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Abstract 21
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equations that can be transformed to the backward heat equation. These new classes includesKol-
mogorov equations with time-independent and time-dependent coefficients. Our main idea & to
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In this paper, we extend previous work on finding one-dimensional Kolmogorov equa-
tions that can be mapped into the backward heat equatiop.(Let) satisfy a Kolmogorov 54
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at ox 20

The Kolmogorov equation (1) is the partial differential equation (PDE) satisfied by the

Green’s function for the Fokker—Planck equation 2
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dg 92 B]
o W(a(r, x)q) + a(b(t, x)q) =0.

We find new sets of coefficienta(z, x), b(t, x)} for which (1) can be transformed to the®
backward heat equation

1
2

5
ap  9%p 6

—+—=0. 2
o 0x2 @
8
The Kolmogorov equation (1) can be transformed to the backward canonical PDE |
P 9%P 10
—+—+G(T,X)P=0 3) n
57 T axz TOTX) 3) "
through the transformation 13
14
T=t, 15

X
X=X, x) / dz ij
= ,_x = ,

va(t, z) 18
P(T.X) = 61/21’)‘ D(t’,Z)de(t’x)’ @
20
where 21
22
D(T, X) = ox +al(z )BZX +b(t )aX 6) =
A E Ty T T o
and, in terms oD(T, X), the coefficienG (T, X) of (3) satisfies 25
26
G 1[oD 9°D D 27

—=—=|—+—+D—|. 6
X z[aTJraXZJr ax] ©
From (6), it follows that if we set -
9 31
D(T, X) = 23_)( log|6(T, X)|, @ 5
33
thend (T, X) satisfies the backward equation o
0 9% %
— 4+ — G(T,X)+I'(T)|6=0 8) 38
8T+8X2+[( )+ I'(T)] (8) 37
for arbitrary ' (T'). 38
Letus =u1(T, X) = P(T, X) and letG1(T, X) = G(T, X). Then Eq. (3) becomes the 39
canonical PDE 40
41
duy n 82u1 4 G(T. X)uy =0 (9) 42
oT ' gx2z B A= 43

Consequently, the problem of mapping (1) into (2) reduces to mapping PDE (9) to 4he
backward heat equation (2). 45
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In his celebrated pape®], Kolmogorov posed the problem of finding the most general
equation of the form (1) that can be mapped into the backward heat equation (2) by a point
transformation. Cherkasovg[} see also 2,11,13) partially solved this problem by re- 3
stricting himself to a special class of point transformations considered by Kolmodirov p
The complete solution of Kolmogorov’s problem was given3h [ 5

The main idea of the present paper is as follows. Suppose the Kolmogorov equation (1)
can be embedded in an auxiliary system of PDEs so that the set of all solutions of7the
auxiliary system yields all solutions of the Kolmogorov equation but there is not a one-
to-one correspondence between solutions of the Kolmogorov equation and those of the
related auxiliary system. Then a point transformation of the variables of the auxiliasy
system, which maps a component of the auxiliary system into the backward heat equa-
tion, could yield a nonlocal transformation which maps the given Kolmogorov equatien
to a backward heat equation. We exhibit such nonlocal transformations, yielding wider
classes of Kolmogorov equations transformable to the backward heat equation than tliose
previously obtained by point (local) transformations. This is accomplished by embedding
a Kolmogorov equation in an auxiliary “potential” system obtained through replacement

of the Kolmogorov equation by an equivalent conservation lgw [ 17
In Section 2 we presentthe previously known results on mapping Kolmogorov equations
to the backward heat equation by point transformations. 19

In Section 3 we present our basic framework for obtaining mappings by nonlozal
transformations. We begin by observing that any solution of the adjoint equation of the
canonical PDE (9) yields a factor for an equivalent conservation law. In turn this conger-
vation law yields a potential system. We then find the most general canonical PDE2for
which a point transformation maps a corresponding potential system to a special potemtial
system related to the backward heat equation. Each component of this special poteatial
system satisfies the backward heat equation. Such a point transformation of a poteatial
system is shown to yield a nonlocal transformation of a canonical PDE to the backward
heat equation. 28

Using the basic framework, in Section 4 we give a step-by-step procedure to obtain erew
classes of Kolmogorov equations that are transformable to the backward heat equation.
Atheorem is proved which characterizes the richness of our extension of the known (logal)
results. We show that our new classes arise faogsolution of the backward heat equations2
other than its fundamental solution (modulo translations) or its traveling wave solution33

