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A complete group classification is given of both the wave equation ¢*(x)u,, — u,, = 0 (I) and
its equivalent system v, = u,, ¢*(x)v, = u, (II) when the wave speed c(x) s const. Equations
(I) and (II) admit either a two- or four-parameter group. For the exceptional case,

¢(x) = (4Ax + B)?, equation (I) admits an infinite group. Equations (I) and (II) do not
always admit the same group for a given c(x): The group for (I) can have more parameters or
fewer parameters than that for (II); moreover, the groups can be different with the same
number of parameters. Separately for (I) and (II), all possible c(x) that admit a four-
parameter group are found explicitly. The corresponding invariant (similarity) solutions are
considered. Some of these wave speeds have realistic physical properties: ¢(x) varies
monotonically from one positive constant to another positive constant as x goes from —

to + .

I. INTRODUCTION

In this paper we consider invariance properties of sec-
ond-order hyperbolic partial differential equations (PDE’s)
(wave equations)

cz(x)uxx _utt=0 (1'1)
and corresponding hyperbolic systems
v, =u,, u,=c*(x)v,. (1.2)

Their invariance properties are used to construct solutions of
these PDE’s for various classes of wave speeds c(x).

An important related equation is

(*(x)v,), —v, =0. (1.3)

Many physical problems lead to (1.1)-(1.3). Equation
(1.1) arises in the study of small transverse vibrations of a
string with variable density, system (1.2) in the study of
transmission lines with variable capacitance or variable re-
sistance, and Eq. (1.3) in the study of small longitudinal
vibrations of a rod with variable Young’s modulus.

Equations (1.1)-(1.3) are equivalent in the following
senses [(1.4)-(1.7)]:
if {u(x,1), v(x,t)} satisfy (1.2),

then u(x,t) solves (1.1)

and v(x,t) solves (1.3); (14)

if u = F(x,t) satisfies (1.1),
then (u,v) = (F,,F,) solves (1.2)

and v = F, solves (1.3);
if v = G(x,t) satisfies (1.3),
then (u,0) = (c*(x)G,,G,) solves (1.2)

and u = c*(x)G, solves (1.1).

(1.5)

(1.6)

Under the transformation
y= | A(x)dx,

Eq. (1.3) can be rewritten as an equation of the form (1.1),
namely,
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In spite of the apparent equivalence of a single PDE and
a corresponding system of PDE’s it does not necessarily fol-
low that their respective invariance groups of point transfor-
mation are the same. It could happen that the group of point
transformations leaving invariant the system is larger than
that leaving invariant the single equation; also the converse
could be true. We will show that this is indeed the case for the
single equation (1.1) and the corresponding system (1.2).
For example we show that if ¢c(x) = (4x + B)?, then (1.1)
is invariant under an infinite Lie group of point transforma-
tions, whereas the Lie group of point transformations leav-
ing invariant (1.2) has only four parameters; if

c(x) = VA + Be**, then the Lie group of (1.1) has two pa-
rameters and that of (1.2) has four parameters.

Consequently it follows that invariant (similarity) solu-
tions of a system of PDE’s lead to noninvariant solutions of a
corresponding equivalent single PDE and vice versa. In Sec.
IV of this paper we construct such noninvariant solutions
for (1.1).

It is important to note that under the hodograph trans-
formation (the interchange of dependent and independent
variables), system (1.2) is equivalent to the nonlinear sys-
tem

—v, =0.

(1.8)

Consequently if {u(x,),v(x,t)} solve (1.8) then v(x,z)
solves

2
v, =u,, u, =c"(v),.

(1.9)

and introducting the potential &(x,z), where (u,v)
= (¢,,9, ), the system (1.8) reduces to

cz(¢x )¢xx - ¢tt =0.

The rest of this paper is organized as follows.

In Sec. II the Lie group of point transformations ad-
mitted by (1.1) is derived for all possible wave speeds ¢(x).
The corresponding invariant solutions are constructed.

In Sec. III the Lie group of point transformations ad-

(cz(v)vx)x V= O:

(1.10)
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mitted by (1.2) is derived for all possible c(x). If ¢(x) satis-
fies the ordinary differential equation

cc'(c/c')” = + A% A #£0, (L.1D)

then (1.2) admits a larger group than (1.1). (Throughout
this paper a prime denotes differentiation of a function of a
single variable.) Invariant solutions of (1.2) and hence solu-
tions of (1.1) are constructed for c(x) satisfying (1.11).

In Sec. IV we discuss the differences between the invar-
iance properties of the single equation (1.1) and the system
(1.2). We show that in general the Lie group of point trans-
formation leaving invariant (1.2) [(1.1)] does not necessar-
ily correspond to a Lie group of point transformations or
Lie-Béacklund transformations leaving invariant (1.1)
[(1.2)].

In Sec. V we find the equivalence classes of wave speeds
¢(x) for the wave equation (1.1).

il. THE INVARIANCE PROPERTIES OF THE WAVE
EQUATION AS A SINGLE EQUATION

Lie"? proved that a second-order linear hyperbolic PDE
with two independent variables admits a group of point
transformations containing at most four parameters if it does
not admit an infinite group. Lie did not study specifically the
wave equation (1.1).

A. Infinitesimal transformations

By using Lie’s algorithm,>* one can find the generators
of the invariance group of point transformations of (1.1). If
the point transformation

X=x+e£(x,t) + O(e),

T=t+er(xt) + O(),

U=u+ef(x,t)u + O(€),

leaves (1.1) invariant, then its infinitesimals {£,7, f} satisfy
the determining equations

2.1)

& — X, =0 (2.2a)
cx)[r, =& ]+ (X)E=0; (2.2b)
Tu — 2, — E(X) T =0; (2.2¢)
£+ P2 —£a]1=0 (2.2d)
Ju —E(x)fr =0, (2.2¢)

Solving (2.2a) for 7, and (2.2b) for r, and setting
Ty = Ty One finds that
gxx - (l/cz)gu - [H(x)glx =09

where H(x) = c¢'/c.
The solution of (2.3), (2.2¢), and (2.2d) for f leads to

(2.3)

S=1HE+ 5, s=const. (2.4)
Substituting (2.4) into (2.2e), one obtains

[QH’ + H?)E?], =0. (2.5)
From Eq. (2.5) there follow three cases.

