. According to the Alexander-Hirschowitz Theorem [27], when d > 3, the generic rank
()

of a symmetric tensor T € S4(C") equals except in a finite number of cases in

which it is one more than this number [2]. For n x n matrices the generic rank is equal to n
and all such matrices have rank at most n. However, for d > 3 there always exist tensors of
rank higher than the generic rank.

Finding the decomposition of a given tensor T is one of the most important problems
in the field. However, it has been shown that in general, it is an NP-hard problem [92].
Algorithms for it have been proposed by many authors, for example [26, [120]. In this thesis,
we focus our attention on a special type of tensors, called orthogonally decomposable tensors
whose decomposition can be found efficiently.

1.2.2 Orthogonal Tensor Decomposition

The Spectral Theorem states that for any n x n real symmetric matrix M there exists an

orthonormal basis of eigenvectors vy, ..., v, € R"™ with eigenvalues Ay, ..., A, € R such that
| A\ — o - n n
M= vy -+ vy : :Z)\ivz‘Uz’T:Z)\wz@z-
| vl |— T — i=1 =1
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We generalize this decomposition to tensors of order d > 3. A tensor T' € S4(R") is
symmetric orthogonally decomposable (or symmetric odeco) if it has a decomposition

n
— E ®d
i=1

where vy,...,v, € R" form an orthonormal basis. Their appealing structure allows odeco
tensors to be decomposed efficiently, for example via the tensor power method [§]. Since
there can be at most n orthonormal vectors in R™, the rank of an odeco tensor is at most n,
which is significantly smaller than the rank of a generic tensor T' € S¢(R"). What is more,
the set of odeco tensors is a strict subset of the set of tensors of rank at most n. However,
we can use a procedure, called whitening, which allows us to transform a tensor of rank n
into an odeco tensor, find the decomposition of the odeco tensor, and then transform back
to obtain a decomposition of the original tensor [§].

Orthogonally decomposable tensors can also be defined in the non-symmetric case. Recall
first that singular value decomposition allows us to write any matrix M € R™ @ R" as

M = Z aivgl)(vl@))T = Z Uivlm ® vz@),
i=1 i=1

where vil), e ,v,(nl) € R™ are orthonormal and viz), ceey € R™ are orthonormal.

A tensor T € R™ ® - -- @ R™ is orthogonally decomposable (or odeco) if it has a decom-
position

o

=1

where vy), o ,qu,j) € R" are orthonormal for all j € {1,...,d}, n < max{ny,...,ng}, and
o1,...,0, € R. Like in the symmetric case, odeco tensors can be decomposed efficiently via

an iterative tensor power method [8].

In joint work with Ada Boralevi, Jan Draisma and Emil Horobet titled Orthogonal and
unitary tensor decomposition from an algebraic perspective, and presented in Section [4.1], we
find equations defining the variety of orthogonally decomposable tensors. It turns out that
odeco tensors correspond very beautifully to associative algebras.

Consider a tensor T' € S*(R"). Let V = R" be equipped with the usual inner product.
We give V' the structure of an algebra arising from the tensor T as follows. For two elements
u,v € V, we define their product to be

uxv="T(u,v,-) € V.

Theorem 1.2.2. The tensor T € S*(R™) is orthogonally decomposable if and only if the
algebra V' with product x arising from T is associative.
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This correspondence gives us more insight into the theory of orthogonally decomposable
tensors and allows us to find the equations that define the (real) variety of such tensors.
Section is dedicated to this work. We generalize this theorem to higher order tensors as
well as to tensors which are not necessarily symmetric. We conclude this subsection with an
example that illustrates Theorem [1.2.2]

Example 1.2.3. Let n = 2 and fiz a basis {a,b} of R>. A 2 x 2 x 2 symmetric tensor T
with entries Ty, defines the algebra structure

axa = Tygoa + Thoob, a* b= Typoa + T110b,

bxa= TIO(]a -+ T110b7 bxb= TlloCL + Tlllb-

In general this algebra is not associative:
bx (axa) = (ToooTr00 + T100T110)@ + (ToooT110 + Tr00T111)b,

(b*a) * a = (ToooTr00 + Trr0T100)a + (Tihg + THi0)b-
It turns out that

bx(axa)=(bxa)xa <= ToooT110+ Ti00T111 = T1200 + Tfm <= T is odeco.

1.2.3 Decomposing Tensors into Frames

As we mentioned above, even though odeco tensors have appealing properties, including
the fact that they can be decomposed efficiently, they constitute a very low-dimensional
part of the set of all tensors. In joint work with Luke Oeding and Bernd Sturmfels titled
Decomposing tensors into frames, and presented in Section [1.2] we generalize the notion of
orthogonally decomposable tensors while still imposing extra structure on the decomposition.
Instead of an orthonormal basis, we use the more general notion of a finite unit norm tight

frame (or funtf) [29]. A set of vectors vy, ...,v, € R™ forms a funtf if
I I T
vy Uy : =1Id,, and ||jv|P=1,i=1,...,n
| 1 |= o —

where Id,, is the n x n identity matrix. A symmetric tensor T € S%(C") is frame decomposable
(or fradeco) if it has a decomposition of the form

T
— E ®d
i=1

where vy, ...,v, € R"” form a funtf. Section is dedicated to fradeco tensors. We study
the variety of such tensors as well as methods for finding their decompositions.
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1.2.4 Spectral theory

Analogous to the definition for symmetric matrices, given a symmetric tensor T € S%(K"),
a vector x € C" is an eigenvector of T with eigenvalue A € C if

T 2% = \a.

Here T - 2971 is a vector in C™ which equals the contraction of 7" with z along d — 1 of its
dimensions. More precisely, its ¢-th coordinate is

d—1y ._
(T Y )’L T ,‘Z_Yilrnzid—lﬂ:‘ril T

U1yeenid—1

Two eigenvector-eigenvalue pairs (x, \) and (2/, \') are equivalent if (z, \) = (ta’, t472)\) for
some scalar t € C*.

The eigenvectors of T can also be described as the set of (nonzero) fixed points of the
tensor power iteration

T . .Z'd_l
T
T - =1
where 0/[|0]| = 0. Alternatively, they can also be characterized via a variational ap-

proach [112]. They are the critical points of the optimization problem

maximize T - z%
such that ||z|] =1,

where T - % € C is the contraction of 7' with 2 along all d of its dimensions. In symbols,
T -z% = D iviiy Livroig®iy -+ @iy If @ € C" is a maximizer of this optimization problem,
then the tensor %% is the best rank-one approximation to 7.

Recall that a general symmetric n X n matrix has exactly n eigenvectors. It was shown
in [37] that a general symmetric tensor 7' € S4(C") has finitely many eigenvectors and their
number is exactly

(d-—1)"—-1
d—2
Now consider a tensor 7' € K™ ® --- ® K" which is not necessarily symmetric and
ni,...,ng are not necessarily equal. As with rectangular matrices, we can no longer define
eigenvectors. The right notion is now that of singular vector tuples. We define (z(V), ..., () €
C™ x --- x C™ to be a singular vector tuple of T if the vectors (M, ... 2@ are nonzero,

and for every 1 < j <d,
T, 207D 20 @) s parallel to #1).

In other words, for every j, contracting 7" along its k-th dimension with z®) for every k # j
should yield a vector parallel to (). The work [69] shows that a generic tensor has finitely
many singular vector tuples and provides a recipe for obtaining their number.
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As with eigenvectors, the singular vector tuples of a tensor T are the fixed points of the
tensor power iteration

@D, 2 D) T(,2® .. 2?) T(zW ... =D )
geeey ||T('7x(2)---7x(d))“,..'7HT(Qj(l).._,x(d_l)’-)H .

The set of singular vector tuples is also equal to the set of critical points of the optimization
problem

maximize T(zW,... z@)

such that [|zV|| = --- = ||2\9|| = 1,
where T'(z(")| ... x(d)) is the contraction of T" along all of its dimensions with ™), ... 2@,
If the tuple (z(V), ..., 2(?) is a global maximizer of this optimization problem, then the tensor

MW ® .- ® 2@ is the best rank-one approximation of 7" [112].

1.2.5 Spectral theory of orthogonally decomposable tensors

Finding the eigenvectors or singular vector tuples of a tensor is in general very hard. However,
this is not the case for odeco tensors.

In the paper titled Orthogonal decomposition of symmetric tensors 1 give an explicit
description of the eigenvectors of symmetric odeco tensors. Their number equals the number
of eigenvectors of a generic tensor of the same format, and they can be expressed as specific
linear combinations of the vectors in the decomposition of the given odeco tensor. Section
[B.1is dedicated to this work.

Example 1.2.4. Let T € S4R") be a symmetric odeco tensor with decomposition T =

S v where vy, ... v, are orthonormal. Then,

n
d—1
T-v = Z AilVi, Ug) Vi = AgUg.
=1

So, each of the vectors vy,...,v, is an eigenvector of T. If d > 3, T has many more

eigenvectors, explicitly described in Theorem [3.1.8,

In joint work with Anna Seigal titled Singular vector tuples of orthogonally decomposable
tensors we give a formula for the singular vector tuples of an ordinary odeco tensor. In this
case, the variety of singular vector tuples is not zero-dimensional, contrary to the generic
case. We give several examples of this phenomenon and illustrate how the singular vector
tuples of a generic tensor degenerate to those of an odeco tensor. Section [3.2]is dedicated to
this work.
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1.3 Super-Resolution Imaging

Super-resolution imaging, the study of enhancing low-resolution blurred images, has direct
applications in numerous fields, including fluorescence microscopy and astronomy. It is one
of the first ingredients for studying the macro and micro worlds, namely, it helps us observe
them as accurately as possible. Given a low-resolution blurred image of several point-sources,
super-resolution aims to find the true locations of the point sources and the intensities of
light at each of them.

Mathematically, the unknowns are the locations of the point sources, ti,...,ty € R?,
and the intensities at each of them, c¢y,...,cy € R. It is very convenient to encode these
unknown parameters in a discrete measure

M
* _
Ho= E Cj(Stj,
=1

where 0y, is the Dirac delta function centered at t;. The super-resolution imaging problem
is to recover p* from observations

a:zz/fi(t)du*(t), i=1,.. N,

where the functions fi,..., fx : R = R are known.
In this thesis we discuss the following two special cases of this setup.

e The functions fi,..., fy are translates of a given function ¢ : R — R, i.e. fi(t) =
Y(s; —t) for some s1,...,sy € R,
e The functions fi, ..., fy are various monomials in the entries of t = (¢t ... @) ¢ R?,

i.e. they have the form f;(t) = (t(l))k“ . (t(d))kid

The former case is further developed in Subsection and then in Chapter[5] The latter
case is only discussed here in the introduction in Subsection to serve as a connection
with the tensor decomposition problem.

1.3.1 Super-resolution without Separation

We begin by considering the former case. The observations here have the form

5= [ wtsi— 0 Zczw

In other words, we observe the value of the function

= (s —t)) (1.3.1)

J=1
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at s = s1,...,sy. Imagine that the unknown locations of the stars in a distant galaxy are
t1,...,ty and the intensity of light at each of them are ¢y, ..., cy;. Then, the observed signal
x(s) has introduced a blur, give by the pointspread function 1, centered at ty,...,ty.

In fact, for each imaging device (microscope, telescope, camera, even the human eye)
there exists a point spread function ¢ : R" — R which blurs each pointsource of light. This
phenomenon is due to the diffraction of light and the optics in the imaging device. The
locations s1,...,sy at which we observe the signal z(s) correspond to the locations of the
pixels of an image.

In Figures and we show an example of a signal in R! with 4 unknown pointsources
and the Gaussian pointspread function v (t) = e .

What we know What we want to find
e The pointspread function ¢ e The locations of the point sources:
e Finitely many signal observations: by tm
{z(s;)|li=1,...,N} e The intensities: ¢1,...,car.
o0 ™

5
1.5

| T T | T
-10 -5 0 5 10 -10 -5 0 5 10

0.0
0.0

Figure 1.4: We observe the image x(s) at the Figure 1.5: A graph of the unknown measure
dotted locations. w* which encodes tq,...,ty and ¢, ..., cpy.

We now propose how to recover the measure p* from the observations z(sy), ..., z(su).
Let w(t) = + SV 4b(s; —t). Consider the optimization problem

minimize / w(t)p(dt)

n>0

subject to  x(s;) = /@/J(sl —t)du(t), i=1,...,N. (1.3.2)

We show that one can recover p* (and hence ti,...,ty, c1,. .., cp) by solving this problem.
In joint work with Geoffrey Schiebinger and Benjamin Recht titled Superresolution without
separation we prove that the optimization problem recovers the correct source loca-
tions, in the case of a one-dimensional signal and under some determinantal conditions on
the point spread function ¢ [137].

Much of the mathematical analysis of super-resolution has relied heavily on the assump-
tion that the sources of light are separated by a minimum amount. Our results do not require
a separation condition. Instead, we give determinantal conditions on the pointspread func-
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tion ¢ and we show that the Gaussian pointspread function ¥ (t) = e~ satisfies these

conditions. Section B is dedicated to this work.

1.3.2 Super-resolution Imaging as Tensor Decomposition

We conclude the introduction by showing the tight connection between super-resolution
imaging and tensor decompositions. We assume that the unknown pointsources ¢y, ...,ty €
C? and intensities ¢y, ..., cy € C are encoded in the measure

M
,u* = Z ciéti.
i=1

We observe the moments
2= (k) = / () (D) (), K € 29 |l <

for some natural number n. There are N = (n + 1) possible observations since k; € Z¢ and
|ki|loo < n. Suppose that we make all of these observations, and we wish to recover p*.
The multivariate version of Prony’s method |107] accomplishes this task by considering the
kernel of the Toeplitz matrix

(r(k;) — 2(kj))1<ij<n € CN*N,

This kernel provides a set of polynomial equations in the variables 0, ... @ and the
solutions are exactly the unknown pointsource locations t1,...,ty. Once we have recovered
them, finding the point source intensities c¢y,...,cy; can be done via solving a system of
linear equations.

Now, consider the tensor 7' € (S2(C2))* with the following decomposition

M d g B2
T3 e ® ()
j=1  i=1 N

An element of the space (527(C2))*? has entries indexed by ((ki,2n— k1), . .., (ka, 2n — kq)),
meaning that in the i-th component S?"(C?) there are k; ones and 2n—k; twos. If we expand

the above expression for T', we see that the entry of T" at position ((k1,2n—kq),. .., (kg, 2n—
kq)) equals

2n 2n
Tk 2n—k1),onn (kg 20—ka)) = (n N /ﬁ) (n A kd)x(Qn — k),

where n = (n,...,n) € Z%. This means that observing z(k;) for k; € Z? and ||k;|lc < n
is equivalent to observing the tensor T, and finding the unknowns t¢{,... ¢y, c1, ..., cpr is
equivalent to finding a decomposition of 7" in (S 2”(C2))®d. It would be interesting to study
such decompositions in view of the work [107].
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Chapter 2

Matrices and Positivity

In this chapter we turn our attention to matrix shaped data. In Section we study
nonnegative decompositions, and in Section we study positive semidefinite matrix de-
compositions.

2.1 Nonnegative Rank

Mixtures of r independent distributions for two discrete random variables can be represented
by matrices of nonnegative rank r. Likelihood inference for the model of such joint distribu-
tions leads to problems in real algebraic geometry that are addressed here for the first time.
We characterize the set of fixed points of the Expectation Maximization algorithm, and we
study the boundary of the space of matrices with nonnegative rank at most 3. Both of
these sets correspond to algebraic varieties with many irreducible components. This section
represents joint work with Kaie Kubjas and Bernd Sturmfels titled Fized Points of the EM
Algorithm and Nonnegative Rank Boundaries [105].

2.1.1 Introduction

The rth mixture model M of two discrete random variables X and Y expresses the condi-
tional independence statement X Il Y | Z, where Z is a hidden (or latent) random variable
with r states. Assuming that X and Y have m and n states respectively, their joint distri-
bution is written as an m x n-matrix of nonnegative rank < r whose entries sum to 1. This
mixture model is also known as the naive Bayes model. Its graphical representation is shown

in Figure

m r n
®@ @

Figure 2.1: Graphical model on two observed variables and one hidden variable
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A collection of i.i.d. samples from a joint distribution is recorded in a nonnegative matrix

Uyp Uiz -+ Ulp

U1 U2 -+ Uzp
U =

Um1 Um2 - Umn

Here, u;; is the number of observations in the sample with X = ¢ and Y = j. The sample
size is uyq = ), jwi;. It is standard practice to fit the model to the data U using the
Expectation Maximization (EM) algorithm. Here, fitting means computing the maximum
likelihood estimate (MLE). However, it has been pointed out in the literature that EM has
several issues (see the next paragraph for details) and one has to be careful when using it.
Our goal is to better understand this algorithm by studying its mathematical properties in
some detail.

One of the main issues of Expectation Maximization is that it does not provide a cer-
tificate for having found the global optimum. The geometry of the algorithm has been a
topic for debate among statisticians since the seminal paper of Dempster, Laird and Rubin
[49]. Murray |118] responded with a warning for practitioners to be aware of the existence of
multiple stationary points. Beale [17] also brought this up, and Fienberg [67] referred to the
possibility that the MLE lies on the boundary of the parameter space. A recent discussion
of this issue was presented by Zwiernik and Smith [164, §3] in their analysis of inferential
problems arising from the semialgebraic geometry of a latent class model. The fact that our
model fails to be identifiable was highlighted by Fienberg et al. in [68], §4.2.3]. This poses
additional difficulties, and it forces us to distinguish between the boundary of the parameter
space and the boundary of the model. The image of the former contains the latter.

The EM algorithm aims to maximize the log-likelihood function of the model M. In
doing so, it approximates the data matrix U with a product of nonnegative matrices A - B
where A has r columns and B has r rows. In Subsection we review the EM algorithm
in our context. Here, it is essentially equivalent to the widely used method of Lee and Seung
[111] for nonnegative matriz factorization. The nonnegative rank of matrices has been studied
from a broad range of perspectives, including computational geometry |1, 43|, topology [116],
contingency tables |21} 68], complexity theory [115] [156], and convex optimization [64]. We
here present the approach from algebraic statistics [54, [122].

Maximum likelihood estimation for the model M is a non-convex optimization problem.
Any algorithm that promises to compute the MLE P will face the following fundamental
dichotomy. The optimal matrix P either lies in the relative interior of M or it lies in the
model boundary oM.

If P lies in the relative interior of M then the situation is nice. In this case, Pis a
critical point for the likelihood function on the manifold of rank r matrices. There are
methods by Hauenstein et al. [85] for finding the MLE with certificate. The ML degree,
which they compute, bounds the number of critical points, and hence all candidates for the
global maximizer P. However, things are more difficult when P lies in the boundary OM.
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rank \ size 4x4 5x5 6x6 7Tx7 8x8
3 4.4%  23%  49% 62% 85%

4 % 3% 1% 95%
5 10%  55%  96%
6 20% 5%
7 24%

Table 2.1: Percentage of data matrices whose maximum likelihood estimate P lies in the
boundary OM

In that case, Pis generally not a critical point for the likelihood function in the manifold of
rank r matrices, and none of the results on ML degrees in [54} |68, |82, 85|, 93] are applicable.
The present section is the first to address the question of how P varies when it occurs in the
boundary dM. Table underscores the significance of our approach. As the matrix size
grows, the boundary case is much more likely to happen for randomly chosen input U. The
details for choosing U and the simulation study that generated Table will be described
in Example [2.1.6]

We now summarize the contents of this section. Subsection2.1.2/furnishes an introduction
to the geometry of the mixture model M from Figure[2.1] We define the topological boundary
of M and the algebraic boundary of M, and we explain how these two notions of boundary
differ. Concrete numerical examples for 4 x 4-matrices of rank 3 demonstrate how P behaves
as the data U vary.

In Subsection [2.1.3] we review the EM algorithm for the model M, and we identify its
fixed points in the parameter space. The main result is the characterization of the set of
fixed points in Theorem [2.1.7]

In Subsection we identify M with the set of matrices of nonnegative rank at most 3.
Theorem [2.1.9 gives a quantifier-free formula for this semialgebraic set. The importance of
finding such a formula was already stressed in the articles |4} |5]. The resulting membership
test for M is very fast and can be applied to matrices that contain parameters. The proof
of Theorem is based on the familiar characterization of nonnegative rank in terms of
nested polytopes [1, 43}, [156], and, in particular, on work of Mond et al. [116] on the structure
of critical configurations in the plane (shown in Figure .

In Subsection [2.1.5| we return to Expectation Maximization, and we study the system of
equations that characterize the EM fixed points. Proposition [2.1.15|characterizes its solutions
in the interior of M. Even in the smallest interesting case, m = n = 4 and r = 3, the variety
of all EM fixed points has a huge number of irreducible components, to be determined and
interpreted in Theorem [2.1.19

The most interesting among these are the 288 components that delineate the topological
boundary M inside the simplex As. These are discussed in Examples and [2.1.24]
Explicit matrices that lie on these components are featured in and in Examples
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2.1.1) [2.1.2f and [2.1.4] In Proposition we resolve a problem left open in [85] 93]
concerning the ML degree arising from M. The main result in Subsection [2.1.6]is Theorem
which characterizes the algebraic boundary of m x n-matrices of nonnegative rank 3.
The commutative algebra of the irreducible components in that boundary is the content of
Theorem [2.1.26] Corollary furnishes a quantifier-free semialgebraic formula for OM.

The proofs of all lemmas, propositions and corollaries appear in Appendix 2.1.7.1 A
review of basic concepts in algebraic geometry is given in Appendix [2.1.7.2] This will help
the reader understand the technicalities of our main results. Supplementary materials and
software are posted at the website

http://math.berkeley.edu/ bernd/EM/boundaries.html

Our readers will find code in R, Macaulay2, and Magma for various sampling experiments,
prime decompositions, semialgebraic formulas, and likelihood equations discussed in this
section.

The methods presented here are not limited to the matrix model M, but are applicable
to a wide range of statistical models for discrete data, especially those used in computational
biology [122]. Such models include phylogenetic models [3, 4] and Hidden Markov models
[47]. The most immediate generalization is to the rth mixture model of several random
variables. It consists of all distributions corresponding to tensors of nonnegative rank at
most r. In other words, we replace m x n-matrices by tensors of arbitrary format. The
geometry of the case r = 2 was studied in depth by Allman et al. [5]. For each of these
models, there is a natural EM algorithm, with an enormous number of stationary points.
The model itself is a complicated semialgebraic set, and the MLE typically occurs on the
boundary of that set. For binary tree models this was shown in [164], §3].

This section introduces tools needed to gain a complete understanding of these EM fixed
points and model boundaries. We here study them for the graphical model in Figure [2.1]
Already in this very simple case, we discovered patterns that are surprisingly rich. Thus,
the present work serves as a blueprint for future research in real algebraic geometry that
underlies statistical inference.

2.1.2 Model Geometry

We begin with a geometric introduction of the likelihood inference problem to be studied.
Let A,,,—1 denote the probability simplex of nonnegative m X n-matrices P = [p;;] with
prr = 1. Our model M is the subset of A,,,, 1 consisting of all matrices of the form

P = A-A-B, (2.1.1)

where A is a nonnegative mXxr-matrix whose columns sum to 1, A is a nonnegative rxr di-
agonal matrix whose entries sum to 1, and B is a nonnegative rxXn-matrix whose rows sum
to 1. The triple of parameters (A, A, B) represents conditional probabilities for the graphical
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model in Figure 2.1} In particular, the kth column of A is the conditional probability distri-
bution of X given that Z = k, the kth row of B is the conditional probability distribution
given that Z = k, and the diagonal of A is the probability distribution of Z. The parameter
space in which A, A, B lie is the convex polytope © = (A,,_1)" X A,_1 X (A,_1)". Our model
M is the image of the trilinear map

¢»:0 — Appor, (AAB) — P (2.1.2)

We seek to learn the model parameters (A, A, B) by maximizing the likelihood function

(u;+) _ ﬁ ﬁplyjij (2.1.3)

i=1 j=1

over M. This is equivalent to maximizing the log-likelihood function

k=1

i=1 j=1

over M. One issue that comes up immediately is that the model parameters are not identi-

fiable:
dim(®) = r(m+n) —r—1 but dim(M) = r(m+n) —r* — 1. (2.1.5)

The first expression is the sum of the dimensions of the simplices in the product that defines
the parameter space ©. The second one counts the degrees of freedom in a rank r matrix
of format m x n. The typical fiber, i.e. the preimage of a point in the image of , is a
semialgebraic set of dimension r? — r. This is the space of explanations whose topology was
studied by Mond et al. in [116]. Likelihood inference cannot distinguish among points in
each fiber, so it is preferable to regard MLE not as an unconstrained optimization problem in
© but as a constrained optimization problem in M. The aim of this section is to determine
its constraints.

Let V denote the set of real m x n-matrices P of rank < r satisfying p,, = 1. This
set is a variety because it is given by the vanishing of a set of polynomials, namely, the
(r+1) x (r+ 1) minors of the matrix P plus the linear constraint p,, = 1. A point P € M
is an interior point of M if there is an open ball U C A,,,_1 that contains P and satisfies
UNnyY=UNM. We call P € M a boundary point of M if it is not an interior point. The
set of all such points is denoted by dM and called the topological boundary of M. In other
words, OM is the boundary of M inside V. The variety V is the Zariski closure of the set
M; see Appendix [2.1.7.2] In other words, the set of polynomials that vanish on M is exactly
the same as the set of polynomials that vanish on V. Our model M is a full-dimensional
subset of the variety )V and is given by a set of polynomial inequalities inside V.

Fix U, r,and P € M as above. A matrix P is a non-singular point on V if and only if the
rank of P is exactly r. In this case, its tangent space Tp(V) has dimension r(m+n) —r? —1,
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which, as expected, equals dim(M). We call P a critical point of the log-likelihood function
ly if P € M, P is a nonsingular point for V, i.e. rank(P) = r, and the gradient of ¢y is
orthogonal to the tangent space Tp(V). Thus, the critical points are the nonnegative real
solutions of the various likelihood equations derived in |54} |85} |122} 163 to address the MLE
problem for M. In other words, the critical points are the solutions obtained by using the
Lagrange multipliers method for maximizing the likelihood function over the set V. In the
language of algebraic statistics, the critical points are those points in M that are accounted
for by the ML degree of the variety V. R

Table shows that the global maximum P of ¢y is often a non-critical point. This
means that the MLE lies on the topological boundary d M. The ML degree of the variety
V is irrelevant for assessing the algebraic complexity of such P. Instead, we need the ML
degree of the boundary, as given in Proposition [2.1.25] as well as the ML degrees for the
lower-dimensional boundary strata.

The following example illustrates the concepts we have introduced so far and what they
mean.

Example 2.1.1. Fix m =n =4 and r = 3. For any integers a > b > 0, consider the data
matriz

Ua b =

)

(2.1.6)

ST QR
[ R SIS s
L o o
Q@ Q2 o>

Note that rank(U,p) < 3. For a = 1 and b = 0, this is the standard example [43] of a
nonnegative matriz whose nonnegative rank exceeds its rank. Thus, %UI,O is a probability
distribution in V\M. Within the 2-parameter family , the topological boundary OM
is given by the linear equation b = (v/2 — 1)a. This follows from the computations in [21,
§5/ and [116, §5]. We conclude that

—8(a1+b) Uasp lies in VAM  if and only if b < (\/5 —1a. (2.1.7)

For integers a > b > 0 satisfying , the likelihood function for Ugyp has

precisely eight global maxima on our model M. These are the following matrices, each
divided by 8(a + b):

a a b b vt wu t v uw rr s s
vw tou a b a b r s r s tu v w
wovut|'|lsrsr|’'lbabdbal’lutwov]|’
s srr]|lwuvt]|uwtov|l|[bbaa
avws|[vasw|[trbu][rtubd
aw v s t br u v S aw ru t b
bt ur|l'lwasov|l'|lurdbit|'|svwal
butor]|ubrt]|wsaw s wW v a
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This claim can be verified by exact symbolic computation, or by validated numerics as in
the proof of (85, Theorem 4.4]. Here t is the unique simple real Toot of the cubic equation

(6a® 4+ 16a2b + 14ab® + 4b*)t3 — (20a* + 44ab + 8ab® + 32a2b?)t>
+ (22a° + 43a’b + 30a®V* + 7a*V®)t — (8a® + 16a°b + 10a*b? + 2a3h3) = 0.

To fill in the other entries of these nonnegative rank 3 matrices, we use the rational formulas

(a+ b)t —a? tb t(3a? + 5ab + 2b%)t — 4a® — 5a%b — 2ab?
§=-—"— u=—, w=- :
a a 2a3 + a®b

20 +ab—(a+ bt (3a®+5ab+20*)t* — (6a*4+8a*b+3ab?)t + 6a*b+2a*b*+-4a’
"= a 0T 2a3 + a?b '
These formulas represent an ezact algebraic solution to the MLE problem in this case. They
describe the multivalued map (a,b) — P,, from the data to the eight mazimum likelihood
estimates. This allows us to understand exactly how these solutions behave as the matriz

entries a and b vary.

The key point is that the eight global mazima lie in the model boundary OM. They are
not critical points of ly on the rank 3 variety V. They will not be found by the methods in
189, 1122, 163]. Instead, we used results about the algebraic boundary in Subsection to
derive the eight solutions.

We note that this example can be seen as an extension of (85, Theorem 4.4/, which offers
a similar parametric analysis for the data set of the “100 Swiss Francs Problem” studied in
168, 1105]. &

We now introduce the concept of algebraic boundary. Recall that the topological bound-
ary OM of the model M is a semialgebraic subset inside the probability simplex A,,,_1. Its
dimension is

dim(OM) = dim(M) -1 = rm+rn—1r* —2.

Any quantifier-free semialgebraic description of M will be a complicated Boolean com-
bination of polynomial equations and polynomial inequalities. This can be seen for r = 3 in
Corollary

To simplify the situation, it is advantageous to relax the inequalities and keep only
the equations. This replaces the topological boundary of M by a much simpler object,
namely the algebraic boundary of M. To be precise, we define the algebraic boundary to
be the Zariski closure M of the topological boundary OM. Thus OM is a subvariety of
codimension 1 inside the variety V C P™"~!. Theorem will show us that M can have
many irreducible components.

The following two-dimensional family of matrices illustrates the results to be achieved in
this section. These enable us to discriminate between the topological boundary O M and the
algebraic boundary OM, and to understand how these boundaries sit inside the variety V.
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Figure 2.2: In a two-dimensional family of 4 x 4-matrices, the matrices of rank 3 form
a quartic curve. The mixture model, shown in red, has two connected components. Its
topological boundary consists of four points (on the left). The algebraic boundary includes
many more points (on the right). Currently, there is no known way to obtain the four points
on the topological boundary (in the left picture) without first considering all points on the
algebraic boundary (in the right picture).

Example 2.1.2. Consider the following 2-parameter family of 4 X 4-matrices:

51 9 64 9 1130 54 1 1
97 63 8 8 1010 51 5 1
Ply) = 13 34040 30 "% o101 7Y 11515
30 25 80 35 001 1 1155

This was chosen so that P(0,0) lies in a unique component of the topological boundary OM.
The equation det(P(x,y)) = 0 defines a plane curve C of degree 4. This is the thin black
curve shown in Figure[2.3. In our family, this quartic curve C represents the Zariski closure
V of the model M.

The algebraic boundary OM is the variety described in Ezample . The quartic
curve C meets OM in 1618 real points (x,y). Of these 1618 points, precisely 188 satisfy
the constraint P(x,y) > 0. These 188 points are the landmarks for our analysis. They are
shown in blue on the right in Figure[2.2. In addition, we mark the unique point where the
curve C intersects the boundary polygon defined by P(x,y) > 0. This is the leftmost point,
defined by {det(P(z,y)) =z + by + 8 = 0}. It equals

(—3.161429, —0.967714). (2.1.8)

We examined the 187 arcs on C between consecutive points of OM as well as the two arcs at
the ends. For each arc we checked whether it lies in M. This was done by a combination of
the EM algorithm in Subsection and Theorem [2.1.9. Precisely 96 of the 189 arcs were
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found to lie in M. These form two connected components on the curve C, namely 19 arcs

between and (0,0), and
76 arcs between (11.905773,8.642630) and (21.001324,35.202110). (2.1.9)

These four points represent the topological boundary OM. We conclude that, in the 2-
dimensional family P(x,y), the model M ‘s the union of the two red arcs shown on the
left in Figure[2.9

Our theory of EM fized points distinguishes between the (relatively open) red arcs and
their blue boundary points. For the MLE problem, the red points are critical while the blue
points are not critical. By Table the MLE s more likely to be blue than red, for larger
values of m and n. &

This example demonstrates that the algebraic methods of Subsections [2.1.4] and
2.1.6|are indispensable when one desires a reliable analysis of model geometries, such as that
illustrated in Figure 2.2l To apply a method for finding the critical points of a function, e.g.
Lagrange multipliers, the domain of the function needs to be given by equality constraints
only. But using only these constraints, one cannot detect the maxima lying on the topolog-
ical boundary. For finding the critical points of the likelihood function on the topological
boundary by using the same methods, one needs to relax the inequality constraints and
consider only the equations defining the topological boundary. Therefore, one needs to find
the critical points on the algebraic boundary dM of the model.

2.1.3 Fixed Points of Expectation Maximization

The EM algorithm is an iterative method for finding local maxima of the likelihood function
(2.1.3). It can be viewed as a discrete dynamical system on the polytope © = (A,,_1)" X
A1 X (An—1)". We here present the version in [122, §1.3].

Algorithm 1 Function EM(U, r)

Select random aq, as,...,a, € A,,_1, random A € A,_q, and random by, by,...,b. € A,,_1.
Run the following steps until the entries of the mxn-matrix P converge.
E-step: Estimate the mxrxn-table that represents this expected hidden data:
Set v; 1= %um fori=1,...,m k=1,....,rand j=1,...,n.
M-step: Maximize the likelihood function of the model @—@—@ for the hidden data:
Set A\p := D 0 D0 vikj/upy for k=1,... 7.
Set aip == (O vikj)/ (Ut M) for k=1,...,randi=1,...,m.
Set by = (D 0, Vikj)/(upy X)) for k=1,...;rand j=1,...,n.
Update the estimate of the joint distribution for our mizture model @—O—@:
Set pij ==Y 4y @by for i =1,... mand j=1,...,n.
Return P.
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The alternating sequence of E-steps and M-steps defines trajectories in the parameter
polytope ©. The log-likelihood function is non-decreasing along each trajectory
(cf. [122, Theorem 1.15]). In fact, the value can stay the same only at a fixed point of the
EM algorithm. See Dempster et al. [49] for the general version of EM and its increasing
behavior and convergence.

Definition 2.1.3. An EM fixed point for a given table U is any point (A, A, B) in the
polytope © = (Ap—1)" X Ar_1 X (Ap_1)" to which the EM algorithm can converge if it is
applied to (U,r).

Every global maximum P of ly is among the EM fixed points. One hopes that P has a
large basin of attraction, and that the initial parameter choice (A, A, B) gives a trajectory
that converges to p. However, this need not be the case, since the EM dynamics on © has
many fixed points other than P. Our aim is to understand all of these.

Example 2.1.4. The following data matriz is obtained by setting a = 1,b = 0 in Example
211

U:

OO~

— O
= o = O
—= =0 O

0
Among the EM fized points for this choice of U with r = 3 we find the probability distributions

1
24

1

P P = =
1 2 16

y and szg

— O N W
=N O W
N O O
— = O N
= = N O

0
0 1
2
2

O O NN
S Ut W
O = O
o O = O
- W ov O

and their orbits under the symmetry group of U. For instance, the orbit of P, is obtained
by setting s = %,7’ = %,v = %,t = %,w = u = 0 wn the eight matrices in Example .
Over 98% of our runs with random starting points in © converged to one of these eight global

mazximizers of y. Matrices in the orbits of Py resp. Py were approached only rarely (less
than 2%) by the EM algorithm. .

Lemma 2.1.5. The following are equivalent for a point (A, A, B) in the parameter poly-
tope ©:

(1) The point (A, A, B) is an EM fized point.
(2) If we start EM with (A, A, B) instead of a random point, then EM converges to (A, A, B).

(8) The point (A, A, B) remains fized after one completion of the E-step and the M-step.
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It is often believed (and actually stated in [122, Theorem 1.5]) that every EM fixed
point is a critical point of the log-likelihood function ¢;;. This statement is not true for the
definition of “critical” given in Subsection 2.1.2] In fact, for many instances U, the global
maximum P is not critical.

To underscore this important point and its statistical relevance, we tested the EM algo-
rithm on random data matrices U for a range of models with m = n. The following example

explains Table

Example 2.1.6. In our first simulation, we generated random matrices U from the uniform
distribution on A,.,—1 by using R and then scaling to get integer entries. For each matriz U,
we ran the EM algorithm 2000 times to ensure convergence with high probability to the global
maximum P on M. FEach run had 2000 steps. We then checked whether P is a critical point
of Ly using the rank criterion in (85, (2.3)]. Our results are reported in Table. The main
finding is that, with high probability as the matrix size increases, the MLE P lands on the
topological boundary OM, and it fails to be critical.

In a second simulation, we started with matrices A € N™*" and B € N whose entries
were sampled uniformly from {0,1,...,100}. We then fized P € M to be the mxn probability
matrix given by AB divided by the sum of its entries. We finally took Tmn samples from the
distribution P and recorded the results in an m xn data matriz U. Thereafter, we applied EM
to U. We observed the following. If T > 20 then the fraction of times the MLE lies in OM
s very close to 0. When T < 10 though, this fraction was higher than the results reported
in Table 1. For T =10 and m =n = 4, r = 3, this fraction was 13%, form =n =5,r = 3,
it was 23%, and for m =n = 5,r = 4, it was 17%. Therefore, based on these experiments,
in order to have the MLE be a critical point in M, one should have at least 20 times more
samples than entries of the matrix. &

This brings our attention to the problem of identifying the fixed points of EM. If we
could compute all EM fixed points, then this would reveal the global maximizer of ¢;;. Since
a point is EM fixed if and only if it stays fixed after an E-step and an M-step, we can write
rational function equations for the EM fixed points in ©:

m n

1 Dk

Ak = Muzj for all £,
Ut S > i Gy

1 - ik A )

ik = T u;;  for all 4, k,
" )\k‘u-‘r-i- j=1 lel a’il)\lblj J

1 — e \ebs

bk?] = A\ kj Uis for au k‘)j

T 1]
Akt = 3701 aaXibi

Our goal is to understand the solutions to these equations for a fixed positive matrix U. We
seek to find the variety they define in the polytope © and the image of that variety in M.
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In the EM algorithm we usually start with parameters a;i, Ax, by; that are strictly positive.
The a;, or by, may become zero in the limit, but the parameters )\, always remain positive
when the u;; are positive since the entries of each column of A and each row of B sum to 1.
This justifies that we cancel out the factors A\, in our equations. After this, the first equation
is implied by the other two. Therefore, the set of all EM fixed points is a variety, and it is

characterized by

1 ik .
Qi = - Uy for all 4, k,
* Uit S >y aaiby
1 & ikbr;j
by = ik kg for all k, j.

u ..

Uit = Doy @iy

Suppose that a denominator ), a;A\b; is zero at a point in ©. Then a;;b;; = 0 for all &, and
: a;ikbk;

the expression ST b

can rewrite our two fixed point equations in the form

would be considered 0. Using the identity p;; = ZLI ayNibij, we

aik(z (u++ — Z—U)bkj) =0 for all k,2 and bkj(z (u++ — %)a,k) =0 for all k, 5.
j=1 * i=1 i

(2.1.10)
Let R denote the m x n matrix with entries r;; = uy4 — Z?? . The matrix R is the gradient of
ij

the log-likelihood function ¢y (P), as seen in [85, (3.1)]. With this, our fixed point equations
are

aik(Zrijbkj) = 0 for all £,7 and bkj(ZTZ—jaik) =0 forall k,j5. (2.1.11)

j=1 i=1

We summarize our discussion in the following theorem, with (2.1.11)) rewritten in matrix
form.

Theorem 2.1.7. The variety of EM fixed points in the polytope © is defined by the equations
Ax(R-B")=0 Bx (AT - R) =0, (2.1.12)

where R is the gradient matriz of the log-likelthood function and x denotes the Hadamard
product. The subset of EM fized points that are critical points is defined by R - BT = 0 and
AT R =0.

Proof. Since ([2.1.12)) is equivalent to ([2.1.11]), the first sentence is proved by the derivation
above. For the second sentence we consider the normal space of the variety V at a rank r

matrix P = AAB. This is the orthogonal complement of the tangent space Tp(}V). The
normal space can be expressed as the kernel of the linear map Q — (Q - BT, AT - Q). Hence
R = gradp(ly) is perpendicular to Tp(V) if and only if R-B” = 0 and A”-R = 0. Therefore,
the polynomial equations define the Zariski closure of the set of parameters for which
P is critical. O]
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The variety defined by (2.1.12)) is reducible. In Subsection we shall present a detailed
study of its irreducible components, along with a discussion of their statistical interpretation.
As a preview, we here decompose the variety of EM fixed points in the simplest possible case.

Example 2.1.8. Let m =n =2, r = 1, and consider the ideal generated by the cubics in

:
F o= <CL11(T11511+T12512)7 a1 (ro1b11+792b12), b11(anrii+azira), 612(a117’12+a217’22)>.
The software Macaulay2 [81] computes a primary decomposition into 12 components:

F = <7"117”22 — T12721, 11711 + G21721, 11712 + G21722, b11711 + D1am12, b1 + 5127’22>
N (@11, 721, 722) N (91,711, r12) N (12, 722, b11) N (r11,721, b12)
N (@11, 722, b11) N (@11, 721, b12) N (ag1,712,b11) N (a2, 711, b12)

N (a1, a21) N (b1, b12) N (<a117a21>2 + (b11, ba)? +-7:)-
(2.1.13)

The last primary ideal is embedded. Thus F is not a radical ideal. Its radical requires an
extra generator of degree 5. The first 11 ideals in are the minimal primes of F.
These give the irreducible components of the variety V(F). The first ideal represents the
critical points in M. &

2.1.4 Matrices of Nonnegative Rank Three

While the EM algorithm operates in the polytope © of model parameters (A, A, B), the mix-
ture model M lives in the simplex A,,,,, 1 C R™*" of all joint distributions. The parametriza-
tion ¢ is not identifiable. The topology of its fibers was studied by Mond et al. [116], with
focus on the first non-trivial case, when the rank r is three. We build on their work to derive
a semialgebraic characterization of M. This subsection is self-contained. It can be read
independently from our earlier discussion of the EM algorithm. It is aimed at all readers
interested in nonnegative matrix factorization, regardless of its statistical relevance.

We now fix r = 3. Let A be a real m x 3-matrix with rows aq,...,a,,, and B a real
3 x n-matrix with columns by, ..., b,. The vectors b; € R? represent points in the projective
plane P2. We view the a; as elements in the dual space (R®)*. These represent lines in P2
Geometric algebra (a.k.a. Grassmann-Cayley algebra [159]) furnishes two bilinear operations,

ViR xR® — (R*)* and A: (R®)* x (R*)* — R®.

These correspond to the classical cross product in 3-space. Geometrically, a; A a; is the
intersection point of the lines a; and a; in P2, and b; V b; is the line spanned by the points
b; and b; in P2, The pairing (R*)* x R®* — R can be denoted by either V or A. With
these conventions, the operations V and A are alternating, associative and distributive. For
instance, the minor

a; N aj A a, = det(a;, aj, ay) (2.1.14)
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vanishes if and only if the lines a;,a; and a; are concurrent. Likewise, the polynomial

(ai Na;)Vby Vby = anajbiiboy — anajobiibay + ainajsbiybsiy — aina;sbipbsy
—@i2@10157bags + 001013 o + @i2aj3b2i b3 — ai2aj3boyr by (2.1.15)
_ai3ajlb1i’b3k’ + ai3aj1b1k’b3i’ - Gi3&j252i'b3k' + ai3aj2b2k’b3i’

expresses the condition that the lines a; and a; intersect in a point on the line given by
by and by. Of special interest is the following formula involving four rows of A and three
columns of B:

(((a; Aaj) Vo) Aag) V (((ai Aag) Vb)) Aay) Vby. (2.1.16)
Its expansion is a bihomogeneous polynomial of degree (6,3) with 330 terms in (A, B).

((ai A a]') \ bll) A aj

(((Zi /\(lj)\/b’;/)/\(l

((a; Naj) Vi) Aag ((ai Naj) by ) Nar  ((ai Aag) Vby) A

((ai Naj) Vb)) Aay

((ai A aj) \Y bj/) A ay
a;

a; N\ a5 a;

(a) (b)

((ai A a]‘) \Y bl/) A ay

((lli A llj) \Y bzf) A ap

((ai/\aj)vby)/\a (((li/\ ')\/bj’)/\ak ((ai/\a]-)\/bir)/\

((lli A ll]') \Y bjl) A ap
by ((ai Naj) Vb)) A

a;

ai A aj aj ((ai Aaz) vV bjr) A ak

() (d)
Figure 2.3: In the diagrams (a) and (b), the conditions of Theorem are satisfied for the

chosen i, j,7, 7. In the diagrams (c) and (d), the conditions of Theorem fail for the
chosen 1, j,4', j'.
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A matrix P € R™*™ has nonnegative rank < 3 if it admits a factorization P = AB with
A and B nonnegative. The set of such matrices P with p,, = 1 is precisely the mixture
model M discussed in the earlier subsections. Comparing with , we here subsume
the diagonal matrix A into either A or B. In what follows, we consider the set N of pairs
(A, B) whose product AB has nonnegative rank < 3. Thus A is a semialgebraic subset of
R™*3 @ R3*"™. We shall prove:

Theorem 2.1.9. A pair (A, B) is in N if and only if AB > 0 and the following condi-
tion holds: Either rank(AB) < 3, or rank(AB) = 3 and there exist indices i,j € [m)],
i',j" € [n] such that
sign(2.1.14) is the same or zero for all k € [m]\{i,j}
and  sign(2.1.15) is the same or zero for all k' € [n]\{i'}
and  sign((2.1.19)[i' = j']) is the same or zero for all k' € [n]\{j'}
and (2.1.10) - (2.1.16)[k<1] > 0 for all {k,1} C [m]\{i,7} and k' € [n]\{7',j'},
or there exist i, € [n], i',j' € [m] such that these conditions hold after swapping A with BT .