In Section 5 we describe further generalizations emanating from our basic framewark
through a recycling procedure which yields chains of Kolmogorov equations transformable
to the backward heat equation. In Section 6 this recycling procedure is shown to bes of
particular value when the coefficients of a Kolmogorov equation are time-independens?in
Section 7, as examples we exhisiBessel processes(] which are only transformable to 38
the backward heat equation by nonlocal transformations. As a consequence, a spherieally
symmetric(2k + 1)-dimensional heat equation can be mapped into the one-dimensional
heat equation only by a nonlocal transformationfet 2, 3, . . .. 41

In Section 8 we discuss connections with symmetry analysis. 42

The approach presented in this paper can be used in other mapping problems. FaB ex-
ample, new classes of Schrodinger equations transformable to the free particle equatien by
nonlocal transformations were found if] [ 45
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2. Mappings by point transformations

One can show that a point transformation

t=1(T,X,u1), y=yT,X,u1), ur=u1(T,X,uy), (10)

maps any PDE (9) into a homologous PDE, namely

diiy 9%y 1)
at  09y?
for someG1(t, y) if and only if (10) is of the form
T
y=o(MX+p(T), = =/oz(u)du,
ﬁlzexp[%Xz—i— %X—i—k}ul, (12)
with
Gale.y) = %[Glm 0+ 262 — 05 y2, 20P=0p
o 452 202
+<4p722—%—)\>}, (13)

whereo (T), p(T), A(T) are arbitrary functions of ands = do/dT, etc.

© 0 N o g b~ W N P
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Consequently, with respect to a point transformation, PDE (9) can be mapped |nto fhe

backward heat equation if and onlyGfi (7, X) is of the form

Gu(T,X)=a(T)X?+ B(T)X + y(T) (14)

for arbitrarya(T), B(T), y(T) (see B]). The corresponding coefficienta(z, x), b(t, x)}
were given in B] and will be exhibited in Section 4.

29
30
31
32
33

From Eq. (13), we see that &1(7, X) is of the form (14), the mapping (12) which 34

transforms the corresponding PDE (9) to the backward heat equation(ffas p(T),
A(T) satisfying the system of ODEs

06 — 262
T :O[(T),
op—20p0

g = p(T1),
. pz &

The solution of system (15) is given in Appendix A.

35
36
37
38
39
40
41
42
43
44
45
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3. Thebasic framework for nonlocal transfor mations

In R", for any given linear operatdt, its adjoint operatoL.* is defined by

¢Lu—uL*¢p=> " Dif, (16)

i=1

wherex = (x1, ..., x,,), the total derivative operatdd; = d/dx;, f* is a bilinear expres-

sion inu, ¢ and their derivatives,= 1, 2, ..., n. Consequently, if

L*¢ =0, (17)
thenLu =0ifand only if }"*_, D; f' =0, i.e.,a given linear PDE

Lu=0 (18)

is equivalent to a conservation law

ZDifiZO (19)

© 0 N o g b~ W N P
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17
18

for any ¢ satisfying its adjoint equatio(iL7). Using (19), one can introduce an auxmary9
potential system whose compatibility conditions yield (18). The set of all solutions of such

a potential system yields the set of all solutions of (18) but the connection between these
solution sets is not one-to-one (séP [Whenn > 3, one is confronted with the problem of

a natural gauge arbitrariness. In this case, as showj,ithge associated potential system

must be augmented by gauge constraints.

Now we specialize to the situation when PDE (18) is the canonical PDE (9). Here %ﬁe

linear operatod. is given by
2

ad
L=— G1(T, X 20
o7 T axz T OHT X, (20)
its adjointL* is given by
el P e, (21)
~or Tax2 T
and the conservation law (19) is given by
d ([ duyr ¢
— — | p—= - — 22
(¢u1)+ <¢8X axul) 0. (22)

The potential system corresponding to (22), with auxiliary dependent vatigtfle X), is
given by

Jvg 31)1 0¢ dug

27 , — Uy — p—, 23
ox P Gr Tax" T %% (23)
where¢ (T, X) is anysolution of the adjoint PDE
9 2
L*¢ =— ¢ 99 + G1(T,X)p =0. (24)

aT  9X2

27
28
29
30
31
32
33
34
35
36
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38
39
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45
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Note that if (u1(T, X), v1(T, X), ¢(T, X)) solves the potential/adjoint system (23), (24);
thenu (T, X) solves the canonical PDE (9) ang(7, X) solves the backward equation 2
v 0P 200 0o 5)
T ~ 0X? ¢0X dX 5
Moreover, if uy = U1(T, X) solves the canonical PDE (9) arl= & (T, X) solves
(24), then from the integrability conditions of (23) it follows that there exist solutions
(u(T, X), v1(T, X)) = (Ur(T, X), Vo(T, X)) of potential system (23) withV/1(T, X)
unigue to within an arbitrary constant. Hence for any gigeg @ (7, X) which solves
(24), the relationship between the solution sets of PDE (9) and system (23) is not onggto-