Case ' 2H' + H?*=0

In this case

e(x) = (4x + B)?, (2.6)

where 4 and B are arbitrary constants. It is easy to show that
here an infinite group leaves invariant (1.1). In particular
for any solution £(x,t) of the corresponding equation (2.3),

308 J. Math. Phys., Vol. 28, No. 2, February 1987

one can find {7(x,), f(x,t) } solving (2.2a)-(2.2¢),

T= f (&, —HEYt, f= A 2.7
Ax

+ B
Case II: 2H' + H*#£0, £ #0
From (2.5) it foliows that & can be expressed in the
separable form

£(x,t) = a(x)B(1), (2.8)
where
a*(x)=[2H + H*]™! (2.9)

and B(¢) is to be determined.
Substituting (2.4) and (2.8) into (2.2d), one finds that

ﬂn (t) _ CZ(al___Ha)/

= = const = o°. 2.10
B® a (219

Note that a, o could be real or imaginary.

Case Il{a): The subcase 0 =0

Here c(x) must satisfy the differential equation

(¢’ —Ha)' =0 (2.11)
and correspondingly

B(t)=p+aqt, (2.12)

where p and ¢ are arbitrary constants.
The substitution of (2.4) and (2.8) into (2.2¢) leads to

(aH)" =0. (2.13)

Thus it is necessary and sufficient that the wave speed
c(x) satisfy Eqgs. (2.11) and (2.13). The general solution.of
these equations is

a=Bx*+Cx+D, (2.14)
aH = A + 2Bx, (2.15)

where {4, B, C, D} are arbitrary constants. Consequently
c(x)=(Bx*+Cx+ D)

Xexp((A — C)f(Bx2 + Cx +D)“dx). (2.16)
It is easy to show that

T=(C—A)(pt+—%-qt2)+q Zdx+r, (217
[

where r is another arbitrary constant.
If B =0in Eq. (2.16), then this expression reduces to
the general form

c(x) = (4x + B)S,

where {4, B, C} are arbitrary constants, C #0, 2.
If B=C=0in (2.16), then the corresponding wave
speeds are of the general form

2.18)

c(x) = Ae?*, 2.19)
where A and B are arbitrary constants.

Case II{b): The subcase o #0

Here Eq. (2.10) leads to ¢(x) solving

(o' — Ha)' = o’a, (2.20)

where H = ¢'/c and a is given by (2.9). Equation (2.20) can
be integrated to give

(¢’ — Ha)? — (oa/c)? = const = K. 2.21)
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B(2) solves B” = 0°B, i.e., B= pe” +ge~ 7.
Thus in this subcase the infinitesimals of (2.1) become

E=a(x)[pe” +qe "],
— Hal[pe” —ge~"] +r,
f=1laH [pe” +qe~ "] +s,
where the group parameters {p, g, r, s} are arbitrary con-
stants. The solution of Eq. (2.9), (2.21) for the wave speed
c(x) is given in Appendix A. In Case II, if £ #0, the wave
equation (1.1) is invariant under a four-parameter Lie
group of point transformations.
CaseIIl: £ =0

From the determining equations (2.2a)-(2.2¢) it fol-
lows immediately that

r=o0 [ (2.22)

T=const =r, f=const=s,

and hence (1.1) is invariant only under translations in 7 and
scalings of u. In particular for any wave speed c(x) that does
not solve the system (2.9), (2.20) for any o (zero or non-
zero), the wave equation (1.1) is invariant only under this
trivial two-parameter Lie group of point transformations.

Hence the following theorem has been proved.

Theorem: The wave equation (1.1), whose wave speed
¢(x) is a solution of system (2.9), (2.21) for any o (zero or
nonzero), is invariant under a four-parameter Lie group of
point transformations. The group becomes infinite if and
onlyifc(x) = (4x + B)>. All other wave speeds c(x) admit
the two-parameter group of translations in ¢ and scalings
of u.

B. Group generators and their Lie algebras in the finite
parameter cases

If (2.1) leaves invariant (1.1), the corresponding group
generator is

a

L=§(x, t)—— + 7(x, t) +f(x, t)u——u—

at

To the parameters {p, qr, s} of the group there correspond
generators {L pologsLy ,L,}. The generators form a Lie alge-
bra. The generators for all possible wave speeds c(x) follow.
Cases (i)—(iv) relatetoo = 0.

Case (i) c(x) = (Bx*+ Cx + D)exp((4 — C)f(Bx?
+ Cx + D)~ ldx)

Here

(2.23)

=B+ Cx+D]-2
Jx
HIC—A S+ 4+ 2Bxlu—
(/]

L,=t[Bx* +Cx+D]—

(2.24)
[—(c A)e? +f Bt Cat Dy 10
A(x) ot

—t[A+2Bx]u—
u

a a3
L =— L, =u—.
at du
309 J. Math. Phys., Vol. 28, No. 2, February 1987

The commutator table for the Lie algebra is
[L,,L,]=(C—A)L,; [L,L ]1=U—-C)L;
(2.25)

r

[LoL,] = —L; [L,,.Lsro
q

It is easy to show that this group is isomorphic to SO(2,1)
when A — C #£0. An interesting special case is 4 = C where

c(x) =Bx*+ Cx + D.
Case (ii): ¢(x) = (Ax + B)S, C #0,1,2
Here
ad 1 a3
= (4 B—Al—Ct— —ACu —,
(Ax + )ax + A( ) 5 u Ew
J
= (Ax + B)t —
Jx
1 (Ax+B)2’2C] a
—|A(1 —Cyt? 4 2 — 2.26
+ [ ( ) +A(1——C) E ( )
——ACtui
2 du
L,=é—, Ls=u_a._.
at du

The commutator table for the Lie algebra is the same as
(2.25) with (C — A) replaced by A(1 — C).

