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A REDUCTION ALGORITHM FOR AN ORDINARY DIFFERENTIAL
EQUATION ADMITTING A SOLVABLE LIE GROUP*

GEORGE BLUMAN

Abstract. An iterative algorithm is presented for reducing an nth-order ordinary differential equation
to an (n r)th-order ordinary differential equation (ODE) plus quadratures when it admits an r-parameter
solvable Lie group of transformations. The procedure is automatic. The reduced (n-r)th-order ODE is
obtained without determining intermediate ODEs of orders n-r + 1,... n- 1. This reduced ODE and the
quadratures are deduced directly after iteratively computing 2r invariant coordinates {x(i), Y(i)} and 3(r- 1)

coefficients {cej,/3j, y} of infinitesimal generators associated with an admitted r-parameter solvable Lie group.
The reduction algorithm is illustrated by several examples including the third-order Blasius equation

which admits a two-parameter group and a fourth-order ODE admitting a three-parameter solvable group
which arises in studying the group properties of the wave equation in an inhomogeneous medium.

Key words, reduction algorithm, Lie group, Lie algebra, solvable group, Blasius equation, wave equation,
differential invariant, canonical coordinates, quadrature
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1. Introduction. In this paper we construct an iterative algorithm for reducing an
nth-order ordinary differential equation which admits an r-parameter Lie group of
transformations, 2-< r =< n. If the Lie group is solvable then we will show that the given
nth-order ODE can be reduced iteratively to an (n r)th-order ODE plus r quadratures.
The reduced (n-r)th-order ODE will arise directly from the given nth-order ODE
without the need to determine any intermediate ODEs of orders n r + 1 to n 1. The
results presented in this paper appear in a slightly less general form in Bluman and
Kumei (1989, 3.4).

Bianchi (1918, 167) (cf. Eisenhart (1933, 36)) used solvable Lie groups (called
integrable groups in earlier literature!) to reduce the order of a system of first-order
ODEs. Olver (1986, pp. 154-157) gives an existence theorem which shows that if an
nth-order ODE admits an r-parameter solvable Lie group of transformations, then its
general solution can be found by quadratures from the general solution of an (n-
r)th-order ODE. However Olver’s proof of his existence theorem does not yield an
iterative reduction algorithm. In particular his proof, as illustrated by an example,
requires us to determine all intermediate ODEs.

We briefly summarize some important results concerning symmetries and differen-
tial equations necessary for the construction of the reduction algorithm. For details
see Olver (1986) or Bluman and Kumei (1989).

Consider an nth-order ODE

(1.1) F(x,y, yl,’’", y,,) O,

where

k=l,2,...,n,Yk dxk
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and a one-parameter Lie group of transformations

x*=X(x,y; )=x+e(x,y)+O(e),
(1.2)

y*= Y(x, y; e)= y+ erl(x, y)+ O(e2),

with infinitesimal generator given by

(1.3) X= s(x, y) ---+ r/(x, y) _z__.
Ox Oy

The kth extended infinitesimal generator of (1.3) is given by

L_it (1) (X,
0

Ox Oy Oyl

+" "+ rt(k)(x, Y, Yl, Yk)
o

Oyk

where, in terms of the total derivative operator

D 0 0 0 0
-Yl+Y2+" "+Yn+lDx Ox Oy Oyl Oyn

(k(x, Y, Yl, ",Yk)=
D,0 (k-l) D:
Dx --Yk Dx, k l, 2, n

with

n() n(x, y).

Then the group (1.2) is admitted by the ODE (1.1) (ODE (1.1) is invariant under the
group (1.2)) if and only if

X(")F =0

when F 0.
If (1.1) admits (1.2) then ODE (1.1) can be reduced constructively to an (n-

1)th-order ODE plus a quadrature. This reduction can be accomplished in terms of
either differential invariants or canonical coordinates as follows.

For the first extension of (1.2) there exist invariants u(x, y), v(x, y, Yl) which satisfy

Xu(x,y)=o, X(1)v(x, y, y)=0

with Ov/Oyl # O. Then

Ok(X, y, Yl," ", Yk)-
du k-1

is an invariant (differential invariant) of the kth extension of (1.2) which satisfies

x(k)vk(x, Y, Yl," ", Yk)--0

with Ol)k/Oyk 7 0, k 2, , n. In terms of these differential invariants the ODE (1.1)
reduces to an (n-1)th-order ODE plus a quadrature" In particular, (1.1) reduces to

( do dn21__(1.4) G u, v, d--’"""’ --’n--1/ --0
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for some function G(u, v, dv/du,..., dn-ll)/dun-1). If b(u, v, C1, C2," ", C,_1) 0
is a general solution of (1.4), then a general solution of (1.1) is found by solving the
first-order ODE

(1.5) ch(u(x, y), v(x, y, Yl); C1, C2, , Cn_l)---0.