one. 1
For any¢ (T, X) that satisfies (24), the point transformation 12
V1 13
LU—E (26) 1
maps (25) to the canonical PDE 15
16
w 9w
— +—+G2AT, X)w=0, 27) 17
a1 T oxz T O Xw @0
with G(T, X) given by 19
92 20
Go(T, X)) =G1(T, X)+2W log|o|. (28)
From Egs. (23) and (26), itimmediately follows thatif(T, X) solves the canonical PDE #
(9) then 2
24
X 25
= T,X)= T T Bo(T 2
w=ialX) = s | [T 876 de + BT |, (29)
k 27
with B, (T') satisfying the condition 28
29
dB> 0¢ dug
——=_—(T T,k)y—¢(T, k)y—(T
T aX( JRur(T, k) — ¢ ( ’k)ax( k) (30) :3:
for any constant, solves the homologous equation (27) with(7', X) given by (28). Con- _,

versely, ifw(T, X) solves the canonical PDE (27) apdT, X) is any particular solution
of

I 0% 9? 35

— ——+29p—lo — T,X)p=0
o7~ axz T 255z 10919] = G2AT, X)$ =0, >
then solving the forward PDE (24) in terms@f.(T, X), i.e., setting 37
1[a¢ 92 %
Gl(Tv X) = - _¢ - —¢ ) (31) 39
o T 9Xx? 0
it follows that .
ow w Jd¢ 42

T,X)=—+——

X =%t 5ax e
solves the homologous canonical equation (9) W7, X) given by (31). 44

By direct calculation one can prove the following theorem. 45
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Theorem 1. Consider the canonical PDE9). A point transformation maps the corre- 1
sponding potential syste@3) into the special backward heat equation potential systemz

3

v v ou
_U — ﬁ, _U — __M’ (32) 4
dy aT ay 5
for which each component satisfies the backward heat equationi/@z +926/0y2 =0, °
919t + 0%0/9y? =0, if and on ifG1(T, X) is of the form !
8
92 9
GU(T, X) =2 log|y/| + a(T)X? + BT)X +y (T), 33)
wherey (T, X) is any solution of i
Iy %Y 2 13
7 Tz T [a(T)X+ B(T)X +y(T)]y =0 (B34 .,
for arbitrary «(T), B(T), y (T). (Note thaty (T, X) satisfies34) if (T, X) = 1/y/(T, X) i
satisfies the adjoint equatiq4) with G1(T, X) given by(33).) The corresponding map- -
ping of (23) into (32) is given by 18
y=0o(T)X+ p(T), 19
T 20
2 21
T= / o (n)du, 22
5 X . 23
h=—e8T X){ (U +p+ﬂ>¢vl}’ 24
20 v »s
H= eg(T’X)lﬂU]_, (35)
where 2
. . 28

o 2 1%

T,X)=—X — X+ A, 29
g(T, X) 25X T X "

and (o (T), p(T), M(T)) are related to(a(T), B(T), y(T)) through the system of ODEs 31
(15) which is solved in AppendiX. The mappind35) defines a point transformation on 32
(X, T, u1, v1)-space that projects into a nonlocal transformation(@h 7, u1)-space ifthe 33
coefficient ofu1 is nonzero in Eq(35c). 34
35

The previously known resulB] about the equivalence of the canonical PDE (9) and thee
backward heat equation under a point transformation when the coefii¢iént X) of (9) 37
is quadratic inX (Eq. (14)) immediately follows as a special case of Theorem 1. Indeed34f

¥ (T, X) satisfies 39
. . 40

1 % + oX+p =0, 41

v oX 20 "

then Eq. (33) yields 43

5 44
GA(T. X) =a(T)X? + B(T)X +y(T) - . ©
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It is easy to check that the mapping (35) yields a nonlocal transformation of (9) to the
backward heat equation if and onlwff(T, X) is a solution of (34) satisfying the condition 2
33 j
— | 0. 36
3091w # @6)
Moreover, the resulting expression (33) 6L (7, X) is not of the quadratic form (14) if 6
and only if¥ (T, X) satisfies the condition 7
3° Z
——lo 0. 37
55 1091V # @7
Let y/(z, y) beanysolution of the backward heat equatidth /ot + 8%y /dy2 = 0. Then
from (12) it follows that
0

Coxd [ Lx2y j .
w(T,X)_exp[ {4<;X +20X+AHw(r,y)

is a solution of (34), and hence (33) becomes

) C o
G1(T, X) = a(T)X? + B(T)X + y(T) — 202[% + (%) } —~ % (38) ..