Here, [m] = {1,2,...,m}, and the notation [i’ — j'] means that the index i is replaced
by the index j" in the preceding expression, and [k <> [] means that k and [ are switched.

Theorem [2.1.9] is our main result in Subsection 2.1.4] It gives a finite disjunction of
conjunctions of polynomial inequalities in A and B, and thus a quantifier-free first order
formula for A. This represents our mixture model as follows: to test whether P lies in M,
check whether rank(P) < 3; if yes, compute any rank 3 factorization P = AB and check
whether (A, B) lies in N. Code for performing these computations in Macaulay?2 is posted
on our website.

Theorem [2.1.9 is an algebraic translation of a geometric algorithm. For an illustration
see Figure [2.3] In the rest of the subsection, we will study the geometric description of
nonnegative rank that leads to the algorithm. Let P be a nonnegative m x n matrix of rank

r. We write span(P) and cone(P) for the linear space and the cone spanned by the columns
of P, and we define

A =span(P)NA,,_; and B = cone(P) N A,,_1. (2.1.17)

The matrix P has a size r nonnegative factorization if and only if there exists a polytope
A with r vertices such that B C A C A; see Lemma [I.1.4. Without loss of generality, we
will assume in the rest of this subsection that the vertices of A lie on the boundary of A.
We write M,. for the set of m x n-matrices of nonnegative rank < r. Here is an illustration
that is simpler than Example [2.1.2;

Example 2.1.10. In 04, §2.7.2], the following family of matrices of rank < 3 is considered:

l—a 14a 14a 1—a
1-b 1—-b 14+b 1+0
Pla,b) = l+a 1—a 1—a 14al’ (2.1.18)

1+6 1+b 1—-b 1-0
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Here, B is a rectangle and A = {x € A3 : x1 — 29+ 23— x4 = 0} is a square, see Figure .
Using Theorem we can check that P(a,b) lies in M3 if and only ifab+a+b<1. &

2

A

145
1Ak -
1—bt

T

Figure 2.4: The matrix P(a,b) defines a nested pair of rectangles.

Lemma 2.1.11. A matriz P € RZ;™ of rank r lies in the interior of M, if and only if there
exists an (r — 1)-simplex A C A such that B is contained in the interior of A. It lies on the
boundary of M, if and only if every (r — 1)-simplex A with B C A C A contains a vertex of
B on its boundary.

(a) (b)
Figure 2.5: Critical configurations
For r = 3, Mond et al. [116] prove the following result. Suppose B C A C A and every

edge of A contains a vertex of B. Then, tB C A’ C A for some triangle A’ and some ¢t > 1,
unless

(a) an edge of A contains an edge of B, or
(b) a vertex of A coincides with a vertex of A.

Here the dilate tB is taken with respect to a point in the interior of 5. By Lemma [2.1.11} this
means that P lies in the interior of M5"*" unless one of (a) and (b) holds. The conditions

(a) and (b) are shown in Figure 2.5 For the proof of this result we refer to [116, Lemma 3.10
and Lemma 4.3].
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Corollary 2.1.12. A matriz P € M3 lies on the boundary of M if and only if
e P has a zero entry, or

e rank(P) = 3 and if A is any triangle with B C A C A then every edge of A contains
a vertez of B, and (a) or (b) holds.

Corollary 2.1.13. A matriz P € RT{™ has nonnegative rank < 3 if and only if
e rank(P) < 3, or

e rank(P) = 3 and there exists a triangle A with B C A C A such that a vertex of A
coincides with a vertex of A, or

e rank(P) = 3 and there exists a triangle A with B C A C A such that an edge of A
contains an edge of B.

Corollary provides a geometric algorithm similar to that of Aggarwal et al. [1] for
checking whether a matrix has nonnegative rank 3. For the algorithm, we need to consider
one condition for every vertex of A and one condition for every edge of B. We now explain
these conditions.

Let v be a vertex of A. Let by, by be the vertices of B such that l; = vb; and Iy = vby
support B. Let A be the convex hull of v and the other two intersection points of the lines
l1,ly with the boundary of A. If B C A, then P has nonnegative rank 3.

Let [ be the line spanned by an edge of B. Let vy, v, be the intersection points of [ with
DA. Let by, by be the vertices of B such that I; = v1b; and Iy = veby support B. Let vs be
the intersection point of Iy and ly. If conv(vy, ve,v3) C A, then P has nonnegative rank 3.

Proof of Theorem[2.1.9. Let rank(P) = 3 and consider any factorization P = AB where
ai,...,a, € (R3)* are the row vectors of A and by, ...,b, € R? are the column vectors of
B. The map x — Ax identifies R? with the common column space of A and P. Under this
identification, and by passing from 3-dimensional cones to polygons in R?, we can assume
that the edges of A are given by a4, ...,a, and the vertices of B are given by by, ..., b,.

To test whether P belongs to Ms, we use the geometric conditions in Corollary [2.1.13
These still involve a quantifier over A. Our aim is to translate them into the given quantifier-
free formula, referring only to the vertices b; of B and the edges a; of A. First we check with
the sign condition on that the intersection point a; A a; defines a vertex of A. Next
we verify that the lines (a; A a;) V by and (a; A a;) V by are supporting B, i.e. all vertices of
B lie on the same side of the lines (a; A a;) V by and (a; A a;j) V bj. For this we use the sign
conditions on (2.1.15)) and (2.1.15)[¢' — j'].

Finally we need to check whether all vertices of B belong to the convex hull of a; A a;
and the other two intersection points of the lines (a; A a;) V by and (a; A a;) V by with the
boundary of A. Fix {k,{} C [m]\{i,j}. If either the line (a; A a;) V by intersects aj or
the line (a; A a;) V b intersects a; outside A, then the polygon B lies completely on one
side of the line (((a; A a;) V bir) Aag) V (((a; A aj) V bjr) A a). Similarly, if either the line
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(a; Naj;) V by intersects a; or the line (a; A a;) V b intersects aj, outside A, then the polygon
B lies completely on one side of the line (((a; A a;) V bir) Aay) V (((a; Aaj) Vby) Aag). Then
the condition (2.1.16)) - (2.1.16[)[k <> ] > 0 is automatically satisfied for all & € [n]\{7', j'}.
If the intersection points ((a; A a;) V by) A ai and ((a; A a;) V bjr) A a; are on the boundary
of A, then the polygon B is on one side of (((a; A a;) V bi) Aar) V (((a;i A aj) V bj) A ag).
In this case, we use the conditions (2.1.16)) - (2.1.16))[k <> 1] > 0 to check whether B is also
on one side of the line (((a; A a;j) V bi) Aag)V (((a; Aaj)Vbj) Aaq). For an illustration see

Figure 2.3 O

We wish to reiterate that the semialgebraic formula for our model in Theorem [2.1.9) is
quantifier-free. It is a finite Boolean combination of polynomial inequalities with rational
coefficients.

Corollary 2.1.14. If a rational m x n matrix P has nonnegative rank < 3 then there exists
a nonnegative rank < 3 factorization P = AB where all entries of A and B are rational
numbers.

This answers a question of Cohen and Rothblum in [43] for matrices of nonnegative
rank 3. It is not known whether this result holds in general. In Subsection [2.1.6] we apply
Theorem to derive the topological boundary and the algebraic boundary of M. Also,
using what follows in Subsection [2.1.5, we shall see how these boundaries are detected by
the EM algorithm.

2.1.5 Decomposing the variety of EM fixed points

After this in-depth study of the geometry of our model, we now return to the fixed points of
Expectation Maximization on M. We fix the polynomial ring Q[A, R, B] in mr +mn + rn
indeterminates a;x, r;;, and by;. Let F denote the ideal generated by the entries of the
matrices A« (R- BT) and B+ (AT - R) in (2.1.12). Also, let C denote the ideal generated by
the entries of R- BT and AT - R. Thus F is generated by mr + rn cubics, C is generated by
mr + rn quadrics, and we have the inclusion / C C. By Theorem , the variety V(C)
consists of those parameters A, R, B that correspond to critical points for the log-likelihood
function ¢y, while the variety V(F) encompasses all the fixed points of the EM algorithm.
We are interested in the irreducible components of the varieties V(F) and V(C). These
are the zero sets of the minimal primes of F and C, respectively. More precisely, if F has
minimal primes Fi, Fs, ..., Fy, then V(F;) are the irreducible components of V' (F), and
V(F) = U, V(F).
Recall that the matrix R represents the gradient of the log-likelihood function £y, i.e.

Uij Uij

= Uy —— = Uy — "7 2.1.19
i Dij i >k @ik Akbi; ( )

Tij

The set of EM-fixed points corresponding to a data matrix U € N"*" is defined by the ideal
F' C Q[A, B, A] that is obtained from F by substituting (2.1.19)), clearing denominators,
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and saturating. Note that V(F’) = J, V(F;). So, studying the minimal primes F; will help
us study the fixed points of EM. A big advantage of considering F rather than F’ is that
F is much simpler. Also, it does not depend on the data U. This allows a lot of the work
in exact MLE using algebraic methods (as in Example to be done in a preprocessing
stage.

There are two important points we wish to make in this subsection:

1. the minimal primes of F have interesting statistical interpretations, and

2. the non-trivial boundaries of the mixture model M can be detected from this.
We shall explain these points by working out two cases that are larger than Example

Example showed that F is not radical but has embedded components. Here, we
focus on the minimal primes F; of F, as these correspond to geometric components of V' (F).
If F; is also a minimal prime of C then F; is a critical prime of F. Not every minimal prime of
C is a minimal prime of F. For instance, for m = n = 2,r = 1, the ideal C is the intersection
of the first prime in Example and (aj1,as1, b1y, b12). The latter is not minimal over F.
We now generalize this example:

Proposition 2.1.15. The ideal C has precisely v + 1 minimal primes, indexed by k =
1,...,r+1:
C+ (k-minors of A)+ ((m—k+2)-minors of R) + ((n—m+k)-minors of B) if m < n,
C + ((m—n~+k)-minors of A) + ((n—k+2)-minors of R) + (k-minors of B) if m > n.
Moreover, the ideal C is radical and, hence, it equals the intersection of its minimal primes.

We refer to Example for an illustration of Proposition [2.1.15, The proof we give in
Appendix relies on methods from representation theory. The duality relation
plays an important role.

We now proceed to our case studies of the minimal primes of the EM fixed ideal F.

Example 2.1.16. Let m = n = 3 and r = 2. The ideal F has 37 minimal primes, in sic
classes. The first three are the minimal primes of the critical ideal C, as seen in Proposition

L. 1. 1J:

I = <7”237"32 — 122733, 713732 — T'12733, 723731 — 1'217°33, T"227°31 — 721732, T"137°31 — 711733,
12731 — T11732, 13722 — T12723, 13721 — T'11723, T12721 — 11722,
b21731 + baarzp + basrss, biirsy + biarsy + bi3rss, bairar + bagrag + bagras,
bi1721 + biaTa2 + b137ra3, @12713 + A22723 + A32733, Q11713 + G21723 + A31733,
12712 + A22T22 + A32732, Q11712 + 21722 + 31732, ba1711 + baaT12 + basrys,
biir11 + bioria + bigtis, @iari1 + Agara1 + aAgars1, A11T11 + A91721 + A31731),
I, = (7“137”227"31 — T127237'31 — 713721732 + 711723732 + 712721733 — 711722733,
21731 + baot3p + bagrsz, bi17rs1 + b1arsa + b137s3, barror + baorae + basgras,
bi1721 + b1aT22 + D13723, G12713 + G273 + A32733, A11713 + G21723 + A31733,
12712 + U22T22 + 32732, A11712 + A21722 + A31732, b21711 + bagria + bazrys,
biim11 + biari2 + b13ri3, a1ar1n + aaror + aza731, 11711 + 21721 + A31731,
b13baz—b12b23, b13b21—b11b23, b12bo1 —b11b22, az1a2e—asiass, agiaia—ai1ass, a21a12—a11a22>,

Is = <a11,a217031,a12,CL22,a32751175127513,5217b227b23>-
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In addition to these three, F has 12 non-critical components like

J1 = <a11>a21,7"31>7“3277“33,7“137’22 — 712723, 713721 — 711723, 712721 — T11722,
b21721+baar90+basTa3, ba17114+baaT12+Hbasr 13, A12T13+H 22793, Q19712227 92, Q12711+ G927 01),

four non-critical components like

Jy = <a117 Qo1, A31, 713722731 — 712723731 — 13721732 + 11723732 + 712721733 — 711722733,
ba1721 + baarag + bazraz, bairi1 + baaria + basrisz, bairsy + baarss + basras,
Q19713 + Q29723 + A32733, 12712 + AoaTaa + A32732, Q12711 + A22T21 + A32731),

and 18 non-critical components like

J3 = <a11, @21, b11, b12, 33, 13722131 — T12T23731 — T13T21732 + T'11723732,
ba1731 + baarse, bairor 4 baaras 4 basrag, bairin 4 baaria 4 basris,
19713 + A2aT23, A12T12 + G22T92 + 32732, A12711 + Q2721 + A32731).

Each of the 34 primes Ji, Js, J3 specifies a face of the polytope ©, as it contains two, three
or four of the parameters a;, by;, and expresses rank constraints on the matriz R = [r;j]. &

Remark 2.1.17. Assuming the sample size u . to be known, we can recover the data matriz
U from the gradient R using the formula U = R* P 4+ u,, P. In coordinates, this says

U5 = (Tij + Ugy) * Dij fori € [m],j € [n].

This formula is obtained by rewriting . Hence, r;; = 0 holds if and only if p;; =
wij/usy. This can be rephrased as follows. If a minimal prime of F contains the unknown
ri;, then the corresponding fized points of the EM algorithm maintain the cell entry u;; from
the data.

With this, we can now understand the meaning of the various components in Exam-
ple 2.1.16| The prime I; parametrizes critical points P of rank 2. This represents the
behavior of the EM algorithm when run with random starting parameters in the interior of
O. For special data U, the MLE will be a rank 1 matrix, and such cases are captured by the
critical component I,. The components I3 and J; can be disregarded because each of them
contains a column of A. This would force the entries of that column to sum to 0, which is
impossible in ©.

The components J; and J3 describe interesting scenarios that are realized by starting the
EM algorithm with parameters on the boundary of the polytope ©. On the components Ji,
the EM algorithm produces an estimate that maintains one of the rows or columns from the
data U, and it replaces the remaining table of format 2 x 3 or 3 x 2 by its MLE of rank
1. This process amounts to fitting a context specific independence (CSI) model to the data.
Following Georgi and Schliep [74], CSI means that independence holds only for some values
of the involved variables. Namely, J; expresses the constraint that X is independent of Y
given that Y is either 1 or 2. Finally, on the components J3, we have rank(A) = rank(B) = 2
and 7;; = 0 for one cell entry (4, 7).
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Definition 2.1.18. Let F = (A (R - BT),B* (A" - R)) be the ideal of EM fized points.

A minimal prime of F is called relevant if it contains none of the mn polynomials p;; =
2 =1 @i

In Example [2.1.8 only the first minimal prime is relevant. In Example [2.1.16|all minimal
primes besides I3 are relevant. Restricting to the relevant minimal primes is justified because
the EM algorithm never outputs a matrix containing zeros for positive starting data. Note
also that the p;; appear in the denominators in the expressions that were used in
our derivation of F.

Our main result in this subsection is the computation in Theorem [2.1.19, We provide a
census of EM fixed points for 4x4-matrices of rank » = 3. This is the smallest case where
rank can differ from nonnegative rank, and the boundary hypersurfaces appear.

Theorem 2.1.19. Let m =n =4 and r = 3. The radical of the EM fixed point ideal F has
49000 relevant primes. These come in 108 symmetry classes, listed in Table [2.9

Proof. We used an approach that mirrors the primary decomposition of binomial ideals [60].
Recall that the EM fixed point ideal equals

F = (A*x(R-B"),Bx(A"-R))

= (aw(d_rabw), be;(O_rijan) : k€ [rl;i € [m),j € [n]).

=1

Any prime ideal containing F contains either a;, or Y ", ryby for any k € [r],i € [m], and
either by; or > )" rjay for any k € [r],j € [n]. We enumerated all primes containing F
according to the set S of unknowns a,, by; they contain. There are 224 subsets and the
symmetry group acts on this power set by replacing A with B”, permuting the rows of A,
the columns of B, and the columns of A and the rows of B simultaneously. We picked one
representative S from each orbit that is relevant, meaning that we excluded those orbits for
which some p;; = >, _; aixby; lies in the ideal (S). For each relevant representative S, we
computed the cellular component Fg = ((F +(S)) : ([15)*°), where S¢ = {a11,...,bsa}\S.
Note that Fyp = C is the critical ideal. We next minimalized our cellular decomposition by
removing all representatives S such that Fr C Fg for some representative T in another orbit.
This led to a list of 76 orbits, comprising 42706 ideals Fg in total. For the representative
Fg, we computed the set Ass(Fg) of associated primes P. By construction, the sets Ass(Fg)
partition the set of relevant primes of F. The block sizes |Ass(Fg)| range from 1 to 7. Up to
symmetry, each prime is uniquely determined by its attributes in Table These are its set
S, its degree and codimension, and the ranks rA = rank(A), rB = rank(B), rR = rank(R),
rP = rank(P) at a generic point. Our list starts with the four primes from coming from
S = 0. See Example[2.1.29 In each case, the primality of the ideal was verified using a linear
elimination sequence as in |73, Proposition 23 (b)]. Proofs in Macaulay2 code are posted on
our website. O
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Below is the complete list of all 108 classes of prime ideals in Theorem [2.1.19, Three
components are marked with stars. After the table, we discuss these components in Examples

2.1.20 [2.1.21) and [2.1.22]

Table 2.2: Minimal primes of the EM fixed ideal F for 4x4-matrices of rank 3

set S [ [S][as [ ¥s ] deg | codim | rA [ rB [ rR [ rP | Jorbit] ]
0 0 0 0 1 24 0 0 4 0 1
0 0 0 1630 19 1 1 3 1 1
0 0 0 3491 16 2 2 2 2 1
0 0 0 245 15 3 3 1 3 1
{a11} 1 1 0 245 16 3 3 1 3 24
1 1 0 3491 17 2 2 2 2 24
{a11,a21} 2 2 0 20 17 3 3 1 3 36
2 2 0 245 17 3 3 1 3 36
2 2 0 1460 17 2 3 2 2 36
{a11,a21,as1} 3 3 0 53 17 3 3 1 3 24
3 3 0 188 17 2 3 2 2 24
*{all,a21,b11,b12}* 4 2 2 245 19 3 3 1 3 108
4 2 2 20 19 3 3 1 3 108 x 2
4 2 2 1460 19 2 3 2 2 108 x 2
4 2 2 2370 20 2 2 3 2 108
4 2 2 240 19 3 3 2 3 108
{a11, a1, b1, b22} 4 2 2 825 18 3 3 2 3 216
{an,agl,agl,a41} 4 4 0 689 16 2 3 2 2 6
4 4 0 474 17 1 2 3 1 6
{a11,a21, a12, a22} 4 4 0 592 17 2 3 2 2 36
4 4 0 9 17 3 3 1 3 36
{au, azl,a32,a42} 4 4 0 20 19 3 3 1 3 36 x 2
4 4 0 245 19 3 3 1 3 36
4 4 0 400 18 2 3 2 2 36
{all,azl,asl,bu,bm} 5 3 2 474 20 2 2 3 2 144
5 3 2 188 19 2 3 2 2 144
5 3 2 448 19 3 3 2 3 144
5 3 2 53 19 3 3 1 3 144
{a11,a21,a31,b21,b22} 5 3 2 125 18 3 3 2 3 288
{CL11, a21,a32, 42, b31} 5 4 1 723 19 3 3 2 3 144
{all,azl,ag,l,b11,b12,b13} 6 3 3 689 19 3 3 2 3 48
6 3 3 474 20 2 2 3 2 48
{all,azl,ag,l,bzl,bzg,bzg,} 6 3 3 21 18 3 3 2 3 96
{(111,(121,(132,1711,b12,b33} 6 3 3 2785 20 3 3 3 3 864
*{a11,a22,a33,b11,b22,b33}* 6 3 3 9016 21 3 3 4 3 576
6 3 3 245 21 3 3 1 3 576
{a11, a1, as1, a1, ba1, b2} 6 4 2 265 17 2 3 2 2 72
{CLH,a21,a12,a22,b11,b12} 6 4 2 592 19 2 3 2 2 432
6 4 2 9 19 3 3 1 3 432
6 4 2 104 19 3 3 2 3 432
{CL11,a21,a32,a42,b11,b12} 6 4 2 825 20 3 3 2 3 432
6 4 2 100 20 3 3 2 3 432
6 4 2 400 20 2 3 2 2 432
{au,azl,agg,a42,b31,b32} 6 4 2 301 19 3 3 2 3 216
{an,agl,agl,a41,a12,a22} 6 6 0 265 ].7 2 3 2 2 72
{all,a21,a31,a12,a22,a32} 6 6 0 35 16 2 3 2 2 24
{a11,a21, a12, azz, ass, as3} 6 6 0 180 18 2 3 2 2 36
6 6 0 9 19 3 3 1 3 36
{a11,a21,as1, a1, ba1, baz, bas} 7 4 3 35 17 2 3 2 2 48
{all,a21,a31,a42,bll,b12,b33} 7 4 3 557 20 3 3 3 3 576
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set S [ [S][as [ ¥s ] deg | codim [ rA [ rB [ rR [ rP | Jorbit] ]

{a11, a21, a12, a22,b11,b12,b13} 7 4 3 191 19 3 3 2 3 288
{CLH,CL21,CL32,CL42,b11,b12,b13} 7 4 3 140 20 3 3 2 3 288

7 4 3 125 20 3 3 2 3 288

{a11,a21,as2, as2,b11,b12, b33} 7 4 3 835 20 3 3 3 3 864
{a11,a21, as2, asz, bs1, bsz, baz} 7 4 3 49 19 3 3 2 3 144
w{a11, a21, asz, a3, b1, baz, baz}* 7 4 3 3087 21 3 3 4 3 1728
{a11, az1, as1, a12, a2z, ba1, baa} 7 5 2 31 19 3 3 2 3 864
{a11,a21,as1,a12,a42,b11,b12} 7 5 2 225 20 3 3 2 3 864
{a11, az1, a12, as2, as3, bi1, b2} 7 5 2 1193 21 3 3 3 3 1728
{a11, @21, as1, as1, ba1, baz, bas, bosa } 8 4 4 85 15 2 2 3 1 6
{a11, a1, as1, a1, ba1, baz, bas, baa } 8 4 4 81 18 2 3 2 2 36
{a11, @21, as1, a2, bi1, b1z, b1, bas} 8 4 4 557 20 3 3 3 3 96
{a11,a21, as1, a4z, b1, b1z, b3, baa} 8 4 4 167 20 3 3 3 3 288
{a11,a21,a12, azz, bi1,b12,b21, b2z} 8 4 4 850 20 2 2 3 2 108

8 4 4 45 19 3 3 2 3 108

{a11,a21,a12,a22,b11, b12, b23, baa } 8 4 4 9 21 3 3 1 3 216

8 4 4 1024 21 3 2 3 2 216

8 4 4 104 21 3 3 2 3 216 x 2

8 4 4 592 21 2 3 2 2 216

{a11,a21,a12,a32,b11,b12,b21,b23} 8 4 4 2121 21 3 3 3 3 1728
{a11,a21,a12, asz, bi1,b12,b23,b24} 8 4 4 2125 21 3 3 3 3 864
{a11, a1, as2, a2, bi1, b1z, bas, bosa} 8 4 4 2125 21 3 3 3 3 108
{a11,a21,a32, as2,b11,b12,b33,b34} 8 4 4 265 20 3 3 3 3 216
{a11,a21,a32,a43,b11,b12,b23,b34} 8 4 4 2205 21 3 3 4 3 432
{a11,a21,a32, ass, bi1, b2z, bag, bas} 8 4 4 1029 21 3 3 4 3 864
{all,a21,a31,a12,a22,b21,b22,b23} 8 5 3 35 19 3 3 2 3 576
{a11,a21,as1, a12,as2,b11,b12,b13} 8 5 3 265 20 3 3 2 3 576
{all,a21,a12,a32,a43,bll,b12,b23} 8 5 3 1185 21 3 3 3 3 3456
{a11,a21,a31, a1, a12,a22, b1, b2z} 8 6 2 425 18 2 3 3 2 432
{a11,a21,a12, azz, ass, ass, bi1,biz} 8 6 2 180 20 2 3 2 2 432

8 6 2 45 20 3 3 2 3 432
{au,a21,a31,a41,a12,a22,a32,a42} 8 8 0 85 15 1 3 3 1 6
{a11,a21,as1, a41,a12,a22,ass, asz} 8 8 0 81 18 2 3 2 2 36
{au,a21,a31,a12,a22,b11,b12,bgg,b24} 9 5 4 296 21 3 3 3 3 864
9 5 4 31 21 3 3 2 3 864

{au,a21,a31,a12,a42,b11,b12,bzl,b23} 9 5 4 425 21 3 3 3 3 3456
{a11,a21,as1, a1z, as2, bi1, b1z, bas, bas} 9 5 4 425 21 3 3 3 3 864
{an,a21,a12,a22,a33,b117612,bz3,bz4} 9 5 4 839 21 3 3 3 3 432
{a11, a21, @12, a32, as3, bi1, b1z, b1, bosa} 9 5 4 237 21 3 3 3 3 1152
{a11,a21, a12, asz, asz, bir, biz, bas, baa} 9 5 4 875 21 3 3 3 3 864
{a11, a21, as1, as1, a12, azz, ba1, baz, bag} 9 6 3 85 18 2 3 3 2 288
{a11,a21, as1,a12, asz, ass, bi1, biz, bas} 9 6 3 163 21 3 3 3 3 1728
{a11,a21, a12, aze, ass, as3, b1, biz, bz} 9 6 3 63 20 3 3 2 3 288
{a11,a21, as1,a41, a12, azz, asz, bar, boo } 9 7 2 85 18 2 3 3 2 288
{a11, @21, as1, a12, az2, b11, b1z, b1, boy, bas } 10 5 5 425 21 3 3 3 3 1728
{a11,a21, as1, a1z, a2z, b1, b1z, ba1, baz, bas} 10 5 5 85 20 3 3 3 3 864
{a11, @21, as1, a12, as2, b11, b1z, b1, boy, bos } 10 5 5 425 21 3 3 3 3 864
{a11,a21, as1, a1z, aa2, bi1, b1z, ba1, bas, baa } 10 5 5 85 21 3 3 3 3 864
{a11, @21, as1, a12, a2, asz, bi1, b1z, ba1, bao} 10 6 4 85 19 2 3 3 2 144
{a11,a21, as1, a1z, a2z, asz, b1, b1z, ba1, bas} 10 6 4 85 21 3 3 3 3 1728
{a11, @21, as1, a12, a2z, @42, bi1, b1z, bas, bos } 10 6 4 85 21 3 3 3 3 432
{a11,a21, as1,a12, a2z, ass, b1, b1z, b3, baa} 10 6 4 237 21 3 3 3 3 576
{a11, @21, as1, a12, a2z, @43, bi1, b1z, bas, bos} 10 6 4 175 21 3 3 3 3 864
{a11,a21, a12, a2z, as3, ass, b1, b1z, bas, baa } 10 6 4 225 21 3 3 3 3 216
{a11, a21,as1, aa1, a12, a2z, asz, ba1, baz, baz} 10 7 3 85 18 2 3 3 2 192
{a11,a21, as1, a1z, asz, asz, b11, biz, b1z, bar, boa } 11 6 5 85 21 3 3 3 3 1728
{a11, @21, as1, @12, a22, asz, bi1, b1z, bis, bor, bao, baz} 12 6 6 85 20 2 2 3 2 48
{a11,a21, as1,a12, asz, asz, bi1, biz, b1z, bar, boo, baa} 12 6 6 85 21 3 3 3 3 432
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We illustrate our census of relevant primes for three sets S that are especially interesting.

Example 2.1.20. Let S = {a11,a21,b11,b12}. The cellular component Fg is the ideal gener-
ated by S, det(R34), det(R), and the entries of the matrices B**R™, B (RT)34, RT Agz, (RT)3 A;.
In specifying submatrices, upper indices refer to rows and lower indices refer to columns. The
wdeal Fg 1s radical with 7 associated primes, to be discussed in order of their appearance in
Table . For instance, the prime (1) below has degree 245. The phrase “Generated by” is
meant modulo Fg:

(1) Generated by entries of BRT, ATR, and 2x2-minors of R. This gives 60 quadrics.
(2) Generated by entries of ATR, R**, and 2x2-minors of R, AY2. This gives 19 quadrics.
(2°) Mirror image of (2) under swapping A and BT.

(3) Generated by entries of AT R, 2x2-minors of A2 B3, and 3x3-minors of A, R'?* R1?4.
This gives 29 quadrics and 10 cubics.

(3°) Mirror image of (3) under swapping A and BT.
(4) Generated by 2x2-minors of Asz and B*. This gives 33 quadrics and one quartic.

(5) Generated by entries of R3j, 2x2-minors of Ry R35, A2 B, and 3x3-minors of R.
This gives 20 quadrics and 4 cubics.

These primes have the following meaning for the EM algorithm.

(1) The fized points P = ¢(A, R, B) given by this prime ideal are those critical points for
the likelihood function {y for which the parameters aqq, asy, bi1,be1 happen to be 0.

(2) The fized points P = ¢(A, R, B) given by this prime ideal have the last two rows of
P fized and equal to the last two rows of the data matrix U (divided by the sample
size uy . ). Therefore, the points coming from this ideal are the mazximum likelihood
estimates with these eight entries fived and which factor so that ai1, asi, by, bay are 0.

(3) Since the 3 x 3 minors of A lie in this ideal, we have rank(P) < 2. Therefore, these
fized points give an MLE of rank 2. This component is the restriction to V (Fg) of the
generic behavior on the singular locus of V.

(4) On this component, the duality relation in fails since rank(P) = 2 but rank(R)
= 3.

(5) The fized points P = ¢(A, R, B) given by this ideal have the four entries in the last 2
rows and last 2 columns of P fixed and equal to the corresponding entries in U (divided
by uyy ). Therefore, the points coming from this ideal are maximum likelihood estimates
with those four entries fixed, and parameters ai1,as1, bi1, by being 0. &
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Example 2.1.21. Let S = {a11, a21, aza, 43, b11, bag, bz }. The ideal Fs has codimension 21,
degree 3087, and is generated modulo (S) by 20 quadrics and two cubics. To show that Fg is
prime, we use the elimination method of [75, Proposition 23 (b)], with the variable x, taken
successively to be 144,743,734, A13, 721, 12, 714, T33, D21, A31, 41, 21, G32.  The last elimination
ideal is generated by an irreducible polynomial of degree 9, thus proving primality of Fgs.

If we add the relation P = AB to Fs and thereafter eliminate {A, B, R}, then we obtain
a prime ideal in Q[P|. That prime ideal has height one over the determinantal ideal {det(P)).
Any such prime gives a candidate for a component in the boundary of our model M. By
matching the set S with the combinatorial analysis in subsection|2.1.4}, we see that Figure
(b) corresponds to V(S). Hence, by Corollary[2.1.13, this component does in fact contribute
to the boundary OM. This is a special case of Theorem below; see equation
in Example [2.1.2)).

This component is the most important one for EM. It represents the typical behavior when
the output of the EM algorithm is not critical. In particular, the duality relation
fails in the most dramatic form because rank(R) = 4. As seen in Table this failure is
still rare (4.4%) for m = n = 4. For larger matriz sizes, however, the non-critical behavior
occurs with overwhelming probability. &

Example 2.1.22. Let S = {ay1, as, ass, bi1, bas, bsz}. The computation for the ideal Fg was
the hardest among all cellular components. It was found to be radical, with two associated
primes of codimension 21. The first prime has the largest degree, namely 9016, among all
entries in Table [2.4. In contrast to Example the set S cannot contribute to OM.
Indeed, for both primes, the elimination ideal in Q[P] is (det(P)). The degree 9016 ideal
18 the only prime in Table that has rank(R) = 4 but does not map to the boundary of
the model M. Starting the EM algorithm with zero parameters in S generally leads to the
correct MLE. &

2.1.6 Algebraic Boundaries

In Subsection [2.1.4] we studied the real algebraic geometry of the mixture model M for rank
three. In this subsection we also fix r = 3 and focus on the algebraic boundary of our model.
Our main result in this subsection is the characterization of its irreducible components.

Theorem 2.1.23. The algebraic boundary OM is a pure-dimensional reducible variety in
Pmn=t o All irreducible components have dimension 3m -+ 3n — 11 and their number equals
—1)(m—2 —6 —1)(n—2
L mm=)m=2)(n + 1= O)n(n—1)(n-2)

4

Besides the mn components {p;; = 0} that come from OA,,,_1 there are:

(a) 36(?) (Z) components parametrized by P = AB, where A has three zeros in distinct

rows and columns, and B has four zeros in three rows and distinct columns.
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(b) 36(’2) (g) components parametrized by P = AB, where A has four zeros in three
columns and distinct rows, and B has three zeros in distinct rows and columns.

This result takes the following specific form in the first non-trivial case:

Example 2.1.24. Form = n = 4, the algebraic boundary of our model M has 16 irreducible
components {p;; = 0}, 144 irreducible components corresponding to factorizations like

P11 P12 P13 Pia 0 ap ) 0 0 by

b
P21 P22 P23 Pa| _ |an 0 ass| boy by O b;i (2.1.20)
P31 P32 P33 P34 az azp 0 bsr bsy bss O 7
| P41 D42 P43 Dad | Q41 Q42 Q43 |
and 144 irreducible components that are transpose to those in (2.1.20), i.e.
[p11 pi2 i3 pud] [0 an ] 0 bip bz by
P21 P22 P23 Paa| _ | 0 axm ass| byy O boy boy (2.1.21)
P31 D32 P33 D34 azi 0 as by bsy O bay
| D41 P42 P43 Pad | las1 asz 0|

The prime ideal of each component is generated by the determinant and four polynomials of
degree siz. These are the mazimal minors of a 4 X 5-matriz. For the component (2.1.21)),
this can be chosen as

P11 P12 P13 Pua 0
D21 P22 P23 Do 0 (2.1.22)
P31 P32 P33 P34 D33 (p11p22 - p12p21)

P41 P42 P43 P44 p41(]912p23—1?13p22)+p43(p11p22—1712p21)

This matriz representation was suggested to us by Aldo Conca and Matteo Varbaro. &
We begin by resolving a problem that was stated in [85, §5] and [93] Example 2.13]:

Proposition 2.1.25. The ML degree of each variety (2.1.20) in the algebraic boundary OM
is 633.

Proposition [2.1.25] is a first step towards deriving an exact representation of the MLE
function U +— P for our model M = @—O—@. As highlighted in Table [2.1, the MLE P
typically lies on the boundary OM. We now know that this boundar has 304 = 16—|— 144+144
strata X1, Xo, ..., X304. If P lies on exactly one of the strata or , then we
can expect the coordmates of P to be algebraic numbers of degree 633 over the @tlonals Q.
This is the content of Proposition By [85, Theorem 1.1] the degree of P over Q is
only 191 if p happens to lie in the interior of M.

In order to complete the exact analysis of MLE for the 4 x 4-model, we also need to
determine which intersections X; N --- N X, are non-empty on OM. For each such non-
empty stratum, we would then need to compute its ML degree. This is a challenge left for
a future project.
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Proof of Theorem [2.1.23, By Corollary 2.1.12] an m x n matrix P of rank 3 without zero
entries lies on OME™™ if and only if all triangles A with B C A C A contain an edge of B
on one of its edges and a vertex of B on all other edges, or one of its vertices coincides with
a vertex of A and all other edges contain a vertex of B. We will write down these conditions
algebraically.

The columns of A correspond to the vertices of A, and the columns of B correspond to
the convex combinations of the vertices of A that give the columns of P = AB. If a vertex
of A and a vertex of A coincide, then the corresponding column of A has two 0’s. Otherwise
the corresponding column of A has one 0. If a vertex of B lies on an edge of A, then one
entry of B is zero.

We can freely permute the columns of the left m x 3 matrix A of a factorization — this
corresponds to permuting the rows of the corresponding right 3 x n matrix B. Thus we
can assume that the first column contains two 0’s and/or the rest of the 0’s appear in the
increasing order.

In the first case, there are (’T;) possibilities for choosing the three rows of A containing 0’s,
there are 3 choices for the row of B with two 0’s, (72‘) possibilities for choosing the positions
for the two 0’s, and (n — 2)(n — 3) possibilities for choosing the positions of the 0’s in the
other two rows of B. In the second case, there are (’;L) possibilities for choosing the 0’s in
the first column of A and (m; 2) choices for the positions of the 0’s in other columns. There
are (g) choices for the columns of B containing 0’s and 3! choices for the positions of the 0’s
in these columns. O

The prime ideal in can be found and verified by direct computation, e.g. by
using the software Macaulay?2 [81]. For general values of m and n, the prime ideal of an
irreducible boundary component is generated by quartics and sextics that generalize those in
Example [2.1.24] The following theorem was stated as a conjecture in the original December
2013 version of this section. That conjecture was proved in April 2014 by Eggermont,
Horobet and Kubjas [59].

Theorem 2.1.26 (Eggermont, Horobet and Kubjas). Let m > 4,n > 3 and consider the
irreducible component of OM in Theorem (b). The prime ideal of this component is
manimally generated by (T) (Z) quartics, namely the 4 x 4-minors of P, and by (g) sextics that
are indexed by subsets {i, 7, k} of {1,2,...,n}. These form a Grébner basis with respect to the
graded reverse lexicographic order. The sextic indexed by {i,j, k} is homogeneous of degree
e1+eateste+ejter in the column grading by Z" and homogeneous of degree 2e;+2ex+e3+-€4
in the row grading by Z™.

The row and column gradings of the polynomial ring Q[P] are given by deg(p;;) = e; and
deg(pi;) = e; where e; and e; are unit vectors in Z™ and Z" respectively.
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Example 2.1.27. If m =5 and n = 6 then our component is given by the parametrization

bui P12 P13 Pia P15 Pie 0 a2 a3
P21 P22 P23 P24 P25 P2 0 azx a3 0 bz bis bis bis bis
P31 P32 P33 DP3a P3s P3e| = |asi O asg| - [bar O baz bas bas bog
P41 P2 P43 Paa Pas P46 ag; agp 0 bsr b3 0 b3q bss bss
P51 Ps2 P53 Ps4a P55 Pse 51 G52 053

This parametrized variety has codimension T and degree 735 in P*. Its prime ideal is gen-
erated by 75 quartics and 20 sextics of the desired row and column degrees. &

The base case for Theorem [2.1.26)is the case of 4x 3-matrices, even though IM = MNA
is trivial in this case. The corresponding ideal is principal, and it is generated by the
determinant of the 4 x 4-matrix that is obtained by deleting the fourth column of .

The sextics in Theorem can be constructed as follows. Start with the polynomial

(((a1 Aaz) Vb)) Aaz) V (((a1 Aaz) V ba) Aag) V bs

that is given in . Now multiply this with the 3 x 3-minor b; V b; V by, of B. The result
has bidegree (6,6) in the parameters (A, B) and can be written as a sextic in P = AB. By
construction, it vanishes on our component of M, and it has the asserted degrees in the
row and column gradings on Q[P]. This is the generator of the prime ideal referred to in

Theorem 2.1.26].

Theorem [2.1.23| characterizes the probability distributions in the algebraic boundary of
our model, but not those in the topological boundary, since the following inclusion is strict:

OM C OMN Ay (2.1.23)

In fact, the left hand side is much smaller than the right hand side.

To quantify the discrepancy between the two semialgebraic sets in ([2.1.23)), we conducted
the following experiment in the smallest interesting case m = n = 4. We sampled from
the component (2.1.20) of OM N A5 by generating random rational numbers for the nine
parameters a;; and the eight parameters b;;. This was done using the built-in Macaulay?2
function random(QQ). The resulting matrix in M N A5 was obtained by dividing by the
sum of the entries. For each matrix we tested whether it lies in OM. This was done using
the criterion in Corollary 2.1.28] The answer was affirmative only in 257 cases out of 5000
samples. This suggests that OM occupies only a tiny part of the set dM N Ays. One of
those rare points in the topological boundary is the matrix

6 13 3 1 01 3
002 2
4 16 6 2 10 4
12 4 8 12| ~ |4 4 0 i’i?é (2.1.24)
5 9 10 9 41 2
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To construct this particular example, the parameters a;; and b;; were selected uniformly at
random among the integers between 1 and 4. Only 1 out of 1000 samples gave a matrix
lying in OM. In fact, this matrix lies on precisely one of the 304 strata in the topological
boundary oM.

We close with a quantifier-free semialgebraic formula for the topological boundary.

Corollary 2.1.28. An m x n-matriz P lies on the topological boundary OM if and only if
e the conditions of Theorem [2.1.9 are satisfied, and

e P contains a zero, or rank(P) = 3 and for each i,3,i,j" for which the conditions of
Theorem [2.1.9 are satisfied there exist k,l such that (2.1.16) - (2.1.16)[k«1] = 0 .

This corollary will be derived (in Appendix [2.1.7.1)) from our results in Subsection m

2.1.7 Appendix to Section (2.1
2.1.7.1 Proofs

This appendix furnishes the proofs for all lemmas, propositions and corollaries in this section.

Proof of Lemma[2.1.5. (3) = (2): If (A, A, B) remains fixed after one completion of the
E-step and the M-step, then it will remain fixed after any number of rounds of the E-step
and the M-step.

(2) = (3): By the proof of [122, Theorem 1.15], the log-likelihood function ¢;; grows strictly
after the completion of an E-step and an M-step unless the parameters (A, A, B) stay fixed,
in which case {; also stays fixed. Thus, the only way to start with (A, A, B) and to end with
it is for (A, A, B) to stay fixed after every completion of an E-step and an M-step.

(2) = (1): If (A, A, B) is the limit point of EM when we start with it, then it is in the set
of all limit points. This argument is reversible, and so we also get (1) = (2), (3). O

Proof of Lemma |2.1.11]. The if-direction of the first sentence follows from the following two
observations:

1. The function that takes P € RZ[™ to the vertices of B is continuous on all m x n
nonnegative matrices without zero columns, since the vertices of B are of the form P7/ P,
where P, ; denotes the j-th column sum of P.

2. The function that takes P € RZ;™ to the vertices of A is continuous on all m x n
nonnegative matrices of rank 7, since the vertices of A are solutions to a system of linear
equations in the entries of P.

For the only-if-direction of the first sentence assume that P lies in the interior of M,.
Each P’ of rank r in a small neighborhood of P has nonnegative rank . We can choose P’
in this neighborhood such that the columns of P’ are in span(P) and cone(P’) = t - cone(P)
for some ¢t > 1. Since P’ has nonnegative rank r, there exists an (r — 1)-simplex A such that
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B C A’ C A. Hence B is contained in the interior of A’. Finally, the second sentence is the
contrapositive of the first sentence. O

Proof of Corollary[2.1.13 The if-direction follows from the second sentence of Lemma[2.1.11
For the only-if-direction, assume that P € 0 M3 and it contains no zeros. We first consider
the case rank(P) = 3. By Lemma [2.1.11] every triangle A with B C A C A contains a
vertex of B on its boundary. Moreover, by the discussion above, every edge of A contains a
vertex of B, and (a) or (b) must hold. It remains to be seen that rank(P) < 2 is impossible
on the strictly positive part of the boundary of Ms. Indeed, for every rank 3 matrix P’ in
a neighborhood of P, the polygons A’, B’ have the property that B’ is very close to a line
segment strictly contained in the interior of A’. Hence, tB’ C A C A’ for some triangle A.
Thus P’ ¢ OMs3, and therefore P ¢ OM3. O

Proof of Corollary[2.1.13. The if-direction is immediate. For the only-if direction, consider
any P € M. If P € OMj3, then the only-if-direction follows from Corollary 2.1.12] If P lies
in the interior of M3, then let ¢ be maximal such that tB C A’ C A for some triangle A’.
Then either a vertex of A’ coincides with a vertex of A or an edge of A’ contains an edge of
tB. In the first case, we take A = A’. In the second case, we take A = %A’. In the first case,
a vertex of A coincides with a vertex of A, and in the second case, an edge of A contains an
edge of B. m

Proof of Corollary[2.1.14 If P has a nonnegative factorization of size 3, then it has one that
corresponds to a geometric condition in Corollary [2.1.13] The left matrix in the factorization
can be taken to be equal to the vertices of the nested triangle, which can be expressed as
rational functions in the entries of P. Finally, the right matrix is obtained from solving
a system of linear equations with rational coefficients, hence its entries are again rational
functions in the entries of P. O]

Proof of Proposition |2.1.15. Consider the sequence of linear maps
T BT n R m AT T
R" — R" — R™ — R". (2.1.25)

The ideal C says that the two compositions are zero. It defines a variety of complexes [114),
Example 17.8]. The irreducible components of that variety correspond to irreducible rank
arrays |114, §17.1] that fit inside the format and are maximal with this property.
By [114, Theorem 17.23], the quiver loci for these rank arrays are irreducible and their
prime ideals are the ones we listed. These can also be described by lacing diagrams [114}
Prop. 17.9].

