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INVARIANT SOLUTIONS FOR ORDINARY DIFFERENTIAL EQUATIONS*

GEORGE BLUMANTY

Abstract. An invariant solution of a differential equation is a solution of the differential equation which
is also an invariant curve (surface) of a group admitted by the differential equation. For an ordinary
differential equation (ODE) such solutions can be found without determining its general solution.

A theorem is proved which shows that for an ODE invariant solutions can be found by solving an
algebraic equation derived from the given ODE and the infinitesimals of an admitted Lie group of
transformations. For first-order ODEs it is shown that separatrices and envelope solutions are invariant
solutions for any admitted Lie group. Several examples are given.

Key words. invariant solution, Lie group, separatrix, envelope, singular solution, phase plane, Clairaut’s
equation, limit cycle
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1. Introduction. If an ordinary differential equation admits a one-parameter Lie
group of transformations, then special solutions called invariant solutions can be
constructed without knowledge of the general solution of the ordinary differential
equation (ODE). Such solutions are invariant curves of the group. Usually at most a
finite number of invariant curves of the group yield invariant solutions of the ODE.

A theorem is proved which shows that it is unnecessary to find explicitly all
invariant curves of a group admitted by an ODE in order to determine which invariant
curves yield invariant solutions. This theorem shows that invariant solutions of an
ODE are essentially found by solving algebraic equations derived from the given ODE
and infinitesimals of admitted one-parameter Lie groups of transformations.

Invariant solutions are especially interesting for first-order ODEs. It turns out that
separatrices and/or envelope solutions, if they exist, are invariant solutions for every
admitted nontrivial one-parameter Lie group of transformations.

Wulfman (1979) considered group aspects of separatrices which are limit cycles.
Dresner (1983) discussed the construction of separatrices when a first-order ODE
admits scalings. Page (1896) (see also Page (1897), Cohen (1911)) considered the
construction of envelope solutions as invariant solutions. In this paper we present
general results on the algebraic construction and geometrical significance of invariant
solutions of ODEs. These results have appeared in Bluman and Kumei (1989) for
ODEs written in solved form for the highest derivative. Here we make no such
restriction.

We briefly review some background material on symmetries and differential
equations relevant to the rest of the paper. For details see Bluman and Cole (1974),
Olver (1986), Ovsiannikov (1982), or Bluman and Kumei (1989).

Consider an nth-order ODE

(1) F(X,y,J’u"'ayn):O,
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where

<k>=d_ky

dk, k=1’2,."’n’
X

Y=Yy
and a one-parameter Lie group of transformations
x*=X(x,y; e) =x+eé(x, y)+ 0(e?),

y¥=Y(x,y; e)=y+en(x,y)+O(e?),

with infinitesimal generator

(2

(3) x=§<x,y>aix+ n(x,y%.

DEFINITION 1. A curve ¢(x, y) =0 is an invariant curve of the group (2) if and
only if ¢(x*, y*)=0 when ¢(x, y)=0.

We can show that ¢(x, y) =0 is an invariant curve of (2) if and only if X¢(x, y) =0
when ¢(x, y) =0. This is equivalent to saying that ¢ (x, y) =0 is an invariant curve of
(2) if and only if ¢(x, y) =0 is a solution of the first-order ODE y’'= n(x, y)/&(x, y).

The kth extended infinitesimal generator of (3) is given by
5] d J d
X(k}=f(X,J’)_“+7)(X,Y)"‘+77(1)(x’)’,)’1) +- ""”I(k)(x,y,y“‘ ”’yk) s
ax ay 9y; Yk

where, in terms of the total derivative operator

D_a, 0. 8. 3
@ Dx ax 'y oy P s
Dn* ™V D¢
(k) = —y, = k=1,2
n (X,y,J’h 9yk) Dx ykaa 1’ > , n
with
79 =n(x,y).

Then we can show that the one-parameter Lie group of transformations (2) is admitted
by ODE (1) (ODE (1) is invariant under (2)) if and only if the invariance condition

(5) X(n)F(x’y’yl’.”,yn)=0 When F(X,y,yla'..5yn)=0

holds.

DEeFINITION 2. ¢(Xx, y) =0 is an invariant solution of ODE (1) related to its invari-
ance under the one-parameter Lie group of transformations (2) (infinitesimal generator
(3)) if and only if ODE (1) admits group (2) and

(i) ¢(x, y)=0is an invariant curve of (2);

(i) & (x,y)=0 solves ODE (1).