wherey =0X 4+ p, T = fTO’Z(/,L) du, with o (T), p(T) related tox(T), B(T) through 21
(15a,b). Hence through (3&)yerysolution of the backward heat equation yields a coetz
ficient G1(T, X) for which the corresponding backward equation (9) can be mapped into
the backward heat equation. This relationship will be considered in more detail in the next

section. 25
26
27
4. New classes of Kolmogorov equationstransfor mableto the backward 28
heat equation 29

30

Now we apply the results of Section 3 to the Kolmogorov equation (1)yi(@t, X) be 31
any solution of (34) and leG1(7, X) be given by (33) forarbitrary «(T), (T), y(T). 32

Then 33
933Gy _ 05 34
=2——1Io . 35

53 = 255 091Vl -
Consequently, after using (6) with = G1, the work of the previous section can be restateg
as follows. 38

Through one of our potential systems, the Kolmogorov equation (1) can be mappedjnto
the backward heat equation if and onlyfif X, D(T, X) defined by (4) and (5) satisfy 40

41

3% (0D aD 3%D 9°

——=4+D—+-—)=-4—=1l0 39)

8X2<8T+ ax+ax2) X5 g (39) 43
for any solutiony (T, X) of (34). 44

Now we show how the above result generalizes previous work presentgd]in [ 45
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In [3] it was shown that the Kolmogorov equation (1) can be mapped into the backward

heat equation through a point transformation if and onlp (", X) satisfies 2
3
3% (dD aD  9?D
—|—+D—+—)=0, 40) 4
8X2<8T+ ax+ax2) (40) 5
and it was further shown that Cherkasov’s special class of point transformations restricted
D(T, X) to the solutions of (40) that satisfy 7
8
3°D
—=0. (41) o
0X2 10
In terms of the original independent variablesr), note that 11
3 axX\ 1o d 12
—=\|— —=+a(t,x)—, 13
X 0x 0x 0x “
3 9 aX[oXx\toa 9 9 15
— = (=) —=—=—Vat.x)X,—.
aT ot at \ dx Jdx ot dx 16

The previous discussion leads to the following step-by-step procedure to find new cla¥ses
of Kolmogorov equations (1) that are transformable to the backward heat equation. *®

Leta(T), B(T), y(T) be arbitrary functions of". 19
(1) Lety (T, X) be a solution of (34), found as follows. 20
For any giveru(T), B(T), y(T), leto = o1(T), p = p1(T), » = A1(T) beanysolution
of the system of ODEs (15), solved in Appendix A. Let 2
23
r 24
yvi=o01(T)X + p1(T), 1= / o2(wydu. (42) s
26
Let ¥/ (1, y1) beanysolution of the backward heat equation 27
) A~ 32 A~ 28
A (43) 2
dt1  dyj 30
and let 31
C'71 2 /él 82

T,X)=—X — X + A1,
g1(T, ) 4o, + 201 + A1 33
Then 34
35
Y(T, X) = e 81209 (rq, y1) (44) 2

37
38
39
40

yields a solution of (34).
(2) Usingany ¢ (T, X) given by (44), determin& (7T, X) from (33), i.e.,

82
GLT, X) =225 10g|y(T, )| + «(T)X? + B(T) X+ (T). "

(3) For anyy (T, X) given by (44), and correspondittg (7, X) given by (33), use (7) 42
and (8), withG (T, X) = G1(T, X), to determineD(T, X), i.e., 43
44
45

3

9
D(T, X) :Za_x log|6(T, X)
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whered (T, X) is anysolution of 1
2
30 9% 3
— 4+ — G1(T, X raie=0 45
o7 Taxe TLOUTX)+ (D) 45
for arbitrary I'(T). The procedure to solve PDE (45) now follows from the results Gf
Theorem 1 as applied to Eq. (45). 6
Leto = 02(T), p = p2(T) beanysolution of (15) and let = A»(T) beanysolution of *
8
.2 .
. Py — 20202 9
11
Let 12
T 13
v2=02D)X +p2(T), 2= / oZ(wdy. (46)
Let 8(z2, y2) beany solution of the backward heat equatiof/dt, + 329/9y3 = 0, and ii
let 18
62 o 02 19
T,X)=—X —X + A,
g2( ) 4oy + 207 +A2 20
Then 2
22
_ 36 2 X+ 02  Yx\s 23
O(T, X)=e 82T X gy — (2224 7209 47
( ) € 02 3y2 20_2 + w ( ) 24
25
yields a solution of (45) and hence leadsx¢T’, X) = 2(3/3X) log|6(T, X)|. 2%
(4) Forany D(T, X) = 2(3/0X) log|6(T, X)|, the corresponding coefficien{a(t, x), ,;
b(t, x)} of the Kolmogorov equation (1) can be found as follows. 28
Let D(T, X) = D(¢, X (¢, x)), whereX (¢, x) is given by (4b). Then from (5), the coef- ,4
ficients{a(z, x), b(t, x)} areanysolutions of 30
ED'¢ 3°X X 3
— t,x)—5 +b(t,x)— = D(t, X (¢, x)).
ar HAOD Gz TN TE=D(E X 0) -
In particular, foranysolutioné (7, X) of (4.7), andarbitrary a(z, x), the coefficient 34
9 1 35
b(t, x) = 2al(t, x)a— log|6(z, X (z,x))| — Va(t,x) X, + Eax(t, x) (48) 36
X 37
with X (1, x) = [*(1//a(t,2)) dz. 38