Case (iii): c(x) = Ax + B
Here
1 J
A B) — 4+ —Au—,
= (Ax + ) + 5 E»

a
= (A4 Byt — —1 A BY| —
(Ax + )‘ ax+[A og (Ax + )]at

(2.27)
2 u’
L=9 [ -u?.
at du
The corresponding commutator table is
[LpLg]=L,; [LpL.]1=0
[L,L, 1= —L,; |LpLs|= 0
q
Case (iv): c(x) = AeP*
Here
L,=4 i—ABti+——ABui
ax ot du
L, —At———[ABt 4 —2”"]
a A at (228)
1 a )
+ — ABtu —
2 du’
L=2 r=ud.
ot du
The commutator table is the same as (2.25) with4 — C
replaced by 4B.

Cases (ii)—(iv) can result as limiting cases for the con-
stants {4, B, C, D} of case (i).
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Case (v): ¢(x) for 0£0

From (2.22)
a d 1 a
L =e"’[a—+a"l a' — Ha) — + —aHu ——],
i ox ¢ ) ot + 2 Ou
Ly=e " PRSI ~Ha) 2
ax ot
1 3 (2.29)
+ —aHu —],
2 Jdu
L, = —‘-9— 5 L_, =u i .
ot du
The corresponding commutator table is
[L,sL,]=20"'KL,; [L,L,]= —oL,;
(2.30)

[L,,L,]=0L,; [LP,LSJ =0.
q
Recall that X is given by (2.21).

Clearly this group isisomorphic to SO(2,1) when K #0.
When o is imaginary, appropriate linear combinations of L,
and L, will yield the corresponding real Lie algebra.

Case (iv): All other c(x)

Here the generators are only

L=9, 1 —u9. (2.31)
at du
C. The infinite group case: c(x)=(Ax+ 5)?
In this case the wave equation (1.1) becomes
(Ax + B)*u,, —u, =0. (2.32)

Equation (2.32) can be mapped into the wave equation
(4 #£0)

Uyr =0 (2.33)
by the transformation®

X=[1/(4x + B)] + 44,

T=[1/(4x + B)] — At, (2.34)

U= (4x + B)  'u.

Hence the general solution of (2.32) is

u = (4x + B)[F(X) + G(D) ], (2.35)

where F and G are arbitrary twice differentiable functions of
their respective arguments.

D. Similarity solutions of the wave equation (1.1)

A similarity solution (invariant solution)?? of (1.1) isa
solution u# = 8(x,t) of (1.1) satisfying the characteristic
equations

dx _ dt _ du

E(x,t)  T(x,t)  flxHu’
corresponding to an admitted group (2.1). The similarity
variable z(x,t) is the constant of integration of the first equa-
lity of (2.36).

For all of our cases, similarity solutions for 7#0 can
always be obtained from similarity solutions for » =0 by
replacing ¢ by ¢ + 7. For the cases where o = 0, the class of

(2.36)
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similarity solutions for {g =1, r arbitrary, s arbitrary,
p =0} is identical to the class of similarity solutions for
{g = 1, p,r.s, arbitrary} since the commutator of L, with L,
generates L,. Next we discuss similarity solutions of (1.1)
keeping in mind the above remarks.

Case (i): Similarity solutions of (1.1) for p =¢ =0,
r =1, s arbitrary

Here (2.36) becomes

dx _dt _du

0 1 su

The similarity variable z = x, and the similarity form for the
similarity solutions is

(2.37)

u = e"F(x;s), (2.38)

where F(x;s) is a function of x and the parameter s. Substi-
tuting (2.38) into (1.1), one find that F(x;s) satisfies the
ordinary differential equation (ODE)

A(x)F,, (x;s) — s*F(x;s) =0, (2.39)
If {F,(x;s), F,(x;5)} are linearly independent solutions of
(2.39) for any s, then any linear superposition

u=7y e"[4,(5)F(x;5) + 4,(5)F,(x;5) ] (2.40)
solves (1.1) for arbitrary {4, (s), 4,(s)}. Note that the sum
in (2.40) can be replaced by an integral with respect to s.

Now we consider all cases for invariance of (1.1) under
a four-parameter group. The following cases (ii)—(v) corre-
spond to o = 0 in Eq. (2.10).

Case (ii): c(x) =x, C+£0,1,2

The substitutions Ax + B—x, t—A ~'t, make the PDE

(Ax + B)*“u, —u,, =0 (2.41)
equivalent to the PDE

x*u,. —u, =0. (2.42)
1. Similarity solutions of (2.42) for q=r=0, p=1,
s arbitrary

Here (2.36) becomes equivalently

ax —_d _du . (2.43)

x (1—-C)y su

The similarity variable is

z=x%"11. (2.44)
The similarity form for the solutions is

u=xF(zs). (2.45)

F(z;s) satisfies the ODE
[1—(C—=1)2)F_(z;5) + (1 — C)(s + C — 1)zF, (z;5)

+s(1 —s)F(z;5) = 0. (2.46)
Linearly independent solutions of (2.46) are
F,(z8) = F(a.B;7:8)
and (2.47)
Fy(zs) =¢'~F(1 + a-7,1 + B— 12 — v30),
G. Bluman and S. Kumei 310

Downloaded 08 Dec 2005 to 137.82.36.67. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



where F(a,B;v;{) is the hypergeometric function,

o= s ) ﬁ=s—1’ ___i(Zs+C——2)’
1-C 1-C 2 c-1
1 1 (2.48)
=—+—(C—1)z
9 2-+2( )

2. Similarity solutions of (2.42) for p=r=0, q=1,
8 arbitrary

In this case (2.36) is equivalent to
dx _ dt
ux [PF/(1- 0]+ (1-O)f?
_ du
S (Ct+ [s/(C—Du
The similarity variable is
z=(C— 1)1 —x'—€
The similarity solutions are of the form
u = x5 12 (7).
F(z;s) satisfies the ODE
4(C — 1)*[2°F,, (z;5) + 22F,(z;5) ]
+ [C(C —2) — 45z 2] F(z;5) = 0. (2.52)

If [1/(C — 1)] #integer, then linearly independent solu-
tions of (2.52) are

F(Z;S) = 2_1/213;1' (;),
where I, ({) is a modified Bessel function of order v,

(2.49)