The proof that C is radical was suggested to us by Allen Knutson. Consider the Zelevinski
map [114}, §17.2] that sends the triple (AT, R, BT) to the (r+m+n+r) X (r+m+n-+r) matrix

0 0o BT 1
0O R 1 O
AT 1 0 0
1 0 0 0
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Next apply the map that takes this matrix to the big cell (the open Borel orbit) in the flag
variety GL(2r + m + n)/parabolic(r, m,n,r) corresponding to the given block structure.
Our scheme is identified with the intersection of two Borel invariant Schubert varieties.
The first Schubert variety encodes the fact that there are 0’s in the North West block, and
the (r+n+m) x (r4+m) North West rectangle has rank < m. The second Schubert variety
corresponds to the (r+n)x (r+m-+n) NorthWest rectangle having rank < n. The intersection
of Schubert varieties is reduced by [28| §2.3.3, p.74]. Hence the original scheme is reduced,
and we conclude that C is the radical ideal defining the variety of complexes ([2.1.27)). m

The following relations hold for P = AB and R on the variety of critical points V'(C):
PP R=0 and R-P" =0. (2.1.26)

These bilinear equations characterize the conormal variety associated to a pair of determi-
nantal varieties. Suppose P is fixed and has rank r. Then P is a nonsingular point in V),
and ([2.1.26]) is the system of linear equations that characterizes normal vectors R to )V at P.

Example 2.1.29. Let m =n =4 and r = 3. Then C has four minimal primes, correspond-
ing to the four columns in the table below. These are the ranks for generic points on that
prime:

rank(A) =0 rank(A) =1 rank(A) = 2 rank(A) = 3

rank(R) =4  rank(R) =3  rank(R)=2  rank(R) =1

rank(B) =0  rank(B) =1  rank(B) =2  rank(B) =3

The lacing diagrams that describe these four irreducible components are as follows:

*—o *—o *—o *—o
e o—o o e o6—o o e o—o o *—eo o6—0°
e o—o o e o—o o —eo o6—° —eo 06—
e o&—o o *—eo o—° *—eo o—9° *—eo o6—9°

For instance, the second minimal prime is C + <2><2-mm0fr’s of A and B> + <det(R)>.

Note that the ranks of P = AB and R are complementary on each irreducible component.
They add up to 4. The last component gives the behavior of EM for random data: the MLE
P has rank 3, it is a nonsingular point on the determinantal hypersurface V, and the normal
space at P 1is spanned by the rank 1 matrix R. This is the duality . The third
component expresses the behavior on the singular locus of V. Here the typical rank of both

P and R s 2. %

Proof of Proposition 2.1.25. Let f, g1, g2, g3, g4 denote the 4 x4 minors of the matrix (2.1.22)),
where deg(f)=4 and deg(g;) = 6. Fix i € {1,2,3,4}, select ujy,...,uy € N randomly, and
set

U1 U12 s Ug4

P11 D12 s D44
L = . 2.1.27
P11 8f/3p11 D12 af/aplz crt Paa 3f/3p44 ( )

P11 agi/apn P12 agi/apw ot Paa 391/(9]944
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This is a 4x 16 matrix. Let A\; and \s be new unknowns and consider the row vector
[1 —uy X X - L. (2.1.28)

Inside the polynomial ring Q[p;;, A\x] with 20 unknowns, let I denote the ideal generated by
{f. 91,92, 93, g1}, the 16 entries of (2.1.28)), and the linear polynomial pi1 +pia+- - -+ pas — L.
Thus I is the ideal of Lagrange likelihood equations introduced in [82, Definition 2|. Gross
and Rodriguez [82, Proposition 3] showed that I is a O-dimensional radical ideal, and its
number of roots is the ML degree of the variety V' (f, g1, g2, 93, g4). We computed a Grobner
bases for I using the computer algebra software Magma [158]. This computation reveals that
V(I) consists of 633 points over C. O

Proof of Corollary[2.1.28 A matrix P has nonnegative rank 3 if and only if the conditions of
Theorem are satisfied. Assume rank(P) = 3. By Corollary 2.1.12] a matrix P € M lies
on the boundary of M if and only if it contains a zero or for any triangle A with B C A C A
every edge of A contains a vertex of B and (a) or (b) holds. By proof of Theorem the
latter implies that for each 4, j, 7', j’ for which the conditions of Theorem [2.1.9] are satisfied
there exist k, ! such that (2.1.16) - (2.1.16))[k <> ] = 0. On the other hand, if P lies in the
interior of M5™", then by the proof of Corollary , the following holds: there exists a
triangle A with a vertex coinciding with a vertex of A or with an edge containing an edge
of B, and such that the inequality (2.1.16) - (2.1.16)[k <> (] > 0 holds for all k,{ in the
corresponding semialgebraic condition. O

2.1.7.2 Basic Concepts in Algebraic Geometry

This appendix gives a synopsis of basic concepts from algebraic geometry that are used in
this section. It furnishes the language to speak about solutions to polynomial equations in
many variables.

2.1.7.3 Ideals and Varieties

Let R = K|[xy,...,x,] be the ring of polynomials in n variables with coefficients in a subfield
K of the real numbers R, usually the rational numbers K = Q. The concept of an ideal I
in the ring R is similar to the concept of a normal subgroup in a group.

Definition 2.1.30. A subset I C R is anideal in R if I is an subgroup of R under addition,
and for every f € I and every g € R we have fg € I. Equivalently, an ideal I is closed
under taking linear combinations with coefficients in the ring R.

Let T be any set of polynomials in R. Their set of zeros is called the variety of T'. It is
denoted
V(T) = {PeC": f(P)=0forall feT}.

Here we allow zeros with complex coordinates. This greatly simplifies the study of V(T)
because C is algebraically closed, i.e. every non-constant polynomial has a zero.
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The ideal generated by T, denoted by (T), is the smallest ideal in R containing T'. Note
that
V(T) = V{(T)).

In computational algebra, it is often desirable to replace the given set T' by a Grobner basis
of (T'). This allows us to test ideal membership and to determine geometric properties of
the variety V(7).

Definition 2.1.31. A subset X C C" is a variety if X = V(T') for some subset T C R.

Hilbert’s Basis Theorem ensures that here T' can always be chosen to be a finite set of
polynomials. The concept of variety allows us to define a new topology on C”. It is coarser
than the usual topology.

Definition 2.1.32. We define the Zariski topology on C" by taking closed sets to be the

varieties and open sets to be the complements of varieties. This topology depends on the
choice of K.

If K =Q then X = {+\/§,—\/§} is a variety (for n = 1) but Y = {+\/§} is not a
variety. Indeed, X =Y is the Zariski closure of Y, i.e. it is the smallest variety containing
Y, because the minimal polynomial of v/2 over Q is #2 — 2. Likewise, the set of 1618 points
in Example is a variety in C2. It is the Zariski closure over Q of the four points on the
topological boundary on the left in Figure 2.2 The following proposition justifies the fact
that the Zariski topology is a topology.

Proposition 2.1.33. Varieties satisfy the following properties:
1. The empty set ) = V(R) and the whole space C" =V ((0)) are varieties.

2. The union of two varieties is a variety:

VIHUV() = V({I-J) = V(InNJ).
3. The intersection of any family of varieties is a variety:

V() = V({Li:ieT)).

i€
Given any subset X C C" (not necessarily a variety), we define the ideal of X by
I(X) = {feR:f(P)=0forall Pe X}.

Thus, 1(X) consists of all polynomials in R that vanish on X. The Zariski closure X of X
equals
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2.1.7.4 Irreducible Decomposition

A variety X C C" is irreducible if we cannot write X = X; U X5, where X;, Xy C X are

strictly smaller varieties. An ideal I C R is prime if fg € I implies f € [ or g € I. For
instance, I({£v/2}) = (2% — 2) is a prime ideal in Q[z].

Proposition 2.1.34. The variety X is irreducible if and only if I(X) is a prime ideal.

An ideal is radical if it is an intersection of prime ideals. The assignment X — I(X) is
a bijection between varieties in C" and radical ideals in R. Indeed, every variety X satisfies
V(I(X)) =X.

Proposition 2.1.35. Every variety X can be written uniquely as X = X7 U XoU---U X,
where X1, Xo, ..., X,, are irreducible and none of these m components contains any other.

Moreover,
I(X) = I(X)NI(Xy)N---NI(X,)

is the unique decomposition of the radical ideal 1(X) as an intersection of prime ideals.

For an explicit example, with m = 11, we consider the ideal with the last
intersectant removed. In that example, the EM fixed variety X is decomposed into 11
irreducible components.

All ideals I in R can be written as intersections of primary ideals. Primary ideals are
more general than prime ideals, but they still define irreducible varieties. A minimal prime
of an ideal I is a prime ideal J such that V(J) is an irreducible component of V(7). See
[147, Chapter 5] for the basics on primary decomposition.

Definition 2.1.36. Let I C R be an ideal and f € R a polynomial. The saturation of I
with respect to f is the ideal

(I:f*)={(g€ R:gf" eI for somek > 0).

Saturating an ideal I by a polynomial f geometrically means that we obtain a new ideal
J = (I : f*) whose variety V(J) contains all components of the variety V(I) except for
the ones on which f vanishes. For the more on these concepts from algebraic geometry we
recommend the text [46].

2.1.7.5 Semialgebraic Sets

The discussion above also applies if we consider the varieties V' (T') as subsets of R" instead of
C™. This brings us to the world of real algebraic geometry. The field R of real numbers is not
algebraically closed, it comes with a natural order, and it is fundamental for applications.
These features explain why real algebraic geometry is a subject in its own right. In addition
to the polynomial equations we discussed so far, we can now also introduce inequalities:
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Definition 2.1.37. A basic semialgebraic set X C R" is a subset of the form
X ={PeR": f(P)=0 forall f €T and g(P) >0 for all g € S},

where S and T are finite subsets of R. A semialgebraic set is a subset X C R™ that is obtained
by a finite sequence of unions, intersections, and complements of basic semialgebraic sets.

In other words, semialgebraic sets are described by finite Boolean combinations of polyno-
mial equalities and polynomial inequalities. For basic semialgebraic sets, only conjunctions
are allowed. For example, the following two simple subsets of the plane are both semialge-
braic:

X={(z,y) eR*:z>0andy >0} and Y ={(z,y) €R*:2>0o0ry>0}.

The set X is basic semialgebraic, but Y is not. All convex polyhedra are semialgebraic.
A fundamental theorem due to Tarski states that the image of a semialgebraic set under a
polynomial map is semialgebraic. Applying this to the map , we see that the model M
is semialgebraic. The boundary of any semialgebraic set is again semialgebraic. The formulas
in Theorem [2.1.9] and Corollary make this explicit. For more on semialgebraic sets
and real algebraic geometry see [13].
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2.2 Positive Semidefinite Rank

The set of matrices of given positive semidefinite rank is semialgebraic. In this section we
study the geometry of this set, and in small cases we describe its boundary. Furthermore, for
general values of the positive semidefinite rank, we give a conjecture for the description of
this boundary. Our proof techniques are geometric in nature. As in the previous section, we
think of nonnegative matrices as slack matrices of pairs of nested polyhedra, and we interpret
positive semidefinite rank via the existence of nested spectrahedral shadows between these
polyhedra. This section is based on joint work with Kaie Kubjas and Richard Robinson
titled Positive Semidefinite Rank and Nested Spectrahedra |104].

2.2.1 Introduction

Standard matrix factorization is used in a wide range of applications in statistics, optimiza-
tion, machine learning, and others. Given a p X ¢ real matrix M € RP*? of rank r, the goal
is to find vectors ay, ..., a,, by, ..., b, € R" such that the 7, j-th entry of M is M;; = (a;, b;).

Often times, however, the matrix at hand as well as the elements in the factorization are
imposed certain positivity structure [64, 76, [77]. In statistical mixture models, for instance,
we need to find a nonnegative factorization of a matrix M with nonnegative entries [43]
75, 105, |156]. In other words, the vectors a; and b; need to be nonnegative. Another
type of factorization of a matrix with nonnegative entries, which has applications in convex
optimization and quantum information theory, is positive semidefinite factorization. The
vectors a; and b; are now replaced by k£ x k symmetric positive semidefinite matrices A;, B; €
S*. Here the space of symmetric k X k matrices is denoted by S*, the cone of k x k positive
semidefinite matrices by ¥, and the inner product on S* is given by

(A, B) = trace(AB).

Definition 2.2.1. Given a matriz M € RZ,? with nonnegative entries, a positive semidef-
inite (psd) factorization of size k is a collection of matrices Ay, ey Ap, By, ..., By € 8% such
that M;; = (A;, Bj). The positive semidefinite rank (or psd rank) of the matriz M is the
smallest number k for which such a factorization exists. It is denoted by rank,s (M ).

We remark that, given two psd matrices A, B € Sﬁ, it is always the case that (A, B) > 0,
which is why the entries of the matrix M need to be nonnegative.

The geometric aspects as well as many of the properties of positive semidefinite rank
have been studied in a number of recent articles |65, 76| 77, |78, 79, |80].

In this section we study the space Pﬁ +1 of p x g nonnegative real matrices of rank at
most r and psd rank at most k. If p and ¢ are understood from the context, we write P,
for short. By Tarski-Seidenberg’s Theorem [13, Theorem 2.76] this set is semialgebraic, i.e.
it is defined by finitely many polynomial equations and inequalities, or is a finite union of
such sets. It lies inside the variety of p x ¢ matrices of rank at most r, denoted by VP*? (for
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short V,). In this section, we study the geometry of P, ;. In particular, we investigate the
boundary of P, as a subset of V,.

Definition 2.2.2. The topological boundary of P, , denoted by OP,, is its boundary as a
subset of V,.. In other words, it consists of all matrices M € V, such that for every e > 0, the
ball with radius € and center M, denoted by B.(M), satisfies the condition that B.(M) NV,
intersects both P, and its complement V, \ Prj. The algebraic boundary of P, denoted
by OP,, is the Zariski closure of OP,; over R.

In this section we focus on studying 877,’;:? - In other words, we restrict to the case when

the rank of our matrix is 1 more than the psd rank. In Subsection [2.2.3] we completely

describe OP55, as well as Pg,?. More precisely, Corollary [2.2.13] shows that a matrix M
lies on the boundary P57 if and only if in every psd factorization M;; = (4;, B;), at least
three of the matrices Ay,..., A, have rank 1 and at least three of the matrices By, ..., B,
have rank 1.

In Subsections @I and H we study the general case Ppi{,, and we attempt to
extend our results from the k = 2 case. We restrict ourselves to the simplest situation where
p=q=k+1. Conjecture is an analogue to Corollary [2.2.13] It states that a matrix M
lies on the boundary 873,!_6:; kx ™ if and only if for every psd factorization M;; = (A;, B;), all
of the matrices Ay, ... ,AkH have rank 1 and all of the matrices By, ..., Bxy1 have rank 1. In
Subsection [2.2.5| we give theoretical and computational evidence supporting this conjecture.
The code for our computations is available at

https://github.com/kaiekubjas/psd-rank .

Our results are based on the geometric interpretation of psd rank explained in Subsec-
tion [[.1] We review this interpretation once again in Subsection Given a nonnegative
matrix M of rank n + 1, we can associate to it two nested polytopes P C ) C R". Theo-
rem m, proven in [79], shows that M has psd rank at most & if and only if we can fit a
projection of a slice of the cone of k X k positive semidefinite matrices S_’ﬁ between P and Q).
When we restrict to the case when the rank of M is 3, this seemingly sophisticated result
states that M has psd rank 2 if and only if we can nest an ellipse between the two nested
polygons P and @ associated to M. In Theorem we show that M lies on the boundary
P55 >4 if and only if every ellipse that nests between the two polygons P and () has to touch
at least three of the vertices of P_and at least three of the edges of Q In Conjecture [2.2.18

we give an analogue to Theorem [2.2.12f for the general case 8Pkl_fglk) (b1

2.2.2 Preliminaries

Many of the basic properties of positive semidefinite rank have been studied in [65]. We give
a brief overview of the results used in the present section.
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2.2.2.1 Bounds

The positive semidefinite rank of a matrix is bounded below by the inequality
kpsa(M) + 1
rank(M) < (ran P dg )+ )

This holds because we can vectorize the symmetric matrices in a given psd factorization and
consider the trace inner product as a dot product. On the other hand, the psd rank is upper
bounded by the nonnegative rank

rank,sq(M) < rank, (M)

since we can obtain a psd factorization from a nonnegative factorization by using diagonal
matrices. The psd rank of M can be any integer satisfying these inequalities.

2.2.2.2 Geometric description

We now describe the geometric interpretation of psd rank. Let P C R™ be a polytope and
@@ € R"™ be a polyhedron such that P C (). Assume that P is the convex hull of p points:
P = conv{vy,...,v,} and @ has the following inequality representation: () = {z € R"\h?x <
2,7 = 1,...,q}, where vy, ..., ,vp, b1, ..., hy € R™ and 2y,...,2, € R. Then, the generalized
slack matriz of the pair P, @), denoted Sp is the p x ¢ matrix whose 7, j-th entry is z; — h?vi.

Remark 2.2.3. The generalized slack matriz depends on the representations of P and Q)
as the convex hull of finitely many points and as the intersection of finitely many halfspaces
whereas the slack matriz depends only on P and ). We will abuse the notation and write
Spq for the generalized slack matriz as by the next result the rank,sq(Spg) is independent
of the representations of P and Q.

Theorem 2.2.4 (Proposition 3.6 in |79]). Let P C R™ be a polytope and Q) C R™ a polyhedron
such that P C Q. Then, rank,.(Spg) is the smallest integer k for which there exists an
affine subspace L of S* and a linear map m such that P C (LN SY) C Q.

A spectrahedron of size k is a slice of the cone of k x k positive semidefinite matrices
S_Iﬁ. A spectrahedral shadow of size k is a projection of a spectrahedron of size k. Therefore,
Theorem states that the matrix Spg has psd rank at most £ if and only if we can fit
a spectrahedral shadow of size k between P and Q).

Remark 2.2.5. Given M the polytopes P and Q) are not unique, but the statement of The-
orem still holds regardless of which pair P,Q, such that M = Spg, is chosen.

Conversely, given a matrix M, after rescaling the rows of M (which doesn’t change its
psd rank), we can find polytopes P and @ such that M is their generalized slack matrix.
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Lemma 2.2.6 (Lemma 4.1 in [65]). Let M € Rgﬁq be a nonnegative matriz and assume that
M1 =1. Let rank(M) =n + 1. Then, there exist polytopes P,Q C R" (where P and Q) are
bounded) such that P C @ and M is the generalized slack matriz of the pair P, Q).

We define the interior of ngq to be the set of matrices M & 735 zq for which there exists

€ > 0 such that Vi N B(M) C Py,*, where B.(M) is the ball of radius € centered M. We
make the following observation.

Lemma 2.2.7. Let M € REG? be a matriz with positive entries. The following are equivalent
1. M lies in the interior of Py,

2. When we rescale the rows of M so as to obtain a matriz N that satisfies N1 =1, the
matriz N lies in the interior of P. N{P : P1 =1} (in other words, there exists € > 0
such that B.{(N)NV,N{P: P1 =1} C P, N{P: P1l=1}).

Lemma [2.2.7] whose proof can be found in Subsection [2.2.6.1] implies that if we want to
study the boundary of P, as a subset of V,, we can restrict ourselves to the boundary of
the space P.r N {P : P1 =1} as a subset of V, N{P : P1 =1}, and Lemma [2.2.] gives us
a recipe for thinking of the elements of this space geometrically.

2.2.2.3 Comparison with nonnegative rank

Three different versions of nonnegative matrix factorization appear in the literature: In [156]
Vavasis considered the exact nonnegative factorization which asks whether a nonnegative
matrix M has nonnegative factorization of size equal to the rank of M. The geometric
version of this question asks whether we can nest a simplex between the polytopes P and Q).

In [75] Gillis and Glineur defined restricted nonnegative rank as the minimum value r
such that there exist A € RE*" and B € R}*? with M = AB and rank(A) = rank(M). The
geometric interpretation of the restricted nonnegative rank asks for the minimal r such that
there exist r points whose convex hull can be nested between P and ().

The geometric version of the nonnegative rank factorization asks for the minimal r such
that there exist r points whose convex hull can be nested between an (r — 1)-dimensional
polytope inside a g-simplex. These polytopes are not P and () as defined in this section.
See [43, Theorem 3.1] for details.

In the positive semidefinite rank case there is no distinction between the psd rank and
the restricted psd rank, because taking an intersection with a subspace does not change the
size of a spectrahedral shadow while intersecting a polytope with a subspace can change
the number of vertices. Conjecture [2.2.25] also suggests that there is no distinction between
the spectrahedron and the spectrahedral shadow case. This is not the case with simplices
and polytopes in the nonnegative rank case, or equivalently the exact nonnegative matrix
factorization and restricted nonnegative factorization.
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2.2.3 DMatrices of rank 3 and psd rank 2

In this subsection we study the set P55 of matrices of rank at most 3 and psd rank at most
2. Rather than providing a semialgebraic description of Ps o, we completely characterize its
topological and algebraic boundaries 9Ps 2 and Wg,?

Consider a matrix M € RZ;? of rank 3. We get two nested polygons P C @ C R2
Theorem now has the following simpler form.

Corollary 2.2.8 (Proposition 4.1 in [79]). Let M be a nonnegative matriz of rank three
such that M1 = 1. Let P C Q C R? be two nested polygons for which M = Spg. Then
rank,;(M) = 2 if and only if we can fit an ellipse between P and ().

Using this geometric interpretation of psd rank 2, we give a condition on when a matrix
M lies in the interior of Ps5.

Lemma 2.2.9. A matriz M € RE? of rank 3 lies in the interior of Pss if and only if there
exist polygons P C Q C R? and an ellipse E such that M is the generalized slack matrixz of
P and Q, PC E C Q, and the boundary of E does not contain any of the vertices of P.

The proof of this lemma can be found in Subsection [2.2.6.2, We can now show how Ps 5

relates to the variety Vs.

Proposition 2.2.10. The Zariski closure Ofpféq over the real numbers is the rank-3 variety
Vp<a.

Proof. Suppose there exists a ball B C RP*? such that BN Vs C Pso. This implies that the
dimension of P{5? is equal to that of V™, and since P§5? C V§*¢ and V5™ is irreducible,
the Zariski closure of P2 over the real numbers equals V.

We show how to find such a ball B. It suffices to find a matrix M in the interior of
Pi3%. By Lemma , it would suffice to find nested polygons P C @ C R? such that P
has p vertices, () has ¢ sides and there exists an ellipse nested between them that does not
touch the vertices of P. Such a configuration certainly exists, for example, we can consider
a regular p-gon P centered at the origin with length 1 from the origin to any of its vertices,
and a regular ¢g-gon @ centered at the origin with length 5 from the origin to any of its sides.
Then, we can fit a circle of radius 2 and center the origin between P and () so that it doesn’t
touch the vertices of P. O

Remark 2.2.11. The set of p X q matrices of psd rank at most k is connected as it is the
image under the parametrization map of the connected set (S¥)P x (S%)4.

The following theorem is the main result of this section.

Theorem 2.2.12. We describe the topological and algebraic boundaries of Pé’éq.



CHAPTER 2. MATRICES AND POSITIVITY o7

a. A matriz M € P§3? lies on the topological boundary OP55? if and only if M; =0 for
some 1,7, or each ellipse that fits between the two polygons P and @) contains at least
3 vertices of the inner polygon P and is tangent to at least 3 edges of the outer polygon

Q.
b. A matriz M € Pgéq = Vs lies on the algebraic boundary 8735’2(1 if and only if M;; =0

for some i, 5 or there exists an ellipse that contains at least three vertices of P and is
tangent to at least three edges of ().

c. The algebraic boundary of 7>§’7§‘1 is the union of (g) (g) + pq irreducible components.

Besides the pq components M;; = 0, there are (g) (g) components each of which is
defined by the 4 x 4 minors of M and one additional polynomial equation with 1035
terms homogeneous of degree 24 in the entries of M and homogeneous of degree 8 in

each row and each column of a 3x 3 submatriz of M.

Proof.

(a) Only if: We will show the contrapositive of the statement: If all entries of M are positive
and there is an ellipse between P and () whose boundary contains at most two vertices of P
or is tangent to at most two edges of @, then M lies in the interior of M 5.

First, if there is an ellipse E between P and () whose boundary touches neither of the
polytopes, then M is in the interior of P§5? by Lemma If at most two edges of Q
are tangent to the boundary of the ellipse E, then P C F C @ can be transformed by a
projective transformation such that the two tangent facets are x = 0 and y = 0 and that
the points of tangency are (0,1) and (1,0). Now, the equation of the ellipse £ has the form
ax® + bxy + cy? + dx + ey + f = 0. We know that the only point that lies on the ellipse £
with = 0 is the point (0,1) since E touches the line x = 0 at (0,1). If we plug in z = 0,
we get

ey’ +ey+ f=0.

Since ¢ > 0, we must have cy®> + ey + f = (y — 1)%.. Therefore, ¢ = l,e = =2, f = 1.
Similarly, since E touches the line y = 0 at (1,0), when we plug in y = 0, we get that
ar’ +dr+ f = (x — 1) s0,a=1,d = =2, f = 1. Thus, the ellipse E has the form

{(z,y) : 2° + bry + y* — 22 — 2y + 1 = 0},

for some b. The values of b for which this is an ellipse are —2 < b < 2. Moreover, if we
choose a slightly smaller value of b in this family, we would obtain a slightly larger ellipse
E’ that contains E and touches E only at the points (1,0) and (0,1). Thus, we would have
P C E C E' C Q and the ellipse E’ does not touch P. Thus, by Lemma [2.2.9] M lies in the
interior of ngq. The case when E goes through at most two vertices of P follows by duality.

If: By Lemma 2.2.9] if M € Ps, lies in the interior, then there is an ellipse between P
and () that does not touch P. Thus, if every ellipse nested between P and () contains at
least three of the vertices of P and touches at least three of the facets of ), then M lies on
the boundary 0P;o
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(b), (c) If M € RP*9, then one can define polytopes P and () as in the nonnegative case.
The difference is that P C @ does not hold anymore. Hence given three points a,b, c in
P? and three lines d, e, f in P?, each given by three homogeneous coordinates, we seek the
condition that there exists an conic X such that a, b, c lie on X and d, e, f are tangent to X.

Ti1 T2 L13
Let X = |x12 x99 23| be the matrix of a conic. Then the corresponding ellipse goes
T13 T23 33
through the points a, b, ¢ if and only if

a’Xa=b"Xb=c"Xc=0. (2.2.1)
Similarly, the lines d, e, f are tangent to the ellipse if and only
d'Yd=eYe=fTYf =0, (2.2.2)

where XY = I3. We seek to eliminate the variables X and Y from and .

Let [a, b, ¢] denote the matrix whose columns are a, b, c. First we assume that [a, b, c] is
the 3 x 3-identity matrix. Then we proceed in two steps:

1) The equations @ imply that xi1, x99, x33 are zero. We make the corresponding
replacements in equations @D

2) We use [147, formula (4.5) on page 48] for the resultant of three ternary quadrics to
get a single polynomial in the entries of d, e, f.

Now we use invariant theory to obtain the desired polynomial in the general case. Let g €
GL3(R). The ellipse X goes through the points a, b, ¢ and touches the lines d, e, f if and only if
the ellipse g~ X ¢! goes through the points ga, gb, gc and touches the lines g~ 7d, g Te, g7 f.
Thus our desired polynomial belongs to the ring of invariants R[V3@1V*3]GLs®) where V' = R3
and the action of GL3(R) on V3 @& V*3 is given by

g-(a,b,c,d,e, f):= (ga,gb,gc,g "d,g "e,g7 " f).

The First Fundamental Theorem states that R[V? @ V*3]GLs(®) i generated by the bilinear
functions (i|j) on V3 & V*3 defined by

(il)) : (a,b.c,d,e, ) = (la, b, [d.e, f])y.

For the FFT see for example |102, Chapter 2.1]. In the special case when [a, b, | is the 3 x 3
identity matrix, (i|j) maps to the (i,7)-th entry of [d,e, f]. Hence to obtain the desired
polynomial in the general case, we replace in the resultant obtained in the special case the
entries of the matrix [d, e, f] by the entries of the matrix [a, b, c|T[d, e, f].

Maple code for doing the steps in the previous paragraphs can be found at our website.
This program outputs one polynomial of degree 24 with 1035 terms. More precisely, this
polynomial is homogeneous of degree 8 in each of the rows and the columns of the matrix

—a —| ([ ]
— b —| |d e f|. By construction, if this homogeneous polynomial vanishes and the
—c =1L
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convex hull of a, b, ¢ lies inside the triangle with edges d, e, f and a, b, c,d, e, f are real, then
there exists an ellipse nested between the polytopes touching d, e, f and containing a, b, c.
Therefore, the Zariski closure of the condition that the only possible ellipses that can fit
between the two polygons touch at least 3 edges of the outer polygon and at least 3 vertices
of the inner polygon is exactly that there exists an ellipse that touches at least 3 edges of @
and at least 3 vertices of P. This proves (b).

To prove (c), let M € V§*? be such that M = AB and a, b, ¢ are three of the rows of A
and d, e, f are three of the columns of B. Then, the above-computed polynomial contains
variables only from the entries of a 3 x 3 submatrix of M corresponding to these rows and
columns. For each three rows of and three columns of M we have one such polynomial, so
the algebraic boundary is given by the union over each 3 rows and 3 columns of M of the
variety defined by the 4 x 4 minors of M. The corresponding polynomial has degree 24 and
1035 terms. [

Here is an algebraic version of Theorem [2.2.12]

Corollary 2.2.13. A matriz M € ]Rgxoq lies on the boundary OPszo if and only if for every

size 2 psd factorization M;; = (A;, By;), at least three of the matrices Ay, ..., A, € S¥ have
rank one and at least three of the matrices By, ..., B, € S_’f_ have rank one.

We now investigate the topological boundary more thoroughly.

Proposition 2.2.14. Suppose M € gzq 15 strictly positive. Then M lies on the topological
boundary if and only if there exists a unique ellipse that nests between P and Q).

Proof. A matrix in the relative interior of M55 will have multiple ellipses nested between
P and @Q: By the only if direction of the proof of Theorem part (a), there exists an
ellipse that is contained in @) and strictly contains P. We can just take slight scalings of this
ellipse to get multiple ellipses. This proves the “if” direction.

For the “only if” direction, suppose M lies on the topological boundary and E, and E;
are two ellipses nested between P and (). Let E)/; be the ellipse determined by averaging
the quadratics defining Ey and Ej, i.e.

Eijp ={x | qo(x) + ¢:(z) > 0} where E; = {z | ¢i(x) > 0} .

It is straightforward to see that E) /5 is nested between P and Q. Furthermore, if v is a vertex
of P, then E,/; passes through v if and only if both Ey and E; pass through v. Similarly,
if f is a facet of @, then F,, is incident to f if and only if £y and F; are tangent to f
at the same point. By Theorem , the ellipse £}/, must pass through three vertices of
P and three facets of (). Hence, there must exist six distinct points that both Ey and E;
pass through. No three of the six points are collinear, since ellipses Fy and E; pass through
them. Since five distinct points in general position determine a unique conic, we must have
that EO = El. ]
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Example 2.2.15. In the previous result, we examined the geometric configurations on the
boundary of the semialgebraic set coming from strictly positive matrices. The simplest idea
for such a matrix is to take two equilateral triangles and expand the inner one until we are
on a boundary configuration as in Figure|2.6d.

(a) Boundary configuration (b) Interior configuration which also lies
on the algebraic boundary P32

Figure 2.6: Geometric configurations of matrices in 773‘? 53

This configuration has the slack matriz

4 1
1 4
11

SNSRI

The 1035 term boundary polynomaial from Theorem vanishes on this matriz, as we
expect.
This matriz lies in the set of 3 X 3 circulant matrices which have the form

SO Q
o o
Q0

It was shown in (65, Example 2.7] that these matrices have psd rank at most 2 precisely when
a’?+b* 4+ —2(ab+ ac+bc) < 0. As expected, whenever this polynomial vanishes, the 1035
term boundary polynomial vanishes as well. Figure shows an instance of the parameters
a, b, c such that the matriz is on the algebraic boundary but not on the topological boundary
— the polynomial vanishes, but the matriz lies in the interior of Pss.

We were interested in finding out if the boundary polynomial could be used in an inequality
to classify circulant matrices of psd rank at most 2. The family of circulant matrices which
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have ¢ = 1 and whose psd rank is at most 2 is depicted in Figure [2.7d. The boundary
polynomial, shown in Figure takes both positive and negative values on the interior of

the space. Figures|[2.8d and[2.8Y show the semialgebraic set and the boundary polynomial in
the 3-dimensional space.
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(a) Circulant matrices of psd rank at most 2 (b) The boundary polynomial

Figure 2.7: 3 x 3 circulant matrices in R?

b

(a) Circulant matrices of psd rank at most 2 (b) The boundary polynomial

Figure 2.8: 3 x 3 circulant matrices in R3

The phenomenon that the algebraic boundary of a semialgebraic set is relatively simple,
e.g. consists of coordinate hyperplanes and one additional polynomial, but a semialgebraic
description involves other polynomials also happens in the case of matrices of nonnegative
rank at most three studied in Subsection |2.1.4) and partial matrices that can be completed to
a rank one matriz in the standard simplex Section 3].
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2.2.4 Matrices of higher psd rank

In this subsection we focus on the space of (k4 1) x (k+ 1) nonnegative matrices of psd rank

at most k, and we study what it means for a matrix to lie on its boundary 873,{:]?:{1,3”“1). In

analogy with Corollary|2.2.13| we conjecture that a matrix lies on the boundary 5’73,?_?;2 (b D)

if and only if in every psd factorization, the matrices Ay, ..., Axs1 and By, ..., By all have
to have rank 1.

Conjecture 2.2.16. A matrizx M € Pkkﬁlk)x "D Jies on the boundary 873,&?;1,6 (k1) if and

only if for every psd factorization M;; = (A;, B;) with A;, B; € S,
rank(A;) = -+ = rank(Agyq) = rank(B;) = - - - = rank(Bg41) = 1.

Note that, according to Theorem [2.2.4] a matrix M € R*+Dx¢+1) has psd rank at most k
if and only if we can nest a spectrahedral shadow of size k& between the polytopes P C @ C RF
for which M = SP,Q.

Recall that a spectrahedral shadow of size k is a linear projection of a spectrahedron of
size k, which in turn is a slice of the cone of positive semidefinite matrices S_’ﬁ. Suppose we
are given a spectrahedral shadow C' of size k, and suppose that C' is a linear projection of
the spectrahedron C' = £N S*. A vector v € C lies in the rank s locus of C' if there exists a
k x k psd matrix in C of rank s that projects onto v.

Let P = conv(vy,...,v,) with the origin in its interior, and let @ = {z : (h;,x) <
1,i = 1,...,q}. Denote the matrix with rows vy,...,v, by V. Assume that P C Q. Let
rank,sq(Spq) = k and let Ay, ..., Ay, By,..., B, € 8% give a size k psd factorization of Spg.
We define two spectrahedral shadows of size k that are nested between P and (). We follow
[76, Section 4.1]:

C’Az{xE]R”:EIyES_'ﬁ s.b. 1= (hj,z) = (Bj,y) for j=1,...,q},
C’B:{Vz:1Tz:1,Aiz€Sﬁfori:1,...,p}.

By [76, Proposition 4], we have that
PC(CpCUyCqQ.

Lemma 2.2.17. Ifrank(A;) = 1, then v; lies in the rank one locus of C4, and if rank(B;) =
1, then, Cg touches the facet of Q defined by (h;,x) < 1 at a point u € Q from its rank
(k—1) locus.

We prove this lemma in Subsection [2.2.6.3] It leads us to the following the geometric
version of Conjecture [2.2.16]

Conjecture 2.2.18. A matriz Spg lies on the boundary 8Pki+11kx(k“ if and only if all

vertices of P lie on the rank one locus of the spectrahedral shadow Cy, and every facet of Q
touches the spectrahedral shadow Cg at points lying on its rank k — 1 locus.
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Since C'g C (4, the boundaries of C4 and Cp intersect at the vertices of P and at the
tangency points with (). This motivates us to state the following stronger conjecture:

Conjecture 2.2.19. A matriz Spg is on the boundary 873,&?,2““1) if and only if for all
spectrahedral shadows C' of k X k matrices such that P C C' C Q, k+ 1 of the vertices of
P lie on the rank one locus of C'" and k + 1 of the facets of Q touch C' at points on its rank

k — 1 locus.

The psd rank 3 and rank 4 setting corresponds to the geometric configuration where a
3-dimensional spectrahedral shadow size 3 is nested between 3-dimensional polytopes. A
detailed study of generic spectrahedral shadows can be found in [140].

Example 2.2.20. We now give an example of a geometric configuration as in Conjec-
ture [2.2.19. It is depicted in Figure [2.9d. We stipulate that the vertices of the interior
polytope coincide with the nodes of the spectrahedron and the facets of the outer polytope
touch the boundary of this spectrahedron at rank 2 loci. In the dual picture, the vertices of
the inner polytope lie on the rank 1 locus depicted in Figure [2.90 and the facets of the outer
polytope contain the rank 2 locus of this spectrahedral shadow.

(a) Spectrahedron (b) Rank 1 locus of a spectrahedral shadow

Figure 2.9: 3-dimensional spectrahedral shadows

We end this section with a restatement of the conjecture using Hadamard square roots.

Definition 2.2.21. Given a nonnegative matriz M, let /M denote a Hadamard square root
of M obtained by replacing each entry in M by one of its two possible square roots. The
square root rank of a nonnegative matrix M, denoted as rank \/(M ), is the minimum rank of
a Hadamard square root of M.

Lemma 2.2.22 ([78], Lemma 2.4). The smallest k for which a nonnegative real matriz M
admits a 8% -factorization in which all factors are matrices on rank one is k = rank /(M).
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Hence Conjecture [2.2.16[is equivalent to the statement that a matrix M € P,giil,zx(kﬂ)
lies on the boundary aP,g’fllk D it and only if its square root rank is at most k. We

conclud(e t}ys section with a conjecture which would lead to a semialgebraic description of
P,

Conjecture 2.2.23. Fvery matriz M € Pkl_f{lk ®* has q psd factorization with at least

2k 4+ 1 of the matrices in the factorization being rank 1.

2.2.5 Evidence towards Conjecture [2.2.16

In this section, we present partial evidence towards proving Conjecture[2.2.16, Section[2.2.5.1
is theoretical in nature, while Section [2.2.5.2]is computational.

2.2.5.1 Nested spectrahedra

We know from Theorem that a matrix M such that M1 = 1 has psd rank k if and
only if we can fit a spectrahedral shadow of size k in between the two polytopes P and @)
corresponding to M. In the following lemma, we show that a (k + 1) x (k + 1) matrix M
has psd rank k if and only if we can fit a spectrahedron of size k in between P and (). We
show that if there is a spectrahedral shadow C nested between P and @), then we can find
a spectrahedron C” of the same size such that P C C' C C C Q.

Lemma 2.2.24. Let M € R(kﬂ)x(kﬂ be a full-rank matriz such that M1 = 1. Then, M
has psd rank at most k if and only if we can nest a spectrahedron of size k between the two
polytopes P and () corresponding to M.

The proof of this lemma can be found in Subsection [2.2.6.4] We believe that its statement
also holds for matrices of any size.

Conjecture 2.2.25. Let M € RYj have rank k + 1 and assume that M1 = 1. Then, M
has psd rank at most k if and only zf we can nest a spectrahedron of size k between the two
polytopes P and () corresponding to M.

We now show that given a spectrahedron C' of size k such that P C C' C @), where P is
a simplex and k of the vertices of P are also vertices of C, one can find a new spectrahedron
C" such that P C ¢ C C' C @ such that all £+ 1 of the vertices of P are also vertices of C’
(in other words, they correspond to rank 1 matrices in C”).

Lemma 2.2.26. Let P C R* be the simplex P = conuv(ey, ..., e, 0). Let C' be a slice of S¥
such that P C C and the vertices eq, ..., e lie in the rank one locus of C. Then, we can
find another spectrahedral shadow C" of size k such that P C C" C C' with all k + 1 vertices
of P corresponding to rank 1 matrices in C".



CHAPTER 2. MATRICES AND POSITIVITY 65

Figure 2.10: The spectrahedra C' (in yellow) and C” (in blue) as in Lemma [2.2.26

The proof of this lemma can be found in Subsection Consider the slack matrix
Sp of the polytopes defined in Lemma The statement of the Lemma implies that
Sp does not lie on the boundary 373,&11,2)( o , because once we find the new spectrahedron
C’, we see that it does not touch ). As we saw in Section in order for a matrix to
lie on the boundary, the configuration P C C' C @) has to be very tight, and Lemma [2.2.26
shows that having k of the vertices of P lie in the rank one locus of C' is not tight enough.
Similarly, having k of the facets of @) touch @ at rank k£ — 1 loci won’t be enough. This is
why we believe that all k + 1 vertices of P have to be in the rank one locus of C', and all

k + 1 of the facets of () have to touch C' at its rank k£ — 1 locus, which is the statement of
Conjecture [2.2.18|

2.2.5.2 Computational results
In this section we provide computational evidence for Conjecture [2.2.16| when k& > 2.

Example 2.2.27. We consider the 2-dimensional family of 4 X 4 circulant matrices

a b 1 b
b a b 1
L b oa b (2.2.3)
b 1 b a

which 1s parametrized by a and b.

In Figure the 4126 green dots correspond to randomly chosen matrices of the form
that have psd rank at most three. The psd rank is computed using the code provided
by the authors of [155] adapted to the computation of the semidefinite rank [97, Section 5.6].
The red curves correspond to matrices of the form that have a psd factorization by 3x3
rank one matrices. These curves are obtained by an elimination procedure in Macaulay2.



CHAPTER 2. MATRICES AND POSITIVITY 66

Figure 2.11: A family of 4 x 4 circulant matrices of psd rank at most 3

If the condition that all of the matrices Ay, ..., Axi1, B, ..., Brr1 have rank one is equiv-
alent to the matrix M being on the boundary 873,?_“:{1,2 x(k+1) , then the set of matrices M in
whose psd factorization all A;’s and B;’s have rank one should have codimension 1 inside
P,ﬁ’iﬁf,ﬁ““”. In other words, it should have codimension 1 inside V,gl_f{l)x(kﬂ) = REFDx(k+1)
Consider the map that takes rank one matrices A; and B; and gets M such that M;; =
(A;, B;). The rank of its Jacobian should be (k + 1)? — 1 if Conjecture is true. In
the following example, we test several different assignments of ranks to each of the matrices

A;, Bj, and we check those for which the Jacobian has dimension (k +1)? — 1.

Example 2.2.28. We construct kxk positive semidefinite matrices Ay, ..., Aky1, B1, ..., Bri1
of ranks ry, ..., rokro. We construct a matriz M such that M;; = (A;, B;). We vectorize the
matrix M and compute its Jacobian J with respect to the entries of Ay, ..., Agi1, B1, ..., Bry1.
Finally we substitute the entries of Ay, ..., Ags1, B1, ..., Bri1 by random nonnegative inte-
gers and compute the rank of J. If rank(J) = (k+ 1)? — 1, then the matrices that have psd
factorization by {r1, ..., 7}, {rpt+1,. .., T2kt2} Tank matrices give a candidate for a boundary

component (assuming that the boundary components are only dependent on the ranks of the
A;’s and the B;’s).
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psd rank | p | ranks
3 4|4 {{1,1,1,1} {1,1,1,1}}
3 415 {{1,1,1,1} {1,1,1,1,2/3}}
3 416 {{1,1,1,13,{1,1,1,1,2/3,2/3} } {{1,1,1,2} {1,1,1,1,1,1}}
3 515 {{1,1,1,1,2/3},{1,1,1,1,2/3}}
3 516 {{1,1,1,1,2/3} {1,1,1,1,2/3,2/3}} ,{{1,1,1,2,3},{1,1,1,1,1,1}}
3 6l {{1,1,1,1,2/3,2/3} {1,1,1,1,2/3,2/3} } {{1,1,1,1,1,1},{1,1,1,2,3,3}},
{{1,1,1, 1,11} {1,1,2,2,2.2}} {{1,1,1,1,1,2} {1,1,1,2,2,2} }

Table 2.3: Ranks of matrices in the psd factorization of a psd rank three matrix that can
potentially give boundary components

The possible candidates for k = 3 are summarized in Table [2.5. For all p,q the case
where four matrices A; and four matrices B; have rank 1 and all other matrices have any rank
greater than 1 are represented. For k = 4 the analogous statement is not true. If M € R19x10,
exactly five A; and five B; matrices have rank one and the rest of the matrices have rank two,
then the Jacobian has rank 94. If the rest of the matrices in the psd factorization have rank
three or four, then the Jacobian has rank 99 as expected. Hence without further constraints

on the ranks of the rest of the matrices Conjecture does not hold for general r and k.