(5) The procedure outlined in Theorem 1 relates the solution of the corresponding
canonical backward equation (3) (or (9))anysolution of the backward heat equation. 40

(6) In terms of D(T, X), the corresponding solutions of the Kolmogorov equation ()
are found through transformation (4). 42

In the above step-by-step procedure we now show which solutions of the backward
heat equation (43) yield Kolmogorov equations, i.e., coefficietsy), b(t, x), which are 44
transformable to the backward heat equabtaty by nonlocal transformations. 45
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Theorem 2. Let+/(r1, y1) be a solution of the backward heat equati@s). By following 1

the step-by-step procedui®)—(5), such a solution yields the Kolmogorov equatiththat 2

is transforn]able to the backward heat equatamiy through a nonlocal transformation if 3

and only ifyr(z1, y1) is notone of the forms 4

. 5

() (e yp) = PP, 6

o 1 —$7)2 7

i) Py = A exp{ S } (49)
VT1—T1 4(t1 —11)

9

whereP, y1, 71 are arbitrary constants. 10

A 11
Proof. From condition (37), it follows tha (r1, y1) yields a Kolmogorov equation that is ,,

transformable to the backward heat equation only by a nonlocal transformation if and qnly
if ¥ (T, X) given by (44) satisfied®/d X°) log|y (T, X)| # 0. Now suppose “
9% 15
ﬁlogh//(T, X)|=0. 16
Consequently(3°/8X%) log|y (1, y1)| = 0, which, as it follows from (42)Yo # 0), is i;

equivalent to 19

9° A 20
T |OQ|W(TL Y1)‘ =0. 21
dy

1 22
Hencey (z1, y1) is of the form 23
A 24
V(1. y1) = exp{A(r0)y] + B(r2)y5 + C(x1)yf + D(tn)y1 + E(11) ] (50)
for arbitrary A(t1), B(t1), C(t1), D(11), E(t1). Substituting (50) into the backward heat?6
equation (42), we see that 21
28

d
A(t1) = B(11) =0, —C+4C2=0, 29
dny 30

dD dE
— 4+4CD =0, — 4+2C+D?*=0. (51)
dry dry 32
Itis now straightforward to show that the solutions of (51) yield (481 33

34
For an arbitrary coefficieni(z, x) in the Kolmogorov equation (1), we next show howss
the work presented in this paper generalizes previous w&kkdgn the types of coeffi- 36
cientsb(t, x) for which (1) can be transformed to the backward heat equation. Making tiie

appropriate substitutions in (47), we obtain 38
39
o ) 1 B A
b(t,x) = —2a( 22X + 22 ) — Ja X, + Sa, +2a— log|d(z2, y2)| %
202 202 2 0x “
+2ailoga iIog|9A(r )| —o iIog|v,@(t )| 2
o 2 oy2 2, Y2 1 o 1, V1 4

61 02 o P2 “
— )X — — ]|, 52
L (201 202) + <2c71 20’2)‘ (52) s
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with X (z, x), 0;(t), pi (1), T (¢), yi (¢, X (¢, x)),i =1, 2, defined by Eqs. (4), (42) and (46);1
1/}(r1, 1), é(rz, y2) areanysolutions of backward heat equations in terms of their respet-
tive arguments. Note thatiff = o2 =0, p1=p2=p,thenty=12=17,y1=y2=y.One 3
can show the following: 4
(I) Cherkasov's resultsd] correspond tar = 02 = o, p1 = p2 = p, O(t, y) = const, 5
¥ (z, y) is a solution of the backward heat equation which is one of the special forms (49).
(I1) The results presented i8] also correspond te1 = o2 = o, p1 = p2 = p, U(t,y) 7
is a solution of the backward heat equation which is one of the special forms (49), but,
unlike in Cherkasov’s result§,(z, y) is allowed to be any solution of the backward hea¢
equation. 10
(111 The results presented in this paper yield further new classégok), a(¢, x) if 11
01 # 02, p1# p2. If 01 =02 =0, p1 = p2 = p, then further new classes b(t x),a(t,x) 12
beyond those found ir8], are obtained for any pair of solutioré(z, y), ¥ (z, y)) of the 13

backward heat equation except when 14
15
D 1/:/(r, y)is one of the special forms (49) or 16
(2) ¥ (zr,y)=CO(z,y) for some constant. 17
18
19
5. A recycling procedure further extending classes of Kolmogorov equations 20
transfor mableto the backward heat equation 21