(2.50)

(2.51)

(2.53)

1 sz~!
Y=e-n’ fTo-1 (@59
Case (iii): c(x) = x
Here we consider the PDE
Ax+Bu,, —u,=0 (2.55)
equivalent to the PDE
x*u, —u, =0. (2.56)

3. Similarity solutions of (2.56) for q=r=0, p=1,
s arbitrary

The characteristic equations (2.36) are equivalently
dx _dt _du

x 0 su
The similarity variable is

z=t (2.57)
with corresponding similarity form

u =x"F(t;s). (2.58)
F(t;5) satisfies the ODE

F,(t;8) +s(1 —s)F(t;s) =0. (2.59)

The resulting superposition of similarity solutions is

u(xt) =Y x*[4,(s)e"~ Dt 4 4,(s)e—FC-Dr],

(2.60)
These solutions are of the form (2.40).
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4. Similarity solutions of (2.56) for p=r=0, q=1,
8 arbitrary

Now (2.36) is equivalently
d_x _at du

= = . (2.61)
2tx  2logx (t 4+ 25)u
The similarity variable is
z=1%— (log x)> (2.62)

The corresponding form of the similarity solutions is
u =x'?|log x 4 t |’F(z;s). (2.63)
F(z;s5) satisfies the ODE

162%F,, (z;5) + 16(1 + 5)zF, (z;5) — zF(2;5) = 0.
(2.64)

If 2s#integer, linearly indepedent solutions of (2.64) are

F(z;s) =271, ,(£), (2.65)
where
v=s, (=1z'% (2.66)

Case (iv): c(x) = e~ *?

The substitutions x— — x/2B, t—t/2AB, make the
PDE

A%y —u,=0 (2.67)
equivalent to the PDE
e *u, —u, =0 (2.68)

5. Similarity solutions of (2.68) for q=r=0, p=1,
s arbitrary

The characteristic equations (2.36) are equivalent to
dx _dt_du

= =T m (2.69)
The similarity variable is

z=te * (2.70)
The similarity solutions are of the form

u=e"F(zs). 2.71)

F(z;s) satisfies the ODE

(4 — 22)F,, (z;5) + (45 — 1)zF, (z;5) — 4s°F(z;5) =0.
2.72)

Linearly independent solutions of (2.72) are of the hyper-
geometric form (2.47), where

a=F= —12s5, y=14i(1-4s), (2.73)
and

E=1+1z (2.74)

6. Similarity solutions of (2.68) for p=r=0, q=1,
s arbitrary

Now (2.36) is equivalent to
dx dt du

o2 = ) (2.75)
4 1244 (s—Nu
The similarity variable is
z=1%""%*— 42 (2.76)
G. Bluman and S. Kumei 311
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The corresponding similarity solutions are of the form
u =exp( — [ix + stz 'e =*2])F(z;s). 2.77)
F(z;5) satisfies the ODE
472°F,, (z;5) + 82F, (z;5) + (1 — 165s%2~2)F(z;5) = 0.
(2.78)

This equation has linearly independent solutions
Fi(z5) =27'21(8), Fy(zs) =z7"2K,(£), (2.79)

where {I(£), K(£)} are modified Bessel functions of order
0, and
E=2sz7". (2.80)
Case (v): c¢(x) = (Bx*+ Cx + D)exp((4 — C)f(Bx*
+ Cx + D)~ 'dx)
By appropriate scalings and translations in x and scal-
ings in ¢, the corresponding wave equation (1.1) is equiva-
lent to one of the five canonical forms (2.42), (2.68), or

[(xz + l)2e4Aarctanx]uxx —u, ___0’ (281)
[(1—x)>**(1 +x)>"*]u,, —u, =0, (2.82)
[x*¢**]u,, —u, =0. (2.83)

In Eqgs. (2.81), (2.82), A is an arbitrary constant.

Case (va): c(x) = (x> + 1)et4arctanx
7. Similarity solutions of (2.81) for q=r=0, p=1,
8 arbitrary

The characteristic equations (2.36) are
dx dt du

1+ —24t (x+5u (250
The similarity variable is
z=te*¥, (2.85)
where
Jy = arctan x. (2.86)
The corresponding similarity form is
u =1+ x2e%F(z;s). (2.87)
F(z;s) solves the ODE
(44 %% — 1)F,, (z;5) + 44(A + 5)2F, (z;5)
+ (1 +5*)F(z;5) =0 (2.88)

whose general solution can be expressed in terms of hyper-
geometric functions.

In the special case A = 0, the resulting superposition of
similarity solutions is

u(x,t) =xT+ 1 ze’T[Al(s)eJ?ﬂr_'_Az(s)e_m 1.
s (2.89)
These solutions are of the form (2.40).
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8. Similarity solutions of (2.81) forp=0,r=1/4A, q=1,
s arbitrary

The characteristic equations are

dx _ 44 dt
t(1+x?) —44%2 e~ 41
S — . (2.90)
[t(4 +x) +5]u
The similarity variable is
z =24 2t%* — cosh 24y, (2.91)
where
y = arctan x. (2.92)
The resulting similarity form is
u =1+ x%"|z 4+ (1 + 241) |'F(z;5). (2.93)
F(z;s) satisfies the ODE .
44%(22 — 1)F,, (z;5) + 84 %(1 + 5)zF, (z;5)
+ {1 4 [4(1 + 25) 1*}F(z;5) = 0. (2.94)

Linearly independent solutions of (2.94) are of the hyper-
geometric form (2.47), where
1 i 1 i
a—7+s+a, —-2—+S—§,
(2.95)

y=1+s §=11+2).