Example 2.2.29. Using the same strategy as in Example we have checked that the
Jacobian has the expected rank for r =k + 1 and k < 10.

2.2.6 Proofs

2.2.6.1 Proof of Lemma

The fact that the first statement implies the second follows from the definition of interior
of P,j. For the other direction, assume that for the rescaled matrix /N there exists € > 0
such that B{(N) NV, N R C P, NR. Let a4, ...,q, be the row sums of M, i.e. M1 = a.
Without loss of generality, assume that 0 < a; < g < --- < . Then, consider the ball
Beo,(M). If a matrix M' = M + A € B, (M) NV, then, after dividing the rows of M’
by ai,...,q, respectively, we obtain the matrix N + B, where B is the rescaled version
of A. Since oy < --- < @, then [|B|| < O%HAH Thus, N + B € B.(N), so, the matrix
N+BeB(N)NV,NRCP,yNR. Thus, M’ € Py, 0, Beo, (M) NV, CP,y, ie. M isin
the interior of P, .

2.2.6.2 Proof of Lemma

Note that for a matrix to lie in the interior of Ps 5 all of its entries need to be strictly positive.

Assume first that M lies in the interior of Ps,. Since it lies inPso, then there exist
polygons P, @ C R? and an ellipse E such that P C E C @, and M = Spg. If the boundary
of E does not contain any of the vertices of P, then we are done. Suppose that the boundary
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of F contains some of the vertices of P. We are going to find another ellipse £’ such that
P C F C E' C @ and the boundary of £’ doesn’t contain any of the vertices of P.

Since M is in the interior of Ps9, none of the entries of M are 0, so the boundary of
the polygon () does not contain any of the vertices of P. Moreover, there exists € > 0 such
that V3 N B.(M) C Pso. Pick a point in the interior of the polygon P and consider the
polygon tP obtained by a homotety centered at the selected point with some ¢ > 1. Then,
P CtP C (@ for a small enough ¢t > 1, and P is strictly contained in ¢P. Now consider the
generalized slack matrix of tP and () and call it M;. We can choose t close enough to 1 so
that M; € B.(M) C Ps5. Thus, M, has psd rank at most 2 and there exists an ellipse £’
such that tP C E' C @Q. Therefore, P C tP C E' C () and the boundary of the ellipse E’
does not contain the vertices of P.

Now, suppose there exists an ellipse £ and polygons P and () obtained from a factoriza-
tion M = AB as before such that P C E C @ and the ellipse E does not contain any of the
vertices of P. Therefore, it is possible to shrink the ellipse E slightly so that it also doesn’t
touch any of the sides of ). So, now we have an ellipse E that does not touch any of the
vertices of P and does not touch any of the sides of Q. Let ¢ > 0. By perturbing A and B,
we can express any matrix N € B.(M) N V3 as N = A.B.. But perturbing A and B results
in a perturbation of P and @, which are defined linearly according to A and B. Therefore,
we can choose € small enough so that any matrix N € B.(M) N V3 can be expressed as
N = A’B’ where A’ and B’ are perturbations of A and B such that the corresponding P’
and @ are perturbations of P and () that still satisfy P’ C E C ()'. Therefore, N € P35 so
that BE(M) N Vg Q ,P3,2.

2.2.6.3 Proof of Lemma [2.2.17

Since 1 — (h;,v;) = (A;, B;), the matrix B; in the S%-lift of Cy projects to v; € Cy. 1If
rank(B;) = 1, then v; lies in the rank one locus of the spectrahedral shadow C.

In the dual picture, the inner polytope P becomes the outer polytope P° and the outer
polytope ) becomes the inner polytope (°. Then ()° is the convex hull of Ay, ..., hy and P°
is defined by (v;,z) <1for j=1,...,p.

Lemma 2.2.30. The dual of the convez body C'4 is the convex body {wTH cwll1 <1, wTA e Si}
Proof. The proof we will give here is analogous to the proof of [76, Theorem 3]. By definition
(Ca)y’={z€eR": 2"z <1VaxeC4}.
Consider the problem
max{sz RS CA} = max{sz :1—(hj,z) =(By,y) fori=1,...,q,y € S_’ﬁ}

Strong duality holds since max {ZT:E x el A} is a convex optimization problem and C4 has
an interior point because it contains P. The dual program is given by

min{le z=wlH wlA e Si}
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This gives
(Ca)’={w"H w1 <1 w"AeS8}. (2.2.4)

Remark 2.2.31. We can replace the inequality w1 <1 in by the equality w1 = 1.

Proof. The proof we will give here is analogous to the proof of |76, Remark 3]. There exists
s > 0 such that w”1 + s = 1. Since the polytopes P and @ contain 0 in their interiors, also
the dual polytopes P° and ()° contain 0 in their interiors. Hence there exist Ay,..., A\, > 0
such that Y- A; =1 and ) A\;h; = 0. Define w = w + s\ where A = ()\;). Then

W'l =wl1+sAT1 =wll1+s5=1,

0TA=w"A+s\"Ae S

because A > 0 and each component is in S_’f_ and

w'H =w"H + s\TH = w' H.

Hence the dual bodies of C'4 and Cg are

(CA)O — {ZTH : ZT]_ = 17ZTBZ' c S_’T_ for Z — 17”"(]}’
(Cp)’={reR":Fye S st. 1 —(x,0)) = (y,A)) for j=1,...,p}.
As before, if rank(A;) = 1 then h; lies in the rank one locus of the spectrahedral shadow

(Cp)°. In the primal picture this means that the spectrahedral shadow Cp touches the
polytope @ at a generic point (i.e. a matrix of rank & — 1) on the boundary.

2.2.6.4 Proof of Lemma [2.2.24

If we can fit a spectrahedron of size k between P and (), then M has psd rank at most k.
Now, suppose that M has psd rank at most k. Since M is full rank, we can factor it as
M = AB, where A, B € REFDx(-+1) and

10 -~ 01
01 - 01

A=|: : and B=A"M.
00 -~ 11
00 -0 1

Then, the inner polytope P comes from a slice of the cone over the convex hull of the
rows of A. Let the slice be given by last coordinate equal to 1. Then, P is the standard
simplex in R¥, i.e.

P = conv{ey, ..., e, 0}.
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Since M has psd rank k, there exists a slice of L of S_Iﬁ and a linear map 7 such that

C = m(LNS%) lies between P and Q:
PcCco.

If 7 is a 1: 1 linear map, then the image C' is just a linear transformation of a slice of S¥,
which is considered to be a slice. So, assume that 7 is not 1 : 1, i.e. it has a non-trivial
kernel.

We can write

LmS_";— {(z1,...,x |Za:ZA+ 1—2332 Asy1 = 0}
for some symmetric matrices Ay, ..., Asi1. Now, let uq,...,us be an orthonormal basis of
R® such that ker(w) = span(ugi1,...,us). Let U be the orthogonal matrix with columns
uy,...,us. Consider new coordinates y such that + = Uy. Then, we can rewrite (after a

linear transformation)

LmS-]T- y17"'ay8 |ZyZB + 1_ Zyz 8+1t0}a

where By, ..., By are linear combinations of the A;’s. Then,

C={( - Y FWhs1, - -, Ys St ZyzB +(1—( Zyz Bgy1) = 0}

We know that P € C and P = conv(ey,...,e;,0). Since e; € P C C, then there exist
yl(:j_p o ,yél) € R such that

D; =B+ Y [\(B;— Bu)] = 0.
Jj=k+1
Since 0 € P C C, then, there exist y,(gzl, e ,ygo) € R such that

Diyt1 = Bep1 + Z B — By11)] = 0.
j=k+1

Consider the spectrahedron

k
i=1 {

Note that e; € C’ for every i = 1,...,k since D; = 0. Moreover, 0 € C’ since Dy,q = 0.
Thus, P C C".
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Moreover, if (yi,...,y;) € C’, then

Z 1—2% )Diy1 = Zyz (B + Z y\(B; — Bs+1>]>

j=k+1

+<1 - Zyl) < s+1 T Z (0) B' - Bs+1)])

j=k+1
k k
SNTES o b EES WITRE
J=k+1 i=1
k k
+ (1 N Zyi N Z (Z y’yj - Zyi)y§0))> Bgy1.
=1 j=k+1 i=1

Therefore, (y1,...,yx) € C and so P C C" C C' C . Therefore, we can nest the spectrahe-
dron C’ in between P and Q.

2.2.6.5 Proof of Lemma [2.2.26

This Lemma is trivial when k£ = 1. We proceed by induction on k.
By the conditions in the statement of the lemma, we can assume that

C = {(z1,...,7p)|r1010] + z2090] + -+ + Tpa4a) + (1 — Z%)B = 0},

where B > 0 since 0 € C and ay, . ..,a; € R* are vectors.
Suppose first that dim span{ay,...,ax} = ¢ < k. Let U be a change of coordinates that
transforms span{ay,...,ax} into span{ey,...,e;}. Then, if a] = Ua;, we have that

C = {(21,...,zp)|ma) ()" + zoay(al)” + - -+ + 2pa),(a),)" + (1 — in)UBUT = 0},

%

where B’ := UBUT is still positive semidefinite. If B;; = 0for all i,j > £+ 1, then, the
statement reduces to the case of ¢, which is true by mductlon So, suppose that, say, (since
B' = 0) Bj,y .4 > 0. Then, choose a vector d € R" such that doy # 0 and dd” < B'.
Consider the spectrahedron

C" = A{(zy,...,z1)|md) (a})" + 220y (al)” + - + mpa(a))’ + (1 — in)ddT = 0}.

First note that clearly ey, ..., ex, 0 € C'. We will show that C" C C'. Indeed, let (x4, ..., x%) €
C’. Since (a})p41 = 0 for all i, dpyq # 0 and

210} ;)T + waah(ay) " + - + wpaf (@) + (1= > w)dd” = 0,

%
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we have (1 — ), x;) > 0. But then

0 < mad ()" + 2oay(ah)” + - - + zpal (a))” + (1 — in)ddT

= @10} (a))” + waah(ah)” + -+ mpa (o) + (1= Y @) B

and, therefore, C' C C.

Now, assume that dim span{as,...,ax} = k. Then, let U be an invertible transformation
such that Ua; = ¢;. Then,

C = {(x1,...,7%)|r1e06] + To000d + -+ + 210800 + (1 — in)UBUT - 0}

i

where B := UBU" = 0. Let d € R* be such that d; = \/B]; and let S € R*** be such that

Pl it BB 40,

BB} ; A
Sig =41 if BB}, =0andi=j,
0 if B};B;;=0and i # j.

Since B’ = 0, it is clear that S > 0 as well since it is obtained from B’ by rescaling some
rows and columns and by adding 1 on the diagonal in places that are 0 in B’. Let

C'={(z1,...,7)|T1€16] + To020] + - + TpEREL + (1 — Z z;)dd” = 0}.

)

Then, clearly e, ..., e, 0 € C’'. We will show that C" C C. Let (x1,...,zx) € C'. Then,

zierel + xoeges + - + mpeper + (1 — Z z;)dd" = 0. (2.2.5)

(2

By the Schur Product Theorem, we know that the Hadamard product of two positive semidef-
inite matrices is positive semidefinite. Therefore, when we take the Hadamard product of the
matrix with S, we get a positive semidefinite matrix. But that Hadamard product
equals

rieie] + moeges + -+ + zpeper + (1 — Z x;)B' = 0,

therefore, C" C C.
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2.3 Conclusion

In this chapter we explored two different types of matrix factorizations: nonnegative and
positive semidefinite. We studied the set M, of matrices of rank at most r and nonnega-
tive rank at most k, and the set P, of matrices of rank at most r and positive semidefinite
rank at most k. Both M, and P, are full-dimensional semialgebraic subsets of the de-
terminantal variety V,. Moreover, both nonnegative and positive semidefinite factorizations
have beautiful geometric interpretations via nested polyhedra. Using these, we were able
to describe the boundaries of M, ; and P, for small values of r and k, and to obtain a
conjecture for general r and k.
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Chapter 3

Orthogonally Decomposable Tensors

Orthogonally decomposable tensors possess many appealing properties. In this chapter we
focus mainly on their spectral properties. In Section we study the eigenvectors of sym-
metric orthogonally decomposable tensors, while in Section we study the singular vector
tuples of ordinary orthogonally decomposable tensors.

3.1 Symmetric Odeco Tensors

A real symmetric tensor is orthogonally decomposable (or odeco) if it can be written as a
linear combination of symmetric powers of n vectors which form an orthonormal basis of R".
Motivated by the spectral theorem for real symmetric matrices, we study the properties of
odeco tensors. We give a formula for all of the eigenvectors of an odeco tensor. Moreover, we
formulate a set of polynomial equations that vanish on the odeco variety and we conjecture
that these polynomials generate its prime ideal. We prove this conjecture in some cases and
give strong evidence for its overall correctness. This section is based on my paper Orthogonal
Decomposition of Symmetric Tensors [131]. In the last Subsection we present a conjecture
which has been resolved in subsequent work [23], and is presented in Section [2.1.2]

3.1.1 Introduction

The spectral theorem states that every m x n real symmetric matrix M possesses n real
eigenvectors vy, ..., v, which form an orthonormal basis of R". Moreover, one can express
M as M = Y7 Nvwl, where \j,...,\, € R are the corresponding eigenvalues. In this
section we investigate when such a decomposition is possible for real symmetric tensors. We
address the following two questions.

Question 1. Which real symmetric tensors T can be decomposed as T = M\vPé+- - A%
form some orthonormal basis vy,...,v, of R™ and some \i,...,\, € R? More precisely,
can we find equations in the entries of T that cut out the set of tensors for which such a
decomposition exists?
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Question 2. Given that a tensor T can be decomposed as T = M\v®? + - -« + X\,08?, where
1

n 7’

Vi, ..., 0, € R™ are orthonormal, can we express the eigenvectors of T (to be defined) in
terms of vi,...,v,?
Let S?(R") denote the space of n x n x -+ x n (d times) symmetric tensors, i.e. ten-

sors whose entries are real numbers 7;, ;, invariant under permuting the indices: T;, ;, =
T3, 1y...ipea for all permutations o of the set {1,2,...,d}. For example, when d = 2, the space
S2% (R™) consists of all n x n real symmetric matrices. We study the elements T € S¢ (R"™)
which can be written as T = Alv?d+~ . ~—i-/\nv§>d7 where vy, ..., v, € R" form an orthonormal
basis of R™ and Ay,..., A\, € R. We call such tensors T" orthogonally decomposable or, for
short, odeco.

The notion of eigenvectors of matrices was extended to symmetric tensors by Lim [112]
and by Qi [126] independently in 2005. A vector w € C" is an eigenvector of T € S (C") if
there exists A € C, the corresponding eigenvalue, such that

n
Twi ! .= [ Z Tiig,igWiy - .- Wi, | = AW.
i9yeesig=1
Two eigenpairs (w, \) and (w’, \') are equivalent if there exists ¢ # 0 such that w = tw’ and
A = t9"2). When d = 2, these definitions agree with the usual definitions of eigenvectors,
eigenvalues, and equivalence of eigenpairs for matrices.

The spectral theorem answers both Question 1 and Question 2 in the case d = 2: every
symmetric matrix M € S%(R") can be written as M = Y7 Avwl = Y Ao, where
v1, ..., v, are orthonormal. Moreover, if M is generic (in the sense that its eigenvalues are
distinct), then vy, ..., v, are all of the eigenvectors of M up to scaling.

In Subsection [3.2.2] we give an explicit algebraic formula of all of the eigenvectors of an
odeco tensor T' = A\ vP? + - - + X,0®¢ in terms of vy, ... ,v,, answering Question 2 above. It
easily follows from the definition of eigenvectors that vy, ..., v, are eigenvectors of T'. These
are not all of the eigenvectors of T', but it turns out that one can explicitly express the rest
of them in terms of vy, ..., v,.

For general d, not all tensors T € S¢ (R") are odeco. Section is dedicated to finding
the equations defining the variety of odeco tensors. In Subsection |3.1.3] we give partial
results towards what is done in Section .1, We study the set of all odeco tensors and
find equations that vanish on this set. In Conjecture [3.1.16| we claim that these define the
prime ideal of the odeco variety, which is the Zariski closure of the set of odeco tensors
inside S¢(C"). In Theorem we prove Conjecture for the special case n = 2.
In Subsection [3.1.3.1] we conclude the section by giving evidence for the correctness of this
conjecture. This conjecture is later proved set-theoretically in Section [4.1

In the remainder of this subsection we review symmetric tensor decomposition as well as
the equivalent characterization of symmetric tensors as homogeneous polynomials. We con-
clude by describing an algorithm, called the tensor power method, which finds the orthogonal
decomposition of an odeco tensor.
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3.1.1.1 Symmetric tensor decomposition

Orthogonal decomposition is a special type of symmetric tensor decomposition which has
been of much interest in the recent years; references include 26} |109} |120], and many others.
Given a tensor T € S¢(C"), the aim is to decompose it as

r
— E ®d
i=1

where vq,...,v, € C" are any vectors and Ay,..., A, € C. The smallest r for which such
a decomposition exists is called the (symmetric) rank of T. Finding the symmetric decom-
position of a given tensor 7" is an NP hard problem [92] and algorithms for it have been
proposed by several authors, for example |26, |120].

According to the Alexander-Hirschowitz Theorem, when d > 3 the rank of a generic
n+d—1
tensor T is {#—‘ except in a finite number of cases in which it is one more than this

number [2]. However, the rank of an odeco tensor 7' € S4(R") is at most n. This means
that the set of odeco tensors is a low-dimensional subvariety in the space of all tensors. We
explore this further in Section [3.1.3]

Remark 3.1.1. Orthogonal tensor decomposition has also been studied in the non-symmetric
case [98,199]. An odeco tensor is also orthogonally decomposable according to the definition
in the non-symmetric case. We shall return to the non-symmetric case in Section 3.9

3.1.1.2 Symmetric tensors as homogeneous polynomials

An equivalent way to think about a symmetric matrix M € 5% (C") is via its corresponding
quadratic form fy; € Clxy, ..., z,] given by

fM (:Cl, R ,In) = %TMZC = ZMZ]IZZ']
‘7j

More generally, a tensor T € S¢(C") can equivalently be represented by a homogeneous
polynomial fr € Clzy,...,x,] of degree d given by

n

fT(Il,...,CL’n):T'.Id = Z E1 ..... iqli1Lig - - - Lig-

i1,eig=1

Given T € S?(C"), we can describe the notions of eigenvectors, eigenvalues, and symmet-
ric decomposition in terms of the corresponding polynomial fr € Clzy,...,z,] as follows.
A vector x € C" is an eigenvector of T with eigenvalue \ if and only if

Vfr(x) = M.
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The tensor T can be decomposed as T'=>"._, /\ivf@d if and only if the corresponding poly-
nomial fr can be decomposed as

fT ([L’l, RN ,l’n) = Z)\l (Uill'l + -4 ’Uml'n>d.
=1

Similarly, a real tensor T € S¢(R") is orthogonally decomposable with T = Ao +
s+ A2 where A\p,..., A\, € R and vy,...,v, € R® are orthonormal, if and only if
fT(.Tl,...,l’n) :)\1(1)1'l’)d‘i""‘i‘)\r(’UT'(L’)d.

This equivalent characterization of symmetric tensors as homogeneous polynomials proves

to be quite useful in the sequel.

3.1.1.3 Finding an orthogonal decomposition

Finding the symmetric decomposition of a general T' € S¢(C") is NP-hard [92]. However,
there are efficient algorithms that recover the orthogonal decomposition of an odeco tensor
T € S4(R™) [8,100]. One such algorithm is the tensor power method.

Let T € S (R"). If T is orthogonally decomposable, i.e. T = Zle NvPtand vy, ... vy, €
R™ orthonormal, then

k
_ d—1
T'U;-l IZZ)\i(Ui'Uj) ’UZ‘:)\J”U]',
i=1
forall j =1,2,...,k. Thus, vy, ..., v are eigenvectors of T' with corresponding eigenvalues
A1, ..., Ag. Note that requiring 7" and vy, ..., vg to be real forces A, ..., Ay to be real as well.

Definition 3.1.2. A unit vector u € R™ is a robust eigenvector of T € S¢(R™) if there
exists € > 0 such that for all 0 € {u' € R : ||u — /|| < €}, repeated iteration of the map

—d—1
— T6
0 —, (3.1.1)
o
starting from 6 converges to u.

The following theorem shows that if 7" has an orthogonal decomposition T" = Zle Aiv?d,
then the set of robust eigenvectors of 7" is precisely the set {vy,va, ..., vk}, implying that the
orthogonal decomposition is unique up to the obvious reordering.

Theorem 3.1.3 (Theorem 4.1, [8]). Let T € S¢(R™), where d > 3, have an orthogonal
decomposition T = Zle )\iv;@d, where vy, ...,v € R™ are orthonormal, and M\, ..., Az > 0.

1. The set of 0 € R™ which do not converge to some v; under repeated iteration of (3.1.1])
has measure 0.

2. The set of robust eigenvectors of T'is equal to {vy, v, ..., vy}
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Remark 3.1.4. In fact, the set of § € R™ which do not converge to some v; under repeated
iteration of (3.1.1)) is a hyperplane arrangement. This is the set of those eigenvectors of the

tensor T that are not equal to one of vy, ..., v, and are described in detail in Theorem|53.1.8.

Theorem says that to recover the orthogonal decomposition of 7', one needs to
find the robust eigenvectors. The definition of robust eigenvectors suggests an algorithm
to compute them, using repeated iteration of the map (3.1.1)) starting with random vectors
u e R™

Algorithm 2 The Tensor Power Method
1: Input: an orthogonally decomposable tensor T'.
2: Set i = 1.
3: Repeat until 7' = 0.

4 Choose random u € R™.

5 Let v; be the result of repeated iteration of starting with w.

6 Compute the eigenvalue \; corresponding to v;, from the equation va’l = \jv;.
7 Set T'=T — /\ivfw.

8 11+ 1.

9: Output vq,...,v, and Ay, ..., A

In certain cases, this algorithm can be used to find the symmetric decomposition of a
given tensor. For example, the authors of 8] consider a class of statistical models, such
as the exchangeable single topic model, in which one observes tensors 7T, and T3, where
Ty = Zle wi,u?d for d = 2,3 and the aim is to recover the unknown parameters w =
(wi,...,wr) € RF and py, ..., up € R™ (Note that Ty and T3 have decompositions using the
same vectors and observing both of them gives more information than observing only T%).

This is done by transforming 75 and 73 (in an invertible way) into orthogonally decomposable

tensors Ty and Ty, where T; = Zle Qi and fiy, . .., fix are orthonormal, d = 2,3. Then,
they use the tensor power method to find jiy,...,x and @i,...,0, and use the inverse
transformation to recover the original py, ..., ur and wy, ..., wg.

Remark 3.1.5. As mentioned above, Theorem|[3.1.3 also implies that an odeco tensor T has
a unique orthogonal decomposition. That is because the elements in the orthogonal decom-
position are uniquely determined as the robust eigenvectors vy, ..., v, and the corresponding
constants \i, ..., \, are uniquely determined by \; = T - vZ.

Another method, described in [26], can also be used to efficiently compute the decom-
position of a symmetric tensor T of rank at most n. It involves computing generalized
eigenvectors of sub-matrices of the Hankel matrices associated to T
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3.1.2 The Variety of Eigenvectors of a Tensor

In this subsection, we are going to study the set of all eigenvectors of a given orthogonally
decomposable tensor.

As we mentioned in the introduction, a symmetric tensor 7' € S (R") can equivalently
be represented by a homogeneous polynomial fr € R[zq,...,z,] of degree d. Indeed, given
T, we obtain fr by

fr(@y, .. mn) = Z Tiy,igTiy =" Tig.-

Then, for x € C*, Tx%1 = \z is equivalent to V f7 (z) = d)\z, i.e. V fr (z) and z are parallel
to each other. This is equivalent to the vanishing of the 2 x 2 minors of the n x 2 matrix

[VfT (x) |x} .

Definition 3.1.6. The variety of eigenvectors Vr of a given symmetric tensor T' with cor-
responding polynomial fr is the zero set of the 2 X 2 minors of the matriz [VfT (x) ‘x]

Remark 3.1.7. Consider the gradient map as a map on projective spaces:
Vfr:CP"! - Ccp!

(2] = [V fr (2)].

Then, the eigenvectors of fr are precisely the fized points of V fr. This map is well-defined
provided the hypersurface { fr = 0} has no singular points.

The aim of this subsection is to prove the following theorem.

Theorem 3.1.8. Let T € S (R") be odeco with fr(z) = Zl Ai (v - a:)d, where vy, ...,v €

i=1
R™ are orthonormal. Assume that 1 < I < n and A\,...,N\; # 0 . Then, T has (d-1) -1

d—2
eigenvectors in C", given explicitly in terms of vy, ..., v, and the (d — 2)-nd roots of Ay, ..., N
as follows. LetV = : € R>". Then, for any1 <k <1, any T = {i1,ia,...,i1} C
v —

1] and any (k — 1)-tuple ny, ..., k-1 of (d — 2)-nd roots of unity, there is one eigenvector w,
up to scaling, where w = V7T (y,... ,yl)T and

_ 1
b= and j € {1, k= 1)

V=N ifi=
0 ifi ¢ 1.

The rest of the eigenvectors are all the elements in the nullspace of V.
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Remark 3.1.9. It is known by [37] that if a tensor T € S (R™) has finitely many equivalence

classes of eigenpairs (x,\) over C, then their number, counted with multiplicity, is equal to
%. If the entries of T are sufficiently generic, then all multiplicities are equal to 1, so

(d-1)"—1 . . .
there are exactly ~——5— equivalence classes of eigenpairs.

In the proof of Theorem we independently show that an odeco tensor T' with or-

thogonal decomposition T = Ao 4 -+ + A0 such that \i, ..., \, # 0 has finitely many
(d—1)"—1
a—2

equivalence classes of eigenvectors and their number is exactly

Remark 3.1.10. The explicit formulation of the eingevectors of an odeco tensor given
in Theorem can be used to find the eigenvectors of any tensor T € S4(C"™). This
can be done wvia a homotopy continuation computation with numerical software such as

Bertini [15].
We illustrate Theorem by two simple concrete examples.
Example 3.1.11. Let d = n = 3 and consider the odeco tensor T with polynomaial form
fr(z,y,2) = M2 + Xay® + A32°.
This type of polynomial is called a Fermat polynomial. In this case v; = (1,0,0),vy =
(0,1,0),v3 = (0,0,1) and the matriz V = Idy. Since d —2 =1, taking the (d — 2)-nd root is

the identity map. Thus, the eigenvectors of T are as follows.
When k=1, T = {1},{2}, or {3}. The corresponding three eigenvectors are

1 r 1\ 1\"
(r00)  (05,0) - (005,) -
When k =2, T ={1,2},{1,3}, or {2,3}. The corresponding eigenvectors are
(i 1 O)T (i 0 L)T (O 1 i)T,
A Ay APV R Y A D PR P
When k =3, T = {1,2,3} and the corresponding eigenvector is
<i 1 L)T
A A A )
Figure shows what these eigenvectors look like geometrically.

Example 3.1.12. Let d = 4,n = 4 and consider T € S*(R*) with corresponding polynomial

fr(zy, ... zq) = m‘ll + ng.
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(%2
U1

Figure 3.1: This figure shows the structure of the eigenvectors inside CP? of an odeco tensor
T e SS <R3> such that T = /\1’0?3 —+ )\21)5@3 + )\31)?3 with )\1, )\2, )\3 # 0.

In the notation of Theorem [3.1.8, the number of nonzero coefficients is | =2 < n. We have
that v = e, v9 = eg and \y = 1, Ay = 2. Since d — 2 = 2, the roots n; can be £1. Thus, the
eigenvectors of T are as follows.

When k =1, T = {1},{2}. The corresponding eigenvectors are

1
—,0,0)7.
V2 )

When k =2, T = {1,2}. The corresponding eigenvectors are

1 1 0,0)
\/§ \/5’ ) .
The rest of the eigenvectors are all vectors perpendicular to ey and es, i.e.

(0,0,a,b)"

(1,0,0,0)%, (0,

(17 7070)T7(_17

for any a,b € C not both zero.

In the rest of this subsection we prove Theorem [3.1.8] We proceed as follows. First
we show that the theorem is valid when fr = A\jz¢ + -+ + Anvg, where Aq,..., A, # 0.
This is done in Lemma . For the general case, fr = Ay (v1-2)" + -+ + N\ (v - 2)%,
where \,..., A\, # 0 and vy, ..., v, are orthonormal, we observe that setting y; = v; - © the
eigenvectors of the Fermat polynomial tensor A\;y¢+ - - -+ Ny are in a 1-to-1 correspondence
with some of the eigenvectors of T' via the transformation given by the matrix V' with rows
V1, ...,v;. This is how we recover the formula in Theorem [3.1.8|
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Definition 3.1.13. Given f (z1,...,2,) = Mad+ - +X2d, T = {iy, ... ix} C{1,2,...,n},
andn = {n,...,Mk_1} such thatn,...,nx_1 are (d — 2)-nd roots of unity, we define the ideal
1

_1 1 1 1
IIJ] = <)\.d_21'i1 — 771/\;;—2, c. /\.d_2 Ly — nk—l)\idk_Qxik> + <ZEJ|j ¢I>

11 7 g1
in the polynomial ring Clzy, ..., x,].
Lemma 3.1.14. Theorem is true in the case fr(xy,...,x,) = A1$f+)\2x§l+~ . '—i-)\nmﬁ,
where A1, ..., A\, # 0. In particular, the radical of the ideal I of 2 X 2 minors of [Vf(x)]x}

can be decomposed as follows.

VI = ﬂ Iz, (3.1.2)

IC[n]m={m,...;mzj-1}

wheren, ..., m—1 are (d — 2)-nd roots of unity. For everyk € {1,...,n}, there are (}) (d — 2)F !
homogeneous prime ideals Iz, with |Z| = k. FEach ideal I7, has ezactly one solution in
CP" !, representing one eigenvector, namely w = (wy : -+ - : wy,) such that

_ 1

M T2 ifi=d and 1 < k-1,
1]
_ 1
wi — )\ikd72 ZfZ — Zk,’
0 ifi g T.

(d—1)"—1
a—2

The total number of such solutions is
Proof. Note that in this case, up to a factor of d in the first row, we have that

)\195;_1 T
Vi@l = |
Azt ox,
Therefore, the ideal of 2 x 2 minors is given by

1= <l’iﬂfj ()\Z'.I'?iz — )\j%?iZ) ) # j>

We would like to decompose the variety of this ideal. Note that for any primary ideal
P D I its associated prime v/P would either contain x;xj or /\imf_Q — /\jx?_2 for all @ # j.
Suppose that for a given P D I, v/P contains exactly n — k of the variables z1, ..., ,.
Let T = {iy,...,i,} C [n] and assume that /P contains exactly those z; for which i & T.
Thus, VP also contains /\ixf_Z — )\jx;l_2 for i # j,i,j € I. Moreover, we can write VP as
VP = (z; :i ¢ I)+VPNClz; : i €ZI]. Then, the ideal vP N Clz; : i € T] is prime, it
doesn’t contain x; for ¢ € Z and contains Iz C C[z; : i € Z], where
Iro=(Na{ 2= Nad P i g jel) =Nl P = Nal P ij=1,.. k1)

i Li+1 541
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Therefore, /P N Clz; : i € Z] is a prime ideal containing (I7 : (z; : i € Z)™).

We now describe the decomposition of the ideal (I7 : (x; : i € Z)*°) following Theorem 2.1
and Corollary 2.5 in [60]. Recall that Z = {iy,... 45} C [n]. Let L, := ((d —2) (e;, — ;) :
j=1,...,k—1) be a lattice with partial character p : L, — C* given by

p((d=2) (e, — i) = 32

ij
For any partial character o : L, — C*, define the ideal I, (0) := (2™ —0o (m) 2™ : m € L,),
where m = m, — m_ and m, m_ have nonnegative entries. From this definition, we see
that

Ii(p)= Iz : {x; : i € T)™).
Then, by Corollary 2.5 in [60], the decomposition of (I7: (z; : i € Z)®) = I, (p) is
Uzr:(ziieD)*)= [ 1),
p' extends p to L

where L is a sublattice of Z" such that L, C L C Z™ and |L/L,| is finite. In this case, we
can choose
L:<€ij_eik jzl,,k—1>

Then, |L/L,| = (d —2)*"". Moreover, by the same theorem, the number of o/ extending p
is exactly |L/L,| = (d — 2)571. Also, note that each such p' : L — C* is uniquely defined by

the values )
)\ik a2 /
AW =0 (e, — i)

Lj

for some (d — 2)-nd root of unity ;. Therefore,

/ )‘ik ﬁ .
I (p') = zi; —n; v i, 1 j=12,...k—1

and each such ideal is maximal inside C[z; : i € Z]. Thus, the prime VPN Clz; : i € Z] must
contain one of the ideals I, (p'). Therefore, VP contains (x; : i ¢ I) + I,.(p') for some p.
But this ideal is maximal in C[xy,...,x,], therefore, VP = (x; : i & T) + I, (p').

Therefore, holds and the minimal associated primes of the ideal I are

1
A\ 2
[I,n:<$iii§zz>+<9€ij—77j ()\—k) xik:jzl,Z,...,k—1>,

where Z = {i1,...,i;} C [n] and ny, ..., 7,1 are (d — 2)-nd roots of unity. Each ideal Iz, is
zero-dimensional and corresponds to one eigenvector w = (wy : -+ : wy,), where

771)%_ -2 ifr=dqandl < k-1,

if i = iy,

0 ifi¢ 7.
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Moreover, since there are (}) options for choosing Z C [n] with |Z| = k and (d — 2yt

options for choosing n = (71, ...,Mk_1), the total number of eigenvectors of f is

n n

()=t (e

k=1 k=1
(d—1)" -1

1
=——(d-2+1)"-1)=

recovering the formula expected by [37]. O
Now, we proceed with the proof of Theorem [3.1.8]
Proof of Theorem[3.1.8. Let T = Y_'_ \iw®? be odeco with Ay, ..., \ # 0. Then,

l

fr(z) = Z A (v - )

and
l

Vi@ =D n )

If x € C™" is an eigenvector, then

l

éVfT (x) = Z Ai (v 2) o = A

i=1

Define the vectors vji1,...,v, € R™ to complete the set of vectors {vy,...,u} to an or-

thonormal basis of R”. Then, they are also a basis of C* and = = > | (v; - ) v; for any

x € C", where v; -z = > ; VijT; is still the usual dot product on R™. Since the v; form a

basis of C™ and l

Z )\z (’Ui . iL')dil V; = )\i (Ui ' x) Vs,
i=1

i=1

then x is an eigenvector if and only if the vectors ()\1 (v - a:)d_l D Y x)d_l ,0,...,0
— oy -

and (vy - x,...,v, - x) are parallel. Let V= : € R™™" be the orthogonal matrix
— v, -

whose rows are vq,...,v,. Let
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Then, an equivalent description of x being an eigenvector is that (Alyf_l, cee /\lyld_l, o,..., 0)
and y are parallel. In other words, the matrix
Alyg_l . )\ly[d_l 0 e O
hn U Y1 - Yn
has rank at most one. There are two cases.

Case 1: One of the numbers y;,1,...,¥, is nonzero. This forces y; = --- = y; = 0 and
any choice of Y11, ...,y gives a solution. This means that any vector € span{vy,...,v}+
is an eigenvector of the original tensor 7.

Case 2: The other case is that y;,1 = --- =y, = 0. Then the above matrix having rank
at most one is equivalent to the smaller matrix

Ayi Tt Ay
Y1 T Yi

having rank at most one. The ideal of the 2 x 2 minors of this matrix is
I = ()\iyfl_lyj - /\jy?_lyi i< g <l).
By Lemma [3.1.14] the radical of this ideal decomposes as
Vi= () Iz,
Zclln

and each ideal Iz, with Z = {iy,...,4;} C [I] has the form

1

_1 _1_ _1
Iz = N2 Yi — MN Vs s AL iy — TNy, 5 Y + (i i € 1), (3.1.3)

where 7y, ..., nm,_1 are (d — 2)-nd roots of unity. By the Nullstellensatz, all elements in V()
are the same as those in V(v/T), which are in turn the elements in (JV(Iz,,). Each ideal Iz,
gives exactly one solution in P, representing one eigenvector (yi, ..., y,) such that

Nse 7 ifi=i;and s <k -1,
Yi=9q )\ 2 if i = iy, (3.1.4)
0 ifi € [n]\ Z.

Note that y = V& and V is an orthogonal matrix. Therefore,
x=VTy.

By Lemma [3.1.14) we know that for each k there are (llc) (d — 2)1671 eigenvectors with &
nonzero entries, which makes for a total of

(-2t (S 0

k=1 k=1
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- (B (-] -5

k=0

eigenvectors of 1" in this case. O]

3.1.3 The Odeco Variety

The odeco variety is the Zariski closure in S¢(C") of the set of all tensors T € S¢(R")
which are orthogonally decomposable. If a symmetric tensor is odeco, then, in particular,
its corresponding polynomial fr is decomposable as a sum of n d-th powers of linear forms,
i.e. it lies in the n-th secant variety of the d-th Veronese variety, denoted by o, (vq (C™)).

When d = n = 3, there is one equation defining o3 (v3 (C?)), called the Aronhold invariant
[108], and it is given by the Pfaffian of a certain skew-symmetric matrix. The corresponding
odeco variety in S® (C?) has codimension 4 and its prime ideal is generated by six quadrics,
defined in Example [3.1.18 For higher d and n, the equations defining o, (v4 (C™)) are much
harder to compute. However, the odeco variety is smaller than o, (v4 (C")) and we believe
that the defining equations of its prime ideal are quadrics that are easy to write down. They
are shown in Conjecture [3.1.16] and proven to be correct in Section .1}

Lemma 3.1.15. The dimension of the odeco variety in S*(C") is ("17).

Proof. Consider the map
¢ :R" x SO, — S*(R") c S¢(C")
given by
A, d), Vo= zn:A,.v;@d,

i=1
where v; is the ith row of the orthogonal matrix V. The image Im(¢) of this map is precisely
the set of orthogonally decomposable tensors in S¢(R"). The odeco variety is Im (¢) C
S4(Cm™). Note that by Theorem [3.1.3] ¢ has a finite fiber (up to permutations of the input).

Then, dim(Im(¢)) = dim (R" x SO,,) = n+ (3) = ("}"). Therefore, the dimension of the

odeco variety is dim (Im (qb)) = ("1). O

We are going to conjecture what the defining equations of the odeco variety are. In
Theorem [3.1.20] we prove the result for the case n = 2. The general proof was found
subsequently in collaboration with Ada Boralevi, Jan Draisma, and Emil Horobet; [23], and
is presented in Section 4.1

Consider a tensor T' € S (C") and the corresponding homogeneous polynomial fr(z1, s,
ooy Ty) € Clay, ..., x,] of degree d. To define our equations, it is more convenient to work
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with the polynomial version of the tensor. As mentioned before, given T € S¢(C"), the
corresponding polynomial can be rewritten as

Jr (xlv"'vxn) = Z Tj1---jdxj1"'mjd

J1y--sJd
d , , 1 . ,
— 11 In __ 11 I3
= E : - )Ty = E o Yiein T Ty
i ‘ 11y...,0p N~ > . ‘ (AR
i1++in=d i1 times iy times i1+ Fin=d

where
Ugy,..in = d'Tl olon...n-.
—— N———

i1 times ip times

We write the equations defining the odeco variety in terms of the variables u;, ;.. Note
that for all such variables iy + --- + 1, = d.

Conjecture 3.1.16. The prime ideal of the odeco variety inside S¢ (C") is generated by

n

5 UytesUptes — UwtesUzde; = O, (315>

s=1
where y,v,w,z € Z% are such that ), y; = Y ,vi =) 2= ) ,w; =d—1 and y+v = z+w.

Written in terms of the T-variables, these equations can be expressed as
n
ZTi17~~,id71,81}1,~~7jd71,8 — Ty ba1,s L1ty as = 0, (3'1'6)
s=1

for all indices such that {i,,j.} = {k;,[.}, and also up to permuting the indices due to the
fact that 7' is symmetric.

Another way to think about is as follows. Suppose we contract T along one of
its dimensions, say the d-th dimension, resulting into a tensor T x4 T € S?(S4~1(R")) whose
entry indexed by 41,...,%9-1,71,--,Jd_1 1S

n
(T *d T>7:17~--,7;d71>]'1:-~~7jd71 = E :7—%17~--»id71737}1:--~7jd71»5'
s=1

Then, the equations ([3.1.6]) are equivalent to saying that T %4 T also lies inside S24=1D(R").
In Section we will see that, when d = 3, these equations are also equivalent to a
certain algebra associated to the tensor 1" being associative.

Example 3.1.17. When d = 2 the elements of S* (R") are symmetric matrices and the set
of equations is empty, which is equivalent to the fact that all symmetric matrices are
odeco.
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In essence, the ideal defined by (3.1.5) is a lifting of the toric ideal defining the Veronese
variety vg_; (C") C 8?71 (C") to non-toric equations on S (C").

Example 3.1.18. Let d = n = 3. We will illustrate how to obtain the equations of
the odeco variety in S® (C3) from the equations of the Veronese variety vy_1 (C") = vy (C?).
Consider the Veronese embedding vy : C* — S%(C?) given by x — x®%. The image vy (C?)
is the set of rank one 3 X 3 symmetric matrices. The space S? (C?) has coordinates w;,iyi,,
where 11 + 1o + 13 = 2. There are six equations that define the prime ideal of the Veronese
variety vy (C?) C S? (C3) and they are

2
U200U020 — U119 = 0, Ug00Up11 — Ur10U101 = O,
2
Up0U002 — Uiy = 0, U10U002 — U101%011 = O, (3.1.7)
2
U101Uo20 — Ur10Uo11 = O, Up20Uoo2 — Uy = 0.

Fach of these equations has the form u,u, —u,u, = 0, where y,v,w,z € Z%O, dYLy=>v=
Yow=>,2=2, andy+v=w+z FEach such equation leads to one of the equations in
as follows

UyUy — Uy Uy = Uytey Upte; — Uwte; Uzteg + UytegUptey = UptesUztey + UytezUptez — UwtezUztes-

Therefore, using , we obtain the sixz equations in

2 2 2 2
U200U020 — U710 U300U120 — U1p T+ U210U030 — Ujgp + U201U021 — U171,

U200Up11 — U110U101 U300U111 — U210U201 T U210U021 — U120U111 T U201U012 — UT11U102,

2 2 2 2
U200U002 — Uip1 U300U102 — Uggy + U210Up12 — U1 T U201U003 — Ujp2,
U110U002 — U101U011 Ug10U102 — U201U111 T U120U012 — U111U021 T U111U003 — U102UD125

U101U020 — U110U011 U201U120 — U210U111 T UT11UO30 — U120U021 T U102U021 — U111UD125

111111

2 2 2 2
Up20U002 — Up11 U120U102 — U7 T+ Up30U012 — Uy + U021U003 — Up1o-
We shall return to this example in Section |4.1.5.1).

Lemma 3.1.19. The equations vanish on the odeco variety.

Proof of Lemma[3.1.19 LetT =3, )\ivf@d be odeco. Then, by definition of the u-variables,
at the point 7" we have

n n

_ Y1 Yn __ Yy

Uy, ..y, = d! E Apl vt = d! E vy
i—1 i=1
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Thus, at the point T', the equations E), for y,v,w,z € Z%, with y +v = w + z and
Yuy=>,v=> w=y . z=d—1, have the form

n
E § = 1"Uyte Upte, = Unte,Uzte, =
(

= (@23 (D awr ) (Do aupte) = (o o) (3 A )
1 =1 j=1 i=1 j=1

S=

n

— (dl)2 Z (ZA?(W _W) + Z/\i)\j(vieresU;)—i-es . U;U+63U]Z~+es))

s=1 i=1 i#]
n
= (d!)? Z )\i)\j(v;yv}’ — vl”vjz)z V;sVjs = 0,
i s=1

where the last row is 0 since v; and v; are orthogonal and Zgzl VisVjs = U; - v; = 0
Therefore, (3.1.5)) vanish on the odeco variety. ]

We are going to select a subset of the equations (3.1.5]) that spans the vector space defined
by (3.1.5). More precisely, consider

fywis = Z Uytes Uvtes = Uyte;—ejtesUv—eitejtes (3.1.8)
s=1
foralli # j € {1,2,...,n} and all y,v € Z%; whose entries sum to d — 1 and y; > 1, v; > 1.

We now prove Conjecture [3.1.16| for the case n = 2.

Theorem 3.1.20. When n = 2, the equations form a Grobner basis with respect

to the term order < (defined below as a refinement of the weight order (3.1.10)) and the
dimension of the variety they cut out is (”'QH) = 3. The ideal defined by 1s the prime

1deal of the odeco variety.
Proof. We are going to work over the polynomial ring
Clu] := Cluyy 4,11, 72 > 0 and 41 + ip = d]
= C[udo, U(d—1)15 - - - ,U()d].
Then, the equations are
Jyw,1,2 = Uytes Unter — Uytes—erters Uv—ertester T UytesUvtes — Uytes—etesUv—ertertens

where y,v € ZZEO, the sum of the entries of each of y and visd—1and y, > 1,v; > 1. Let
the ideal they generate be

Ii=(fyor2yv €220, yi=> vi=d—1y,>1Luv >1). (3.1.9)
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We introduce the following weights on our variables. Let
weight (wia—s) = 1, (3.1.10)

forall?=0,1,...,d. Consider the weighted term order on monomials < given by the above
weights, refined by the lexicographic term order such that ugy > w@g—1)1 = -+ > uoq in case
of equal weights.