(Note that if ¢(x, y)=0 then D*¢/Dx*=0, k=1,2,---,n.)

Two types of one-parameter Lie groups of transformations are admitted by any
first-order ODE F(x, y, y,) =0:

(i) Trivial one-parameter Lie groups for any infinitesimals (£(x, y), 7(x, y)) which
satisfy the algebraic identity

Il
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in some domain D = R>. In this case each solution curve of F(x, y, y,;) =0 is an invariant
curve of the group (2) and, conversely, each invariant curve of (2) is a solution curve
of F(x,y, y;)=0.

(ii) Nontrivial one-parameter Lie groups whose infinitesimals (£(x, ¥), n(x, y)) do
not satisfy (6) in any domain in R” but do satisfy the invariance condition

XPF(x,y,y,)=0 when F(x,y,y,)=0.

In this case the family of solution curves of F(x, y, y;) =0 is invariant under the group
(2) but an arbitrary solution curve of F(x, y, y;) =0 is not an invariant curve of (2).
Here only special solution curves of the ODE F(x, y, y,) =0 are invariant curves of (2).

It is immediately evident from (6) that every first-order ODE admits a trivial
infinite-parameter Lie group of transformations. It is easy to show that every first-order
ODE also admits a nontrivial infinite-parameter Lie group of transformations.

2. Theorem on invariant solutions. An obvious way to find invariant solutions of
ODE (1) related to its invariance under group (2) is to first obtain the general solution

(7) g(x,y;C)=0

of the ODE y'= 7(x, y)/&(x, y) (the one-parameter family of invariant curves of (2))
and then substitute (7) into ODE (1) to find which values of C = C* lead to (7) solving
ODE (1). Any such value of C = C* yields an invariant solution

d(x,y)=g(x,y; C*)=0

of (1) related to its invariance under (2). It is now shown that usually it is unnecessary
to solve ODE y'=n(x, y)/£&(x, y) or any other ODE in order to find the invariant
solutions of (1) related to the invariance of ODE (1) under group (2).

THEOREM 1. Suppose ODE (1) admits the one-parameter Lie group of trans-
formations (2) in domain D < R*. Without loss of generality assume that £(x, y) #0 in
D. Let

_n(xy) _ 9
l’[’('xyy)_g(x,y), Y—ax‘h/’(X,J’)

9 _
ay &(x,y)

X,

and

w=Y""%  k=1,2,---,n
For ODE (1) consider the corresponding algebraic function Q(x, y) defined by
(®) Q(x, y)=F(x,y, ¢, Yy, - -, Y"'y)

in domain D. Three cases arise for the algebraic equation Q(x, y)=0:
(I) Q(x,y)=0 defines no curves in D,
(II) Q(x,y)=0in D;
(ITII) Q(x,y)#0 in D but Q(x, y) =0 defines curves in D.
In Case (I) ODE (1) has no invariant solutions related to its invariance under (2).
In Case (11) each solution of the ODE y’' = n(x, y)/ é(x, y), i.e., each invariant curve
of (2), is an invariant solution of ODE (1) related to its invariance under (2).
In Case (II1) an invariant solution of ODE (1) related to its invariance under (2)
must satisfy Q(x, y) =0 and, conversely, any curve satisfying Q(x, y) =0 is an invariant
solution of ODE (1) related to its invariance under (2).
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Proof. If y,=y'=m/é=14, then y,=y*=Y""'y, k=1,2,---,n Hence an
invariant solution of ODE (1) related to its invariance under (2) must satisfy the
algebraic equation

Q(x,y)=0.
From this it immediately follows that (I) if Q(x, y) =0 defines no curves in D then
ODE (1) has no invariant solutions related to its invariance under (2), and (II) if
Q(x,y)=0 in D then any solution of y'=mn/¢ is an invariant solution of ODE (1).
(Clearly XQ =0 when Q=0.)

In Case (III) consider any curve satisfying Q(x, y) =0. By construction such a
curve is a solution curve of ODE (1). We show that such a curve is an invariant solution
of ODE (1) related to its invariance under (2) by showing that XQ =0 when Q =0 as
follows.