22
In this section we enhance the results presented in Sections 3 and 4 by describing azecy-
cling procedure which generates sequential chains of Kolmogorov equations transforneble
to the backward heat equation. Such chains will emanate from any Kolmogorov equation

with G1(T, X) = I'(T, X) of the form 26
27
82

(T, X)ZZW log| (T, X)| +a(T)X? + B(T)X + y(T), (53) 28
29
wherey (T, X) is any solution of 30
81// w ) 31

—+— T)X X T =0. 54
aT+ax2+[“( X2+ BMX +y (DY (54) -
This recycling procedure generalizes previous work presente@| wHich dealt with a 5,
T-independent (7, X). To establish such chains we proceed as follows. 35

Suppose:1(T, X) is any solution of (9) an® (T, X) = ¢1(T, X) # 1/y(T,X) isa 4
particular solution of (24) wittG1(T, X) = I''(T, X) given by (53) and (54). Then from

Eq. (29) it follows that 38
1 X 39

T,X)=——— T, T,&)dE + Bo(T) |, 0

un(T, X) ¢1(T,X)|:_/ul( £)61(T. £)dt + Bo( )} o

k 42

with B»(T') satisfying condition (30), solves 43
2 44

Quz 92 L (T, X)up =0, (55) s

a1 T ax2
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where
(T, X)=I(T, X) + 2 Iog|¢1(T X)|.

Consequently, the canonical equatlon (55) is transformable to the backward heat equ

N

3

4.
tion.

(Since (9), withG1(T, X) = I'l(T, X), can be mapped into the backward heat equation,
in this manner one may obtain all solutiomg 7', X) by using step (3) of the step-by—step7

procedure outlined in Section 4 witfy (7)) = 0 (see formula (47)). However, there is no
general procedure to obtain particular solutions of the adjoint equation (24) iEnX)

is T-dependent. In Section 6 we will show how to obtain the general solution of (24) when

I'(T, X) and¢(T, X) areT-independent.)
In general, suppose, (T, X) is any solution of

duy, 92 Up

I,(T,X =0, 56
57 T axz T (T Xun = (56)
and¢, (T, X) is a particular solution of
Ipn  9%pn
— (T, X =0.
o7 Taxz T (T, X)pn =
Then the system
9 <z>
a_X(¢nuiz+1) = Qulip, (¢n n+1) ¢n
22
yields a nonlocal transformation relatmg the canonlcal PDE (56) to the homologous cangn-
ical PDE
dunt1 . 9upi1
where

(T, X) = [(T, X>+2 Iog|¢n(T X)|.

The corresponding nonlocal transformations connecting solutions are given by
X

1
up+1(T, X) = T X) L/ un(T,8)pn (T, 8)dE + Bn+l(T)j|,
with B, 1(T) satisfying the condition

dBny1 845,1

a7 = ax LRun(T k) —

11
12
13
14
15
16
17
18
19
20
21

24

38

n=12.... Consequently, sequential chams of canonical PDEs (57) are transformabR to

the backward heat equation.
The coefficients: = a, (¢, x), b = b, (¢, x) of the corresponding chains of Kolmogorov

equations follow from step (4) of the step-by-step procedure presented in Section 42 In

particular, let

9
Du(T, X) =25= log|un (T, X)|

40
41

43
44
45
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for any solutioru, (T, X) of (55). Without loss of generality,(z, x) is arbitrary. Then

0 1
ba(t, %) =2/a(t, x) = log|un(t, X)| — v/a(t, x) X; + Sax(t, %),
with X = X (¢, x) given by (4b).