In the special case 4 =0, the similarity variable be-
comes

z= —1t24)% (2.96)
Here the similarity form reduces to

u =x¥+ 1(¢ + arctan x)*F(z;s). 2.97)
F(z;s) satisfies the ODE

42F,, (z;5) + 4(s + 1)F,(z;8) + F(z;5) =0. (2.98)

Solutions of (2.98) can be expressed in terms of Bessel func-
tions:

F(zs) =z, (), (2.99)
where
v=s, (=z"12 (2.100)

Case (vb)-c(x) = (1 —x)'*4(1 4+ x)! 4

9. Simllarity solutions of (2.82) for q=r=0, p=1,
s arbitrary

The characteristic equations are equivalent to

2dx _ dt _ du . (2.101)
x°—1 — 24t (x+ 25)u
The similarity variable is
z=ty", (2.102)
where
y=01—-x)/(1+x). (2.103)
The similarity form is
u =1 = x*F(z;s). (2.104)
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F(z;5) satisfies the ODE
(442 — 1)F,, (2;5) + 44(A4 + 25)zF, (z;5)
+ (4s* — 1)F(z;5) =0. (2.105)

Linearly independent solutions of (2.105) are of the hyper-
geometric form (2.47), where

1 [ 1] 1
a=—|s5-=|, B=—4,
A 2 2
(2.106)
2 A’

In the special case 4 = 0, the resulting superposition of
similarity solutions, which is of the form (2.40), is

=41 —xZZy’[A,(s)e ATt L 4,(s)e~ 1],
) (2.107)

1
= —+ Az.
'y 2+

10. Similarity solutions of (2.82) for p=0, r=1/A, q=1,
s arbitrary

Here the characteristic equations are
dx 44 dt _ du
(=1t 1—44%2_y=24 [(A+x)t+slu
(2.108)

The similarity variable is

z2=24%%"— 4y +y ), (2.109)
where

y=({1—-x)/(1+x). (2.110)
The resulting similarity solutions are of the form

u =1 —x2|(1 + 240)y* + z|’F(z5). (2.111)
F(z;5) satisfies the ODE
44%(2* — 1)F,, (z;5) + 84 %(s + 1)zF,(z;5)

4+ [4%(2s + 1) — 1]F(z;s) = 0. (2.112)

Linearly independent solutions of (2.112) are of the hyper-
geometric form (2.47), where
1 1

B=s+———,

11
=3 —_— _
a=s+ o+ 2 24

y=s5s+1, {=1iz+1). (2.113)

Case (vc): c(x) = x%e'*

11. Similarity solutions of (2.83) for q=r=0, p=1,
s arbitrary
The characteristic equations are equivalent to
dx _dt__ du

= » —(x —a (2.114)
The similarity variable is
z=1te’” (2.115)
and the corresponding similarity form is
u = xe**F(z;5). (2.116)

F(z;s) solves the ODE

(2> = 1)F,_(z;5) + (25 + 1)zF,(z;5) + s*F(z;5) = 0.
(2.117)
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Linearly independent solutions of (2.117) are of the hyper-
geometric form (2.47) where

a:B:s, ‘}/=£+S, ;:5(1-}—2). (2.118)

12. Similarity solutions of (2.83) for p=r=0, q=1,
8 arbitrary

Here the characteristic equations are
dx dt du

2w e (im0
The similarity variable is

z=1t%""—e" V% (2.120)
and the resulting similarity form is

u = xe"%e 22 (7). (2.121)

F(z;s) satisfies the ODE
42°F_ (z;5) + 82F, (z;5) + (1 — 165’27 ?)F(z;s) = 0.
(2.122)

Linearly independent solutions of (2.122) can be expressed
in terms of the modified Bessel functions:

Fy(zs) =27 '"PI(8), Fo(zs) =z7'7Ko(£),  (2.123)
where
&=2sz7 1, (2.124)

Case (iv): c(x) for o0
The corresponding characteristic equations are
dx odt du

2a(0)B()  2(a —Ha)B'()  [aHB() +slu’
(2.125)

where
B(t) =pe” + ge~ ", (2.126)

and a(x), H = ¢'/c satisfy Egs. (2.9) and (2.21). The simi-

larity variable is
z= (c/a)(pe” —qe~ ). (2.127)

The corresponding form for the similarity solutions is

w P
u=yc F(zys), (2.128)
BVK + 2Jpq(K + w?)

where

w=a/c, p=s/HpgK. (2.129)
F(z;s) satisfies the ODE
(K22 — 4pga®)F,, (z;5) + 2K (1 — p)zF, (z;s)

+ {1+ p(0 — DKY}F(zs) = 0. (2.130)

Ili. THE INVARIANCE PROPERTIES OF THE SYSTEM

Clearly (1.2) is always invariant under translations in ¢
and uniform scalings of # and v.
If the point transformation

X =x+e£(x,t) + O(€%),
T=t+er(xt) + O(€),

3.1)
U=u+ e[f(x,t)u + g(x,t)v] + O(€?),
V=v+elk(x,0)v+I(x,)u] + O(€),
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leaves invariant (1.2), then {£,7, f,g,k,/} satisfy determining
equations which reduce to

k,—g. =0, (3.2a)
L —f.=0, (3.2b)
A(x)—g=0, (3.2¢)
cx)r, — £, =0, (3.2d)
A(x)k, —g, =0, (3.2¢)
A(x)l, —f, =0, 3.20)
cx)[7, =& ]+ (x)E=0, (3.2g)
E —7,+k—f=0. (3.2h)

The consistency of Egs. (3.2b), (3.2c), and (3.2f) leads to
g(x,t) satisfying

8:H+gH'=0, (3.3)
where H = c¢'/c. Then g(x,t) satisfies
g(x,t) = —a(r)/2H. (3.4)

Moreover if a () #0, then it is necessary that {c(x), a(#)}
satisfy

ec'(c/c’) =a"(t)/a(t) =const =A2 (3.5)

Ifa(t) = 0, then either ¢(x) solves (3.5) withA = Oor (1.2)
is only invariant under above-mentioned scalings of ¥ and v
and translations in .

In the following subsections we will show that system
(1.2) is invariant under a four-parameter Lie group of point
transformations of the form (3.1) if and only if ¢ (x) satisfies
the ODE (3.5), namely,

ec'(c/c’)" =A% (3.6)

The general solution of (3.6) is derived in Appendix B. It
turns out that if A #0, the general solution of (3.6) does not
solve (2.9), (2.21). Note that A can be real or imaginary.
The case A = 0 will be considered in the following subsection
and the case A #0 in Sec. III B.