We first show that the equations form a Grobner basis with respect to <. Using
Macaulay2, we have shown that they form a Grébner basis for d = 1,2,...,9. Now, consider
any d > 9. Take f, .12 and fy» .7 12. By Buchberger’s second criterion, we only need to
consider the two polynomials when their initial terms have a common variable. Then, the
two polynomials fy/ .12 and fy 12 contain [ <9 different variables in total. If we restrict
our generators to these [ variables only, the restriction of the term order is the same
as the term order in the case d = [ — 1, and we have shown that in this case, the restricted

generators form a Grobner basis. Therefore, we can reduce the S-pair of fy/ v 12 and fyr 712
to 0 using the generators (3.1.8]). Thus, the equations (3.1.8]) form a Grébner basis.

Next, we show that the ideal I generated by has dimension 3. One way to see
this is to use Lemma together with the fact that [ is prime, which is proven below.
Another way to see that dim I = 3 is to reason with standard monomials as follows.

Note that because of our choice of term order <, the initial term of every f,, , 12 is square-
free. The reason is that if u, ., = Uyie,, then, weight(uy e, Upte,) = Weight( wyie; —eote,
uv—€1+62—61) > Welght( uy-i—ezuv-i-ez) = Weight(uy-‘rm—ez-‘rez uv—eﬁ-eg—ez)a but Uy+er—este; AP~
pears first in <, SO, Uyte,—cote; Up—e;+es—e; 1S the leading term. The reasoning is similar if
Uyter—estes = Up—eq+es—ey - Lherefore, ino I (and thus I) is a radical ideal.

To show that dim/ = 3, let S = {w;, (a—i,), Wi (d—is)> Uis(d—is)> Wis(d—is)} D€ a set of four
variables, where 1, > 15 > 13 > 14. We will show that there is a monomial with only variables
from S which is not standard. This would mean that dim I < 3. Indeed, consider

f(z'1—l,d—il+1),(z‘3—|—1,d—i3—1),1,2 = Uiy —1)(d—i1+1) U(iz+1)(d—iz+1) — Wiy (d—iy)Wiz(d—i3)

FU (i —2)(d—i1+2) Win (d—iz) — U(iy—1)(d—i1+1)U(ia—1)(d—ia+1)-

Since i; — 2 > 143, the initial term i w;, (g—,)WUis(d—i5)- Therefore, dim I < 3.
Now, consider the set S = {ug—2), U1(4-1), Uoa}. Suppose there exists

fy,v,1,2 = Uyte; Uvte; — Uyter—egter Uv—er+eater T UyteosUvtes — Uyter—eatesUv—er+eatens

such that in. (f) has both of its variables in S. We know that in. (f) = uyte, Upte, OF
in. (f) = Uytey—esteUo—es+egte,- Moreover, if y = (y1,y2) and v = (v, v2), then, yo,v; > 1
and y1,ve < d — 2. Thus, if in. (f) = Uyte, Upte, a0 Uyte,, Upye, € S, then, v = (1,d — 2)
and y = (1,d —2) or y = (0,d —1). Since f,,1,2 is not the trivial polynomial 0, then,
y # (0,d —1). Thus, y = (1,d — 2). But this is impossible since in (f) is square-free for
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every generator f If in-< (f) = Uytes—eater Uv—ei+eater and Uyte1—eaterr bv—er+eater € Sa then,
Uy 42,9 —1) € S. But y; > 1, so, y1 + 2 > 3, therefore, ug,42,,-1) € S. In any case, there
can’t be a monomial with only variables in S, which is a leading term of an element in I.
Thus, dim I = 3.

Another way to see that dim 7 > 3 is by noting that V (I) contains the odeco variety,
which has dimension 3 in this case.

Finally, we show that the ideal generated by @ is prime. Let J be the ideal
generated by the leading binomials of the elements in @D with respect to the weight
order defined by (without considering the refinement given by the order of the
variables). Denote by g, the leading term of a polynomial ¢ just with respect to this
weight order. Then, (fy.1.2), = UyteiUvte; — Uyte,—eotes Uv—ertester > ANA J = (Uyje, Upie; —
Uyt ey —enter Uv—ertester © YsV € L0, 41 + Y2 = U1 +v2 = d — 1,4,01 > 1). The ideal J is the
prime ideal of the rational normal curve; in particular, it is prime. Moreover, by Proposition
1.13 in |146], in (I) =in (J). Therefore, ins (1) is an initial ideal of both I and J. In the
following paragraph, we show that J is the initial ideal of I with respect to the weight order
given by (3.1.10). Then, since J is prime, it follows that I is prime.

Suppose J is not initial, i.e. there exists g € I such that g,, ¢ J. Choose g with in (g) as
small as possible. Since the elements f, , 12 form a Grobner basis of I, then, there exist y, v
such that in_ (g) is divisible by in. (f,,12). Then, g = oy, fy.v12+ g1, where o, is a mono-
mial and inog; < in.g. But note that then, g, = vy (Uyte, Uvte; — Uyter—eoter Uv—er+ester) T
(G1),,- SINCE UyteyUpte; — Uytes—eotes Uv—ei+ester € J and g, & J, then, (g1), & J. But this is
a contradiction since in (g1) < inx (g) and we chose in (g) to be as small as possible such
that g, & J.

Therefore, J is initial. Since it is prime, then, I is also prime. By Lemma [3.1.21] the
dimension of the odeco variety for n = 2 is 3. Moreover, it is contained in V (I). Since
V (I) is also irreducible and has dimension 3, then, I is exactly the prime ideal of the odeco
variety. O

3.1.3.1 Evidence for Conjecture |3.1.16

Lemma 3.1.21. The odeco variety is an irreducible component of V (I), where I is the ideal

generated by the equations .

Proof. We show that the dimension of the component of V (I) containing the odeco variety
is equal to (”;1) This equals the dimension of the odeco variety. Since it is irreducible, then
it is an irreducible component of V (I).

Consider the point T" € V(I) given by T; ; = 1 for all ¢« = 1,...,n and all other
entries of T" are 0. The polynomial corresponding to T is the standard Fermat polynomial
fr(zi,...,2,) = 2¢+---+ 22 In the u coordinates, T is represented by the point for which
Up. 0do..0 = Uge; = 1 for i =1,... n and all other u;, , =0.

We can select generators f, ., for I such that v,w € Z%, with ), v; = >, w; =d —1 and
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S
f'u,w = Zuv+esuw+es — Usort(v,w), +es Usort(v,w)y+es
i=1
where sort(v, w), and sort(v,w), are defined as follows. Given v and w, form the corre-
sponding sequences t (v) =1...12...2...n...nand t(w)=1...12...2...0n...n. Let
S~~~ S—— N e S——

v1 times v times vy, times w1 times wg times wy, times

t (v,w) = sort (t (v) Ut (w)) be the sequence obtained by concatenating ¢ (v) and ¢ (w) and
then sorting. Let ¢ (v, w), be the subsequence of elements in odd positions and ¢ (v, w), the
subsequence of elements in even positions. Define tgorg(v,w), and Usort(v,w), b€ the correspond-
ing u variables. The fact that the polynomials f, ., generate I follows from Theorem 14.2 in
[146).

We form the Jacobian J of I at the point 7T". Index the rows of J by the generators f, ,,
and index the columns by the variables w;, ;. . Note that %kp = 0 since the monomials

in f,. containing ug, contain another variable u;, . ;, 7# Uqe, for all 7 =1,...,n. Therefore,
the column corresponding to ug,, is zero.

Note that the monomials tsort(v,w), +e, Usort(v,w),+e, CANNOL contain a variable uge, for any
v and w that give a nontrivial f,,, so they don’t matter in the Jacobian analysis.

Now, the column of J corresponding to the variable (g _1)e;1¢, for i # j has 1 only in
the rows corresponding to f(g-1)e;,@-1)e; and so does the variable u(g_1);1¢;- Therefore, the
variables U(g_1)e,+¢; and the polynomials f(g_1)e; (a-1)e; form a block in J of rank (72‘), which
equals the number of pairs ¢ # j.

For any other variable w;, _;., such that (i1, ...,4,) # de; or (d — 1) e;+e;, its correspond-
ing column is nonzero only at the rows corresponding to the polynomials f(;, . i.)—es,(d—1)es
for all s such that 75 > 0. Each such polynomial has no other 1’s in its row except for the
one at w;, ;.. Therefore, each variable u;, ., such that (iy,...,,) # de; or (d — 1) e; + ¢y,
contributes a size 1 x {#s : is > 0} nonzero block to J, so it contributes 1 to the rank.
Therefore, the rank of 7 is

) n
# variables — #{uge, } — #{U(d_1)6i+6j:i¢j} + (2)

1
= # variables —n —n(n—1) + (g) = # variables — (n—; )

Thus, the rank of the Jacobian at a smooth point in the irreducible component of T' is at
least # variables — (";Ll), so the dimension of an irreducible component containing 7' is at
most (”;1).

Since the odeco variety is irreducible, has dimension (";1), contains 7T, and is contained
in V (I), then it is one of the irreducible components of V (I). O

Lemma [3.1.21] shows that one only needs to show that the ideal I is prime in order to
confirm Conjecture |3.1.16|
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Computations

In Figure [3.2| we show some computational checks of the conjecture.

Since the ideal I becomes quite large, as n and d grow, it soon becomes hard to check
its primality. It was easy to check the conjecture was correct in the case n = d = 3 using
Macaulay2. The case n = 3,d = 4 was checked using the numerical homotopy software
Bertini. We were unable to confirm the rest of the results using (short) computations.

n | d | dimension | degree | # min. gens. | conjecture check
313 6 10 6 True

314 6 35 27 True

315 6 84 75

413 > 10 20

414 > 10 126

513 > 15 50

Figure 3.2: A table of what can be found computationally about the ideal I generated by
the equations in ([3.1.5]).

Acknowledgements

I would like to thank my advisor Bernd Sturmfels for his great help in this project. I would
also like to thank Kaie Kubjas and Luke Oeding for helpful comments and Matthew Niemerg
for his help with the software Bertini. I was supported by a UC Berkeley Graduate Fellowship
and by the National Institute of Mathematical Sciences (NIMS) in Daejeon, Korea.



CHAPTER 3. ORTHOGONALLY DECOMPOSABLE TENSORS 94

3.2 Singular Vectors of Orthogonally Decomposable
Tensors

Orthogonal decomposition of tensors is a generalization of the singular value decomposition
of matrices. In this section, we study the spectral theory of orthogonally decomposable
tensors. For such a tensor, we give a description of its singular vector tuples as a variety in
a product of projective spaces. This is joint work with Anna Seigal titled Singular vectors
of orthogonally decomposable tensors [132].

3.2.1 Introduction

The singular value decomposition of a matrix M € R" ® R"™ expresses it in the form
M =VOSVOT =3 00 @0, (3.2.1)
i=1

where VU € R™ @ R™ and V® € R™ ® R™ are orthogonal matrices. The vectors
vgl), e 7%(111) and 1)%2), e ,117(122) are the columns of the matrices V) and V) respectively.
The matrix ¥ is diagonal of size ny X ny with non-negative diagonal entries oy, ..., 0, where
n = min{ny, ny}. The singular value decomposition of a matrix is extremely useful for study-
ing matrix-shaped data coming from applications. For example, it allows the best low-rank
approximation of a matrix to be found.

In light of the excellent properties of the singular value decomposition, and of the preva-
lence of tensor data coming from applications, it is a topic of major interest to extend the
singular value decomposition to tensors. In fact it is even more crucial to find a low rank
approximation of a tensor than it is for a matrix: the greater number of dimensions makes
tensors in their original form especially computationally intractable. In this section we in-
vestigate those tensors for which the singular value decomposition is possible. We note that
our singular value decomposition is not valid for all tensors of a given format, which makes
it more stringent than that in [110], which is based on flattenings of the tensor.

Definition 3.2.1. A tensor T € R™ @ R™ ® --- ® R™ is orthogonally decomposable, or
odeco, if it can be written as

T = ZO’iU,gl) ® 'Ui(Z) K- U,Ed)v
=1

where n = min{ny,...,ng}, the scalars o; € R, and the vectors v%j),véj), . ,vr(ij) € R™ are
orthonormal for every fized j € {1,...,d}.

We remark that in the above decomposition for T it is sufficient to sum up to n =
min{ny,...,nq} since there are at most n; orthonormal vectors in R™ for every j =1,...,d.
Such a decomposition will in general be unique up to re-ordering the summands.
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Odeco tensors have been studied in the past due to their appealing properties [8, 6, 98,
99,131, 160|. Finding the decomposition of a general tensor is NP-hard [92], however finding
the decomposition of an odeco tensor can be done efficiently via a few different methods [100),
160].

The variety of odeco tensors is studied in Section [4.1] and the eigenvectors of symmetric

odeco tensors of format n X --- x n were studied in Section [3.1, Here we focus on odeco
tensors of format ny X --- X ng that need not be symmetric, and whose dimensions n; need

not be equal. As with matrices, when the dimensions n; are not equal, it is no longer possible
to define eigenvectors. The right notion is now that of a singular vector tuple.

Definition 3.2.2. A singular vector tuple of a tensor T € R™ ® --- ® R™ is a d-tuple of
nonzero vectors (z, ... @) € C™ x .. x C™ such that

TV, 207D 20 @Y s parallel to 29, for all j =1,...,d. (3.2.2)

The left hand side of equation (3.2.2) is the vector obtained by contracting T by the vector
%) along its k-th dimension for all k # j.

Since this setup is invariant under scaling each vector 2\9), we consider the singular vector
tuple (z™), ..., 2@®) to lie in the product of projective spaces P~ x ... x Pra=t,

The singular vector tuples of a tensor can also be characterized via a variational approach,
as in |112]. They are the critical points of the optimization problem

maximize T(zW,... z?)

subject to  [|[zV]| =--- = [|29|| = 1,

where we note that the global maximizer gives the best rank-one approximation of the tensor.

Given a decomposition of an odeco tensor T' = > 7 | aivi(l) Q- ® vz-(d), it is straight-
forward to see that the tuples (UZ-(I), e ,vz(d)) corresponding to the rank-one tensors in the

decomposition are singular vector tuples. For generic matrices M € R" ® R™ the rank-one
terms in the singular value decomposition constitute all of the singular vector pairs. In con-
trast, odeco tensors have additional singular vector tuples that do not appear as terms in
the decomposition.

Remark 3.2.3. When (2, ..., 29) is a singular vector tuple of T, we distinguish between
the cases T(xW, ... 2@) = 0 and T(zW,...,2D) # 0. This is equivalent to whether or
not the vectors in are zero for all j = 1,...,d (by the definition of a singular vector
tuple). In the former case, the singular vector tuple is a base point of the following map of
projective space induced by T':

Pl ..o x Pl s Pl pral

(M, @) (T(',x@), C D IO A 1O I A )) )

In the latter case the singular vector tuple is a fixed point of this map.
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Our main theorem is the following description of the singular vector tuples of an odeco
tensor:

Theorem 3.2.4. The projective variety of singular vector tuples of an odeco tensor T €
R™ @ R™ ® ---®@ R™ is a subvariety of P~ x .. x P~ and consists of

(Y d-2)+1)" -1
24-1(d — 2)

n

c(d—1)"+(5)

components, each of dimension Z;l:l(nj — 1) — 2n, that are products of linear subspaces of

fixed points, and an arrangement of base points. The base points comprise (g)

each P"~t. Here, n = min{ny,...,nqs} and c = #{j : n; = n}.

In particular, for all but a few small cases, the singular vector tuples of an odeco tensor
comprise a positive-dimensional variety. In contrast, the variety of singular vector tuples of a
generic tensor is zero-dimensional [69]. It is interesting to study how the positive-dimensional
components of the singular vector variety for an odeco tensor adopt generic behavior under
a small perturbation. Note the contrast to the variety of eigenvectors of a general symmetric
odeco tensor, which is also zero-dimensional by Theorem [3.1.8|

The rest of this section is organized as follows. In Subsection [3.2.2] we use the theory of
binomial ideals [60] to describe the singular vector tuples of an odeco tensor. In Subsection
3.2.3| we conclude the proof of our theorem by describing the positive-dimensional compo-
nents of the variety of singular vector tuples. Finally, in Subsection [3.2.4] we explore the
structure of these components in more detail by studying specific examples.

3.2.2 Description of the Singular Vector Tuples

In this section we give a formula for the singular vector tuples of an odeco tensor. We start
by considering a diagonal odeco tensor.

Lemma 3.2.5. Let S € R"M ® --- @ R™ be the tensor

i=1

where o1, ...,0, # 0, the vector ez(»j) is the ith basis vector in R™ , and n = min{ny, ..., ng}.
The singular vector tuples (z1),... @) e P! x ... x P! of S are given as follows.

Type I: Tuples (... 2D} of the form

1

“az (1) (2 (d) - =1 SO NC)NC) (d) (d)
UT&) 2 (eT(l), €y - ,eT(1)> + Z maT(f) 2 (eT(i), Xi €y 0 Xi 67(1)) (3.2.3)
i=1
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Type II:

where 1 < m < n, the scalars Xz € {1} are such that HJ 2XZ) = 1 for every
i=1,...,m, each scalar n; is a (2d — 4)-th root of unity, and T is any permutation on

{1,...,n}.

All tuples (x(l), . ,m(d)) such that the n x d matric X = (x Ej))1<z<n 1<j<d has at least

two zeros in each row. Since each x\9) € Pt we further require that no 9 has all
coordinates equal to zero.

Before proving Lemma [3.2.5] we illustrate it by way of the following example:

Example 3.2.6. Consider the odeco tensor S =e; ®e; ® e +esRes ey € RZQR? @ R3.
Its Type I singular vector tuples are

1 3 2
(o929 (e, 2 )
( 5 ) + eg ), ) + 6(2) ( ) + eé‘””) ) (egl) + egl), 652) — ef), e§3) — eg?’)) )

(eg ) _ eg ), 652) + eé ), ef”) — e§3)> ) (egl) — eél), e§2) — e( ) (3) + 6(3)) )

The Type II singular vectors make five copies of P*, namely

(Degl) +Degl),eg2),e§3)> ; (egl),Deg —|—D63 , (3)> (egl),eS ,D62 —|—De >,

(egl), Deg ) + Deg ), (3)) (eé ), eéZ), Degg) + Degg)) ,

where two (s in a vector indicate a copy of P! on those two coordinates. The five copies of
P! intersect in two triple intersections, as seen in Figure[3.5,

Figure 3.3: The Type II singular vectors: five copies of P! meeting at two triple intersections

According to [69], the generic number of singular vector tuples of a tensor of this size is

15, so the five copies of P* degenerate from nine points. For example, consider the family of
perturbed tensors

S =5+ €T,
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where T is the 2 x 3 x 3 tensor with slices Ty .. and T.. given by

0 40 10 711
Ti..=|10 3 3|, Th.=[80 2
3 2 6 2 2 3

For € on the order of 107% we attain nine points: one point near each copy of P!, and two
points of multiplicity 2 near each triple intersection.

We will return this example in Section [3.2.4]

Proof of Lemma[3.2.5. By definition, (z(),...,2(¥) is a singular vector tuple of S if and
only if for each 7 = 1,...,d the following matrix has rank at most one:

B BURPN U )

MS] — [S(x(l)7."7x(j_l)’.’x(j+l)""7x(d)) | x(])] = : :
Y S L NV CO R
where $ ) denotes the omission of $ ) from the product.

We examine the structure of the smgular vectors tuples of S by looking at the following
three cases.

Case 1: Consider the variables m(l), e ld ) where i € {1,2,...,n} is fixed. Suppose
that exactly one of the variables :1:(]) is 0, i.e. z; (k) # 0 for all k 7& j. The i-th row of the
matrix Mg ; has first entry o;x 2(1) . .:2’53) . (d) # 0 and second entry a:( D = . Therefore,

inAorder for this matrix to have rank 1, we need the whole second column to be zero, i.e.
xgj) = 2 = 0. Since z0) € P%~1, this can only happen 1f n; > n and one of the last

n;—n coordlnates of 1) is nonzero. But the contraction S(x(M, ... 2=V . g+ p(d)

lies in the span of egj), ., e soin order for it to be parallel to x(j) it has to be O. In

particular, its ¢-th entry Uiycgl) . .555” . .xz(d) has to be 0. Contradiction! Therefore, we can’t
(1) (d)

have exactly one of the variables z;”,...,z,;” equal to 0.
Case 2: Suppose that for some ¢ at least two of the entries xl(l), Cey Z ) but not all of
them, are equal to 0. This means that the entry in the i-th row and the first column of Mg,

is 0 for every k, and if xgk) # 0 (and we assumed that one such k exists) then the entry in
the i-th row and the second column is not 0. For such a k, the whole first column of Mg

must be 0 in order that it have rank 1. Therefore, for every 7, at least two of the entries
7 xz(»d) are equal to 0. Conversely, if for every i at least two of the entries xgl), L)

4 g ey , X,

are equal to 0 in such a way that 20) € P%~1 then, (M, ..., 2(®) is a singular vector tuple
of S. This gives the singular vector tuples of Type II, also known as the base points.

Case 3: It remains to consider the situation where, for every i, either xﬁ” =...= xl(d) =0
(1) (d)

or none of the variables :L'El), . ,xgd) are 0. After reordering, assume that z;”’ = ... =2, =

0 for m+ 1 <i <n, for some m < n, andxz(l),...,xgd)#Oforlgz'gm.
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The condition for being a singular vector tuple now yields the following system of poly-

nomial equations in the Laurent polynomial ring C ml(j), (1j) 1<i<m,1 <5 <d|:

Il

I = <az-x§1) ) ..il(-j) .. .:Egd)xl(j) - alml(l) .. .@l(j) .. .xl(d)ml(-j) 1< <d 1<l < m> (3.2.4)

To solve this system of equations, we use the theory of binomial ideal decomposition devel-
oped in [60].
Consider the lattice

7 7
k=1

d
L,= <Z(e(’“> —eM)y 2 — ey 1< j<d 1<l < m> C zxm

where el()a) is the elementary basis vector in Z%*™ with a 1 in coordinate (a, b). Let p : L, — C*

denote the partial character

d

p (Z(eg’” — ey —2(el) — el(j))> =% vi<j<d1<il,<m (3.2.5)
O

k=1

Then the lattice ideal I(p) = (" — p(v) : v € L,) is our ideal I, where z* denotes taking the

variables :cgj ) in the ring to the powers indicated by the lattice element v.
We have the inclusion L, C L = <e§]) — el(J) :1<j<d,1<1i,l <m). Therefore by [60,
Theorem 2.1],
I(p) = N 1)

p’ extends p to L

To decompose the ideal I(p), we therefore seek to characterize the partial characters p/
of L which extend p. Summing (3.2.5) over 1 < j < d gives the formula

o (S5 (e -2 -e)) = (2)

Jj=1

d
which, after simplifying, yields p ((d— 2) Zizl(egk) - el(k))> = <ﬂ> . Therefore, any p'

extending p satisfies

o (i(e?f) —el"“))) vy (;) (32.6)

k=1
where ¢y is a (d — 2)-th root of unity. By rearranging (3.2.5)), we moreover obtain

o (2 - ) = (i(e@ - e;“”’)) (7). (327)

k=1
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Combining (3.2.6)) and (| - 3.2.7)) yields

g (20 - ) = (2)
o (e =) = o} ( )di

where qﬁ(lj are 2(d — 2)-th roots of umty such that (¢( )2 = ¢y forall j =1,...,d. It remains

to find the relations satisfied by qﬁ as i,l,j vary so that the original equation ({3.2.5)) is
satisfied. When we plug in to that equation, we get

d 1 _ 2
b (O (o) TP _ o
H<¢ (7) >¢ (Z) -2

Thus,

which is equivalent to

d
[1#5% = oéa (3.2.8)
k=1
To satisfy these conditions, we can express everything in the following way. Let n; = (bl(l] )

be a (2d — 4)-th root of unity. Since 7} = (ng N2 = ¢y, then gb( = UleEzj , where Xizj) = =+1.
Then, equation (3.2.8] - becomes

d
nd [ = oa = nd.
=2
Equivalently,
d
i =TI
j=2

Note that since 7; is a (2d — 4)-th root of unity, we have 7% 2 = +£1.
Finally, since (¢! — e) + (e — e} + (el — 9y = 0, applying p gives

1 1
o\ 2 oh o;\
1= ngj)mz(a ) Xl(h)mh( l) ngz)mn( h) :

We now have all the relations required to find the ideals I(p’):

1
. -2 .
f(p’)=< ()—Xﬁi)nzl((jl) 5”):1§z'§m,1gjgd>
ag

2
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where Y9 € {£1} with Hj:2 X =1 and n;; are (2d—4)-th roots of unity. Setting Y = ¥’

and 7; = n;1, and taking I to be the intersection of the I(p’), we obtain the required form of
our singular vector tuples:

1
I:ﬂ<x§”—><§”m<@) xgﬂ);1§i§m,1§j§d>.
0

X

Here Xgl) = 1 for all 7. The zeros of this ideal are the singular vector tuples of Type 1, also

known as the fixed points.
]

Now, we proceed to the main result of this section. We describe the singular vector tuples
of a general odeco tensor.

ng) € RM"®---®@R™ be an odeco tensor such

that vij), e ,v(j) € R"% are orthonormal vectors. Let VW) € R% @ R™ be any orthogonal
matrix whose first n columns are vgj), e ,vff). Then, the singular vector tuples of T are
given by (VWa® VD g@) where (V... 2D) is a singular vector tuple of the diagonal
tensor S = > ", aiegl) ®- & ez(d) described in Lemma m In other words, the singular
vectors of T are as follows:

Proposition 3.2.7. LetT =" | oM@ @u

i

Type I: Tuples (VWaW . VDz@) “such that (W), ... 2Y) is a Type I singular vector of
the diagonal odeco tensor in Lemma|3.2.5.

Type II: Tuples (V(l)x(l), e ,V(d)x(d)) , where the matriz X = (a:(j))ij has at least two zeros in

7
each row such that none of the vectors x9) € P~ is identically zero.

Proof. Assume that (y(l), e ,y(d)) is a singular vector tuple of T. Equivalently, for all
1 < j < d, the vector T'(y™M, ...,y . 40+ @) g parallel to y). Unpacking the
definition of the contraction, we obtain

- , . ,
T(yW, ... yu=b .yt @y = Z o <H(UZ( ). y(k))) ’UZ(J) (3.2.9)

i=1 k]

The inner-product term (vik) -y®)) is the i-th element in the vector %) := (V(k))Ty(k), where
V*) is any orthogonal matrix with first n columns equal to vgk), e ,vék). We can re-write

the right hand side of (3.2.9) in terms of the 2*) 1 <k < d, as

iai <H x§’“)> NUNG (zn: o (H xl(k:)) eﬁj)) .

i=1 k#j i=1 k#j
Therefore,

T(y®, .. 00yt @) @ gM G LG @)y

P
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Where S o e eVw. . ®e . Since V) is orthogonal, Ty, ...y gyt oy

and y¥) = V020 are parallel 1f and only if S(zW, ... 20~V . x0+)  2@) and 209) are
parallel. Therefore, equivalently (z(M), ... 2(?) is a singular vector tuple of S, and the
solutions for all such (z, ... 2@) are given in Lemma m O

3.2.3 Proof of the Main Theorem

Proof of Theorem |3.2.4. The count for the contribution of the fixed points to the projective
variety of singular vector tuples is obtained as follows directly from Proposition [3.2.7 For
any choice of m € {1,...,n}, a subset of {1,...,n} of size m, scalars n; which are (2d — 4)-
th roots of unity (where i € {2,...,m}), and Xz(j) € {£1} such that ngz ng) = 1 (where
i€{2,....,m}and j € {2,...,d}), we have one singular vector tuple. Therefore, the total
number of singular vector tuples of Type I is

n n

n
2d — 4 m712(m71)(d72) — d—2 m712(m71)(d71)
> (n)ei—4 >

m=1 m=1

> _(d—2ym2tdmm (247 (g —2) + 1) — 1

m=1

20-1(d — 2) B 20-1(d — 2)

It remains to study the contribution made by the Type II singular vector tuples which
constitute the base locus. By Proposition [3.2.7) we can restrict our attention to the tensor
S=>" 0,®- Qe since its singular vector tuples differ from those of a general tensor
only by an orthogonal change of coordinates in each factor.

We first study the case in which all dimensions are equal, n; = --- = ng = n. Here, the
tuple (z™, ..., 2@) is a Type II singular vector tuple if and only if the matrix X = (asgj))
has at least two zeros in every row and none of the vectors 29 is identically zero. This
configuration is a subvariety of P"~! x --. x P*"~!. Its ideal is given by

n

S a? e a@i=10d) = Y () @) (3.2.10)

i=1 i=1 1<j<k<d

We count the number of components in this subvariety by looking at the Chow ring
of P"~1 x .. x P71 which is Z[ty, ..., ta]/(t},...,t5). Each t; represents the class of a
hyperplane in P ~!, the jth projective space in the product. The equivalence class of the

variety V (( T, )k )>> is given by t;t;,. We consider the variety

v( N @ ) U V( (&9 2 >> (3.2.11)

1<j<k<d 1<j<k<d

which yields our variety of interest when we intersect over ¢. Its equivalence class is given
by > 1 <jcr<atite- From this, we see that the equivalence class in the Chow ring of the total
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configuration is given by

p(tl,...,td):< > tjtk> . (3.2.12)

1<j<k<d

Therefore, to count the number of linear spaces that constitute the Type II singular
vector tuples, we wish to count the number of monomials of the polynomial as an
element of the Chow ring. Equivalently we count the terms in the expansion, as an element
of Z[ty, ..., tq], that are not divisible by t‘]f-l for any j.

A monomial in the expanded form of (3.2.12)) is produced by multiplying one of the (d)

2
terms in each of the n factors. This produces the first term, (g)n, in the expression for
the number of components in the base locus. We must now subtract those terms that are
divisible by ¢} for some fixed j. These are formed by selecting the terms ¢;t,, . .., t;t, from
consecutive factors. There are d — 1 choices for each k, and d choices for the fixed j, yielding
at first glance d(d — 1) terms of this format. However, we have double-counted those terms
of the form ¢7¢} for fixed j and k, of which there are (d). Combining these terms gives the

2
correct specialization of our desired formula to the case ¢ = #{j : n; = n} = d:

(g)n _d(d—1)" + (g) (3.2.13)

The codimension of the ideal in (3.2.10]) is 2n, so our linear spaces enumerated above are of
dimension d(n — 1) — 2n.
(d)

i

The case of non-equal dimensions follows similarly: consider S = """ | Uiegl) ®---Qe

of format ny x -+ x ng where n = min{ny,...,nq} and ¢ = #{j : n; = n}. To count the
number of maximal-dimensional linear spaces, we consider the same polynomial (3.2.12) in
the Chow ring Z[ty, ..., t4]/(t1", ..., t;?), and we now want to count the number of terms

which are not divisible by ¢ for any j =1,...,d.
From the form of p in (3.2.12)), we see that it is impossible for a term to be divisible by
t?j for any n; > n. Our previous formula (3.2.13)) therefore generalizes to

(;l)n —eld—1)" (;)

and the dimension of each components is Z;l:l(nj — 1) — 2n. This concludes the proof. [

3.2.4 Further Explorations of the Type II Singular Vectors

In this section we turn our attention to the Type II singular vector tuples of the odeco tensor
S=5", egl) ®: - ® el(»d), where S is of format n; X -+ X ng and n = min{ny,...,ng}.

We can associate to each projective space P! the simplex An;-1 and consider our
linear spaces as polyhedral subcomplexes (prodsimplicial complexes) in the boundary of the
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product of simplices A,,_; X ... x A,,_;. The number of components in the variety of
Type II singular vector tuples is the number of facets in this complex.

We first return to Example [3.2.6], in which we had six Type I singular vector tuples, and
the Type II singular vector tuples made up five copies of P*. In Figure we draw the
polyhedral complex in A; x Ay x Ay corresponding to the Type II singular vector tuples.
Motivated by this example, we investigate the shape of the Type II singular vector tuples of
other small odeco tensors.

Figure 3.4: The Type II singular vectors tuples of a 2 x 3 X 3 odeco tensor, drawn as a
polyhedral complex

It is interesting to stratify odeco tensors according to the dimension of their Type II
singular vectors, using the following proposition:

Proposition 3.2.8. For each dimension k, the odeco tensors whose Type Il singular vector
tuples have dimension k come from a finite list of possible sizes ny X «++ X ng.

Proof. By Theorem [3.2.4] we seek the solutions of ny,...,ng with n; > 2 and d > 3 to the
equation

> (nj—1)—2n=k (3.2.14)

Jj=1

where n = min{ns,...,ng}. An odeco tensor of size ny; x -+ x ng will then have Type II
singular vector tuples consisting of product of linear spaces of dimension k. Without loss of
generality, we assume that n; < ... < ng, and hence n = n;. Let the constant a be such
that ny = n + «a. For fixed «a, rearranging shows that we seek to solve the equation

d
(nj—1)=k+2—a. (3.2.15)
7=3

This has finitely many solutions, since the right hand side is a fixed number, and each
summand on the left hand side has strictly positive integer size. From the form of the right
hand side, we see that there will be solutions for only finitely many values of o. In conclusion,
there are only finitely many size combinations ny X --- X ng which yield Type II singular
vector tuples of dimension k. O
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For example, odeco tensors whose Type II singular vector tuples constitute a zero-
dimensional projective variety have possible sizes:

{2%x2x%x2,3x3x3,2x2x2x2}.

Theorem tells us how many singular vector tuples there are of Types I and II, which
are entered in the first two columns of the table below. The number of singular vector tuples
of a generic tensor of a given format is given by [69, Theorem 1], and this is entered into
the last column of the table. We observe that odeco tensors whose Type II singular vector
tuples consist solely of points attain the generic count.

Tensor Size | Type I Count | Type II Count | Generic Count
2x2x%2 6 0 6

3x3x3 31 6 37
2Xx2x2x2]18 6 24

Now we consider odeco tensors whose Type II singular vector tuples make a one-dimensional
projective variety. They are of one of the following formats:

{2%x3%x3,2x2%x4,3x3Xx4,4x4x4,2Xx2x2x%x3,2x2x2x2x2}

Their singular vector tuples consists of a finite collection of points (Type I) and a collection
of copies of P! in the product of projective spaces P~ x ... x P~ (Type II). When two
copies of P! meet, they do so at a triple intersection point. The data for these tensor formats
is recorded in the table below. Under a small perturbation, each copy of P! contributes one
singular vector tuple, and two arise from each triple intersection. We observe that summing
the Type I count, the number of copies of P!, and twice the number of triple intersections
yields the generic count.

Tensor Size Type I Count | #P!s | #Triple Intersections | Generic Count
2x3x%x3 6 5 2 15

2x2x4 6 2 0 8

Ix3 x4 31 12 6 55

4x4x4 156 36 24 240
2x2x2x%x3 18 12 6 42
2x2x2x2x2|50 30 20 120

We explored the 2 x 3 x 3 case in more detail in Example In the 3 x 3 x 4 and
2 X 2 x 2 x 3 cases the simplicial complexes of the Type II singular vector tuples are the
same shape. They consist of the 12 copies of P! meeting at six triple intersections pictured
in Figure [3.5

In the case of 2 x 2 x 2 x 2 x 2 odeco tensors, we have 30 copies of P! that meet at 20
triple intersection points as seen in the non-planar arrangement pictured in Figure In
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Figure 3.5: The 12 copies of P! with six triple intersection points, for 3 x 3 x 4 tensors and
2 x 2 x 2 x 3 tensors

Figure 3.6: The 30 copies of P! with 20 triple intersection points, for 2 x 2 x 2 x 2 x 2 tensors

the case of 4 x 4 x 4 odeco tensors, we have 36 copies of P! meeting at 24 triple intersection
points as pictured in Figure [3.7]
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Figure 3.7: The 36 copies of P! with 24 triple intersection points, for 4 x 4 x 4 tensors

3.3 Conclusion

In this chapter we studied orthogonally decomposable tensors. In particular, we described
the eigenvectors of symmetric odeco tensors, and the singular vector tuples of non-symmetric
odeco tensors. For a general tensor it is hard both computationally and algebraically to find
its eigenvectors or singular vector tuples. As we saw, odeco tensors have very appealing
structure, and we can express their eigenvectors and singular vector tuples in terms of the
elements in their decomposition.

In the next chapter we continue to explore the properties of odeco tensors by describing
the odeco variety.
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Chapter 4

Varieties of Tensors

4.1 The Variety of Orthogonally Decomposable
Tensors

While every matrix admits a singular value decomposition, in which the terms are pairwise
orthogonal, higher-order tensors typically do not admit such an orthogonal decomposition.
Those that do have attracted attention from theoretical computer science and scientific com-
puting. We complement this existing body of literature with an algebro-geometric analysis
of the set of orthogonally decomposable tensors.

More specifically, we prove that they form a real-algebraic variety defined by polynomials
of degree at most four. The exact degrees, and the corresponding polynomials, are different
in each of the two scenarios: ordinary or symmetric. A key feature of our approach is a
surprising connection between orthogonally decomposable tensors and semisimple associative
algebras.

This section is based on part of joint work with Ada Boralevi, Jan Draisma and Emil
Horobet titled Orthogonal and unitary tensor decomposition from an algebraic perspective [23].

4.1.1 Introduction and results

By the singular value decomposition, any real m x m-matrix A can be written as A =
Zle uvl’, where uy, ..., u, € R™ and vy, ..., v, € R™ are sets of nonzero, pairwise orthog-
onal vectors. The singular values ||u;|| - ||v:]|, including their multiplicities, are uniquely
determined by A, and if these are all distinct, then so are the terms uv!. If m = n and A
is symmetric, then the u; and v; can be chosen equal.

In this section we consider higher-order tensors in a tensor product VWV @ .. @ V(@ of
finite-dimensional vector spaces V® over R where the tensor product is also over R. We

assume that each V@ is equipped with a positive-definite inner product (-|-).
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Definition 4.1.1. A tensor in VM @ --- ®@ V@ is called orthogonally decomposable (odeco)

if it can be written as .

Sl a ol
=1

where for each j the vectors vij ), . ,v,gj ) are nonzero and pairwise orthogonal in V).

Note that orthogonality implies that the number k of terms is at most the minimum of
the dimensions of the V) so odeco tensors form a rather low-dimensional subvariety of the
space of all tensors; see Proposition [4.1.7]

Next we consider tensor powers of a single, finite-dimensional R-space V. We write S¢(V)
for the subspace of V®? consisting of all symmetric tensors, i.e., those fixed by all permuta-
tions of the tensor factors.

Definition 4.1.2. A tensor in S¢(V) is called symmetrically odeco if it can be written as

k
®d
E +v;
i=1

where the vectors vy, ..., v are nonzero, pairwise orthogonal vectors in V.

The signs are only required if d is even, as they can otherwise be absorbed into the v; by
taking a d-th root of —1. Clearly, a symmetrically odeco tensor is symmetric and odeco in
the earlier sense. The converse also holds; see Proposition [£.1.16]

By quantifier elimination, it follows that the set of odeco tensors is a semi-algebraic set in
VO ®...@V@ ie. afinite union of subsets described by polynomial equations and (weak
or strict) polynomial inequalities. A simple compactness argument (see Proposition
also shows that they form a closed subset in the Euclidean topology, so that only weak
inequalities are needed. However, our main result says that, in fact, only equations are
needed, and that the same holds in the symmetrically case as well.

Theorem 4.1.3 (Main Theorem). For each integer d > 3, and for all finite-dimensional
inner product spaces VY, ... V@ and V over R, the odeco tensors in VW @ - @ V@ and
the symmetrically odeco tensors in S(V'), form real algebraic varieties defined by polynomials
of degree 2.

Remark 4.1.4. Several remarks are in order:

1. Unlike for d = 2, for d > 3 the decomposition in Definitions is always
unique in the sense that the terms are uniquely determined, regardless of whether
some of their norms coincide; see Proposition [4.1.6]

2. The polynomial equations defining the variety of symmetric odeco tensors are the same
as the ones we saw in Conjecture(3.1.16, We will describe the polynomials defining the



CHAPTER 4. VARIETIES OF TENSORS 110

variety of ordinary odeco tensors in detail later on. The high-level perspective in both
cases is that the equations of degree two guarantee that a particular algebra associated
to a tensor is associative.

3. The degree 2 is minimal in the sense that there are no linear equations.

4. More generally, we do not know whether the equations that we give generate the prime
ideal of all polynomial equations vanishing on our real algebraic varieties when d > 3.

The remainder of this section is organized as follows. In Subsection [4.1.2] we discuss some
background and earlier literature.

In Subsection we prove the Main Theorem for tensors of order three. The proofs
for symmetrically odeco three-tensors are the simplest, and those for ordinary odeco three-
tensors build upon them. Then, in Subsection we derive the theorem for higher-order
ordinary and symmetric tensors. We conclude in Subsection with some open questions.

4.1.2 Background

In this section we collect background results on orthogonally decomposable tensors, and
connect our results to earlier work on them.

Proposition 4.1.5. The set of (ordinary or symmetrically) odeco tensors is closed in the
FEuclidean topology.

Proof. We give the argument for symmetrically odeco tensors; the same works in the other
case. Thus consider the space V' = R" with the standard inner product, let O, be the
orthogonal group, and consider the map

©: 0, x PV = PSYV), (1] |vn), M c-oo: An)) = [Z Aivg&l] .

Here P stands for projective space and where v; is the i-th column of the orthogonal matrix v.
The key point is that this map is well-defined and continuous, since the expression between
the last square brackets is never zero by linear independence of the v?d. Now ¢ is a continuous
map whose source is a compact topological space, hence im ¢ is a closed subset of PS4(V).
But then the pre-image of im ¢ in S%(V) \ {0} is also closed, and so is the union of this
pre-image with {0}. This is the set of symmetrically odeco tensors in S¢(V). O

Proposition 4.1.6. For d > 3, any (ordinary or symmetrically) odeco tensor has a unique
orthogonal decomposition.

In the ordinary case this was proved in |161, Theorem 3.2].
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Proof. We give the argument for ordinary odeco tensors. Consider an orthogonal decompo-
sition

k
T=> e v’
=1

of an odeco tensor T € V) ® ... ® V@, Contracting T with an arbitrary tensor S €
V@ @ ... @ V@ via the inner products on VO, ... V(@ Jeads to a tensor

k
T = Z )\ivffl) ® UZ@)
i=1
where ); is the inner product of S with UZ(B) R vz-(d). Now the above is a singular value
decomposition for the two-tensor 1”7, of which, for S sufficiently general, the singular values
|Ai] - HUZ(I)H : ||v£2)|| are all distinct. Thus UFS, . ,v,(:) are, up to nonzero scalars, unigely
determined as the singular vectors (corresponding to the nonzero singular values) of the
pairing of T" with a sufficiently general S. And these vectors determine the corresponding
terms, since the i-th term equals vgl) tensor the pairing of 7" with vgl), divided by |\v§1)]|2.
The arguments in the symmetric case are almost identical. We stress that, as permuting
the first two factors commutes with contracting the last d — 2 factors, the contraction of a

symmetric tensor is a symmetric matrix. O

Note that the proof of this proposition yields a simple randomized algorithm for deciding
whether a tensor is odeco, and for finding a decomposition when it exists. At the heart of
this algorithm is the computation of an ordinary singular-value decomposition for a small
matrix. For much more on algorithmic issues see |16} 100, 135, [161].

The uniqueness of the orthogonal decomposition makes it easy to compute the dimensions
of the real-algebraic varieties in our Main Theorem.

Proposition 4.1.7. Let n := dimV, | := [%], and assume that the dimensions n; :=
dimV® are in increasing order ny < ... < ng. Then, the dimensions of the real-algebraic
varieties of symmetric odeco tensors is

and that of ordinary odeco tensors is

d
nl(an — Ny — 1)
7j=1
Proof. In the symmetric case, a symmetrically odeco tensor encodes n pairwise perpendicular
points in PV. For the first point we have n — 1 degrees of freedom. The second point is
chosen from the projective space orthogonal to the first point, so this yields n — 2 degrees
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of freedom, etc. Summing up, we obtain (Z) degrees of freedom over K for the points. In
addition, we have n scalars from R for the individual terms. Since each odeco tensor has a
unique decomposition, the dimension of the odeco variety is the same as the dimension of
the space of n pairwise orthogonal points and n scalars.

The computation for the ordinary case is the same, except that only n; pairwise perpen-
dicular projective points are chosen from each V), O

Over the last two decades, orthogonal tensor decomposition has been studied intensively
from a scientific computing perspective (see, e.g., [44, (99, 98, 42, |100]). The paper [42]
gives a characterization of orthogonally decomposable tensors in terms of their higher-order
SVD [48], which is different from the real-algebraic characterization in our Main Theorem.
One of the interesting properties of an orthogonal tensor decomposition with k terms is
that discarding the r terms with smallest norm yields the best rank-r approximation to the
tensor; see |154], where it is also proved that in general, tensors are not optimally truncatable
in this manner.