6. Therecycling procedurefor Kolmogorov equations
with time-independent coefficients

In the important special case when the coefficienitsx), b(z, x) of the Kolmogorov

equation (1) are time-independent, k€t, x) = a(x), b(t, x) = b(x), all of the equations

are completely solvable in the recycling procedure outlined in Section 5.
HereX (z,x) = X (x), D(t,x) = D(x), G(t,x) = G(x). From (4)—(6), one obtains

X

X(x)= dz

Va@)’
DXy — d?x ) )dX_
( )—a(x)ﬁ—i- (x & Jam

G(X)= —% |:D’(X) + %DZ(X)] (60)

In the recycling procedure, the equations are solved as follows.
Let v (X) be any solution of the ODE
2
%+[axz+/3x+y]w=o (61)
for some constants, 8, y, and let
42
I1(X) =2 log | +aX?4+BX +y. (62)

(58)

[b(x) - %a/(x)} (59)

Supposer1(T, X) is any solution of

Juq 32141
— +—=+ 11X =0.
3T + 9x2 + I'n(X)uz

© 0 N o g b~ W N P

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

All such solutions«1 (T, X) are given by following step (3) of the step-by-step process

dure of Section 4 with" (T') = 0 (see formula (47)). Now let (X) = ¢1(X) # 1/¢(X) be
a particular solution of the ODE

d%¢

— +N(X)¢p=0. 63

Jx2 T oy (63)
Unlike the situation in the time-dependent case, one is able to fingetheral solutiorof
(63) sincep (X) = 1/¥(X) is a particular solution of (63). Specifically,

X
_ o, 1 2
B00 = h1(X: Kn) = = |:K1+ / v (z)dz] (64)

36
37
38
39

41
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for arbitrary constank’;. Then 1
x 2
3
o3 = | [T 0006 K i+ B |
$1(X; K1) [ P& : ‘
k 5
with B,(T') satisfying the condition 6
7
dB> 32¢1 dug 8
L~k K T, k) — p1(k; K1) — (T, k
T = ax (k; K))ui(T, k) — ¢1(k; K1) ax( ) .
for arbitrary constant, solves 10
11
duz  %u» 12
— 4+ —+12(X; K =0,
0T + 52 + I( u2 0
where 14
d2 15
No(X; K1) = (X)) + 2—— log|ga(X; K1)|. 16
dx?
17
In general, supposeg, (T, X) is any solution of 18
19
duy, 8214,,
— +I,(X;Kq1,...,K,_ =0. 20
9T + 9x2 + I ( 1 n—1)Up ”
The general solution of the ODE 22
8% 23
gz PTG KL - Ki1)g, =0 2
25
can be obtained in the same manner as that used to obtain expression (64) and it has
form 27
9u(X: K1, Kn) ¢ .
; 11 AR ] =
" Y uo1(X; K1, ..o, Kpe1) 2
X 30
2 31
x | Kn+ /[¢n—l(z; K1, ..., Kn—l)] dz |. (65) 32
33
Then the function 34
1 35
up1(T, X) =
" $n(X: K1, ... Kn) -
H 38
x| [ unT 00n s K K BT | .
k 40
with B, 1(T) satisfying the condition 4
42
dBnia 0¢n dup 4
= k;K1,...,K T, k)— k; Kq,...,K T, k), 3
aT 3X( 1 n)Un( ) — &n( 1 n) 3X( ) “

solves

by:Rima p. 15

15

45

the
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Oupy1 82Mn+l 1
3T + 5X2 + Ia(X; Kl"'-aKn)Mn-‘rl:Oa (66) 5
where 3
2 4

d

Lt (X5 K1 Kn) = (X5 K1, oo Knm)) + 2525 log|én (X; K1, ..., Kn)|, 5
6

n=1,2,..., and¢o(X) = ¥(X) is any solution of (61). Consequently, sequential chains
of canonical equations (66) are transformable to the backward heat equation. For each
member of such a sequential chain, 9

d 10
D,(X:K1,...,K,) = 2d—X log|¢n (X; K1, ..., Kn)|. 1

12
Hence, withu (x) = a, (x) arbitrary, the coefficients(x) of the corresponding Kolmogorov .,

equations (1), which are transformable to the backward heat equation, we have 1

d 1
b(x) =bu(x; K1, ..., Ky) =2/a(x) i log|¢n (X; K1, ..., Kn)| + 5a’(x), (67) 16

n=0,12,..., with ¢o(X) = ¥(X). In particular, wher(x) = const= «a, formula (67)
becomes

b(x)=b,(x; K1,...,K,) = 2\/5% log|¢n (X: K1, ..., Kn)| (68)
with X = x/./a. 2
The termn = 0 of a sequential chain corresponds to the local case which was cdth-
pletely considered in3], the termn = 1 corresponds to the nonlocal extension which was
completely considered in Section 4 of this paper, and further nonlocal extensions resuffing
from recycling correspond to termes= 2, 3, . ... In effect there are 4- n arbitrary fitting

constants in term. 2

28
29
7. An example: a d-Bessel process %

31

For ad-Bessel process (see, for example]]) the Kolmogorov equation (1) has coef- %

.. 33
ficients
34

1
ax)=z, b(x) =, 69) *
2 X 36
with ¢ = (d — 1)/2. Using (58)—(60), one finds that 87
38
2 1-
X=v2r. DX)=v2E=2 Guy=" 28). (70) ¥
X X X 40

If e=0(d=1 ore=1(d =23), then the coefficienG(X) =0;if e =2 (d =5),then =«
the coefficieniG (X) from (70) coincides with1 (X) given by (62) withy = X, a == 4
y = 0. Hence the Kolmogorov equation (1), with its coefficients given by (69)s fer2 43
can be mapped byronlocaltransformation (but not by any local one) into the backwaret#
heat equation. 45
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Further application of the recycling procedure of Section 6 leads to the following result.