Since ODE (1) admits (2), it follows that the invariance condition (5) must hold.
If o =Y* 'y, k=1,2,- - -, n, then ODE (1) becomes Q(x, y) =0 and the total deriva-

tive operator becomes D/ Dx =Y since for any function G(x, y, y;, -+, ¥;), j<n, we
have

DG

Dx Ye=Y*"ly, k=1,2,---,j+1

(e§+ 3G, G, . 6_6‘_)
ax N ay J’2ay1 Yi+1

k—1

0Yi /L y=v "1y, k=1,2,-,j+1
=YG(x,y, ¢, -, YY),
ie.,
DG
'I—);EYG
when y, =Y* 'y, k=1,2,---,j+1. Hence if y, =Y* 'y, k=1,2,- - -, then
7'V =Yn-y¢Y¢
=Y(&p) - yY¢
=£YY

If n® = £Y*y, then
D =Yn" = (Y9)(Y¢)
=Y(£Y y) - (Y 9)(Y¢E)
— ng+1¢.

Hence it follows inductively that if y, = ¢, then n* = ¢Y*y, k=1,2,-- -, n.
Consequently, if ODE (1) admits (2), then from the invariance condition (5) it
follows that for any curve Q(x, y) =0 we have
J-s

oF oF oF oF
9 g+ (YP) -+ (Y
©) g[ax by O k()
when y, =Y* 'y, k=1,2,- - -, n. But from (8) we get

XQ= 30+ n5 2= v0

oF  oF a . dF
—§[£+t//a—y’+(Yt//)a—y*l+' (YY) ay,.]
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when y.=Y*'y, k=1,2,---,n Hence from (9) it follows that XQ =0 when
Q=0. a

As a first example consider the nth-order linear homogeneous ODE with constant
coeflicients

(10) yP+ay" V+--+a, y'+a,y=0.

We find all invariant solutions of (10) related to its invariance under translations in x
and scalings in y generated by the infinitesimal generator X = a(3/6x) + By(3/9y) with
arbitrary constants o, B. Let A=B/a. Then ¢y=n/E=Ay, Y=8/dx+Ayd/dy.
Consequently,

(11) y©=Y"""y=2r%, k=1,2,---,n
Substituting (11) into (10) we get
Q(x,y)=p(A)y =0,
where
pA)=A"+a A"+ -+a, A +a,.

Thus we obtain the familiar characteristic polynomial equation p(A) =0 which A must
satisfy if y # 0:

(12) p(A):A"_FaIAn—I_'_...+an_1A+an=0'

Any solution A = r of (12) leads to an invariant solution of (10). In terms of Theorem

1, Case (II) corresponds to A being a root of p(A)=0; Case (III) corresponds to A

not being a root of p(A) =0 and in this case y =0 is the (trivial) invariant solution. In

Case (II) the invariant solution is any solution of y'=ry, i.e., y = Ce™, p(r) =0.
Moreover, if y =e™ solves (10), then ODE (10) admits

X=a£+(ﬁy+ye"‘)§;
for arbitrary constants «, B, y. Let A=8/a, v=y/a#0. Then y =n/é=Ay+ve™,
Y =9/dx+(Ay+ve™)a/dy. Thus
Yy =Yy =0T A T2 A2 Y e 0y, k=1,2,- -, 0
Correspondingly,

v
A—r

Q(x, y) =p(A)[ e”‘+y]-
Four cases arise:
(i) If p(A)#0, u =0, then Q(x, y) =0 yields the trivial solution y =0 of (10).

(i) If p(A)#0, u #0, then Q(x, y) =0 yields the known solution y = Ce™ of (10)
for arbitrary constant C.

(iii) If r is a simple root of p(A)=0 and A =r, then Q(x, y) #0 and hence no
solution of (10) is obtained (Case I).

(iv) If p(A)=0 and r is not a simple root of p(A)=0, then Q(x, y)=0 and any
solution of y' = Ay +ve™ yields a solution of (10). If A # r, then this invariant solution
is y=C,e™+ C,e™ for arbitrary constants C,, C,; if A =r, then the corresponding
invariant solution is y = Cye™ + C,xe™ for arbitrary constants C;, C,.

As a second example consider the Blasius equation

(13) ym_‘_%yyl/ — 0,
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which admits

d J
14 X=(ax+B)——ay—
(14) (ax+p) ——ay P
for arbitrary constants «, B. For a =0, the resulting invariant solution is y = const.= C
for any constant C. For a # 0, let A = B8/ a. First consider the obvious approach. Then
an invariant solution ¢(x, y) =0 satisfies

_n__ Y
YT T XA
whose general solution is
C
15 =
(15) Y x+A

where C and A are arbitrary constants. Substituting (15) into (13), we find that C =0
or 6, which leads to invariant solutions
6

x+A

(16) y=0, 'y

of (13) related to its invariance under (14).
Alternatively, we derive the invariant solutions (16) using Theorem 1. Here

d 2
p=m Y=o
xX+A ax x+Aay

2y 2 6y

YV

= Y =— .
(x+1)? (x+2A)3
Then

2

y. 6y
(x+A)?* (x+r)*

leads to invariant solutions (16).