A.The case A=0
The general solution of
(c/c")" =0
leads to the consideration of three separate subcases.
Case (i): c(x) = (Ax + B)S, C #0,1
The same subsitutions that reduced (2.41) to (2.42)
lead here to the equivalent system

3.7)

(3.8)

The solution of the determining equations (3.2a)—(3.2h)
leads to

§ =px + 2gxt,
T=p(1—=C)t +q[(1 —C)?*+x*"/(1 - C)] +r,
f=q(2C— Dt +s,

v, =u,, u,=x*<,.

3.9)
&= —4agx,
k= —pC—gqt+s,
] = _qxx—zc’

where p, g, r, and s are arbitrary constants.
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1. Similarity solutions of (3.8) for q=r=0, p=1,
8 arbitrary

The corresponding characteristic equations are

(3.10)

x (1—-C)t su (s—Cw
Comparing (2.43) and (3.10), one sees that the similarity
solutions for u are of the form (2.44), (2.45). The corre-
sponding solutions for v are of the form

v=x""%G(z;s). (3.11)

Substituting (2.45) and (3.11) into the system (3.8), one
finds that

G,(z;5) =5sF(z;5) + (C — 1)2F, (z;5),
(s — C)G(z;5) + (C — 1)2G, (z;5) = F, (z;5).
If one eliminates G(z;s) from (3.12), then F(z;s) solves
(2.46). Correspondingly
[1—(C—1)’22)F,(z5) + (1 — C)szF(z;5)
s—C

(3.12)

G(zs) =

(3.13)

2. Similarity solutions of (3.8) for p=r=0, q=1,
s arbitrary

First we find the global transformation (3.1) corre-
sponding to (3.9) forp =r =5 =0,¢ = 1. Then it is easy to
obtain the global transformation for arbitrary s. This global
transformation leads to the similarity form of the solutions.

The global transformation forp=r=s5=0,¢g=1, is
found by solving the characteristic differential equations

dax ar

2XT  (1-C)T*+X2"2€/(1-C)

au
2C-1HTU—-XV
av _
—[TVv+Xx'-€U]
where X=x, T=t, U=u, V=v,ate =0.
The first equality in (3.14) leads to

de, (3.14)

SEeY G N S—
(1-C)x°¢-!
1
=const=(1—-C)t%x¢ "' - —— =2
(1=C)x¢!
(3.15)
Next we consider the differential equations
UV _ ac—1yTU—xV: (3.16)
de
av_ _ry_xi-y (3.17)
de
One can show that
dw dv [ C
—_— 20T — —X"ZC—CTZ]V. 3.18
de? de + c—-1 (3.18)
Let V=X —¢72W. Then (3.18) reduces to
dw
=0. 3.19
e G193
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Hence
V=X *Fe+G), (3.20)
where F and G are constants. Equation (3.17) leads to

U=X3"?"1[(C—1)T(Fe+ G) —F]. (3.21)
The solution of
X _ e (3.22)
2XT
leads to

[14+z(1—=C)XC-'}"?=zC—-1)(e+ E), (3.23)

where E is a constant.
The global transformation for arbitrary 5, p=r =0,
g = 1, follows:

[14+z(1-O)XC'1V2=2(C—-1)(e + E),

1
1-OTX ' - —4 0 ———— =2,
( (1-0)x°!
(3.24)

U=e<X¢?"'[(C—1)T(Fe+ G) —F],
V=e“X ~*(Fe + G),

where the constants {z, E, F, G} can be expressed in terms of
{x, t, u,v} by solving (3.24) at € = 0. The explicit form of the
global transformation is easily found by solving (3.24) for
{x,1,Uv}.

The corresponding similarity solutions are found by let-
ting z play the role of the similarity variable, and letting
{E,F,G} be arbitrary functions of z and 5. Without loss of
generality one can set E = 0. Solving the first two equations
of (3.24) for €, one then finds that the resulting similarity
form is

U= estxc_‘z_'xBC/Z—I[(C_ D{xC~ 'z~ 'F(z;s)
+G(z9)} — F(z9)],
p=e= T xS xS 127 F(z;5) + G(z9)].

If one substitutes (3.25) into the system (3.8) then
F(z;5) and G(z;s) satisfy a corresponding system of coupled
first-order linear ODE’s.

Case (ii): c(x) = x

Here the system (1.2) becomes

(3.25)

(3.26)

The solution of the determining equations (3.2a)-
(3.2h) leads to

& =px + 2qxt,
f=qt+s,
k= —p—gqt+s,

v, =u,, u =xv,.

T=2qlogx+r,
= —gx, (3.27)

-1

= —gx

3. Similarity solutions of (3.26) for q=r=0, p=1,
8 arbitrary

The resulting similarity solutions are easily found to be
of the form

u=xF(t;s), v=x""1G(s5s). (3.28)
F(t;5) is any solution of (2.59) and
G(ts) = (s — 1) 7'F,(£5). (3.29)
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4. Similarity solutions of (3.26) for p=r=0, q=1,
s arbitrary

Here the same procedure is followed as in Case (i). The
resulting global transformation can be written as

T + log X = Ee*,
T?— (logX)* =z,

3.30
U= e25:x1/2(e2£F+ G), ( )
V=eZEsX_”2(G—82€F').
The resulting similarity form is
u = x"?|t + log x|°[ |t + log x|F(z;s) + G(zs) ], (331)

v=x"12|t + log x|'[G(z;s) — |t + log x|F(z;5)],

where {F(z;s), G(z;5) } are to be determined by substitution

of (3.31) into (3.26).
Case (iii): c(x) = e
Here the system (1.2) is

—x/2

(3.32)

The solution of the determining equations (3.2a)-
(3.2h) leads to

E=2p+4qt, T=pt+q(t’+4e") +r,
f= —2qt+2s, g=_2q9
k=p+2s, I=—29e

v, =, U =e v,.