Any Kolmogorov equation (1) with coefficients 2
3
1 1
a=3  b@W=hwm=""2 n1=012.. (71 4
X

5
(which corresponds td = 3,5,7,...), can be mapped into the backward heat equa-
tion. This follows immediately from (65) and (68) witth,_1(X) = X" and K, =0, <
n= 2, 3, e 8

A d-Bessel process corresponds to the spherically symmetric heat equa@éniie., o

du 0 (d—1) du 10

—=— =0. 72) 1n
ar  0R? R 0R (72) »
From the above results it follows that (72) can be mapped into the heat equation 13
ou  d%u 14
—_— = — = 0
ot 9x2 ®
16
(I) by a point transformation if and only if = 3 (a well-known result); v
(I) by a nonlocal transformation if and onlydf=2k+ 1,k =2,3,.... 18
19
20
8. Remarkson connectionswith symmetry analysis 21

22

It is well known that the scalar Kolmogorov equation (1) can be mapped into the ba¢k-
ward heat equation by a point transformation if and only if (1) admits a six-parameter e
group of point transformations (se®,§]). One can show that the backward heat equatiot?
potential system (32) admits a six-parameter Lie group of point transformations. Hence#t is
necessary that the potential system (23) admit a six-parameter Lie group of point transfor-
mations in order that (23) can be mapped into (32) by a point transformation. Consequeitly,
when such a mapping (35) defines a nonlocal transformation acting,dh, u1)-space, it 2°
follows that (23) must admit a six-parameter Lie group of point transformations wheréas
the corresponding canonical equation (9) may not admit a six-parameter Lie group of pBint

transformations. 82
As an example, consider tleBessel process faf = 5. Here the canonical equation (9)32
becomes 34
2 35
Ju1  0%u1 2
- — —u1=0, 36
aT ~ 9X?%2 X2 37
and only admits a four-parameter Lie group of point transformations with its infinitesimal
generators given by 39
3 3 d 40
X1=—, Xo=2T— +X—,
YToT 2= T %% .
Xy =720 +TX 9 + 1(X2 2T) 9 X 9 43
= — 4 ~ - M _1 = M Py
=0T X ' 2 Your T

44
Since¢ = X1 (see Section 7), the corresponding potential system (23) takes the forrms
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dvy 1 vy 1 1 dug
— == — = - ——. 73) !
ox —x"t ar T T x2"™ T X ax 3
System (73) admits a six-parameter Lie group of point transformations with its infinitesi-
mal generators given by 4
5
ad ad ad
X1=—, Xo=2T— +X—, 6
YT 2= T .
Xa= 720 47X [ (2x2= 27 )ug + 2x20, | 8
=1 ar ox T [\a" 727 )" T2 o o
n 1X2 3T 0 10
X227 Yo —,
4 2 181)1 11
X 0 L0 oo L4 1 4 1 9 12
=Ul1— 11—, = — —V]— — —UV]1—,
A PP P Tox T X Your X tou By
X Ta+1X + 1X+T 8+ 1X d 9 15
=1— =Xu = — v |— =X — = Jui—.
e tax 127 T2 T X ) e T\ 27 T X ) an 16
From the mapping (35), it follows that the point transformation 1
18
X:y, T:‘L’, U].:B, Ml:ﬁ_g 19
y y 20
transforms (73) into the backward heat equation potential system (32). 2
22
23
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Appendix A. Solution of system (15) 29
30
In system (15), supposaT), B(T), y (T) are given functions of . Theno (T), p(T), 3
A(T) are found as follows. 32
To findo (T), first let 33
1 34
o(T)=——. 35
s(T) 36
Then Eqg. (15a) becomes a linear ODE in terms(@f), namely 37
38
d?s
—— +4a(T)s =0. Al) ¥
g+ Aa(T)s (A ¥
Lets = S(T) be any solution of (A.1). Then the general solution of Egs. (15b,c) is given
by 42
43
T 1 2 44
T)=2 dt: t1)S(t1) dt1,
p(T) /Sz(tz) 2//3(1) () dn a5
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T 2
1
A(T):Elog|S(T)|+/ /,B(tl)S(tl)dtl +y(t2) ¢ dtz.

S2(12)
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