Note that if we are unable to obtain the general solution of ODE y'= 7/ then
we must use the algorithm developed in Theorem 1 to determine invariant solutions
of ODE (1) related to its invariance under (2).

Q(x, y)= Q(x,y)=0

3. Invariant solutions for first-order ODEs—separatrices and envelopes. In the case
of a first-order ODE

(17) F(X,y,)’1)=0

it only makes sense to consider invariant solutions for a nontrivial infinitesimal
generator (3) admitted by (1) so that Q(x, y)= F(x, y, n(x, y)/&é(x,y))#0 in D. (If
Q(x, y)=0in D, then the corresponding one-parameter family of invariant solutions
is a general solution of (17)!) For such a nontrivial infinitesimal generator, from
Theorem 1 it follows that any curve satisfying

_ M) -
(18) Q(x, y) F<x, i (% 9) 0

is an invariant solution of ODE (17).
Consider the set of all solution curves in the xy-plane (phase plane) of an ODE
(17) of the form

(19) n=f(xy)
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(F(x, y, y1) =y1—f(x, y)). This set may include exceptional paths (separatrices) which
are solution curves that behave topologically “abnormally” in comparison with neigh-
boring solution curves (cf. Lefschetz (1963)). Consequently, a separatrix must be an
invariant solution of ODE (19) for all Lie groups of transformations admitted by ODE
(19). We can see this as follows: Two solutions of ODE (19) which are topologically
different cannot be continuously deformed into each other and hence cannot be mapped
into each other by any Lie group of transformations admitted by ODE (19) as the
group parameters vary. Since a group of transformations admitted by ODE (19) maps
any solution of ODE (19) into another solution of ODE (19), it follows that a separatrix
is an invariant solution of ODE (19) for all Lie groups of transformations admitted
by ODE (19).

By the same argument as that for separatrices it will follow that all singular
envelope solutions (if any exist) for a first-order ODE (17) must be invariant solutions
for any admitted Lie group of transformations.

As a first example consider the first-order ODE

(20) Y=y,
which obviously admits
i) d J

X1=_, X2=x—-_y_‘—’
0x ay
From X it follows that a separatrix solution of (20) must satisfy
n(xy)
&(x,y)

which leads to the only possible candidate y = 0.
From X, it follows that a separatrix solution of (20) must satisfy

Q(x,y) = f(x,y)=-y*=0,

Qx,y)=—2—32=0,
X

which leads to the candidates y =0, y=—1/x.
Since y = —1/x is not an invariant solution of X, it cannot be a separatrix of (20).
The solution curves of (20) are illustrated in Fig. 1 from which we can see that
¥ =0 is indeed a separatrix.

~

Separatrix
y=0

FI1G. 1. Solution curves of y' = y>.
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As a second example consider the first-order ODE
VXY Hy(x*+y’-1)
x(x*+y*—1) —y\/xz—-l-yz’

which admits the rotation group

(21) y

a i)
X=y——x—.
y&x X

Then

0x y)__<X+x«/x2+y2+y(x2+y2-l)>
’ X x(x*+y’—1)—-yJx*+y?
and Q(x, y) =0 leads to
A+ -1
yIx(*+y* = 1) = pvVx*+y7]

The only invariant solution and hence the only possible separatrix is the circle

(22) x’+y*=1.

We can show that (22) is a limit cycle of ODE (21). Typical solution curves of (21)
are illustrated in Fig. 2.
As a third example consider the Clairaut equation

m
(23) F(x,y,y1)=xy1+y——y=0
1

where m is a constant.

Separatrix
x2+y2=1

N

\

F1G. 2. Solution curves of ODE (21).
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Envelope y2 =4x

FiG. 3. Solution curves of ODE (23) for m=1.

Clearly, (23) admits

0 5]
(24) X=2x8—x+y5.
An envelope solution of (23) must satisfy (18) for n/&é=y/2x:
y 2mx
y =5 T
or
(25) y?=4mx.

Hence y°>=4mx is the only possible envelope solution of ODE (23).
The invariance of (23) under (24) leads to its general solution

(26) y= cx+%l

where c¢ is an arbitrary constant. Clearly, the parabola (25) is the envelope of the
family of straight lines (26). Typical solution curves of (23) are illustrated in Fig. 3
for m=1.
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