(3.33)

5. Similarity solutions of (3.32) for q=r=0, p=1,
8 arbitrary

The similarity variable is

z=1te *"2, (3.34)
The form of the solutions is
u =e*F(z;5), v=2e"*VD*G(z;s). (3.35)

F(z;s5) is any solution of (2.72) and
G(zs) = 2s+ D72 — 12)F, (z;8) + 52F(z;5)].
(3.36)

6. Similarity solutions of (3.32) for p=r=0, q=1,
s arbitrary

The resulting global transformation (3.1) can be writ-
ten as

T2e~*? —4¢? =g,
224 +ze~*? =€+ E,
U=e"e  **[F—iT(Fe+ G)],
V = e“e*’*(Fe + G).
The resulting similarity form is
e~ 344z~ e *F(z;5) + 1tG(2;9) ],
T[22 e~ ¥ F(z5) + G(zs)],  (3.38)

where {F(z;s), G(z;5)} are determined by substitution of
(3.38) into (3.32).

(3.37)

— 1y, — X/2
U= _ez.vz te

25z 'te

v=e
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B. The case A:£0

By appropriate scalings of ¢ and x, Eq. (3.6) reduces to
(see Appendix B)

¢’ = v~ 'sinh(vlogc) (3.39)
or

¢ =v 'sin(vlogc) (3.40)
for 12> 0. For A 2<0, Eq. (3.6) reduces to

¢’ =v~!cosh(vlogc). (3.41)

In Eqgs. (3.39)-(3.41), v is an arbitrary real constant. If

v =1, then ¢(x) =+1 + € solves (3.39).
In the cases {(3.39), (3.40)}, the solution of the deter-
mining equations (3.2a)-(3.2h) leads to

E=(2/c")[pe' +ge~ '],
7=2[(c/c')' — 1][pe' —ge~"] +r,
f=12—(c/c')]pe' +ge~ "] +s,
g= —(c/c)pe'—gqe '],

k= —(c/c") [pe' +ge~"] +s5,

= — (1/cc')[pe' —ge™"].

The similarity solutions for wave speeds c(x) satisfying
(3.39), (3.40), or (3.41) will be constructed in a future pa-
per.

(3.42)

IV. INVARIANCE PROPERTIES OF THE SINGLE
EQUATION VIS-A-VIS THE SYSTEM WHEN c(x) # const

The single equation (1.1) is invariant under a four-pa-
.rameter Lie group of point transformations, {p,q,7,s}, if and
only if c(x) solves Egs. (2.21) and (2.9). This corresponds
to a five-parameter family for c(x).

If

c =¥ (x,0,K) (4.1)

is a solution of {(2.21), (2.9)}, it follows from their invar-
iance properties that

¢ =kV¥(kx + k,,0,K) 4.2)

is the general solution of {(2.21), (2.9)}, where {k, k,, k;}
are arbitrary constants.

The system (1.2) is invariant under a four-parameter
Lie group of point transformations if and only if ¢(x) solves
Eq. (3.6). This corresponds to a four-parameter family for
c(x). If

c=®(x,v) (4.3)
solves (3.39), (3.40), or (3.41) then it follows that
¢ =k, D((k,/A)x + k,,v) (4.4)

is the general solution of (3.6) where {k,, k,, v} are arbitrary
constants.

One can show that the single equation (1.1) and the
system of equations (1.2), for the same ¢(x), admit a four-
parameter Lie group of point transformation if and only if

c(x) = (4 + Bx)S, (4.5)
or the limiting case
c(x) = Ae"*, (4.6)
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where {4, B, C} are arbitrary constants. However, it could
still follow that an invariant solution of (1.2) maps into a
noninvariant solution of the wave equation (1.1) under the
mapping (1.4). In fact if ¢(x) is of the form (4.5) or (4.6),
an invariant solution of (1.2) maps into an invariant solu-
tion of (1.1), under the mapping (1.4), if and only if the
invariant solution of (1.2) has g = 0.

The group leaving invariant the single equation (1.1) is
infinite if and only if

c(x) = (4 + Bx)% 4.7)
The group leaving invariant the system (1.2) contains at
most four parameters.

Any Lie group of point transformations (3.1), leaving
invariant (1.2), can be expressed in the equivalent form

X=x, T=t,
U=u+en(xtupu,,u,)+ 0(), (4.8)
V=v+el(xtuvu,,u,)+ O0(),
where
n=fxu+gxtv—E&xDu, —r(xNu,, (4.9)

E=kx0v + I(x,0)u — 7(x,0)u, — E(x,t)c™*(x)u,.
(4.10)
The symmetry (4.8) of the system (1.2) is the symmetry

X=x, T=t, U=u+e€ij+ 0(e), (4.11)
of (1.1), where
7 =nxtuD " uu,,u,), (4.12)

and D, 'isthe operator inverse to the total derivative opera-
tor D, defined by

t =%+ut'%+unb%:+utx'a_i'+
If 7 depends explicitly on v, i.e., g0 in (4.9), then accord-
ingly % depends explicitly on D~ 'u, and consequently the
resulting transformation is neither a Lie group of point
transformations nor more generally a Lie-Béacklund trans-
formation.>® If the group parameter ¢#0 in (3.9), (3.27),
(3.33), and (3.42), then g#0. If 5 is independent of v, i.e.,
g=0in (4.9), then the symmetry (4.11) corresponds to a
Lie group of point transformations admitted by the wave
equation (1.1), and in this case the invariant (similarity)
solutions of (1.2) map into invariant solutions of (1.1) un-
der the mapping (1.4).

Conversely, let

X=x, T=1,
U=u+en(xtuu,,u,)+ O0(e),

be a Lie group of point transformations, equivalent to (2.1),
leaving invariant (1.1). Then

(4.13)

(4.14)

N =f(x,)u — &(x,t)u, — r(x,t)u,. (4.15)
The corresponding symmetry of (1.2) is
X=x, T=t, U=u+en+ 0(e),
(4.16)
V=uv+e+ 0(),
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where ¢ satisfies the compatible system of PDE’s

Dt=D.n, D.t=c *x)D,n, (4.17)
and D, is the total derivative operator
a d a a
D.=—+u—+u,—+u,—+-.(418
T Ty TG, TG T (418)

Although (4.17) always has a solution ¢ for any 7 of the
form (4.15), { cannot necessarily be expressed in terms of
{x,t,u,v} and the partial derivatives of ». If this is the case the
symmetry (4.16) is not a Lie-Backliind transformation.