In general, tensor decomposition is NP-hard [92]. The decomposition of odeco tensors,
however, can be found efficiently. The vectors in the decomposition of an odeco tensor are
exactly the attraction points of the tensor power method and are called robust eigenvectors.
Because of their efficient decomposition, odeco tensors have been used in machine learning,
in particular for learning latent variables in statistical models [8]. More recent work in this
direction concerns overcomplete latent variable models [7].

In Conjecture [3.1.16] we presented the equations defining the variety of symmetrically
odeco tensors. Formulated for the case of ordinary tensors instead, this conjecture is as
follows. Let V... V(@ be real inner product spaces and consider an odeco tensor 1" €
V®. ..V Wlth orthogonal decomposition T' = ZZ 1 Z( )®- - ®v ). Now take two copies
of T', and contract these 1n their I-th components via the inner product V¥ x V® — R,

By orthogonality of the vl , 1 =1,...,k, after regrouping the tensor factors, the resulting
tensor is i

> <||v§”u2 X @) ) RV & v);

i=1 P P

we write T x; T for this tensor. It is clear from this expression that 1" *; T" is multi-symmetric
in the sense that it lies in the subspace ), S2(VW). In [131] T conjecture that this (or
rather, its analogue in the symmetric setting) characterizes odeco tensors. This is now a
theorem, which follows from the proof of our main theorem (see Remark [4.1.14)).

Theorem 4.1.8. T ¢ V) @ --- @ VD is odeco if and only if for alll =1,...,d we have
T+ T e QS (VY)
J#l
This concludes the discussion of background to our results. We now proceed to prove the
main theorem in the case of order-three tensors.
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4.1.3 Tensors of order three

In all our proofs below, we will encounter a finite-dimensional vector space A over R equipped
with a positive-definite inner product (-|-), as well as a bi-additive product A x A —
A, (x,y) — x -y which is bilinear. The product will be commutative. Moreover, the
inner product will be compatible with the product in the sense that (z - y|z) = (2 - z|y). An
ideal in (A,-) is a R-subspace I such that [ - A C [—by commutativity we then also have
A1 C [—and A is called simple if A # {0} and A contains no nonzero proper ideals. We
have the following well-known result.

Lemma 4.1.9. The orthogonal complement I+ of any ideal I in A is an ideal, as well.
Consequently, A splits as a direct sum of pairwise orthogonal simple ideals.

Proof. We have (A-I+|I) = (I - A|I*) = {0}. The second statement follows by induction on
dim A. Therefore, A - I+ C I+, and since I is a subspace of A, it follows by definition that
I+ is an ideal of A. O

4.1.3.1 Symmetrically odeco three-tensors

In this subsection, we fix a finite-dimensional real inner product space V and characterize
odeco tensors in S3(V). We have S3(V) C V¥ = (V*)®2 @ V, where the isomorphism comes
from the linear isomorphism V' — V*, v+ (v|-). Thus a general tensor 7' € S*(V') gives rise
to a bilinear map V x V — V. (u,v) — u - v, which has the following properties:

1. u-v =w-ufor all u,v € V (commutativity, which follows from the fact that 7T is
invariant under permuting the first two factors); and

2. (u-v|lw) = (u-wlv) (compatibility with the inner product, which follows from the fact
that 7' is invariant under permuting the last two factors).

Thus T gives V the structure of an R-algebra equipped with a compatible inner product.
The following lemma describes the quadratic equations from the Main Theorem.

Lemma 4.1.10. If T is symmetrically odeco, then (V,-) is associative.

Proof. Write T = "7, v¥* where vy, ..., vy are pairwise orthogonal nonzero vectors. Then

we find, for z,y, 2z € V, that

r-(y-z) = (Z(vily)(viIZ)vi> =Y (ula)(vily) (vil2) (vilv) = (2 -y) - 2,

% %

where we have used that (v;|v;) = 0 for ¢ # j in the second equality. O

Proposition 4.1.11. Conversely, if (V,-) is associative, then T is symmetrically odeco.
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Proof. By Lemma , V' has an orthogonal decomposition V' = €D, U; where the sub-
spaces U; are (nonzero) simple ideals of V. Correspondingly, 7" decomposes as an element
of @, S*(U;). Thus it suffices to prove that each U; is one-dimensional. This is certainly
the case when the multiplication U; x U; — U; is zero, because then any one-dimensional
subspace of U; is an ideal in V| hence equal to U; by simplicity. If the multiplication map is
nonzero, then pick an element x € U; such that the multiplication M, : U; — U;, y+— x -y
is nonzero. Then ker M, is an ideal in V| because for z € V' we have

x - (ker M, - z) = (v - ker M) - z = {0},

where we use associativity. By simplicity of U;, ker M, = {0}. Now define a new bilinear
multiplication * on U; via y * z := M !(y - z). This multiplication is commutative, has x as
a unit element, and we claim that it is also associative. Indeed,

(z-y)x2)* (@-v) =M M ((z-y)-2) (z-v)=y-2z-v=(2-y)* (2% (z-0)),

where we used associativity and commutativity of - in the second equality. Since any element
is a multiple of z, this proves associativity. Moreover, (U, *) is simple; indeed, if I is ideal,
then M1 (U; - I) C I and hence

U(z-I)=U;-z)- I=U;- I Cx-1,

so that = - I is an ideal in (Uj, -); and therefore I = {0} or I = U;.

Now (U;, ) is a simple, associative R-algebra with 1, hence isomorphic to a matrix algebra
over a division ring. As it is also commutative, it is isomorphic to either R or C. If it were
isomorphic to C, then it would contain a square root of —1, i.e., an element y with y*xy = —x,
so that y -y = —x - x. But then

0< (@ yla-y) = (y-ylo-a) = —(@-alo-a) <0,
a contradiction. We conclude that U; is one-dimensional, as desired. O

Lemma [4.1.10| and Proposition [4.1.11] imply the Main Theorem for symmetrically odeco
three-tensors, because the identity x - (y - z) = (x - y) - z expressing associativity translates
into quadratic equations for the tensor 7.

Example 4.1.1. We now show how we can obtain the equations from Conjecture[3.1.16 using
the statement of Proposition . Let T € S3(R") be a symmetric n x n x n tensor. The
algebra (V,-) associated to T is associative if and only if (x-y)-z = x-(y-z) for all z,y,z € V.
We claim that it is enough to consider standard basis vectors v = e;,y = e;,2 = e. Then,

n n n
[(ei-e;) - ex], = [T, - ex], = Z TseaTsj skt = ZTs,k,lTi,j,s = Z TypsTijs,
s=1

s,t=1 s=1
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and

n n n
[67; : (ej : ek)]l = [67L : T’]',k,~]l = Z ZZ—;5,s,lei,tT‘ch,s = Zﬂ,s,lirj,k,s - Z iri,l,sT‘j,k,s-
s=1 s=1

t,s=1

Therefore,
n n
E Tk:,l,sf—ri,j,s = § ﬂylys,’z—jj:kz“;’
s=1 s=1

for every i, j, k, 1, which is the same condition we discovered in equation (3.1.6). Moreover,
note that the left hand side and the right hand side can be rewritten as

(T *3 T)k,l,i,j = (T *3 T)i,z,j,k-

Since T is symmetric, we get exactly the condition that T 3 T € S*(R").

4.1.3.2 Ordinary odeco three-tensors

In this subsection, we consider a general tensor 7T in a tensor product U ® V ® W of real,
finite-dimensional inner product spaces. Via the inner products, 1" gives rise to a bilinear
map U xV — W, and similarly with the three spaces permuted. Consider the external direct
sum A:=UaV W of U V,W, and equip A with the inner product (-|-) that restricts to
the given inner products on U, V, W and that makes these spaces pairwise perpendicular.

U
W V.

V */————»
U

Figure 4.1: U - (V + W) =W + V, and similarly with U, V, W permuted.

Taking cue from the symmetric case, we construct a bilinear product - : A x A — A as
follows: the product in A of two elements in U, or two elements in V, or in W, is defined as
zero; - restricted to U x V is the map into W given by T'; etc.—see Figure The tensor
in S3(A) describing the multiplication is the symmetric embedding of T from [127].

As in the symmetrically odeco case, the algebra has two fundamental properties:

1. it is commutative: x -y = y - x by definition; and

2. the inner product is compatible: (x-y|z) = (x-z|y). For instance, if x € Uy € V,z € W,
then both sides equal the inner product of the tensor x ® y ® z with T'; and if y, z € W,
then both sides are zero both for x € U (so that -y, z-z € V| which is perpendicular to
W) and for x € W (so that -y = z-2 = 0) and for x € V (so that z-y,z-z € U L W).
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We are now interested in homogeneous ideals I C A only, i.e., ideals such that [ =
INU)dINV)d(INW). We call A simple if it is nonzero and does not contain proper,
nonzero homogeneous ideals. We will call an element of A homogeneous if it belongs to one
of U, V,W. Next, we derive a polynomial identity for odeco tensors.

Lemma 4.1.12. If T is odeco, then for all homogeneous x,y, z where x and z belong to the
same space (U, V, or W), we have (z-y)-z=x-(y-2).

We will refer to this property as partial associativity.

Proof. 1f x,y, z all belong to the same space, then both products are zero. Otherwise, by
symmetry, it suffices to check the case where z,z € U andy € V. Let T = >, u; ® v; ® w;
be an orthogonal decomposition of 7. Then we have

(x-y) 2= (Z(Uz’|$)(vz‘|y)wi) 2= (i) (vily) (wilw) (2[w) = - (y - 2),

% %

where we have used that (w;|w;) = 0 for ¢ # j in the second equality. O
Proposition 4.1.13. Conversely, if (A,-) is partially associative, then T is odeco.

Proof. By a version of Lemma [£.1.9 restricted to homogeneous ideals, A is the direct sum of
pairwise orthogonal, simple homogeneous ideals /;. Accordingly, T lies in @,(; NU) ® (1; N
V) ® (I; N W). Thus it suffices to prove that T is odeco under the additional assumption
that A itself is simple and that - is not identically zero.

By symmetry, we may assume that V-(U+W) # {0}. Foru € U,let M, : V4+W — W4V
be multiplication with u. By commutativity and partial associativity, the M, for v € U, all
commute. By compatibility of (+|-), each M, is symmetric with respect to the inner product
on V 4+ W, and hence orthogonally diagonalizable.

Consequently, V+W splits as a direct sum of pairwise orthogonal simultaneous eigenspaces

V+Wh={v+weV+W]|u-(v+w)=Nu)(w+wv) for all u € U},

where A runs over U*. Suppose we are given v +w € (V + W), and o' + v’ € (V + W),
with A # u. Then v + w and v' + w' are perpendicular and for each u € V' we have

(ul(v +w) - (v + ') = (u- (v +w)' +w') = Au)(v +wl' + ') =0,
hence (v +w) - (v +w') = 0. We conclude that for each A the space
V+Whe[(V+W)h-(V+ W),

is a homogeneous ideal in A. By simplicity and the fact that M, # 0 for at least some
u, A is equal to this ideal for some nonzero A. Pick an x € U such that A(z) = 1, so
that - (v+ w) = w+ v for all v € V, w € W. In particular, for v,v" € V we have
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(M,v| M) = (M2v|v') = (v|v'), so that the restrictions M, : V. — W and M, : W — V
are mutually inverse isometries.

By the same construction, we find an element z € W such that z - (u+v) = v+ u for all
u€e U, veV. Let T be the image of T under the linear map M, @ Iy @ M, : UQV QW —
VoV ®V. We claim that 7”7 is symmetrically odeco. Indeed, let x : V x V' — V denote
the bilinear map associated to 7”. We verify the conditions from Section f.1.3.1] First,

vaxv = (z-v)-(z-0)=z-((z-v)-V)=z2-((v-2)-v)=(2-0v)- (V-2) =0 xv,

where we have repeatedly used commutativity and partial associativity (e.g., in the second
equality, to the elements z - v, z belonging to the same space W). Second, we have

(v ") = ((z-0) - (2 V)") = (@ - 0)' - (2 0")) = (v[(z - ) - (2 0")) = (v]o’ +0").
Hence 7" is, indeed, and element of S3(V'). Finally, we have

()" = (z-((z-0v)-(z-0) - (z-0") =z ((z-0") - ((z-v) - (2-0)))
=z (((z-0") - (z-0)- (V) =2 (0x0") - (2-0) = (V") 50,

which, together with commutativity, implies associativity of *. Hence 7" is (symmetrically)
odeco by Proposition [4.1.13] and hence so is its image 7" under the tensor product M, ®
Iy ® M, of linear isometries. O

Remark 4.1.14. The condition that (z-y) -z =z - (y - z) for, say, x,z € W and y € V
translates into the condition that the contraction T'%; T € (V@ V) ® (W ® W) lies in
S?(V) ® S?*(W). This can be seen by proceeding analogously to Example 4.1.1l Thus
Proposition [4.1.13| implies Theorem [4.1.8| in the case of three factors. The case of more
factors follows from the case of three factors and flattening as in Proposition [4.1.15]

4.1.4 Higher-order tensors

In this section, building on the case of order three, we prove the Main Theorem for tensors
of arbitrary order.

4.1.4.1 Ordinary tensors

Let VU, .. V(@ be finite dimensional inner product spaces over R. The key observation is
the following. Let J; U---U J. = {1,...,d} be a partition of {1,...,d}. Then the natural
flattening map

V... V@ (® V(ﬂ) R ® (® V(j))

JeN Jjede

sends the set of order-d odeco tensors into the set of order-e odeco tensors, where the inner
product on each factor ) e, V) is the one induced from the inner products on the factors.
The following proposition gives a strong converse to this observation.
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Proposition 4.1.15. Let T € V) @ .. @ V@ be a tensor, where d > 4. Suppose that the
flattenings of T with respect to the three partitions

(i) {1},....{d—3},{d —2},{d —1,d},

(i) {1},...,{d —3},{d —2,d —1},{d}, and
(iii) {1},...,{d—3},{d—2,d},{d—1}
are all odeco. Then so isT.

The lower bound of 4 in this proposition is essential, because any flattening of a three-
tensor is a matrix and hence odeco, but as we have seen in Section 4.1.3|not every three-tensor
is odeco.

Proof. As the first two flattenings are odeco, we have orthogonal decompositions

k r
T=>ToueA=Y T/®Bouw

1=1 (=1

where Ay, ..., A € V@ D@V are pairwise orthogonal and nonzero, and so are u1, . .., u; €
V(©@=2) " and the T} are of the form z;; ® --- ® 2i(d—3) Where for each j the z;;, + = 1,...,k
are pairwise orthogonal and nonzero. Similarly for the factors in the second expression.
Contracting 7" with T; in the first d — 3 factors yields a single term on the left (here we use
that d > 3):

(Ti|Ty)u; @ A; =Y (T/|Ti) By @ wy.
=1

Since the let-hand side is nonzero, there exists at least one index ¢ such that (7j|T;) is
nonzero. For such an index ¢ contract both sides with w,. We find that B, = u; ® v, with
ve = A;wp € V@Y This means that By is of rank one. Since there is at least one such index
¢ and since the u; are linearly independent for distinct ¢, and since , we find that the set of
¢ with (T7|T;) # 0 is disjoint from the set defined similarly for another value of i. Hence,
r > k. By swapping the roles of the two decompositions we also find the opposite equality,
so that » = k, and after relabelling we find that B; = u; ® v; for « = 1,...,k and certain
nonzero vectors v; = A;w;.Hence we find

k
T:ZTZ(@UZ@'UZ@@U“
i=1
where we do not yet know whether the v; are pairwise perpendicular. However, applying the
same reasoning to the second and third decompositions in the lemma, we get that B; = u,®v!,
and we obtain another decomposition

k
T:ZT‘;@’M;@U;@UJ“

=1
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where we know that the v, are pairwise perpendicular, but not that the w, are. Contract-
ing with 7} we find that, in fact, both decompositions are equal and the v; are pairwise
perpendicular, as required. O

Proof of the Main Theorem (Theorem for ordinary tensors. It follows from Lemma
and Proposition [£.1.13] that ordinary odeco tensors of order three are characterized by
degree-two equations. By Proposition and the remarks preceding it, a higher-order
tensor is odeco if and only if certain of its flattenings are odeco. Thus the equations charac-
terizing lower-order odeco tensors pull back, along linear maps, to equations characterizing
higher-order odeco tensors. [l

4.1.4.2 Symmetric tensors

In this section, V' is a finite-dimension vector space over R.

Proposition 4.1.16. For d > 3, a tensor T € S4(V) is symmetrically odeco if and only if
it is odeco when considered as an ordinary tensor in V7.

Proof. The “only if” direction is immediate, since a symmetric orthogonal decomposition is
a fortior: an ordinary orthogonal decomposition. For the converse, consider an orthogonal
decomposition

i=1
where the vl-(j )
we have

are nonzero vectors, pairwise perpendicular for fixed j. Since 7' is symmetric,

T=> "V g. . @® (4.1.1)

for each m# € S;. By uniqueness of the decomposition (Proposition , the terms in
this latter decomposition are the same, up to a permutation, as the terms in the original
decomposition. In particular, the unordered cardinality-£ sets of projective points @, :=
{7, ..., [Ulij)]} C PV are identical for all j =1,...,d.

Consider the integer k x d-matrix A with entries in [k] := {1,...,k} determined by
a;; = m if [vgj)] = [v,(,m. The matrix A has all integers 1,...,k in each column, and they
are in increasing order in the first column. Furthermore, A has the property that for each
d X d-permutation matrix 7 there exists a k x k-permutation matrix o such that c A = Amx.
This is because if we permute the d columns of A by 7, then, we can permute its rows so
that the first column has the numbers 1,...,k in increasing order. This is how we obtain
the k£ x k permutation matrix o.

To conclude the proof we only need to prove that, for d > 3, the only such k& x d matrix
is the matrix whose i-th row consists entirely of copies of i.
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To show this, for j € {2,...,d} pick m; = (1, ) to be the transposition switching 1 and
j. Let the columns of A be id, 7, ..., 74 thought of as permutations of [k]. By the property
imposed on A there exists a o; such that 0;A4 = An;. In particular, the first column of
(Am;)y, which is 7;, has to equal to the first column of o;A, which is ¢;. So 7; = o, for all
Jj €{2,...,d}. Since d > 3, one can pick an index [ which is fixed by 7;, so that the [-th
column of 0;A = Am;, which is 7, equals to ;7. But then o; = id = 7;., and therefore the
i-th row of A consists completely of the number 7. This concludes the proof of Proposition

4.1.16l [

Proof of the Main Theorem (Theorem for symmetric tensors. By Proposition [4.1.16),
the equations for odeco tensors in V ® --- ® V pull back to equations characterizing sym-

metrically odeco tensors in SV via the inclusion of the latter space into the former. Thus
the Main Theorem for symmetric tensors follows from the Main Theorem (Theorem [4.1.3])
for ordinary tensors, proved in the previous subsection. O

Remark 4.1.17. The proof of the Proposition [4.1.13] in Section for ordinary odeco
three-tensors relies on the proof of Proposition 4.1.11] for symmetrically odeco three-tensors,
so the proof above does not render the proof of Proposition superfluous.

4.1.5 Concluding remarks

We have established quadratic real-algebraic characterizations of orthogonally decomposable
tensors in the symmetric and ordinary case. While this is quite a satisfactory result, we still
don’t know if the equations that we have found generate the ideals of the real-algebraic
varieties at hand? We are somewhat optimistic, because of evidence in [130] for the case of
symmetrically odeco 2 x 2 x --- X 2-tensors.
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4.2 Frame Decomposable Tensors

A symmetric tensor of small rank decomposes into a configuration of only few vectors.
We study the variety of tensors for which this configuration is a unit norm tight frame.
This section is based on parts of joint work with Luke Oeding and Bernd Sturmfels titled
Decomposing tensors into frames [121].

4.2.1 Introduction

A fundamental problem in computational algebraic geometry, with a wide range of applica-
tions, is the low rank decomposition of symmetric tensors; see e.g. |8, 26, 45|, 120] [131]. If
T = (tiyiy-i,) is a symmetric tensor in Sym,(C"), then such a decomposition takes the form

T =) Aot (4.2.1)
j=1

Here \; € C and v; = (vy,v2j,...,0,5) € C* for j = 1,2,...,r. The smallest r for which a
representation 1’ exists is the rank of T'. In particular, each v}ad is a tensor of rank 1.
An equivalent way to represent a symmetric tensor T is as the homogeneous polynomial

T = Z tiliz-"id c L Ly + v Ty (422)

i14erig=1

If d = 2, then (4.2.2)) is the identification of symmetric matrices with quadratic forms.
Written as a polynomial, the right hand side of (4.2.1)) is a linear combination of powers of
linear forms:

,
T = Z Aj (V11 + VgTg + -+ - A Unjm,) L (4.2.3)
j=1
The decomposition in and is called Waring decomposition. When d = 2, it
corresponds to orthogonal diagonalization of symmetric matrices. We could subsume the
constants \; into the vectors v; but we prefer to leave and as is, for reasons
to be seen shortly. The (projective) variety of all such symmetric tensors is the r-th secant
variety of the Veronese variety. The vast literature on the geometry and equations of this
variety (cf. [108]) forms the mathematical foundation for low rank decomposition algorithms
for symmetric tensors.

In many situations one places further restrictions on the summands in and ,
such as being real and nonnegative. Applications to machine learning in [8] concern the case
when r = n and the vectors vy, ..., v, form an orthonormal basis of R". Sections and
characterize the odeco variety of all tensors that admit such an orthogonal decomposition.

The present section takes this one step further by connecting tensors to frame theory 30,
29| 138, 57, [145]. We examine the scenario when the v; form a finite unit norm tight frame
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(or funtf) of R™, an object of recent interest at the interface of applied functional analysis
and algebraic geometry. Consider a configuration V' = (vy,...,v,) € (R™)" of r labeled
vectors in R™. We also regard this as an n x r-matrix V' = (v;;). We call V' a funtf if

‘Id, and ) wi=1 fori=12.. 1 (4.2.4)

J=1

V.Vt =

r
n

This is an inhomogeneous system of n? 4+ r quadratic equations in nr unknowns. The funtf
variety, denoted F,, as in [29], is the subvariety of complex affine space C**" defined by
(4.2.4). For the state of the art we refer to the article [29] by Cahill, Mixon and Strawn,
and the references therein. A detailed review, with some new perspectives, will be given in
Subsection £.2.2

We homogenize the funtf variety by attaching a scalar \; to each vector v;. The result
maps into the projective space P( Sym,(C")) = p("a") 1 of symmetric tensors, via the
formulas and . Our aim is to study the closure of the image of that map.
This is denoted 7, ,, 4. We call it the variety of frame decomposable tensors, or the fradeco

variety. Here r,n,d are positive integers with » > n. For r = n, 7,,,.4 is the odeco variety
from Sections B.1] and 411

Example 4.2.1. Let n = 3,d = 4, and consider the symmetric 3xX3x3x3-tensor

T = 59(xf + 25+ x3) — 16(x32y + 2123 + 2323 + 2303 + 2123 + 2973) (4.2.5)
+ 66(x223 + 2323 + 2323) + 96(axexs + T11iT3 + T11073). -
This ternary quartic lies in Ty34, i.e. this tensor has fradeco rank r = 4. To see this,
note that ) .

T = ﬁ(—5l’1 + i) -+ 33'3)4 + E($1 — 5.’13'2 + 1‘3)4

4.2.
—l—é(azl + xo — Hz3)t + é(Bxl + 3w + 3x3). (4.2.6)

The corresponding four vectors, appropriately scaled, form a finite unit norm tight frame:

1

1
— 1
3v3

e Fus. (4.2.7)

— = Ot

1
)
1

ot
w W W

The fradeco variety Taz.4 is a projective variety of dimension 6 and degree T4 in P, It is
parametrized by applying rotation matrices p € SOs to all ternary quartics of the form

T = )\1(—5$1+$2+$3)4+)\2(ZE1—5.172—|—ZL‘3)4+)\3(.T1—{—[EQ—5$3)4+)\4(3x1+3$2+31‘3)4. (428)

Our objective is to find the output from the input . In this particular case,
the decomposition can be found easily using Sylvester’s classical Catalecticant Algorithm, as

explained in (120, Section 2.2]. In general, this will be more difficult to do. &
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The fradeco rank of a symmetric tensor 7" € Sym,(R™) is defined as the smallest r such
that T € 7, 4. This property does not imply that 7" also has a frame decomposition (4.2.1)
of length r 4+ 1. Indeed, we often have 7,4 ¢ Tr41n4. For instance, the odeco quartic

4 4 4 . . . .
x] + x5 + o5 lies in T334\7Ta34, by the constraint in Example [4.2.23] See also Example
4217

This section is organized as follows. In Subsection [4.2.2| we give an introduction to the
algebraic geometry of the funtf variety F, ,. This lays the foundation for the subsequent study
of fradeco tensors. Subsection {4.2.3]is concerned with the case of symmetric 2x2x --- x2-
tensors 7. These correspond to binary forms (n = 2). We characterize frame decomposable
tensors in terms of rank conditions on matrices. In Subsection [4.2.4 we investigate the general
case n > 3, and we present what we know about the fradeco varieties 7, 4. Subsection m
is devoted to numerical algorithms for studying 7, , 4 and for decomposing its elements into
frames.

4.2.2 Finite unit norm tight frames

In this subsection we discuss various representations of the funtf variety F,.,. This may serve
as an invitation to the emerging interaction between algebraic geometry and frame theory.
Each variety studied in this section is defined over the real field R and is the Zariski closure
of its set of real points. This Zariski closure lives in affine or projective space over C. For
instance, SO,, is the group of nxn rotation matrices p, and such matrices have entries in R.
However, when referring to SO,, as an algebraic variety we mean the irreducible subvariety
of C™™ defined by the polynomial equations p - p’ = Id, and det(p) = 1. Likewise, a funtf
V is a real n x r matrix, but the funtf variety F,,, lives in C"*". It consists of all complex
solutions to the quadratic equations . In the frame theory literature |29} 30, [57, |[145]
there is also a complex Hermitian version of F, ,,, but it will not be considered in this section.
It is important to distinguish F,.,, from the variety of Parseval frames, here denoted P, ,.
The latter is much easier than the former. The variety P, ,, is defined by the matrix equation

V.-Vl = 1d,.

The real points on P, , are smooth and Zariski dense, and they form the Stiefel manifold of
all orthogonal projections R” — R". Hence P,,, is irreducible of dimension nr — (";1)

One feature that distinguishes P, ,, from F, ,, is the existence of a canonical map P, ,,+1 —
P, Indeed, by Naimark’s Theorem [39], every Parseval frame is the orthogonal projection
of an orthonormal basis of R", so we can add a row to V' € P,,, and get a matrix in P, ;1.

There is no analogous statement for the variety F,,. We begin with the following result.

Theorem 4.2.2. The dimension of the funtf variety F,, is

dim(F,,) = (n—1)-(r— g —-1) provided r > n > 2. (4.2.9)

It is irreducible when r > n + 2 > 4.
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r|n |dimF,, | degF., # components & degrees
312 1 8-2 8 components, each degree 2
412 2 12 -4 12 components, each degree 4
5|2 3 112 irreducible

6|2 4 240 irreducible

712 5 496 irreducible

413 3 16 -8 | 16 components, each degree 8
5|3 5) 1024 irreducible

6|3 7 2048 irreducible

713 9 4096 irreducible

5|4 6 32 -40 | 32 components, each degree 40
6|4 9 20800 irreducible

714 12 65536 irreducible

Table 4.1: Dimension and degree of the funtf variety in some small cases

Proof. Cahill, Mixon and Strawn |29, Theorem 1.4] proved that F,, is irreducible when
r > n+2 > 4. The dimension formula comes from two articles: one by Dykema and Strawn
[57, Theorem 4.3(ii)] regarding the case when r and n are relatively prime, and one by Strawn
[145, Corollary 3.5] which studies the local geometry for all r,n. In these articles it is shown
that the real points in F,, have a dense open subset that forms a manifold of dimension
(n—1)-(r—% —1). The arguments in [29] show that the real points are Zariski dense in

2
the complex variety F,,. Hence (4.2.9) is the correct formula for the dimension of F,,. O

Next to the dimension, the most important invariant of an algebraic variety is its degree.
By this we mean the degree of its projective closure [46], §8.4]. This can be computed using
symbolic software for Grobner bases, or using numerical algebraic geometry software. The
dimension and degree of F,,, for small r,n in Table were computed using Bertini [15].

The case r = n + 1 is special. Here, the funtf variety decomposes into 2"*! irreducible
components, each of which is affinely isomorphic to the (Z)—dimensional variety SO,,. This
will be explained in Corollary [£.2.11] The next example discusses one other exceptional case.
Example 4.2.3 (r = 4,n = 2). Following (4.2.4), the defining ideal of the funtf variety F,

equals
(vF) + V35 + V5 4+ V14 — 2, V11021 + Vi2Vas + VigUs 4 Viavaq) + (v F 03 —1 1 j=1,2,3,4).

Note that this contains v, + vay + v33 + v3, — 2. Using Grébner basis software, such as
Macaulay2 [81], one checks that this ideal equals the intersection of the six given quadrics,
it 1s radical, and its degree is 48. Primary decomposition reveals that this ideal is the inter-
section of 12 prime ideals, each of degree 4. One of these associated primes is

2 2 2 2
(V11 — Va2, V12 + Va1, V13 — U2q, Va3 + V14, Vi3 + gy — 1,05 + v35 — 1).
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The irreducible variety of this particular prime ideal consists of the 2 X 4-matrices
V. = (Ri|R),

where Ry and Ry are rotation matrices of format 2x 2. The other 11 components are obtained
by replacing R; with —R; and permuting columns. The image of V under the map to binary
forms is a linear combination of two odeco forms, one given by Ry and the other by Ry. <

The real points of F,, live in (S"7!)" where "' = {u € R": Y | u? = 1} denotes the
unit sphere. However, the vectors on these spheres will get scaled by the multipliers )\il /d
in (4.2.3) when we pass to the fradeco variety 7, , 4. To achieve better geometric properties
and computational speed, we map each real sphere S*~! to complex projective (n—1)-space
Pt

The projective funtf variety G, , is the image of F,.,, in (P"~1)". To describe its equations,
we use an n X r-matrix V = (v;;) of unknowns as before, but now the i-th column of V
represents coordinates on the i-th factor of (P"~1)". We introduce the r x r diagonal matrix

D = diag(i: V2, zn:vé, ey zn:vf,). (4.2.10)
i=1 i=1

=1

The variety G, , is defined by the following matrix equation:
v.D VT = D od,. (4.2.11)
n

Each entry on the left hand side is a homogeneous rational function of degree 0. In fact,
these functions are multihomogeneous: they define rational functions on (P"~1)".
The challenge is to clear denominators in (4.2.11)), so as to obtain a system of polynomial
equations that defines G,.,, as a subvariety of (P"~1)". Next we solve this problem for n = 2.
For planar frames, equation translates into the vanishing of the two rational
functions

r 21}2' r 9
P = =Ly and Q = Z UUU2J (4.2.12)

2 2
pucllly; + vy; vlj + 02]

Consider the numerator of the rational function

r 2 . 2 T .
V7. — 2001;V9; — V5, L — Vg
. 1 15 Y25 2 U1 V94l .
P—iQQ = E J e E e where ¢ = v —1.

2 2 . .

Let P and @ denote the real part and the imaginary part of that numerator. These are two
multilinear polynomials of degree r with integer coefficients in v1, v19, ..., v9.. They define
a complete intersection, and, by construction, this is precisely our funtf variety in (P!)":

Lemma 4.2.4. The projective funtf variety G, s is a complete intersection of codimension 2
in (PY)", namely, it is the zero set of the two multilinear forms P and Q.
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Here are explicit formulas for the multilinear forms that define G, » when r < 5:

Example 4.2.5. If r = 3, then P = 3011012013 + ¥11V22023 + V21012V23 + V21022013 and () =
V11V12V23+V11 V22013 +V21 V12013 +3Va1 VaaUa3. If r=4, then P = 4(?111?112?113?114—1121U22U23U24) and

Q = 2011V12V13V24 + 2011012023014 + 2011022013014 + 2011022093024+
2091 V12V13V14 + 2021012V23V24 + 2U21V22013V24 + 2V21 V22U23014.

If r =5, then
P = dU11V12013V14V15 — V11V12013V24V25 — V11V12V230V14V25 — V11012V23V24V15
—V11V22V13V14V25 — V11022V13V24V15 — U11V22023V14V15 — 3U11V22023V24V25
—U21012V13V14V25 — VU21V12013V24V15 — V21V12023V14V15 — V21 U12V23V24V25
—U21V22V130V14V15 — 3V21V220U13V24V25 — V21 U22V23V14V25 — 3U21V22U230V24V15,
and @) is obtained from P by switching the two rows of V. &

Such formulas are useful for parametrizing frames. We write the equations for G, » as

5 _ (M Maz) (Vi) 0

Q Moy M2 Vo 0/)"
The matrix entries m;; are multilinear forms in (vy; : va1), (vi2 @ V22), .., (V1p—1 t Vapo1).
Using the quadratic formula, we solve the following equation for one of its unknowns:

M11Mgg = M12M2. (4.2.13)

This defines a hypersurface in (P')"~!, from which we can now easily sample points. The
point in the remaining rth factor P! is then recovered by setting vy, = mya, Vo = —mmy;1.

For n > 3, we do not know the generators of the multihomogeneous prime ideal of G, .
Here are two instances where Macaulay?2 [81] succeeded in computing these ideals:

Example 4.2.6. The variety G, 3 is a threefold in (P*)*. Its ideal is generated by 34 quartics.
Among them are the equations that define the siz coordinate projections into (P?)?, like

2.9 2 .9 2 .2
8(v1 01y + V3,050 + V3,03,) + 18(011021012V29 + V11031012U39 + Va1 U31V22032)

29 2.9 2 .2 2.2 2.2 2.2
—U11 V29 — V11V39 — Vg1 Vig — U U3y — U3qVU1g — V31 Uso-

Example 4.2.7. Letr =5 and n = 3. By saturating the denominators in (4.2.11), we found

that the ideal of Gs 3 is generated by a 120-dimensional SOs-invariant space of sextics. The
following polynomial (with 60 terms of Z>-degree (2,2,2,0,0)) is a highest weight vector:

50071072075 + 5uT1vT2v35 + 5vT1 072035 4 45071 V12V22013V23 + 4501 V12032013033 + BUTV32VT3 + BUT1 V3V — 40T V55V3;
+181)%11122U32U23U33 + 5’0%11};%211%3 — 41]%1’()%2’1)%3 —+ 511%1@%21}%3 + 451)1111211}%21113’023 + 4511111}2111121)22’0%3 =+ 181}111}21’052’013’023
+45011 021012022033 + 18011021 V12022035 + 27011021 V12032023033 + 45011021 V33013V23 + 27011021 V22032013033
+45011V31072v13V33 + 2T011031V12022023V33 + 45011031012032075 + 18011031012032033 + 45011031012032053 — 4031035033
+18v11v31V32v13V33 + 2T011031V22032013V23 + 45011031032013V33 + 5031 v35vd5 + 5v31vT5v35 + 45031 V12022013023
+18v3, V1203201333 + 5031032073 + B0V31 V32053 + 5U51 V32033 + 45031 V22V32V2333 — 431032075 + 5031 V32033 + 5v3 V3203
+18v21V31V72v2333 + 27021031 V12022013033 + 2TV21031012032013V23 + 45021 V3103502333 + 18021031 V22032075
+45v21v311)22032v§3 4 451}211}310222)321)%3 +4 451}211)312)%2’023’033 +4 51)3%11)%2’0%3 — 41)%11}%21}33 + 51)%1’[)%2’[)%3 +4 18U§1U12U22U131}23
+45031 V12032013033 — AV3 VaaVUTs + DUS VagUss + DUS VagUas + A5VU3 V2232023033 + B0 U35 + B2 02025 + 5002, 025025,
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The ideal of Gs3 C (P?)® has 10 generators like this, each spanning a one-dimensional graded
component. It has 30 components of degrees like (2,2,1,1,0), each generated by a polynomial
with 78 terms. Finally, it has five 16-dimensional components of degrees like (2,1,1,1,1). <&

In order to sample points from the funtf variety F,,, we can also use the following
parametrization found in [30} [145]. We write V' = (U’, W), where U’ is an n X n-matrix and
W is an (r—n) X n-matrix. For the columns of W we take arbitrary points on the unit sphere
S*=1. In practice, it is convenient to fix a rational parametrization of S*~!, so as to ensure
that W has rational entries w;;. For instance, for n = 3 we use the following formulas:

2 2 2
2N, 11 2)\jv; Wi

Wi = 55—, W2 = —5——5—5, W3j = —5—5——5,
Y N N R % N4 pd v % N2 4 pd v

where \j, uj,v; € Z.  (4.2.14)

After these choices have been made, we fix the following n x n-matrix with entries in Q:
s =".1d, - w-w”. (4.2.15)
n

It now remains to study all n x n-matrices U = (u;;) that satisfy
U-D'-U" =8, where D = diag(Zu?l, Cees Zufn)
i=1 i=1

For any such U we get a funtf V = (U, W) € F,, by setting U’ = U - D~/2. For random
choices in (4.2.14)), the matrix .S is invertible, and the previous equation is equivalent to

D =U"5"1.U (4.2.16)

This identity of symmetric matrices defines (";1) equations in the entries w;; of U. The

equation in position (7, j) is bilinear in (w14, wg;, . . ., Upi) and (uy;, ugj, . . ., Uy;). We solve the
system iteratively for the columns of U. We begin with the (1,1) entry of (4.2.16)).
There are n—1 degrees of freedom to fill in the first column of U, then n—2 degrees of freedom
to fill in the second column, etc. This involves repeatedly solving quadratic equations in one
variable, so each solution lives in a tower of quadratic extensions over Q. In summary:

Proposition 4.2.8. Let the columns of the (r —n) X n matrizc W be arbitrary points on
the unit sphere S*™! coming from a rational parametrization such as in (4.2.14)). Then, the

equations and represent a parametrization of F .

The rotation group SO,, acts by left multiplication on the funtf variety F, ,. There is a
natural way to construct the quotient %, ,/SO,, as an algebraic variety, namely by mapping
it into the Grassmannian Gr(n,r) of n-dimensional subspaces of C". This is described by
Cahill and Strawn in [30, Section 3.1], and we briefly develop some basic algebraic properties.

We here define Gr(n,r) to be the image of the Plicker map C™" — C() that takes
an n X r-matrix V' to its vector p = p(V) of n x n-minors. The coordinates p; of p are
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indexed by the set ([:L]) of n-element subsets of [r] = {1,2,...,r}. With this definition,

Gr(n,r) is the affine subvariety of (C(;) defined by the quadratic Plicker relations, such as
P12P34 — P13P24 + prapas = 0 for n = 2,7 = 4. The dimension of Gr(n,r) is (r —n)n+ 1. Note
that if VVT = (r/n) - 1d,, then the Cauchy-Binet formula (cf. [30, Prop. 6]) implies

> pt = (%)n (4.2.17)

1e()
The real points in Gr(n, ), up to scaling, correspond to n-dimensional subspaces of R".

Proposition 4.2.9. The image of F,,, under the Plicker map is an affine variety of dimen-

sion (r—m)n —r + 2 in the Grassmannian Gr(n,r) C c(). It is defined by the equations

Zp? = <£>n_1 fori=1,2,...r (4.2.18)

- n
el

The real points in this image correspond to SO,-orbits of n-dimensional frames in F,,,.

Note that adding up the r relations in (4.2.18)) and dividing by n gives precisely (4.2.17)).

Proof. Both F,, and the constraints are invariant under SO,,. Suppose that V &
C™*" satisfies VVT = (r/n) - Id,. We may assume (modulo SO,,) that the i-th column of V'
is (a,0,...,0)T for some a € C. Let V be the matrix obtained from V by deleting the first
row and i-th column. Then V - VT = (r/n)-Id,_;. Any p; with i € I equals a times the
maximal minor of V indexed by I\{i}. Applying to V, this gives

ryn—1
2 2
p - @ ' <_> ’
> 7 .
Iiel

Hence (4.2.18) holds if and only if & = %1, and this holds for all ¢ if and only if V' lies in F,.,,.
The dimension formula follows from Theorem because SO,, acts faithfully on F,,,. O

Example 4.2.10. Let n = 2. If r = 5, then our construction realizes F52/S02 as an
irreducible surface of degree 80 in C!°. Its prime ideal is generated by the ten quadratic
polynomials

P14P23 — P13P24 + D12P34, D15P23 — P13P25 + P12P35, P15P24 — P14DP25 + P12P4as, P15P34 — P14D35
+P13Pa5, P25P34 — P24P3s + D23Pas, Pia + Pis + Pis + Pis — 5/2, iy + P33 + Py + P35 — 5/2,
p%s +p§3 +p§4 —I—p§5 -5/2, p%4 +p%4 + P§4 + p4215 -5/2, P%5 + pg&s + p§5 + pi5 —5/2.

If r =4, then Fu2/S0; is a reducible curve of degree 24 in C°. Its defining equations are
P1aPas—PrsPaatPrapsa = 0, Platpiz+piy = PlatPog+Pay = PlatDos+P5q = PlatDoa+p3 = 2.

As in Example this curve breaks into 12 components. One of these 12 irreducible
curves s {p € CO : p1p =p3a =1, P13 = Pou, P1a = —P23, Pa3 + D3y = 1}- %
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The analogous decomposition is found easily for the case r = n 4+ 1. Here, there are no
Pliicker relations, so Gr(n,n + 1) ~ S". For convenience of notation, we set ¢; = pp41)\{;} in
(4.2.18)). The quotient space F,1,,/SO,, is the subvariety of C**! defined by the equations

GHa+ - +a+ay, = +1)""n"+ ¢ fori=1,2...,n+1L
These are equivalent to the following equations, which imply Corollary [4.2.11
G =6 =¢G==q¢, = @n+1)"" /o

Corollary 4.2.11. The quotient space Fpy1.,/SO, is a variety consisting of 2" isolated
points in R™ = Gr(n,n+1), namely those points with coordinates 4 (n+41)"=1/2 [n(+1/2,

Any of the 2"*! components of F, 11, can be used to parametrize our variety 7,11, .4-

Example 4.2.12. Let n = 3. The point p = \/g(g, $.5.5) in Gr(3,4) corresponds to the

SOs-orbit of the frame V in Example|4.2.1. The variety Ga s can be parametrized as follows:

1—2¢y*—222 20y—22w  2xz+2yw |[[3 1 1 =5 %1 VO 8 8

V=(vj) = | 2zy+2z2w 1-22*—22% 2yz—2zw [|3 1 —5 1 0 02 N
2wz —2yw 2wz 4+2zw 1-222—-2%|[3 -5 1 1 g

0 0 0

The 3 x 3-matriz on the left is the familiar parametrization of SOs via unit quaternions.
This gives the parametrization of the fradeco variety Tysq Seen in . &

The embedding of F.,,/SO,, into Gr(r, n) via connects frame theory with matroid
theory. The matroid of V' is given by the set of Pliicker coordinates p; that are zero. If all
Pliicker coordinates are nonzero, then the matroid is uniform. It is a natural to ask which
matroids are realizable over R when the additional constraints are imposed.

The discussion in [30, Section 3.2] relates frame theory to the study of orbitopes |136].
Cahill and Strawn set up an optimization problem for computing Parseval frames that are
most uniform. Their formulation in [30, p. 24] is a linear program over the Grassmann
orbitope, which is the convex hull of Gr(n, r) intersected with . The same optimization
problem makes sense with Gr(n,r) replaced by F,,/SO,, or, algebraically, with
replaced by . If n = 2, then the former problem is a semidefinite program. This is
the content of [136, Theorem 7.3]. For n > 3, the situation is more complicated, but the
considerable body of results coming from calibrated manifolds, such as [136, Theorem 7.5],
should still be helpful.

4.2.3 Binary forms

We now commence our study of the fradeco variety 7;, 4. In this subsection we focus on
the case n = 2 of binary forms that are decomposable into small frames. The case r = 2
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is the odeco surface known from [131, §3]. Proposition 3.6 in [131] gives an explicit list of
quadrics that forms a Grobner basis for the prime ideal of 73 2 4, and these are here expressed
as the 2 x 2-minors of a certain 3 x (d — 3)-matrix M,. What follows is our main result in
subsection [4.2.3, We are using coordinates (t, : - - : t4) for the space P4 = P(Sym,(C?)) of
binary forms. In the notation of , the coordinate ¢; would be ¢111...1222...2 With ¢ indices
1 and d — ¢ indices 2.

Theorem 4.2.13. Fiz r € {3,4,...,9} and d > 2r — 2. There exists a matriv M, such
that:

(a) Its mazimal minors form a Grobner basis for the prime ideal of Ty2.4.
(b) It has r —1 rows and d —r+1 columns, and the entries are linear forms in ty, ..., t,.

(¢) FEach column involves r of the unknowns t;, and they are identical up to index shifts.