V. EQUIVALENCE CLASSES OF THE SINGLE
EQUATION

A natural question arises as to whether PDE’s of the
form (1.1) or (1.2), admitting a four-parameter Lie group
of point transformations, are equivalent to each other in the
sense that there exists a point transformation mapping one
PDE into the other. Lie'? gave a criterion applicable to the
single PDE (1.1). When Eq. (1.1) is invariant under a four-
parameter Lie group of point transformations, Lie’s crite-
rion reduces simply to the following statement.

Wave equations of the form (1.1) admitting a four-pa-
rameter group are equivalent if and only if the corresponding
wave speeds c(x) have the same value for the integration con-
stant K in Eq. (2.21).

For o = 0 and any value of K, — « <K < 0, there ex-
ists a solution ¢(x) of system {(2.9), (2.21) }. As noted pre-
viously a(x) can be imaginary. Hence the wave speed c(x)
for any o#0 is equivalent to some wave speed c(x) for
o=0.

For o = 0, the following wave speeds c(x) are equiva-
lent, modulo scalings in ¢ and x and translations in x:

(a) c(x) =x, x>+ 1, x> — 1;
(b) c(x) = ¢, x%"%

(©) c(x)=x%x>"5 (1 —x)(1 +x)>—C, foranyC.

VI. CONCLUSIONS

In this paper we have given the complete group classifi-
cation of the wave equation (1.1) and the corresponding
system (1.2). We have shown that for a wide class of wave
speeds ¢(x), (1.2) is invariant under a larger group than
(1.1). Consequently for such wave speeds, whose canonical
equations are (3.39), (3.40), and (3.41), there exist invar-
iant (similarity) solutions of (1.2) which are noninvariant
solutions of (1.1).

In a future paper we will discuss some interesting solu-
tions of (1.1) for wave speeds ¢ (x) solving (3.39), (3.40), or
(3.41). These include solutions for a class of wave speeds
with the following physically significant properties:

(a) c(x) is monotone on ( — w0, );

(b) lim ¢(x) =4, lim =25,
X— — o0 x— + o
(c) max|c'(x)| =C;
xeR
(d) c(0) =D;
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where {4,B,C,D} are arbitrary positive constants, provided
D is between 4 and B.

In another future paper we will shown how to use the
invariance properties of the system (1.2) to linearize some
nonlinear systems of PDE’s which cannot be linearized by
hodograph transformations, applying procedures outlined
in Ref. 7.

APPENDIX A: THE GENERAL SOLUTIONS OF EQS. (2.9)
and (2.21)

Here we find the general solution for ¢(x) of the system

(¢’ — Ha)? - ?a?/* =K, (A1)

a*=QH'+H*»)™}, (A2)
where H = ¢'/c, 0#0. An integration of Eq. (2.20) to Eq.
(A1) resulted from taking the commutator of L, with L, in
(2.30). Without loss of generality, o = 1, by an obvious scal-
ing of c.

First we factor (A1) as

(/! —Ha +a/c)(a’ —Ha —a/c) =K. (A3)
Now let

hix)=a' —ac'/c +a’c. (A4)
Then

a —al(c'/e) —a/c=K/h(x). (A5)
Equations (A4) and (AS) lead to

c=h/h', a=L[(h*—-K)/h']. (A6)

Thus the problem of finding ¢(x) is equivalent to finding

h(x) satisfying (A2) which now becomes

(hz —K)[2h mh Ih2 — 3(h ”)2h2 + (h l)4] = (h ')4h2.

(A7)

Equation (A7) is invariant under arbitrary scalings and

translations in x. Hence® one can reduce (A7) to a first-

order ODE by choosing corresponding differential invar-

iants

u="h, v=h"/(h")2 (A8)
Then (A7) becomes the Riccati equation
dv 1 1
22—+ 12 +—==0. A9
du U w—K o (A%)

After v is solved explicitly in terms of u, v = v(u), (A8)
becomes

h"/h'=v(h)h' (A10)
Thus

logh’=Jv(h)dh+k1= —log M(h), (A1)
where k, is an arbitrary constant. Then

JM(h)dh =x+k, (A12)

where k, is an arbitrary constant. After solving (A12) for
h(x), (A6) leads to

c(x) = h(x)M (h(x)). (A13)
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It should be noted that the transformation

v 201 2 (A14)
du
reduces (A9) to the second-order linear ODE
d*w ( 1 1 )
du? + Ww—k W ( )

Equation (A15) can be solved in terms of hypergeometric
functions.

APPENDIX B: THE GENERAL SOLUTION OF EQ. (3.6)

Here we find the general solution of Eq. (3.6) when
A #0. Without loss of generality, A = 1 or i, by an appropri-
ate scaling of ¢(x). Hence we consider

ec’'(c/c')' = + 1. (B1)

This ODE can be fully integrated using group methods de-
scribed in Ref. 3.

Since (Bl1) is invariant under scalings x* = ux,
¢* = e, and translations in x, we choose new variables®

(B2)
which are differential invariants with respect to this two-

parameter family of symmetries. Consequently (B1) be-
comes

u=c, v=cc”,

dv  2v__u

—_— — —_—

du u v

Equation (B3) is homogeneous in # and v. Using this fact,
one finds that the general solution of (B3) is

(B3)
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u~2[(v/u)*F 1] = const = v~ (B4)

Now we choose new variables ¢ and u, invariants under
translations in x, so that (B4) becomes

du _ VT

= B5
dc c (B3)
The general solution of (B5) is then
u=(1/2v)[(pc)* F (pc) ~ ], (B6)

where p is an arbitrary constant. After scaling c and x so that
p becomes 1, (B1) reduces to

d={/)[c"Fe 7],

ie.,

(B7)

¢ =v 'sinh(vloge) or v~ !cosh(vlogc). (B8)
If v is replaced by — v* in (B4) then (B7) reduces to
(B9)

Equation (B8) can be integrated out if v is any rational num-
ber.

¢ =v !sin(vloge).
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