These matrices can be chosen as follows:

to— 3ty t1—3ts ty— 3ty ts—3ts -- tgs— 3ty
= 4.2.1
Ms (3t1 —t3 Bta—ty 3tz—t5 3ta—tg -+ 3laa—tg (42.19)
My = | ti—ty to—ty ts—ts ty—ts - tgs—ty, (4.2.20)
tQ t3 t4 t5 e 2fd—2
to+ Dty t1 + Dty to+ 5ty t3+ bty -+ ty_s -+ Dtg_s3
t1 — 3ty to— 3ty t3—3ts t4 —3tg -+ tg_a — 3tg_o
= 4.2.21
Ms Sty — 1y 3ty —ts 3ty—te 3ts—t; - Stys—ty ( )
Sty +t5 Oty +te Ots+ 17 OSlg+ts - Olgo+1lg
to+ 3ty t; + 3ty to+ 3ty t3+3ts -+ tg_e+ 3tg_a
t + 15 to + 16 ts + ty ty+ts - lgs5+T41
MG = to — 14 ts3 — t5 ty — g ts —t7 - tg_g —tg_o (4222)
l3 (2} ls le e ld—3
3ty +tg 3t +t; 3tg+ts 3ty +tg -+ 3tg_o+ty

The ﬁ’f’St column Of ./\/l7 18 (3t() + 7t2, t1 + 5t3, t2 — 3t4, 3t3 — t5, 5t4 + t6, 7t5 + 3t7)T, the ﬁTSt
column of Mg is (to+ 2ty 1y + 3t3, ty, tz — ts, ta + te, 3ts + t7, 2ts + ts)”, and the first column
Of Mg 18 (5t0 + 9t2, 3t1 + 7t3, tz + 5t4, t3 — 3t5, 3t4 — tﬁ, 5t5 + t7, 7t6 + 3t8, 9t7 + 5t9)T.

We conjecture that the same result holds for all r, and we explain what we currently
know after the proof. Let us begin with a lemma concerning the dimension of our variety.

Lemma 4.2.14. The fradeco variety Ty 24 is irreducible and has dimension min(2r — 3, d).
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Proof. For d > 5, the funtf variety F,o C (S')" is irreducible, by Theorem [4.2.2] and hence
so is its closure G, 5 in (P')". While the two special varieties F3 5 and Fy o are reducible, the
analyzes in Example and Corollary show that G35 and Gy are irreducible.
Regarding G, as an affine variety in C?*", we obtain Tr2.4 as its image under the map
t; = viodrt vl el vt e ol vl for i =0,1,...,d. (4.2.23)
This proves that 7, o 4 is irreducible. To see that it has the expected dimension, consider the 7-
th secant variety of the rational normal curve in P?, which is the image of the map C2*" —-» P4
given by . It is known that this secant variety has the expected dimension, namely
min(2r — 1, d), and the fiber dimension of the map does not jump unless some 2 x 2-
minor of V' = (v;;) is zero. Since codim(G, 2) = 2, by Lemma , the claim follows. O

Proof of Theorem[{.2.13. We first show that the maximal minors of our matrices M, vanish
on the fradeco variety 7, 2 4 for r = 3,4, ...,9. After substituting the parametrization (4.2.23])

for tg,t1,...,tq, we can decompose these matrices as follows:
d—r d—r—1 d—r—2, 2 d—r
—-r —r— —r—2,2 —r
.y Uiz Uip V22 Uy Uyt Up
MT‘ - ' . 7
d—r d—r—1 d—r—2, 2 d—r
U1y Uy V2r  Uyy Vop 7t Ugp
where

My = ((ng —3vi)var (V3 — 3vh)vee (V35 — 3“%3)1)23)
(3v3;, —vi)vin (Bv3, — viy)via (303 — viz)uis)

Ugl + Uill 7512 + Uil2 U§3 + U%:z U§4 + U%4
M, = 011031 - U:ﬂvm U12U§’2 - v{’va 01375’3 - Uij’gv% 014034 - Ui)’4v24 )
U%lvgl U%QU%Q U%3U%3 U%4U%4
Uil + 51)21 ) v% + 51122 , v% + 5v§3 ) v% + 51);4 , v% + 51}25 )
M, = v112v213— 30}111121 111221)223— 311}121)22 1)1321)2%— 31)}131123 11142112%— 30}141124 v152v253— 311}151)25
3UT V5 — V021 3UTpU% — UipU22  3UTgV53 — Ujgl23 U4V — UpgV2a  3Ui5V55 — Ui5U25
503103, + 07 5035055 + 1]y 5utsu3s + vi3 503,03, + v}, 5vdsv35 + v

and similarly for Mg, M;, Mg and My. We claim that the matrices M, have rank < r — 1
whenever V' € F,. 5. Equivalently, the (r —1) x (r — 1) minors of M, lie in the ideal of G, 5. It
suffices to consider the leftmost such minor since all minors are equivalent under permuting
the columns of V. For each r < 9, we check that the determinant of that minor factors as

(m11m22 - m12m21) : H (U1i02j - U2ivlj): (4-2-24)

1<i<j<r—1

where the left factor is the polynomial of degree 2r — 2 given in (4.2.13). That polynomial
vanishes on G, ». This implies rank(M,) < r—2 on G, 2, and hence rank(M,.) < r—2on Ty 2 4.
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Fix the lexicographic term order on Cltg,t1,...,ts. We can check that, for each r €
{3,4,...,9}, the leading monomial of the leftmost maximal minor of M, equals totaty - - - t,_o.

Hence all (d;f{l) maximal minors of M, are squarefree, and they generate the ideal

Lg = (titity -t 02 <142 <o, G042 < iy, i34+2 <iigy ooy Groot2 < gpg < d-2).

lr—1
This squarefree monomial ideal is pure of codimension d — 2r + 3 and it has degree (d;ﬁgl).
This follows from [118, Theorem 1.6]. Indeed, in Murai’s theory, our ideal I, , is obtained
from the power of the maximal ideal by applying the stable operator given by a = (2,4,6,...).
Combinatorial analysis reveals that the ideal I, 4 is the intersection of the prime ideals

<tj0> tj1 ) tjz ) tjsﬁ SRR tjd727'+2>’

where jo, jo, Ja, . . . are even, 7ji,7Js3, Js, ... are odd, and 0 < jo<j1<jo< - <Jg_a2r12 < d. Note
that number of such sequences is ( dd:erJ:Lls) = (d;gl). Hence the codimension and degree of
I, 4 are as expected for the ideal of maximal minors of an (r—1) x (d—r-+1)-matrix with linear
entries [84, Ex. 19.10]. The monomial ideal I, 4 is Cohen-Macaulay because its corresponding
simplicial complex is shellable (cf. [142, §I11.2]). Indeed, if we list the associated primes in a
dictionary order for all sequences jgj1J2 - - - ja—2r+2 as above, then this gives a shelling order.
Using Buchberger’s S-pair criterion, we check that the maximal minors of M, form a
Grobner basis. We only need to consider pairs of minors whose leading terms share variables.
Up to symmetry, there are only few such pairs, so this is an easy check for each fixed r < 9.
Since I, 4 is radical of codimension d — 2r + 3, we conclude that the ideal of maximal
minors of M, is radical and has the same codimension. However, that ideal of minors is
contained in the prime ideal of 7,5 4, which has codimension d — 2r 4+ 3 by Lemma
Therefore, we now know that 7,2 4 is one of the irreducible components of the variety of
maximal minors of M,.. To conclude the proof we need to show that the latter variety is
irreducible, so they are equal. To see this, we fix » and we proceed by induction on d. For
d = 2r — 2, when M, is a square matrix, this can be checked directly. To pass from d to
d+ 1, we factor the matrix as M, times the rank » Hankel matrix associated with a funtf V.
Increasing the value of d to d + 1 multiplies the i-th row of the Hankel matrix by v;; and it
adds one more column. This gives us the value for the new variable ¢4,,. Now, since that
variable occurs linearly in the maximal minors, its value is unique. This implies that the
unique rank r — 2 extension from the old to the new M, must come from the funtf V. [

We established Theorem [4.2.13| assuming that » < 9, but we believe that it holds for
all r:
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Conjecture 4.2.15. For all r > 3 there exists a matriz M, which satisfies the properties

(a).(b) and (c) in Theorem[4.2.15. When r is odd, the matriz M, may be chosen as

r—4 0 r
r—6 0 r—2 to t tag—r
t1 to s td—rg
—1 0 3

3 0 -1 ' ’ ) ’
5 0 1 tr—2 tr—1 - ti—2
tr—1 tr e td—l

tr trg1 oo tq

We do not know yet what the general formula for M, should be when r is even. The
following systematic construction led to the matrlces M, and M, in all cases known to us.
Let P and @ be the multilinear forms in Lemma 41 that define G, 5. Let Fj denote the
polynomial of degree 2r — 2 obtained by ehmmatmg vy; and vy; from P and Q Let G,
denote the product of all (rgl) minors vyvy — vy Ve of Vo where j & {k,l}. Each product
F;G; is a polynomial of degree r(r — 1). Note that F, is mj1may — migme; in , and
F,.G, is . Now, the ideal (F1G1, F2Go, ..., F,.G,) is Cohen-Macaulay of codimension
2. By the Hilbert-Burch Theorem, the F;G; are the maximal minors of an (r — 1) X r-matrix
M,., which can be extracted from the minimal free resolution of (F1Gy,..., F,.G,). This is
precisely our matrix. In order to extend Theorem and to find the desired M, for
even r, we need that all entries of the Hilbert-Burch matrix M, have the same degree r.

Remark 4.2.16. The singular locus of Tr.a.4 is defined by the (r—2) x (r—2)-minors of M,..
It would be interesting to study this subvariety of P? and how it relates to singularities of
Fra. For instance, for r = 4, this singular locus is precisely the odeco variety 7224, and,
using Theorem we can see that its prime ideal is generated by the 2 X 2-minors of

M.

In Subsection 4.2.5 we shall see how the matrices M, can be used to find a frame decom-
position of a given symmetric 2x2x - - - x2-tensor 7. We close with an example that shows
how this task differs from the easier problem of constructing a rank r» Waring decomposition
of T

Example 4.2.17. Let r =4, d = 8, and consider the sum of two odeco tensors
T =28+ + (-9 + (x+9)° = 32° 4 562%)* + 1402*y* + 562%y° + 3y°.

The coordinates of this tensor are tg =tg =3, to =ty =t =2, and t, = t3 =t5 =t; = 0.
Here, the 3 x 5-matrix My has rank 2. This verifies that T lies in Tyog, in accordance with
Example[].2.3. However, the 4 x 4-matriz M is invertible. This means that T' does not lie
in Tsos. In other words, there is no funtf among the rank 5 Waring decompositions of T'. <
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4.2.4 Ternary Forms and Beyond

We now move on to higher dimensions n > 3. Our object of study is the fradeco variety
Trma C P(Symy(C")).

A very first question is: What is the dimension of 7,47 In Lemma [4.2.14] we saw that
dim(7;2,4) = 2r — 3. The following proposition generalizes that formula to arbitrary n:

Proposition 4.2.18. For all r > n and d > 3, the dimension of T, .4 s bounded above by

mz’n{(n—l)(r—n)+(n_1>2(n_2) o1, <n+3_1) —1}. (4.2.25)

Proof. The right number is the dimension of the ambient space, so this is an upper bound.
The left number is the dimension of F,, X P"~! by the formula in Theorem m The
formula (4.2.3]) expresses our variety as the (closure of the) image of a polynomial map

Frn XP7H — T (4.2.26)
The dimension of the image of this map is bounded above by the dimension of the domain. []
Remark 4.2.19. When T, , 4 ts not the ambient space, (4.2.25) s the same as dim P, ,.

We conjecture that the true dimension always agrees with the expected dimension:

Conjecture 4.2.20. The dimension of the variety T, ,q is equal to forallr > n
and d > 3.

This conjecture is subtler than it may seem. Let o,v4P" ! denote the Zariski closure
of the set of tensors of rank < r in P(Sym,(C")). Geometrically, this is the r-th secant
variety of the d-th Veronese embedding of P*~!. It is known that o,4P" ! has the expected
dimension in almost all cases. The Alexander-Hirschowitz Theorem (cf. |27, |108]) states
that, assuming d > 3, the dimension of o,v4P" ! is lower than expected in precisely four
cases:

(r,n,d) € {(5,3,4), (7,5,3), (9,4,4), (14,5,4)}. (4.2.27)

One might think that in these cases also the fradeco subvariety 7, , 4 has lower than expected
dimension. However, the results summarized in Theorem [4.2.21| suggest that this is not the
case.

Theorem 4.2.21. Consider the fradeco varieties T, 4 in the cases when n > 3 and 1 <
dim(Trna) - codim(Ty n.a) < 100. Table gives their degrees and some defining polynomials.
The last column shows the minimal generators of lowest possible degrees in the ideal of Ty p 4.
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variety | dim | codim | degree known equations
Ti33 6 3 17 3 cubics, 6 quartics
Tis4 6 8 74 6 quadrics, 37 cubics
Tass 6 14 191 27 quadrics, 104 cubics
Ts,34 9 5 210 1 cubic, 6 quartics
Ts35 9 11 1479 20 cubics, 213 quartics
To.3.4 12 2 99 none in degree < 5
76,35 12 8 4269 one quartic

T735 15 5 > 38541 none in degree < 4
Ts35 18 2 690 none in degree < 5
Tose | 24 3 > 16252 none in degree < 7
Ts.43 10 9 830 none in degree < 4
Toas | 14 5 1860 none in degree < 3
Tras | 18 1 194 one in degree 194

Table 4.2: A census of small fradeco varieties

Computational Proof. The dimensions are consistent with Conjecture [£.2.20 They were
verified by computing tangent spaces at a generic point using Bertini and Matlab. The
degrees were computed with the monodromy loop method described in Subsubsection [4.2.5.6]
The numerical Hilbert function method in Subsubsection [£.2.5.7 was used to determine how
many polynomials of a given degree vanish on 7., 4. This was followed up with computations
in exact arithmetic in Maple and Macaulay2. These confirmed the earlier numerical results,
and they enabled us to find the explicit polynomials in Q[T] that are listed in Examples
[4.2.22] and [4.2.24] In the cases where we report no equations occurring below a
certain degree, this is a combination of Corollary and the numerical Hilbert function
computation. 0

We shall now discuss some of the cases appearing in Theorem [4.2.21] in more detail.

Example 4.2.22. The 6-dimensional variety Ty 33 C PY has the parametrization

— 3 3 3 3
Uy + Uy + Va3 + Uy,

to30

toos = U3y + U3y + U3y + U3y,

lorz = V9103] + Uag03y + Ua3U3s + Vag¥3,

togl = U%lﬂgl + U%zvgz + 1)%31)33 + 11%41]34, (4 9 28)
tio2 = V1103] + V12035 + V13035 + V1403, o
tlgo = qugl + U12’U§2 + U13’U§3 + ’U14U%4,

t201 = ’0%11131 + U%2U32 + U%3U33 + U%4?}34,

lo10 = V2 V91 + VU9 + UigU23 + V3, Ua4,

t111 = V11021031 + V12022032 + V13023033 + V14V24V34.
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Here the matriz V = (v;;) is given by the parametrization of Gy 3 seen in of Example
2.1

Using exact linear algebra in Maple, we find that the ideal of Ty 33 contains no quadrics,
but it contains three linearly independent cubics and 36 quartics. One of the cubics is

CY123 + 261145 + 20345 - CV126 - C’236 - 404567 (4229)

where Cjji, denotes the determinant of the 3 x 3 submatriz with columns i, 3,k in

t300 t210 ti20 Too1 ti11 tio2
C = |ta0 tizo Toso Ti1 to2r Toi2
to01 Ti11 to2r tio2 toiz2 toos

The other two cubics are obtained from this one by permuting the indices. The resulting
three cubics define a complete intersection in P?. However, that complete intersection strictly
contains Ty 33 because the three cubics have only 30 multiples in degree 4, whereas we know
that 36 quartics vanish on Ty 33. Using Macaulay2, we identified siz minimal ideal generators
in degree 4, and we found that the nine known generators generate a Cohen-Macaulay ideal of
codimension 3 and degree 17. Using Bertini, we independently verified that fradeco variety
7133 has degree 17. This implies that we have found the correct prime ideal. &

Example 4.2.23. The variety Ty 34 is also 6-dimensional, and it lives in the P** of ternary
quartics. The parametrization is as in but with quartic monomials instead of cubic.
Among the ideal generators for Ty 34 are six quadrics and 37 cubics. One of the quadrics is

8(13,3—tooatoaz) + 8(t23; —toaatosn) + 8(t311 —tanataze) + 18(t2 15 —t10st121) + 18(t39; —t112t130)
+(tooatoso+19t209—20t 013t 031) + (tooatazottoaztaoe—2t013ta11) + (toaotana+tooataoo—2t0z1t211)-

A Bertini computation suggests that the known generators suffice to cut out Ty34. We
also note that the 27 quadrics for Tys5 come from the 6 quadrics for Tis4. For instance,
replacing each variable t;j; by t; ;1 yields the quadric 8t3,,+ 8t350+ -+ 191393 for Tizs. <

Example 4.2.24. The fradeco variety Ts 3.4 is especially interesting because (5,3,4) appears
on the Alexander-Hirschowitz list . The unique cubic that vanishes on T5 34 is

46t0ata02t200 + T3t112t121t211 — tooatosotaoo + 19[to1st130t301]2 — B0[t0atiials — 22[to0at30)s
—18[to22t311]3 + 50[tooatozataoals + 26[tooat1sotsio)s + 100[torstiostiiz]s — 53[torstiaitsiols
+5[tooatoaztaools — DO[t215t202]6 — B[t215t220)6 + 45[to0atositar1]e — 40[to2at3gels + Bltooatozatazols
+40[to22t715)6 — SltooatTsele — 45[tooatiarls — 10[tooat112t130]6—45[t013t022t211]6+35[t015t031t202]6
+10[to1st103t130)6 + 10[to13t112t121]6 — 80[torstii2tso]e + 80[toistaoatoni]e + 8[torstaiitazole-

This polynomial has 128 terms: each bracket denotes an orbit of monomials under the Ss-
action, and the subscript is the orbit size. In addition, six fairly large quartics vanish on
Ts3.4. The seven known generators cut out a reducible variety of dimension 9 in P'*. The
fradeco variety Ts 3.4 is the unique top-dimensional component. But, using Bertint, we found
two extraneous components of dimension 7. Their degrees are 120 and 352 respectively. <
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We close this subsection by examining the geometric interplay between fradeco varieties
and secant varieties. We write o,14P" ! for the r-th secant variety of the d-th Veronese
embedding of P"~!. This lives in P(Sym,(C")) and comprises rank r symmetric tensors
. The same ambient space contains the fradeco variety 7, , 4 and all its secant varieties
Usﬁ,n,d-

Theorem 4.2.25. For anyr >n >d > 2, we have
OrnVaP" ™" C Topa C ovgP" !, (4.2.30)
and hence Tr_pna C Trna whenever r > 2n. Also, if r = riry with vy > 2 and ro > n, then
Or Tramd C T (4.2.31)

Proof. We fix d. The right inclusion in (4.2.30) is immediate from the definition. For the
left inclusion we use the parametrization of F,,, given in and (4.2.16). The point
is that the (r — n) x n-matrix W can be chosen freely. Equivalently, the projection of
Grn C (P"1)" to any coordinate subspace (P"~1)"~" is dominant. This means that the first
r —n summands in (4.2.1]) are arbitrary powers of linear forms, and this establishes the left
inclusion in (4.2.30)).

To show the inclusion , we consider arbitrary frames Vi, Vs, ..., V,, € F,., . Then
the n x r-matrix V = (4, Va,...,V,,) is a frame in F,,. Each V; together with a choice of
Ai € R™ determines a point on 7, , 4. Thus we have r; points in 7, ,, 4, and any point on the
P~ spanned by these lies in 7;,, 4, where it is represented by V with A = (A1,..., \,) €
R". O

Example 4.2.26. Let n = 2 and write H = (t;4;) for a Hankel matriz of unknowns with
r + 1 rows and sufficiently many columns. The secant variety o, vgP! is defined by the ideal

I, .1 (H) of (r+1) x (r+1)-minors of H. The ideal-theoretic version of states that
I,_1(H) D I,_1(M,) D I,41(H).

It is instructive to check this. The left inclusion follows from the Cauchy-Binet Theorem
applied to M, = A - H where A is the (r—1) x (r+1) integer matriz underlying M,.

To see more precisely how the matrix A is defined, consider the formula in Conjecture
. Rewriting it, we obtain the following matriz product where the matriz on the left is
A

r—4 0 r

—6 0 -2
" " to t1 td—r
t1 to BRI % P |

—1 0 3

3 0 -1 ’ ’ ’
5 0 1 tr—o  tr—1 - tg—2
tr—1 tr ti—1
tr try1 oo tq
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Remark 4.2.27. (a) Since concatenations of frames in R™ are always frames, (4.2.51
generalizes from secant varieties to joins. Namely, if r =1 +ro, then Ty na* Tryna C
7:“,n,d-

(b) The inclusion in s always strict, with one notable exception: 097224 = T12.4-

Theorem implies that the Veronese variety r4,P"! is contained in the fradeco
variety 7,4 with 7 > n. This is illustrated in Example where we wrote the quadric
that vanishes on 7434 as a linear combination of the binomials that define P2 C P™. The
formula shows that this cubic vanishes on oo15P2?. Similarly, we can verify that
the cubic in Example vanishes on oy14P? by writing it as a linear combination of the
3 x 3-minors Cjj imm of the 6 x 6-catalecticant C' matrix in . One such expression is

50C012,012 — 30C012,123 + 50C012,034 — 30C012,125 + 50C012,045 + 63C012,345 — 10C013,024 + 10C013,234
+5C013,015 + 35C013,135 + 34C013, 245 + 5C023,023 — 80C023,134 + 5Cp23,025 — 26C023 235 — 19C023,145
—30C123,123 + 29C123,125 — 10C123 345 — 10C014,025 + 19C014,235 — 53C014,145 — 30C024,245 + 5C034,034
+26C034,045 + 5C034,345 + 50C134,134 + 50C134,235 + 30C134,145 + 30C234 245 + 5Cop15,015 + 26Co15,135
+50C015,245 — 5C025,235 — 10C025 145 — 10C125 345 — 4C035,035 + 5C135,135 + 50C135 245 + 5Ca35 235
+5C045,045 + 5C045,345 + 50C245 245.

Theorem gives lower bounds on the degrees of the equations defining fradeco
varieties:

Corollary 4.2.28. All non-zero polynomials in the ideal of T, ,q must have degree at least
r—n+1.

Proof. The ideal of the Veronese variety v,P""! contains no linear forms. It is generated by
2 x 2 minors of catalecticants. A general result on secant varieties [139, Thm. 1.2] implies
that the ideal of o,_,v,P"" ! is zero in degree < r — n. The inclusion o,_,vP"* C Ty 4
yields the claim. O

In Table we see that Tys4, Tass, Tss4, Ts35 and Tess have their first minimal
generators in the lowest possible degrees. However this is not always the case, as shown
dramatically by 774 3.

4.2.5 Numerical Recipes

Methods from Numerical Algebraic Geometry (NAG) are useful for studying the decom-
position of tensors into frames. Many of the results on fradeco varieties 7, 4 reported in
subsections [4.2.3| and [4.2.4| were discovered using NAG. In this subsection we discuss the rel-
evant methodologies. Our experiments involve a mixture of using Bertini [15], Macaulay?2
[81], Maple, and Matlab.

All algebraic varieties have an implicit representation, as the solution set to a system
of polynomial equations. Some special varieties admit a parametric representation, as the
(closure of the) image of a map whose coordinates are rational functions. Having to pass back
and forth between these two representations is a ubiquitous task in computational algebra.
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The fradeco variety studied in this section is given by a mixture of implicit and parametric.
Our point of departure is the implicit representation (4.2.4]) of the funtf variety F, ,, or its
homogenization G, . Built on top of that is the parametrization (4.2.1)) of rank r tensors:

Cr x C7 Sym,(C")
U U
FooxCr 24 T v (4.2.32)

V,A) o AoPh 4 AuSh 4 A0
Here, ﬁ,n,d denotes the affine cone over the projective variety 7, 4. The input to our decom-
position problem is an arbitrary symmetric nxnx - -+ Xn-tensor T and a positive integer r.
The task is to decide whether T lies in 7, , 4, and, if yes, to compute a preimage (V, A) under
the map ¥, in (4.2.32). Any preimage must satisfy the non-trivial constraint V' € F,,,.

4.2.5.1 Decomposing fradeco tensors

We discuss three approaches to finding frame decompositions of symmetric tensors.

4.2.5.2 Tensor power method

Our original motivation for this project came from the case r = n of odeco tensors (see
Section . T e ﬁ,n,da then the tensor power method of [8] reliably reconstructs the
decomposition where {vy,...,v,} is an orthonormal basis of R". The algorithm
is to iterate the rational map VT : P" ! --» P"! given by the gradient vector VI =
(0T [0z, ...,0T/0x,). This map is regular when the hypersurface {T' = 0} is smooth. The
fixed points of VT are the eigenvectors of the tensor T. Their number was given in [37].
The punchline is this: if the multipliers Ay,..., A\, in are positive, then vy,...,v, are
precisely the robust eigenvectors, i.e. the attracting fixed points of the gradient map VT

This raises the question whether the tensor power method also works for fradeco tensors.
The answer is “no” in general, but it is “yes” in some special cases.

Example 4.2.29. Let n=2,r =4,d =5 and consider the fradeco quintic
T=ar+y"+@+y)°+@—y)° € Tias,

where o > 6 is a parameter. The eigenvectors of T  are the zeros in P! of the binary quintic
1 31
y— —xr— = by- ((am —6)z* + (2zy — 1y2)2 + E?fl).

The point (1 : 0) is an eigenvector, but there are no other real eigenvectors, as the expression
is a sum of squares. Hence the frame decomposition of T cannot be recovered from its
eigenvectors. &
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Example 4.2.30. For any reals \i, Ao, A3, Ay > 0 and any integer d > 5, we consider the
tensor

T = )\1(—5$1+$2+$3)d—|—>\2(l‘1—51’2+$3)d+)\3(l’1—|—1}2—5$3)d+)\4(3l‘1—|—3$2+31‘3)d. (4233)

This tensor has precisely four robust eigenvectors, namely the columns of the matriz V in
. Hence the frame decomposition of T' can be recovered by the tensor power method.

&

The following conjecture generalizes this example.

Conjecture 4.2.31. Letr =n+1<d and T € Tpi1na with Ay, ..., A\pp1 > 0 in )
Then vy, ...,v,41 are the robust eigenvectors of T, so they are found by the tensor power
method.

Example shows that Conjecture is false for » > n+2, and it suggests that the

Tensor Power Method will not work in general. We next discuss two alternative approaches.

4.2.5.3 Catalecticant method for frames

The matrices in Theorem furnish a practical algorithm for the frame decomposition
problem when n = 2. This is a variant of Sylvester’s Catalecticant Algorithm, and it works
as follows. R

Our input is a binary form T € 7;.5,. We seek to recover the tight frame into which T’
decomposes. Since we do not know the fradeco rank r in advance, we start with Mz, My, M5,
etc. and plug in the coordinates t; of T'. The fradeco rank is the first index r with M, rank
deficient.

If the matrix M, is rank deficient, then its rank is at most » — 2. Let us assume that
the rank equals exactly » — 2. Otherwise T is a singular point (cf. Remark . Then,
up to scaling, we find the unique row vector w € R"~! in the left kernel of M,. By Theorem
we know that M, is the product of the matrix M, and an (r — 1) x (d —r — 1) matrix
with entries vf, "7l where V = (v;) € G,y is the desired frame. Moreover, the matrix
M, has rank r — 2, so the vector w also lies in the left kernel of M, i.e. w- M, = 0. Thus,

O=w-M, = (f(?)n, v21), f(v12,v22), . - . 7f(vlr7v27'))7

where f(z,y) is a binary form of degree r. The r roots of f(x,y) in P! are the columns of
the desired V' = (v;;) € G, 2. Using these v;;, the given binary form has the decomposition

T(x,y) = Z)‘j(vljx+v2jy)da

j=1

where the multipliers Ay, ..., A, are recovered by solving a linear system of equations.
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Example 4.2.32. Let r =5 and d = 8. We illustrate this method for the binary octic

T = (—237-8960) 2% + 8(65+241c)x"y — 28(16+68a)z%y? + 56(5+31a)xy> + 70(2—560) zty*
+56(—7 + 193a)x3y® 4 28(32 — T16a)z%yS + 8(—115 + 2671a)zy” + (435 — 9968c)y®,

where a = /3 — 2. The parenthesized expressions are the coordinates to, . .., ts. We find

—13548c + 595 3636a — 150 —996c +42 348« + 18
20920 — 94 —548ar +26  100cr — 22 148a 4 50
—2092a 4- 94 548 — 26  —100 + 22  —148a — 50

996a — 30 —348a—6 396 +90 —1236a — 317

Ms =

This matriz has rank 3 and its left kernel is the span of the vector w = (0,1, 1,0). Therefore,

T 5 5 5 5 5 5 5 5 5 5
PN P el PR o PTG bt PSR et Y G
0 = wM. 1 V11Ug1 — 3UT10V31 V12V — 3V1a032  V13Vag — 3VisU23  14Vzy — 3UI4V34  VisUzs — 3UTsV3s
= W5 = 1 302,03 4 3v2,03 4 3v2.03 4 302,03 4 3v2- 03 4
V11V21 — V11021 V12V22 — U12V22 V13V23 — V13023 V14V24 — V14024 V15V25 — VU15V25
0 B3, 02 5 503,02 5 Bo3.02 5 53,02 5 B3, 2 5
V11021 + V11 V12022 + V12 V13V23 + Vi3 V14024 + Vig V15025 + V15

Hence the five columns of the desired tight frame V = (v;;) are the distinct zeros in P! of

f(vli; UQZ‘) = Ul,ﬂ);l,i — 3'1]%1)51- + 31}%1}5’1 — ’Ui-'UQi fO’F 1= 1, . ,5.
We find
101 a1
V‘(o 111 a> € Gs
It remains to solve the linear system of nine equations in A = (A1, ..., \5) given by

T = Ma®+ y® + Xs(z+9)° + Moz +y)° + s (2 + ay)®.
The unique solution to this system is Ay = Ag = A3 = A5 = 1 and Ay = 1552 + 896+/3. &

4.2.5.4 Waring-enhanced frame decomposition

We now examine the decomposition problem for n > 3. Since no determinantal represen-
tation of 7,4 is known, a system of equations must be solved to recover (V,\) from a
given tensor in 7A;,n7d. In some special situations, we can approach this by taking advantage
of known results on Waring decompositions. For instance, in Example the Waring
decomposition is already the frame decomposition. Example shows that this is an
exceptional situation.

We demonstrate the “Waring-enhanced” frame decomposition for the ternary quartic

D itithed %tijkxiyjzk = 4672 +15223y+144823 2+6602%y% — 148822y 2+402022 22 +536 29>
—1992x19%2+23522y 22 +944x 23 +227y* — 100013 2+2148y2 22— 1960y 234126 72*.

Ternary quartics of rank < 5 form a hypersurface of degree 6 in P'*. The equation of this
hypersurface is the determinant of the 6 x 6 catalecticant matrix C'. Here the dimension is
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one less than expected; this is the first entry in the Alexander-Hirschowitz list (4.2.27)). For
the given quartic,

toop tiso tio1 toso toz1  to2e 110 134 —-166 227 —250 358
| t202 f112 t103 to22 to13  t004| | 670 196 236 358 —490 1267 |
(4.2.34)

This matrix has rank 5 and its kernel is spanned by the vector corresponding to the quadric
q = 14u® — uv — 2uw — 4v* — 1lvw — 10w?. The points (u : v : w) in P? that lie on the
conic {g = 0} represent all the linear forms ux + vy + wz that may appear in a rank 5
decomposition.

Our task is to find five points on the conic {g = 0} that form a frame V € Gs53. This
translates into solving a rather challenging system of polynomial equations. One of the
solutions is

-1 2 2 1423 —142V3
V = (v1,v9,03,04,05) = 2 2 -1 —24+3 243
0O 1 -2 5 -5

The given ternary quartic has the frame decomposition v{* + v$* + 0§ + 0P + v,

4.2.5.5 Exploring the fradeco variety

The following tasks make sense for any variety X C PV arising in an applied context: (i)
sample points on X, (ii) compute the dimension and degree of X, (iii) compute an irreducible
decomposition of X, (iv) find a parametrization of X, (v) find some polynomials that vanish
on X, (vi) determine polynomials that cut out X, (vii) find generators for the ideal of X.
Numerical algebraic geometry (NAG) furnishes tools for addressing these points. In our
study, X is the fradeco variety 7, 4. We used NAG to find answers in some cases. In what
follows, we explain our computations. Particular emphasis is placed on the results reported
in subsection for the degree and Hilbert function of 7, 4. All computations are carried

out by working on the affine cone 7A;,n7d C Sym,(C").

4.2.5.6 Dimension and degree

The dimension and degree of the affine variety ’7A;7n7d can be computed directly from the mixed
parametric-implicit representation in . The dimension can be found by selecting a
random point on F, , x R", determining its tangent space via [145], and then taking the image
of this tangent space via the derivative of the map ¥;. The image is a linear subspace in
Sym,(R™), and its dimension is found via the rank of its defining matrix. These matrices are
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usually given numerically, in terms of points sampled from F,,, so we need to use singular
value decompositions.

The computation of the degree is carried out using monodromy. We obtained the results
of Theorem by applying essentially the same technique as in [86, 88|, adapted to our
situation where the mapping is from an implicitly defined source. Here are some highlights
of this method for 7, 4. We performed these computations using Bertini and MatLab.

Let ¢ denote the codimension of ﬁ}md, as given by the formula in Conjecture .
The degree of ’7}7an is the number of points in the intersection with a random c-dimensional
affine subspace of Sym,(C"). Here we represent the fradeco variety purely numerically,
namely as the set of images of points (V, A) under the parametrization £, shown in ([4.2.32).
This method verifies the dimension of ﬁ,n,d because the intersection would be empty if the
dimension were lower than expected.

As a first step, we compute a numerical irreducible decomposition of the funtf vari-
ety F,n. This also gives its degree and dimension, as shown in Table In particular, we
obtain degree-many points of F,, that lie in a random linear space of dimension equal to
codim(F, ).

We take V' to be one of these generic points in F, ,, we select a random vector A € C",
and we compute the fradeco tensor ¥,;(V,A). We also fix a random c-dimensional linear
subspace R of Sym,(C") and a random point U in the c-dimensional affine space R + U.

By construction, the affine cone Tn ¢ and the affine space R + U intersect in deg(’]} d)
many points in Symd((C”). One of these points is X4(V,A). Our goal is to discover all
the other intersection points by sequences of parameter homotopies that form monodromy
loops. Geometrically, the base space for these monodromies is the vector space quotient
Sym,(C")/R.

We fix two further random points P; and P, in Sym,(C"). These represent residue classes
modulo the linear subspace R. The data we fixed now define a (triangular) monodromy loop

/\

(R+Py) N Tyina (R+P) N Tyna

We use Bertini to perform each linear parameter homotopy. This constructs a path (V;, A;)
in the parameter space. Here ¢ runs from 0 to 3. We start at (Vp, Ag) = (V, A), the point
Ya(Vi, A) lies in (R+ P) ﬂ’ﬁnd for 1 = 1,2, and 34(V3, A3) is back in (R+U)N 'ﬁm,d. With
high probability, ¥;(V3, A\3) # X4(V, A) holds, and we have discovered a new point. Then we
iterate the process. Let Sg := {Xq(V,A), ..., Za(V', X))} denote the subset of (R+U) ﬁﬁymd
that has been found after k£ steps. In the next monodromy loop we trace the paths of S to
produce §k+1, the endpoints of monodromy loops starting from Sj. Using MatLab, we then
merge the point sets to form Sy 1 = S U §k+1. We repeat this process until no new points
are found after 20 consecutive monodromy loops. The number of points in Sy is very strong
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numerical evidence for the degree of 7., 4. At this point, one can also use the trace test [141]
with pseudowitness sets [87] to confirm that degree.

4.2.5.7 Numerical Hilbert Function

We wish to learn the polynomial equations that vanish on 7,,4. The set I of all such
polynomials is a homogeneous prime ideal in the polynomial ring over (Q whose variables are
the entries t;,;,..,, of an indeterminate tensor 7'. We write this polynomial ring as

QT = PQIT). ~ P Sym,(Sym,(Q")) = Sym, (Sym,(Q")).

e>0 e>0

The space of all polynomials of degree e in the ideal I is the subspace

I=INQIT]. € QIT]. =~ Sym,(Sym,(@")).

A natural approach is to fix some small degree e and to ask for a Q-linear basis of I..
The dimensions of these vector spaces are organized into the Hilbert function

N = N, e — dimg(Z,).

We used Bertini and Matlab to determine specific values of the Hilbert function. In some
cases, an independent Maple computation was used to construct a basis for the QQ-vector
space I..

Fix values for r,n,d. As discussed above, we can use the parametrization (4.2.32)) to
produce many sample points 7' = X4(V, X) on 7, 4. The condition f(7') = 0 translates into
a linear equation in the coefficients of a given polynomial f € Q[T]., and I, is the solution
space to these equations as 7' ranges over 7, , 4. We write these linear equations as a matrix
whose number of columns is dim(Q[7].) = ((Hgile)“*l), and with one row per sample point
T. In practice we take enough sample points so that I, is sure to equal the kernel of that
matrix.

This procedure may be carried out in exact arithmetic over Q when sufficiently many
exact points can be found on F,,. When floating point approximations are used, some care
is required in choosing the appropriate number of points and a sufficient degree of precision.
This numerical test can become inconclusive in high dimension due to these issues. Using
floating point arithmetic and 30,000 points of F,.,, we obtained the values listed in Table .
The blanks indicate that we did not find conclusive evidence for the exact value of dim(/,)
in that case. For 7543, T634, T643, T7.35, and Tg 35 we also found no conclusive numerical
evidence for equations in degrees less than 5.

The calculation of dim(/,) is a numerical rank computation via singular value decompo-
sition, so at least in principle it is possible to also extract a basis of I,. However, in practice,
round-off errors yield imprecise values for the coefficients of the basis elements of .. This
makes it difficult to reliably determine an exact Q-basis of I, by numerical methods.
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qor~dege | o1 31 4 | 5 | 6
dimZ(T529)e | 0 | O 5 46 | 235
dimZ(Ta34)e | 6 | 127 | 1093 | 5986
dimZ(T435)e | 27 | 651 | 6370
dimI(R73,4)e 0 1 21
dimZ(T535)e | 0 | 20 | 633
dimZ(Ts35)e | 0 | O 1

Table 4.3: Numerical computation of the Hilbert functions of fradeco varieties

To discover the explicit ideal generators displayed in Subsections [4.2.3| and [4.2.4] we
instead used exact arithmetic in Maple. A key step was to produce points in the funtf
variety ., that are defined over low-degree extension of Q, and to map them carefully via
4. To accomplish this, we used the representation of G, , discussed in Subsection 4.2.2
In our experiments, we found that the solve command in Maple was able to handle dense
linear systems with up to 3,500 unknowns.

4.3 Conclusion

In the first section of this chapter we studied the varieties of orthogonally decomposable
tensors in two different cases: symmetric and ordinary tensors. We showed that these
varieties are defined set-theoretically by quadratic equations that arise from the associativity
of a certain algebra defined by the given tensor. Motivated by these results and by the fact
that odeco tensors constitute a very low-dimensional variety, in the second section of this
chapter we extended the definition of odeco tensors to that of frame decomposable tensors.
In small cases we described the variety of such tensors and we showed how one can find their
frame decomposition.
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Chapter 5

Superresolution without Separation

This chapter provides a theoretical analysis of diffraction-limited superresolution, demon-
strating that arbitrarily close point sources can be resolved in ideal situations. Precisely,
we assume that the incoming signal is a linear combination of M shifted copies of a known
waveform with unknown shifts and amplitudes, and one only observes a finite collection of
evaluations of this signal. We characterize properties of the base waveform such that the
exact translations and amplitudes can be recovered from 2M + 1 observations. This recovery
can be achieved by solving a weighted version of basis pursuit over a continuous dictionary.
Our analysis shows that /;-based methods enjoy the same separation-free recovery guar-
antees as polynomial root finding techniques such as Prony’s method or Vetterli’s method
for signals of finite rate of innovation. Our proof techniques combine classical polynomial
interpolation techniques with contemporary tools from compressed sensing. This chapter is
based on joint work with Geoffrey Schiebinger and Benjamin Recht titled Superresolution
without separation [137).

5.1 Introduction

Imaging below the diffraction limit remains one of the most practically important yet theoret-
ically challenging problems in signal processing. Recent advances in superresolution imaging
techniques have made substantial progress towards overcoming these limits in practice |62}
119], but theoretical analysis of these powerful methods remains elusive. Building on poly-
nomial interpolation techniques and tools from compressed sensing, this chapter provides
a theoretical analysis of diffraction-limited superresolution, demonstrating that arbitrarily
close point sources can be resolved in ideal situations.
We assume that the measured signal takes the form

M

2(s) = ci(s,ty), (5.1.1)

=1
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Figure 5.1: An illustrative example of with the Gaussian point spread function
U(s,t) = e~ The ¢; are denoted by red dots, and the true intensities ¢; are illus-
trated by vertical, dashed black lines. The super position resulting in the signal x is plotted
in blue. The samples § would be observed at the tick marks on the horizontal axis.

Here (s, t) is a differentiable function that describes the image at spatial location s of a
point source of light localized at t. The function ¢ is called the point spread function, and
we assume its particular form is known beforehand. In , t1,...,ty are the locations
of the point sources and cy,...,cp; > 0 are their intensities. Throughout we assume that
these quantities together with the number of point sources M, are fixed but unknown. The
primary goal of superresolution is to recover the locations and intensities from a set of
noiseless observations

{z(s) | s € S}.

Here S is the set of points at which we observe x; we denote the elements of S by sq,..., s,.
A mock-up of such a signal x is displayed in Figure [5.1]

In this section, building on the work of Candes and Fernadez-Granda [31}, 32, 66| and
Tang et al |20, (150, [149], we aim to show that we can recover the tuple (¢;, ¢;, M) by solving
a convex optimization problem. We formulate the superresolution imaging problem as an
infinite dimensional optimization over measures. Precisely, note that the observed signal can
be rewritten as

z(s) = Zc,w(s,t,-) = /w(s,t)d,u*(t). (5.1.2)

Here, u, is the positive discrete measure Zf‘il c;0;, where 0; denotes the Dirac measure
centered at t. We aim to show that we can recover p, by solving the following optimization
problem:

minimize / w(t)(dt)

subject to  z(s) = /w(s,t)d,u(t), ses (5.1.3)

supppu C B
w>0.
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Here, B is a fixed compact subset of the real line and w(t) is a weighting function that
weights the measure at different locations. The optimization problem is over the set
of all positive finite measures p supported on B.

The optimization problem is an analog of ¢; minimization over the continuous
domain B. Indeed, if we know a priori that the ¢; are elements of a finite discrete set €2, then
optimizing over all measures subject to supppu C 2 is precisely equivalent to weighted ¢;
minimization. This infinite dimensional analog with uniform weights has proven useful for
compressed sensing over continuous domains |150], resolving diffraction-limited images from
low-pass signals [31}, (66, [149], system identification [13§], and many other applications [41].
We will see below that the weighting function essentially ensures that all of the candidate
locations are given equal influence in the optimization problem.

Our main result, Theorem[5.1.4], establishes that for one-dimensional signals, under rather
mild conditions, we can recover p, from the optimal solution of (5.1.3). Our conditions,
described in full-detail below, essentially require the observation of at least 2M + 1 samples,
and that the set of translates of the point spread function forms a linearly independent set.
In Theorem we verify that these conditions are satisfied by the Gaussian point spread
function for any M source locations with no minimum separation condition. This is the first
analysis of an ¢/, based method that matches the separation-free performance of polynomial
root finding techniques [157, 53] [124]. Our motivation for such an analysis is that ¢; based
methods generalize to higher dimensions and are empirically stable in the presence of noise.

Boyd, Schiebinger and Recht [25] show that the problem can be optimized to
precision € in polynomial time using a greedy algorithm. In our experiments in Section [5.3]
we use this algorithm to demonstrate that our theory applies, and show that even in multiple
dimensions with noise, we can recover closely spaced point sources.

5.1.1 Main Result

We restrict our theoretical attention to the one-dimensional case, leaving the higher-dimensional
cases to future work. Let 1) : R? — R be our one dimensional point spread function, with
the first argument denoting the position where we are observing the image of a point source
located at the second argument. We assume that 1) is differentiable in both arguments.

For convenience, we will assume that B = [T, T] for some large scalar T. However,
our proof will extend to more restricted subsets of the real line. Moreover, we will state
our results for the special case where S = {s1,...,s,}, although our proof is written for

possibly infinite measurement sets. We define the weighting function in the objective of our
optimization problem via

w(t) =+ 3" vl ).

Our main result establishes conditions on 1 such that the true measure p, is the unique
optimal solution of (5.1.3]). Importantly, we show that these conditions are satisfied by the
Gaussian point spread function with no separation condition.
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Theorem 5.1.1. Suppose |S| > 2M, and (s, t) = e~ D°. Then for any t; < ... < ty,
the true measure p, is the unique optimal solution of (5.1.3)).

Before we proceed to state the main result, we need to introduce a bit of notation and
define the notion of a Tchebycheff system. Let K (¢,7) = £ 1", ¢h(s;, t)(s;, 7), and define
the vector valued function v : R — R?™ via

o(s) = [(s.t1) ... Vlsitar) Ev(sit) ... ziu(sta)]” (5.1.4)

Definition 5.1.2. A set of functions uy, . .., u, is called a Tchebycheff system (or T-system )
iof for any points 1y < ... < T,, the matrix

ur(m) ... wi(m)

U (1) oo un(Th)
18 1nwvertible.

Conditions 5.1.3. We impose the following three conditions on the point spread function
Y:

PosiTivity  For all t € B we have w(t) > 0.

INDEPENDENCE  The matriz = 37" v(s;)v(s;)" is nonsingular.

T-systEM {K(-,t1),..., K(-,tm), %K(-,tl), oy 72K (), w(-)} form a T-system.

Y dtyg
Theorem 5.1.4. If ¢ satisfies Conditions[5.1.5 and |S| > 2M, then the true measure i, is
the unique optimal solution of (5.1.3]).

Note that the first two parts of Conditions are easy to verify. POSITIVITY eliminates
the possibility that a candidate point spread function could equal zero at all locations—
obviously we would not be able to recover the source in such a setting! INDEPENDENCE is
satisfied if

W t), ¥ tu), (- ty)}  is a T-system.

d d
—Y(,t1), ..., —
dt1w< 9 1)7 7dtM

This condition allows us to recover the amplitudes uniquely assuming we knew the true t;
locations a priori, but it is also useful for constructing a dual certificate as we discuss below.

We remark that we actually prove the theorem under a weaker condition than T-SYSTEM.
Define the matrix-valued function A : R2M+1 5 REM+xQEM+1) |y

Apr,- .. panig1) = {’“fl) - “(mf“l) : (5.1.5)

where k : R — R?M is defined as

k() = % > Yl t) gy (5.1.6)
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Our proof of Theorem replaces condition T-SYSTEM with the following:
DETERMINANTAL ~ There exists p > 0 such that for any t;,t; € (t; — p,t; + p), and

t € [=T,T), the matrix A(¢t, ¢, ... 5, t1;, ) is nonsingular whenever ¢,¢;,¢; are distinct.

This condition looks more complicated than T-SYSTEM and is indeed nontrivial to verify.
It is essentially a local T-system condition in the sense that the points 7; in Definition [5.1.2
are restricted to lie in a small neighborhood about the ¢;. It is clear that T-SYSTEM implies
DETERMINANTAL. The advantage of the more general condition is that it can hold for
finitely supported ¢, while this is not true for T-SYSTEM. In fact, it is easy to see that
if T-SYSTEM holds for any point spread function v, then DETERMINANTAL holds for the
truncated version ¢(s,t)1{|s — t| < 3T}, where 1{x < y} is the indicator variable equal
to 1 when x < y and zero otherwise. We suspect that DETERMINANTAL may hold for
significantly tighter truncations.

As we will see below, T-SYSTEM and INDEPENDENCE are related to the existence of
a canonical dual certificate that is used ubiquitously in sparse approximation [33, [71]. In
compressed sensing, this construction is due to Fuchs [71], but its origins lie in the the-
ory of polynomial interpolation developed by Markov and Tchebycheff, and extended by
Gantmacher, Krein, Karlin and others (see the survey in Section [5.1.2)).

In the continuous setting of superresolution, the dual certificate becomes a dual polyno-
mial: a function of the form Q(¢) = - >y U(sj,t)q(s;) satisfying

Q) < w(t)

1Q(t)| =w(t), i=1,..., M. (5.1.7)

To see how T-SYSTEM might be useful for constructing a dual polynomial, note that as
tF |t and t; 1 t1, the first two columns of A(tf,¢,...,t) converge to the same column,
namely x(t;). However, if we divide by the difference ¢t — ¢, and take a limit then we
obtain the derivative of the second column. In particular, some calculation shows that
T-SYSTEM implies

det Lil Zi?)] A0 Vt#£t,

where A = £ 3" w(s;)v(s;)” is the matrix from INDEPENDENCE, and
w=[w(ty),...,w(ty),w (t),...,w (ty)]
Taking the Schur complement in w(t), we find

A k(t)
det L} w(t)

Hence it seems like the function w? A7'x(t) might serve well as our dual polynomial.
However, it remains unclear from this short calculation that this function is bounded above

} =det A [wTA_l/f(ﬂ - w(t)} :
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by w(t). The proof of Theorem makes this construction rigorous using the theory of
T-systems.

Before turning to the proofs of these theorems (cf. Sections [5.2.1] and [5.2.4)), we survey
the mathematical theory of superresolution imaging.

5.1.2 Foundations: Tchebycheff Systems

Our proofs rely on the machinery of Tchebycheffl] systems. This line of work originated in
the 1884 doctoral thesis of A. A. Markov on approximating the value of an integral fab f(x)dx

from the moments ff rf(x)dr, ..., fab 2" f(x)dz. His work formed the basis of the proof by
Tchebycheff (who was Markov’s doctoral advisor) of the central limit theorem in 1887 [151].

Recall that we defined a T-system in Definition An equivalent definition of a T-
system is: the functions uq, ..., u, form a T-system if and only if every linear combination
U(t) = ajus(t) +- - -+ anun(t) has at most n—1 zeros. One natural example of a T-system is
given by the functions 1,¢,...,t" 1. Indeed, a polynomial of degree n — 1 can have at most
n — 1 zeros. Equivalently, the Vandermonde determinant does not vanish,

1 1 ...
oty ... 1,
oty ... th |40,
ottt
for any t; < ... < t,. Just as Vandermonde systems are used to solve polynomial interpo-

lation problems, T-systems allows the generalization of the tools from polynomial fitting to
a broader class of nonlinear function-fitting problems. Indeed, given a T-system uy, ..., u,, a
generalized polynomial is a linear combination U(t) = ajuy(t)+- - - +a,un(t). The machinery
of T-systems provides a basis for understanding the properties of these generalized poly-
nomials. For a survey of T-systems and their applications in statistics and approximation
theory, see 72}, 194, 95]. In particular, many of our proofs are adapted from [95], and we call
out the parallel theorems whenever this is the case.

5.1.3 Prior art and related work

Broadly speaking, superresolution techniques enhance the resolution of a sensing system,
optical or otherwise; resolution is the distance at which distinct sources appear indistin-
guishable. The mathematical problem of localizing point sources from a blurred signal has
applications in a wide array of empirical sciences: astronomers deconvolve images of stars to
angular resolution beyond the Rayleigh limit [125], and biologists capture nanometer resolu-
tion images of fluorescent proteins |22, 91, 133, 162]. Detecting neural action potentials from

!Tchebycheff is one among many transliterations from Cyrillic. Others include Chebyshev, Chebychev,
and Cebysev.
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extracellular electrode measurements is fundamental to experimental neuroscience [61], and
resolving the poles of a transfer function is fundamental to system identification [138]. To
understand a radar signal, one must decompose it into reflections from different sources [89];
and to understand an NMR spectrum, one must decompose it into signatures from different
chemicals [149].

The mathematical analysis of point source recovery has a long history going back to
the work of Prony [124] who pioneered techniques for estimating sinusoidal frequencies.
Prony’s method, a multivariate version of which was discussed in Subsection[1.3.2] is based on
algebraically solving for the roots of polynomials, and can recover arbitrarily closely spaced
frequencies. The annihilation filter technique introduced by Vetterli [157] can perfectly
recover any signal of finite rate of innovation with minimal samples. In particular the theory
of signals with finite rate of innovation shows that given a superposition of pulses of the form
> agh(t — ty), one can reconstruct the shifts ¢, and coefficients aj from a minimal number
of samples [53], [157]. This holds without any separation condition on the ¢, and as long as
the base function v can reproduce polynomials of a certain degree (see [53, Section A.1] for
more details). The algorithm used for this reconstruction is however based on polynomial
rooting techniques that do not easily extend to higher dimensions. Moreover, this algebraic
technique is not robust to noise (see the discussion in [148] Section IV.A] for example).

In contrast we study sparse recovery techniques. This line of thought goes back at least
to Carathéodory [36, 35]. Our contribution is an analysis of ¢; based methods that matches
the performance of the algebraic techniques of Vetterli in the one dimensional and noiseless
setting. Our primary motivation is that ¢; based methods may be more stable to noise and
generalize to higher dimensions (although our analysis currently does not).

It is tempting to apply the theory of compressed sensing 11}, 33, 34}, 50] to problem .
If one assumes the point sources are located on a finite grid and are well separated, then some
of the standard models for recovery are valid (e.g. incoherency, restricted isometry property,
or restricted eigenvalue property). With this motivation, many authors solve the gridded
form of the superresolution problem in practice |10} (12 55, 56, 63, 90} (113}, 128, 143, [144],
162|. However, this approach has some significant drawbacks. The theoretical requirements
imposed by the classical models of compressed sensing become more stringent as the grid
becomes finer. Furthermore, making the grid finer can also lead to numerical instabilities
and computational bottlenecks in practice.

Despite recent successes in many empirical disciplines, the theory of superresolution imag-
ing remains limited. Candés and Fernandes-Granada [32] recently made an important con-
tribution to the mathematical analysis of superresolution, demonstrating that semi-infinite
optimization could be used to solve the classical Prony problem. Their proof technique has
formed the basis of several other analyses including that of Bendory et al [19] and that of
Tang et al [149]. To better compare with our approach, we briefly describe the approach
of |19} 32, 149] here.

They construct the vector ¢ of a dual polynomial Q(t) = 37" 1(sj,t)g; as a linear

combination of ¥ (s, t;) and d%_ (s,t;). In particular, they define the coefficients of this linear
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combination as the least squares solution to the system of equations
Q(t;) = sign(¢;), i=1,...,M;

d
—Q(t =0 =1,..., M.
dtQ<) ) 7’ ) )

t=t;

(5.1.8)

They prove that, under a minimum separation condition on the ¢;, the system has a unique
solution because the matrix for the system is a perturbation of the identity, hence invertible.

Much of the mathematical analysis on superresolution has relied heavily on the assump-
tion that the point sources are separated by more than some minimum amount [14, |19,
32, 52, [58, (117, 51]. We note that in practical situations with noisy observations, some
form of minimum separation may be necessary. One can expect, however, that the required
minimum separation should go to zero as the noise level decreases: a property that is not
manifest in previous results. Our approach, by contrast, does away with the minimum sep-
aration condition by observing that the matrix for the system ([5.1.8) need not be close to
the identity to be invertible. Instead, we impose Conditions to guarantee invertibility
directly. Not surprisingly, we use techniques from T-systems to construct an analog of the
polynomial () in for our specific problem.

Another key difference is that we consider the weighted objective [ w(t)du(t), while prior
work [19, 32, 149] has analyzed the unweighted objective [ du(t). We, too, could not remove
the separation condition without reweighing by w(t). In Section [5.3|we provide evidence that
this mathematically motivated reweighing step actually improves performance in practice.
Weighting has proven to be a powerful tool in compressed sensing, and many works have
shown that weighting an ¢;-like cost function can yield improved performance over standard
¢; minimization |70} 96, 155, 24]. To our knowledge, the closest analogy to our use of weights
comes from Rauhut and Ward, who use weights to balance the influence of dynamic range
of bases in polynomial interpolation problems [129]. In the setting of this section, weights
will serve to lessen the influence of sources that have low overlap with the observed samples.

We are not the first to bring the theory of Tchebycheff systems to bear on the problem
of recovering finitely supported measures. De Castro and Gamboa [40] prove that a finitely
supported positive measure p can be recovered exactly from measurements of the form

{/wwww/%@}

whenever {uy, ..., u,} form a T-system containing the constant function vy = 1. These mea-
surements are almost identical to ours; if we set uy(t) = (s, t) for k = 1,...,n, where
{s1,...,8,} = & is our measurement set, then our measurements are of the form

@@HsES}:{/ﬁﬂm”w/ﬁmM}

However, in practice it is often impossible to directly measure the mass [uodp = [ dp as re-
quired by (5.1.3). Moreover, the requirement that {1, (s1,t),...,%(s,,t)} form a T-system
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does not hold for the Gaussian point spread function (s, t) = e~ (>~ t)? (see Remark -
Therefore the theory of [40] is not readily applicable to superresolution imaging.

We conclude our review of the literature by discussing some prior literature on ¢;-based
superresolution without a minimum separation condition. We would like to mention the
work of Fuchs [71] in the case that the point spread function is band-limited and the samples
are on a regularly-spaced grid. This result also does not require a minimum separation
condition. However, our results hold for considerably more general point spread functions
and sampling patterns. Finally, in a recent paper Bendory [18] presents an analysis of ¢,
minimization in a discrete setup by imposing a Rayleigh regularity condition which, in the
absence of noise, requires no minimum separation. Our results are of a different flavor, as
our setup is continuous. Furthermore we require linear sample complexity while the theory
of Bendory [18] requires infinitely many samples.

5.2 Proofs

In this section we prove Theorem and Theorem [5.1.1] We start by giving a short list of
notation to be used throughout the proofs. We write our proofs for an arbitrary measurement
S which need not be finite for the sake of the proof. Let P denote a fixed positive measure

on §, and set
~ [w(snaps)

For concreteness, the reader might think of P as the uniform measure over S, where if § is
finite then w(t) = %Z?Zl Y(s;,t). Just note that the particular choice of P does not affect
the proof.

5.2.0.0.1 Notation Glossary
e We denote the inner product of functions f,g € L% by (f, 9)p :== [ f(¢) P(t).

e For any differentiable function f : R? — R, we denote the derivative in its first argu-
ment by 0; f and in its second argument by 05 f.

o Fort € R, let ¢ (-) = (-, 1).

5.2.1 Proof of Theorem |5.1.4

We prove Theorem in two steps. We first reduce the proof to constructing a function
q such that (g,v:), possesses some specific properties.




CHAPTER 5. SUPERRESOLUTION WITHOUT SEPARATION 155

Proposition 5.2.1. If the first three items of Conditions hold, and if there exists a
function q such that Q(t) := (g, ) p satisfies

Q) =w(t), j=1,...,M (5.2.1)
Qt) <w(t;), forte|-T,T] andt #t;,

then the true measure ji, = ZM

i1 cjot; 18 the unique optimal solution of the program|(5.1.5,

This proof technique is somewhat standard [33, 71]: the function Q(t) is called a dual
certificate of optimality. However, introducing the function w(t) is a novel aspect of our proof.
The majority of arguments have w(t) = 1. Note that when [ 1)(s,¢)dP(s) is independent of
t, then w(t) is a constant and we recover the usual method of proof.

In the second step we construct ¢(s) as a linear combination of the t;-centered point
spread functions (s, t;) and their derivatives 0s1 (s, t;).

Theorem 5.2.2. Under the Conditions[5.1.3, there exist oy, ..., an, B1, ..., Bu,c € R such
that Q(t) = (g, ) p satisfies (52), where

M

q(s) = Z(Oéﬂﬁ(&ti) + ﬁiditiw(s,ti)) +c.

i=1

To complete the proof of Theorem [5.1.4] it remains to prove Proposition [5.2.1] and Theo-
rem [5.2.2 Their proofs can be found in Sections [5.2.2] and [5.2.3| respectively.

5.2.2 Proof of Proposition [5.2.1

We show that pu, is the optimal solution of problem (5.1.3|) through strong duality. The dual
of problem ([5.1.3)) is

maximize, (g, z)p

2.2.2
subject to  (q,¥r)p < w(t) fort e [-T.,T]. ( )

Since the primal (5.1.3)) is equality constrained, Slater’s condition naturally holds, implying
strong duality. As a consequence, we have

(g, x)p = /w(t)d,u(t) <= ¢ is dual optimal and p is primal optimal.

Suppose ¢ satisfies (5.2.1)). Hence ¢ is dual feasible and we have
M M
<qa x>P = Z Cj<q7 wt]’>P = Z CJQ(t])
=1 =

= [ wivdu. (0.
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Therefore, ¢ is dual optimal and ., is primal optimal.
Next we show uniqueness. Suppose the primal (5.1.3]) has another optimal solution

M
= Zéjdfj
j=1
such that {t,...,f} # {t1,...,tu} := T. Then we have

(@2)p =) @j<q> %>P

=) 4QM) + ) Q)

ijT £]¢7—
<Y uw(ty) + ) u(ly) = / w(t)df(t).
t;eT tigT
Therefore, all optimal solutions must be supported on {¢y,...,tx}.

We now show that the coefficients of any optimal ji are uniquely determined. By con-
dition INDEPENDENCE, the matrix [ v(s)v(s)TdP(s) is invertible. Since it is also positive
semidefinite, it is positive definite, so, in particular its upper M x M block is also positive
definite.

¢(5 > tl)

det/ | [e(st) .. (s tar)] dP(s) £ 0.
¢(3>tM)

Hence there must be s1, ..., sy € S such that the matrix with entries ¢ (s;, t;) is nonsingular.
Now consider some optimal i = Ef\il ¢;it;. Since i is feasible we have

M M
x(s;) = Zéiw(sjati> = Zciw(sj,ti) for j=1,..., M.
i=1 =1

Since 1(s;,t;) is invertible, we conclude that the coefficients ¢y, ..., cp are unique. Hence
fs is the unique optimal solution of ((5.1.3)).

5.2.3 Proof of Theorem (5.2.2

We construct Q(t) via a limiting interpolation argument due to Krein |[103]. We have adapted
some of our proofs (with nontrivial modifications) from the aforementioned text by Karlin
and Studden [95]. We give reference to the specific places where we borrow from classical
arguments.

In the sequel, we make frequent use of the following elementary manipulation of deter-
minants:
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Figure 5.2: The point a is a nodal zero of f, and the point b is a non-nodal zero of f.

RN N
’ \ ’

\
ti—e!  Ntite to—e,! wlate

Figure 5.3: The relationship between the functions w(t), Qggt) and Q(t). The function Qf(t)
touches w(t) only at t; £ ¢, and these are nodal zeros of Q(t) — w(t). The function Q(t)
touches w(t) only at ¢; and these are non-nodal zeros of Q(t) — w(t).

Lemma 5.2.3. If vy,...,v, are vectors in R™, and n is even, then
V1 ... Up 7o
vy —vVy ... U —v‘:
[or = o T 1

We leave the proof of this lemma to the reader.
In what follows, we consider € > 0 such that

tih—e<tite<lhy—e<lote< - <ty —e<iy-+e

Definition 5.2.4. A point t is a nodal zero of a continuous function f: R — R if f(t) =0
and [ changes sign at t. A point t is a non-nodal zero if f(t) = 0 but f does not change
sign at t. This distinction is illustrated in Figure [5.9

Our proof of Theorem proceeds as follows. With e fixed, we construct a function

M
Qc(t) =Y allKp(t,t;) + B0, Kp(t, t:)

i=1

such that Q.(t) = w(t) only at the points t = t; &€ for all j = 1,2,..., M and the points
t; + € are nodal zeros of Qc(t) — w(t) for all j = 1,2,..., M. We then consider the limiting
function Q(t) = liJI})l Q(t), and prove that either Q(¢) satisfies (5.2.1]) or 2w(t) — Q(t) satisfies

(5.2.1). An illustration of this construction is pictured in Figure [5.3]
We begin with the construction of (). We aim to find the coefficients «., 5. to satisfy

Qcti—e)=w(t;—e) and Q. (t;+¢€) =w(t;+¢) for i=1,... M.
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This system of equations is equivalent to the system

Qe (tl -+ 6)

Qcti—e)=w(t;—e) for i=1,...
Qcti =€) wlt; +e€) —w(t; —e)

2e

Note that this is a linear system of equations in «., 8. with coefficient matrix given by

Kp(tj — €, tz)

2¢

, M

for +=1,..., M.

82Kp(tj — €, tl)

158

(5.2.3)

i(Kp(tj + G,ti) - Kp(tj — €, tz))

That is, the equations (5.2.3) can be written as

€

[ |
(0%
|
|
/6|E

w(ty — €)

w(tar — €)

i(w(tl +e) —w(ty —e))

| L (w(ta + ) — wltn —€)]

(2K p(t; + €,t;) — O Kp(t; — €, 1))

We first show that the matrix K, is invertible for all € sufficiently small. Note that as
€ — 0 the matrix K. converges to

KP(tjvti)

02K p(t;,t;)

O K p(t, t:)

010:Kp(t;,t;)

= [oops)Taps).

which is positive definite by INDEPENDENCE. Since the entries of K. converge to the entries
of K, there is a A > 0 such that K, is invertible for all € € (0, A). Moreover, K_! converges
to K= as € — 0 and for all € < A, the coefficients are uniquely defined as

€

— K1

|
(%
|
|
/8|E

w(t; — ¢€)

w(ta — ¢

> (w(ts +€) —w(ty —€))

| L (w(tas +€) — wlta — €)]

(5.2.4)
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We denote the corresponding function by

M
Qc(t) =Y allKp(t,t;) + B0 Kp(t, t;).

i=1

Before we construct Q(t), we take a moment to establish the following remarkable conse-
quences of the DETERMINANTAL condition. For all e > 0 sufficiently small the following
hold:

(a). Qc(t) = w(t) only at the points t; — €, t, +¢,...,ta — €,ta + €.
(b). These points t; — €ty +¢, ...ty — €,ta + € are nodal zeros of Q.(t) — w(t).

We adapted the proofs of (a) and (b) (with nontrivial modification) from the proofs of
Theorem 1.6.1 and Theorem 1.6.2 of [95].

Proof of (a). Suppose for the sake of contradiction that there is a 7 € [T, T] such that
Qc(7) =w(r) and 7 ¢ {t; — ety +¢€,...,ty — €ty + €. Then we have the system of 2\
linear equations

Qcltj—¢) _ Qclr) _

w(t;—e)  w(r)

Qe(tj + €) . QG(T>
w(t; +€) w(T)

=0 j=1,..., M.

Rewriting this in matrix form, the coefficient vector [046 56} = [as} cooo oM gl 5£M]}

of Q. satisfies

[ac B (sl = = () K+ =r(r) ... Kltu+)—k(r)=[0 ... 0.
(5.2.5)
By Lemma applied to the 2M + 1 vectors vy = k(t1 — €),...,vam = K(tyr + €), and
vo = K(7), the matrix for the system of equations ({5.2.5)) is nonsingular if and only if the
following matrix is nonsingular:

{/{(tl—e) li(tM‘f'E) I{(T) :A(tl—e,...,tM"i‘G;T)-

1 1 1

However, this is nonsingular by the DETERMINANTAL condition. This gives us the contra-
diction that completes the proof of part (a).

Proof of (b). Suppose for the sake of contradiction that Q.(t) — w(t) has Ny < 2M
nodal zeros and Ny = 2M — N;j non-nodal zeros. Denote the nodal zeros by {r1,...,7n, },
and denote the non-nodal zeros by 21, ..., zy,. In what follows, we obtain a contradiction by
doubling the non-nodal zeros of Q. (t)—w(t). We do this by constructing a certain generalized
polynomial u(t) and adding a small multiple of it to Q.(t) — w(t).
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Figure 5.4: The points {71, 72, 73, 74} are nodal zeros of Qe(t) —w(t), and the points {(i, (2, (3}
are non-nodal zeros. The function u(t) has the appropriate sign so that Q.(t) — w(t) + du(t)
retains nodal zeros at 7;, and obtains two zeros in the vicinity of each (;.

We divide the non-nodal zeros into groups according to whether Q.(t) — w(t) is positive
or negative in a small neighborhood around the zero; define
7~ ={i| Q. <wnear z} and I%:={i|Q.>w near z}.
We first show that there are coefficients aq, ..., ay, and by, ..., by such that the polynomial
M M
u(t) =3 aKp(t.t;) + Y bioaKp(t,t;) + agw(t)
i=1 i=1

satisfies the system of equations

u(zj))=+1 jeI™
u(zj))=—-1 je€I"
(=) / (5.2.6)
u(r) =0 i=1,..., N
u(T) =Y
where 7 is some arbitrary additional point. The matrix for this system is
k()T 1
k(zn)T 1
W H(Tl)T 1
K(TNI)T 1
k() 1

where W = diag(w(z1), ..., w(zn,), w(r1), ..., w(7n, ), w(7)). This matrix is invertible by
DETERMINANTAL since the nodal and non-nodal zeros of Q.(t) — w(t) are given by t; —
€,...,ty + €. Hence there is a solution to the system ([5.2.6)).

Now consider the function

M M

U'(t) = Qe(t) + 6u(t) = > _[all+ 6a;]Kp(t,t;) + Y [+ 6bi]0: Kp(t, t;) + dagw(t)

=1 =1
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where § > 0. By construction, u(7;) = 0, so U°(t) — w(t) has nodal zeros at 7i,...,7n,. We
can choose ¢ small enough so that U°(t) —w(t) vanishes twice in the vicinity of each z;. This
means that U°(t) —w(t) has 2M + Ny zeros. Assuming Ny > 0, select a subset of these zeros
p1 < ... < papy1 such that there are two in each interval [t; — p,t; + p|]. This is possible if
€ < p and ¢ is sufficiently small. We have the system of 2M + 1 equations

M M
> [+ S0 Kp(pr,ti) + > (B + 8]0, K p(pi, ;) = (1 — dag)w(7)
i=1 i=1
Z[O&Lﬂ + (5ai]Kp(p2M+1, tl) + Z[ﬁe[l] + (5bi]82Kp(p2M+1, tl) = (1 — (5&0)11)(7').
=1 =1

Subtracting the last equation from each of the first 2M equations, we find that

(0 + Sas,.... M + 8byr) ((p1) — Kpoarr) - w(paas) = £lpaaren)) = (0., 0).

This matrix is nonsingular by Lemma combined with the DETERMINANTAL condition.
This contradiction implies that Ny = 0. This completes the proof of (b).
We now complete the proof by constructing Q(t) from Q.(t) by sending ¢ — 0. Note

that the coefficients «a., . converge as ¢ — 0 since the right hand side of equation ([5.2.4])
converges to

[w(t) ] 7
: !
_ tar) |
K 1 w( M _ '
w'(t1) |
: g
_U)/(tM)_ L | .
We denote the limiting function by
) M M
Q) = aiKp(t,t;) + > BidoKp(t,t;). (5.2.7)
=1 i=1

We conclude that w(t) — Q(t) does not change sign at t; since w(t) — Q,(t) changes sign only
at t; e

We now show that the limiting process does not introduce any additional zeros of w(t) —
Q(t). Suppose Q(t) does touch w(t) at some 7y € [T, T] with 7 # t; for any i = 1,..., M.
Since w(t) — Q(t) does not change sign, the points t1,...,ty, 7 are non-nodal zeros of
w(t) — Q(t). We find a contradiction by constructing a polynomial with two nodal zeros in
the vicinity of each of these M + 1 points (but possibly only one nodal zero in the vicinity

of mif g =T orm =-T).
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For sufficiently small v > 0, the polynomial

W, (1) = Q(t) + yuw(t)

attains the value w(t) twice in the vicinity of each ¢; and twice in the vicinity of 71. In other
words there exist p; < ... < paar42 such that W, (p;) = w(p;). Therefore

Q(pz) =(1—~y)w(p;) for i=1,...,2M + 2,

and so 385 % — ng zﬁjﬂg =0fori=1,2,...,2M. Thus, the coefficient vector for the polynomial

Q(t) lies in the left nullspace of the matrix

(/‘i(pl) — Kk(parrs1) - K(pam) — H(pQMH)) .

However, this matrix is nonsingular by Lemma and the DETERMINANTAL condition.
_ Collecting our results, we have proven that Q(t) —w(t) = 0 if and only if £ = ¢; and that
Q(t) —w(t) does not change sign when ¢ passes through ¢;. Therefore one of the following is
true

w(t) > Q) or Qt) > w(t)
with equality iff ¢+ = ¢;. In the first case, Q(t) = Q(t) fulfills the prescriptions (5 with

Zazzwst +Bigr w( t;).

=1

In the second case, Q(t) = 2w(t) — Q(t) satisfies with

—2—Zaz¢st )+ Bime w( t;).

=1

5.2.4 Proof of Theorem [5.1.1

INTEGRABILITY and POSITIVITY naturally hold for the Gaussian point spread function
Y(s,t) = "9’ INDEPENDENCE holds because (s, t1), ..., ¥ (s, ta) together with their
derivatives Oat)(s,t1), ..., 00t (s,tpr) form a T-system (see for example [95]). This means
that for any s; < ... < sopr € R,

[v(s1) ... v(san)| # 0,

and the determinant always takes the same sign. Therefore, by an integral version of the
Cauchy-Binet formula for the determinant (cf. [94]),

‘/ s)TdP(s)| = (2M)! / [u(s1) ... v(samr)| : | dP(s1)...dP(sq) #0.

$1<...<Sonm U(SQM)
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To establish the DETERMINANTAL condition, we prove the slightly stronger statement:

[A(p1, - - pav)| = ‘/ { } wuff;jl) . %} dP(s)| #0 (5.2.8)
for any distinct pi, ..., poar41. When py, ..., paary1 are restricted so that two points p;, p; lie

in each ball (tk — p, tr + p), we recover the statement of DETERMINANTAL.
We prove with the following key lemma.

Lemma 5.2.5. For any s1 < ... < Sopq1 and t; < ... <1y,

e—(s1—t1)? . e~ (s20141—t1)?
—(s1—ty)e" T —(sgpyg — ty)e (e TR
(3—(81'—'5M)2 e e~ (s2nr41—tar)? 7 0.
—(s1 = tar)e” T —(sypp = by )e (v i)’
1 e 1

Before proving this lemma, we show how it can be used to prove (5.2.8). By Lemma
5.2.5, we know in particular that for any s; < -+ < sopr11,

et U(fl) U(82M+1) 20

and is always the same sign. Moreover, for any s; < --- < Sopry1, and any p; < ... < Popri1,

w(sl,pl) 77/)(51,172M+1)
det : > 0.

7/1(52M+17P1) 1/1(52M+17P2M+1)

Any function with this property is called totally positive and it is well known that the
Gaussian kernel is totally positive [95]. Now, to show that DETERMINANTAL holds for the
finite sampling measure P, we use an integral version of the Cauchy-Binet formula for the
determinant:

U(S) P(s,p1) P(s,papr41) _
‘/ { 1 } [ w(p1) w(panr41) ]dP(S) -
¥(s1,p1) $(s1,p2m+1)
w(p1) w(P2M+1)
= (2M +1)! / ”(fl) o ”(3211”“) : dP(s1)...dP(sans1).
51< < sanr41 Y(s2m+1,P1) Y(sam+1,P2M+1)
w(p1) w(pam41)

The integral is nonzero since all integrands are nonzero and have the same sign. This

proves (5.2.9).
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Proof of Lemma[5.2.3, Multiplying the 2i — 1 and 2i-th row by e and the i-th column
by €%, and subtracting ¢; times the 2i — 1-th row from the 2i-th row, we obtain that we
equivalently have to show that

esltl 682751 o 652M+1t1

s1€5111  gyeS2h Sopr41€5F

651t2 682t2 L 6821\/1+1t2

£ 0.
eslt]\{ esth o 652M+1tM
51681151\4 82682151\1 o 82M+1652]\/I+1tM
2
68% es% . eSam+1

The above matrix has a vanishing determinant if and only if there exists a nonzero vector

(a’la b17 cey A bMaa’M-i-l)

in its left null space. This vector has to have nonzero last coordinate since by Example 1.1.5.
in [95], the Gaussian kernel is extended totally positive and therefore the upper 2M x 2M
submatrix has a nonzero determinant. Therefore, we assume that aj;; = 1. Thus, the
matrix above has a vanishing determinant if and only if the function

M
Z(ai + bis)ets + e (5.2.9)
i=1

has at least the 2M + 1 zeros s1 < sy < ... < Sop+1. Lemma [5.2.7] applied to r = M and

dy = --- = dy; = 1, establishes that this is impossible. To complete the proof of Lemma|5.2.5|

it remains to state and prove Lemma [5.2.7]| O

Remark 5.2.6. The inclusion of the derivatives is essential for the shifted Gaussians to
form a T-system together with the constant function 1. In particular, following the same

logic as in the proof of Lemma we find that {1, es=t)?* e(s_tM)Q} form a T-system
if and only if the function

d t;s 52

Z a;e” +e

i=1

has at most M zeros. However, for M = 3 the function has 4 zeros if we select a3 = —3,
tlzl, CL2:7, tQIO, CL3:—5, t3:—1
Lemma 5.2.7. Let dy,...,d,. € N. The function

T

¢d1,...,d,« (5) = Z(CLZ‘O +aps+ -+ a’i(2di—1)32di71)€tis + 682
=1

has at most 2(dy + - - - + d,.) zeros.
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Proof. We are going to show that ¢g4,
Let

77777

Fork=1,...dy+---+d,, let

ds?
d2

5.2.10
as? [9’671 (3)} ) otherwise. ( )

gi(s) = { & [groi(s)etattitrtions] - if g =d; + -+ +dj_; + 1 for some j,
(s) =

If we show that gg,+...1q,(s) has no zeros, then, gg,+...+a,—1(s) has at most two zeros, counting
with multiplicity. By induction, it will follow that go(s) has at most 2(dy + - - - + d,.) zeros,
counting with multiplicity. Note that if dy +---+d;_1 <k <dy +---+d;_1 + d;, then

gu(s) = (dj,Q(k—d1+.--+dj_1) 4t &j7(2dj_1)Sde7172(k7d1+---+dj71)>+
+ > (@i + -+ i)~ H)elim O cfi(r)e”
i=j+1
where ¢ > 0 is a constant and r := s — ¢;. We are going to show that f;(r) is a sum of

squares polynomial such that one of the squares is a positive constant. This would mean
that gi(s) = fr(s)e® has no zeros.
Denote

po(s) =1
pi(s) = 2s

pi(s) = 2spi—1(s — ¢;) + pi_1 (s — i),

where ¢y, ..., ¢; are constants. It follows by induction that the degree of p;(s) is deg(p;) =i
and the leading coefficient of p;(s) is 2°.
We will show by induction that

1 1
fils) = pils) B ot gl ()
_ 1 (1) 1 )2

When i = 0, we have that fy(s) = 1 and Z?:o 2]%.!])(()]‘)(3)2 = 1. We are going to prove
the general statement by induction. Suppose the statement is true for ¢ — 1. By the rela-
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tionship (5.2.10]), we have

e 2 P )
fi(s)e = d_[ “fio (s—¢)] = @[e ijlpl (s = ¢)?] (5.2.11)
]_
i—1 2
e
= > 5t 2?6 — copi(s — ) + 2 — e
7=0

+ (457 + 22 (5 = ) + 8sp, (5 — e (s — )}

: () (4)2
We need to show that this expression is equal to e®” (>5=0 %) Since

pi(s) = 2spi_1(s — ¢;) —i—p;,l(s - ),

it follows by induction that p(s) = 2jp¥ 7" (s —¢;) +2sp'?, (s — ;) +pP 1V (s — ¢;). Therefore
we obtain

%

(4) 1 .
= Xl -+ 2o e Ve - )

e pz())

274!

2

Jj=0

= Z [ s = e st s — e + s -
=0
+8jsp (s — co)py (s — ei)+

+ 4sp (s = e)p )+ 4jp (s = e)pl V(s - )

(G- )(

(5.2.12)
There are four types of terms in the sums ((5.2.11f) and ([5.2.12]):

P (s—e)? P (s—e)? PP (s—c)pPi(s—c), and  sp?iY (s —e)p (s —ci).

For a fixed j € {0,1,...,3 + 1}, it is easy to check that the coefficients in front of each of

these terms in ((5.2.11]) and ([5.2.12)) are equal. Therefore,

Fils) = pils)? + épxs)? ot gt (s)?

_ Z 2”,1?1

Note that since deg(p;) = i, the i-th derivation p(i)(s) equals the leading coefficient of p;(s),

which, as we discussed above, equals 2. Therefore, the term 232.! pgi)(s)2 equals 2%!. Thus,

one of the squares in f;(s) is a positive number, so f;(s) > 0 for all s. ]
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5.3 Numerical Experiments

In this section we present the results of several numerical experiments to complement our
theoretical results. To allow for potentially noisy observations, we solve the constrained least

squares problem
mrmmlze (/w s t)du(t) — 35(51))
n>

subject to /w(t)u(dt) <7

using the conditional gradient method proposed in [25].

(5.3.1)

5.3.1 Reweighing matters for source localization

Our first numerical experiment provides evidence that weighting by w(t) helps recover point
sources near the border of the image. This matches our intuition: near the border, the mass
of an observed point-source is smaller than if it were measured in the center of the image.
Hence, if we didn’t weight the candidate locations, sources that are close to the edge of the
image would be beneficial to add to the representation.

We simulate two populations of images, one with point sources located away from the
image boundary, and one with point sources located near the image boundary. For each
population of images, we solve (5.3.1)) with w(t) = [ (s, t)dP(s) (weighted) and with w(t) =
1 (unweighted). We find that the solutlons to (5.3.1)) recover the true point sources more
accurately with w(t) = [ (s, t)dP(s).

We use the same procedure for computing accuracy as in [134]. Namely we match true
point sources to estimated point courses and compute the F-score of the match. To describe
this procedure in detail, we compute the F-score by solving a bipartite graph matching
problem. In particular, we form the bipartite graph with an edge between t; and fj for all
i,j such that |[t; — ;|| < r, where r > 0 is a tolerance parameter, and t;,. .. .ty are the
estimated point sources. Then we greedily select edges from this graph under the constraint
that no two selected edges can share the same vertex; that is, no ¢; can be paired with two
fj,fk or vice versa. Finally, the #; successfully paired with some t; are categorized as true
positives, and we denote their number by Tp. The number of false negatives is Fy = M —Tp,
and the number of false positives is N — Tp. The precision and recall are then P = —L2

Tp+FN’
and R =

T + g respectively, and the F-score is the harmonic mean:

2PR
P+ R

We find a match by greedily pairing points of {7,..., 7y} to elements of {t1,... ¢y}, and
a tolerance radius » > 0 upper bounds the allow distance between any potential pairs. To
emphasize the dependence on r, we sometimes write F'(r) for the F-score.
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Both populations contain 100 images simulated using the Gaussian point spread function

_(s—1)?

P(s,t) =€ o2

with ¢ = 0.1, and in both cases, the measurement set S is a dense uniform grid of n = 100
points covering [0,1]. The populations differ in how the point sources for each image are
chosen. Each image in the first population has five points drawn uniformly in the interval
(.1,.9), while each image in the second population has a total of four point sources with two
point sources in each of the two boundary regions (0,.1) and (.9,1). In both cases we assign
intensity of 1 to all point sources, and solve using an optimal value of 7 (chosen with
a preliminary simulation).

The results are displayed in Figure [5.5] The left subplot shows that the F-scores are
essentially the same for the weighted and unweighted problems when the point sources are
away from the boundary. This is not surprising because when ¢ is away from the border
of the image, then [ (s, t)dP(s) is essentially a constant, independent of t. But when the
point sources are near the boundary, the weighting matters and the F-scores are dramatically
better as shown in the right subplot.

Performance away from boundary Performance near boundary
1 1
—— Weighted
— — Unweighted
0.8 08| o a= =
7
o7
[4
u
0.6 || 0.6
= =
& Ry
0.4 0.4
1
0.2 0.2
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
T T

Figure 5.5: Reweighing matters for source localization. The two plots above compare the
quality of solutions to the weighted problem (with w(t) = [ (s, ¢)dP(s)) and the unweighted
problem (with w(¢) = 1). When point sources are away from the boundary (left plot), the
performance is nearly identical. But when the point sources are near the boundary (right
plot), the weighted method performs significantly better.
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Figure 5.6: Sensitivity to point-source separation. (a) The F-score at tolerance radius r = 0.1
as a function of normalized separation g. (b) The black trace shows an image for g = 3. The
green stars show the locations (x-coordinate) and weights (y-coordinate) of the true point
sources. The red dots show the recovered locations and weights.

5.3.2 Sensitivity to point-source separation

Our theoretical results assert that in the absence of noise the optimal solution of re-
covers point sources with no minimum bound on the separation. In the following experiment,
we explore the ability of to recover pairs of points as a function of their separation.
The setup is similar to the first numerical experiment. We use the Gaussian point spread
function with ¢ = 0.1 as before, but here we observe only n = 50 samples. For each separa-
tion d € {.10,.20,...,1.90,20}, we simulate a population of 20 images containing two point
sources separated by d. The point sources are chosen by picking a random point x away from
the border of the image and placing two point sources at x + g. Again, each point source is
assigned an intensity of 1, and we attempt to recover the locations of the point sources by
solving .

In the left subplot of Figure |5.6] we plot F-score versus separation for the value of 7
that produces the best F-scores. Note that we achieve near perfect recovery for separations
greater than . The right subplot of Figure shows the observations, true point sources,
and estimated point sources for a separation of g = % Note the near perfect recovery in
spite of the small separation.

Due to numerical issues, we cannot localize point sources with arbitrarily small d > 0.

Indeed, the F-score for g < i is quite poor. This does not contradict our theory because
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Figure 5.7: Sensitivity to noise. (a) The F-score at tolerance radius r = 0.1 as a function of

normalized separation g. (b) The black trace is the 50 pixel image we observe. The green

stars show the locations (x-coordinate) and weights (y-coordinate) of the true point sources.
The red dots show the recovered locations and weights.

numerical ill-conditioning is in effect adding noise to the recovery problem, and we expect
that a separation condition will be necessary in the presence of noise.

5.3.3 Sensitivity to noise

Next, we investigate the performance of (5.3.1)) in the presence of additive noise. The setup
is identical to the previous numerical experiment, except that we add Gaussian noise to the
observations. In particular, our noisy observations are

{z(si) +mi| s €S}

where 7; ~ N(0,0.1).

We measure the performance of in Figure . Note that we achieve near-perfect
recovery when d > o. However, if d < o the F-scores are clearly worse than the noiseless
case. Unsurprisingly, we observe that sources must be separated in order to recover their
locations to reasonable precision. We defer an investigation of the dependence of the signal
separation as a function of the signal-to-noise ratio to future work.
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5.3.4 Extension to two-dimensions

Though our proof does not extend as is, we do expect generalizations of our recovery result
to higher dimensional settings. The optimization problem ([5.3.1)) extends immediately to
arbitrary dimensions, and we have observed that it performs quite well in practice. We
demonstrate in Figure the power of applying to a high density fluorescence image
in simulation. Figure [5.8 shows an image simulated with parameters specified by the Single
Molecule Localization Microscopy challenge [83]. In this challenge, point sources are blurred
by a Gaussian point-spread function and then corrupted by noise. The green stars show the
true locations of a simulated collection of point sources, and the red dots show the support
of the measure output by applied to the greyscale image forming the background of
Figure 5.8 The overlap between the true locations and estimated locations is near perfect
with an F-score of 0.98 for a tolerance radius corresponding to one third of a pixel.

5.4 Conclusions and Future Work

In this section we have demonstrated that one can recover the centers of a nonnegative sum
of Gaussians from a few samples by solving a convex optimization problem. This recovery is
theoretically possible no matter how close the true centers are to one-another. We remark
that similar results are true for recovering measures from their moments. Indeed, the atoms
of a positive atomic measure can be recovered no matter how close together the atoms are,
provided one observes twice the number of moments as there are atoms. Our work can be
seen as a generalization of this result, applying generalized polynomials and the theory of
Tchebycheft systems in place of properties of Vandermonde systems.

As we discussed in our numerical experiments, this work opens up several theoretical
problems that would benefit from future investigation. We close with a very brief discussion
of some of the possible extensions.

5.4.1 Noise

Motivated by the fact that there is no separation condition in the absence of noise, it would
be interesting to study how the required separation decays to zero as the noise level de-
creases. One of the key-advantages of using convex optimization for signal processing is that
dual certificates generically give stability results, in the same way that Lagrange multipliers
measure sensitivity in linear programming. Previous work on estimating line-spectra has
shown that dual polynomials constructed for noiseless recovery extend to certify properties
of estimation and localization in the presence of noise [31, 66, 149]. We believe that these
methods should be directly applicable to our problem set-up.
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Figure 5.8: High density single molecule imaging. The green stars show the locations of a
simulated collection point sources, and the greyscale background shows the noisy, pixelated
point spread image. The red dots show the support of the measure-valued solution of ([5.3.1)).
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5.4.2 Higher dimensions

One logical extension is proving that the same results hold in higher dimensions. Most
scientific and engineering applications of interest have point sources arising from one to four
dimensions, and we expect that some version of our results should hold in higher dimensions.
Indeed, we believe a guarantee for recovery with no separation condition can be proven in
higher dimensions with noiseless observations. However, it is not straightforward to extend
our results to higher dimensions because the theory of Tchebycheff systems is only developed
in one dimension. In particular, our approach using limits of polynomials does not directly
generalize to higher dimensions.

5.4.3 Other point spread functions

We have shown that our Conditions hold for the Gaussian point spread function, which
is commonly used in microscopy as an approximation to an Airy function. It will be very
useful to show that they also hold for other point spread functions such as the Airy function
and other common physical models. Our proof relied heavily on algebraic properties of
the Gaussian, but there is a long, rich history of determinantal systems that may apply to
generalize our result. In particular, works on properties of totally positive systems may be
fruitful for such generalizations [9, [123].

5.4.4 Model mismatch in the point spread function

Our analysis relies on perfect knowledge of the point spread function. In practice one never
has an exact analytic expression for the point spread function. Aberrations in manufacturing
and scattering media can lead to distortions in the image not properly captured by a forward
model. It would be interesting to derive guarantees on recovery that assume only partial
knowledge of the point spread function. Note that the optimization problem of searching both
for the locations of the sources and for the associated wave-function is a blind deconvolution
problem, and techniques from this well-studied problem could likely be extended to the
super-resolution setting. If successful, such methods could have immediate practical impact
when applied to denoising images in molecular, cellular, and astronomical imaging.
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