The ODE (1.5) reduces to quadrature since it admits (1.2).
Alternatively, let r(x, y), s(x, y) be canonical coordinates of (1.2) which satisfy

Xr 0, Xs 1. Let

Then (1.1) reduces to an (n-1)th-order ODE

( az a--lz (1.6) H r,z,d--,...,5;"-i]=0
for some function H(r, z, dz/dr, d"-lz/dr"-l). If

6(r, z; C,, C,..., C,_,):0

is a general solution of (1.6), then a general solution of ODE (1.1) is found by solving
the first-order ODE

q(r(x,y), ;Sx+SyYl C C2 ," Cn-1) O,
rx -3t- ryy

which reduces to quadrature since it admits (1.2):
An r-parameter Lie group of transformations is generated by r infinitesimal

generators

0 0
--+rlo,(x,yX, (x, Y) ox -y, a=l,2,...,r,

ofan r-dimensional Lie algebra Lr. The commutator ofX and Xo, given by the operator

[X, Xt XXt XX,
satisfies a commutation relation

(1 7) [X Xt]= 2 CVtXv,
3/=1

where the coefficients C, a,/3, 3/= 1, 2,. ., r, are real constants called the structure
constants of L. The kth extended infinitesimal generators satisfy

(1.8) [X),xk)] CX7
y=l

with the same structure constants as in (1.7) for k 1, 2,. ..
A subalgebra J L is called an ideal (normal subalgebra) of L if for any X J,

Y Lr, [X, Y]J. L is an r-dimensional solvable Lie algebra (the corresponding
r-parameter Lie group is an r-parameter solvable Lie group) if there exists a chain of
subalgebras

L(1) L(2) L(r-l) L(r) L
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such that L(k) is a k-dimensional Lie algebra and L(k-l) is an ideal of L(k), k=
1, 2,...,, r. Most importantly we can show that if L is solvable then it has a basis
set {X, X2,’’ ", Xr} satisfying commutation relations of the form

/3-1

(1.9) [X,,X/3]= C/3X), 1-<_c<fl, fl=2,...,r
3/=1

for some real structure constants
It is easy to show that any two-dimensional Lie algebra is solvable (cf. Bluman

and Kumei (1989, p. 85)). Moreover, every even-dimensional (r 2m for some integer
m) Lie algebra contains a two-dimensional subalgebra (cf. Cohen (1911, p. 150),
Dickson (1924)). It turns out that there is precisely one Lie algebra acting on R2 which
does not contain a two-dimensional subalgebra (Olver (1989)).

2. Invariance of a second-order ODE under a two-parameter Lie group. We show
that if a second-order ODE

(2.1) F(x,y, yl,Y2)=O

admits a two-parameter Lie group of transformations, then we can construct the general
solution of (2.1) through a reduction to two quadratures.

Let X1, X2 be basis generators of the Lie algebra of the given two-parameter Lie
x(k) denote the kth extended infinitesimal generatorgroup of transformations and let

of Xi, 1, 2. Without loss of generality we can assume that

(2.2) [XI, X2] ---/X

for some constant A.
Let u(x, y), v(x, y, Yl) be invariants of X]) such that

(2.3) X,u =0, X’)v =0.

Then the differential invariant dr du satisfies the equation

and hence (2.1) reduces to

(2.4) G u, v, 0

for some function G(u, v, dv/du). (Note that Ov/Oy#O.) From the commutation
relation (2.2) it follows that

Hence

(2.5a)

for some function a (u).

XlX2U X2X u -]- A X u 0.

Xu =,(u)

Then from (2.3), (2.2), and (1.8) it follows that

I/.(2)I/,(2 dvxl)x(21)) 0, A1 ’2 "-H -’0"

Hence

(2.5b)
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for some function fl(u, v). Since (2.1) admits X2 it follows that

X(G u,v, =0 whenG u,v, =0.

From (2.5a), (2.5b) it follows that in terms of (u, v) coordinates X( becomes

x,= 0__+ _0
ou (u, v) v,

and that this infinitesimal generator is admitted by (2.4). Let canonical coordinates
(R(u, v), S(u, v)) be such that

Then (R(u, v), S(u, v)) satisfy

X(I)R 0, X(21)S 1.

,(u)
OR
+t(u, v) =0,
Ou Ov

OS OS
1(.)+(.. .) o

Thus the one-parameter Lie group of transformations

R*=R, S*=S+e,

is admitted by (2.4). Hence (2.4) reduces to

for some function H(R, dS/dR). In terms of a solved form

dS
-(,

dR

the first-order ODE (2.6) integrates out to

R(u,v)

S(u, v)= I(R) dR + C,,

where C is an arbitrary constant. The first-order ODE

R(u(x,y),v(x,y,yl))

S(u(x, y), v(x, y, Yl))-- I(R) dR + C,

admits X1 and hence reduces to quadrature by the method of canonical coordinates
after we determine (r(x, y), s(x, y)) such that

Xlr-- 0, XlS 1.

Consequently, any second-order ODE which admits a two-parameter Lie group of
transformations reduces completely to quadratures.

As an example consider the second-order linear nonhomogeneous ODE

(2.7) Y2 + p(x)yl + q(x)y g(X).



1694 GEORGE BLUMAN

Let Z---el(X), Z-"2(X be linearly independent solutions of the corresponding
homogeneous equation

z"+p(x)z’+q(x)z=O.

Then (2.7) admits the two-parameter (el, e2) Lie group of transformations

X*= X, y*-- y’-l- e,lPl(X)"l- g2t2(X ).

The corresponding infinitesimal generators are

Xl-- el(X)
Oy

0
X2 2(x)

Oy

with [X1, X2] 0. Then

2_+,(x) oy el(x) i=1,2,

U --X, /)--
Yl Y

;(x) (x)’

;(x) (x) W(x)
X2u X2x ---0, X(21)v

(X) el(X) l(X)(X)

where W(x) is the Wronskian W(x)= 1-2. Now in terms of x and v, X21)=
(W(x)/l(x)(x))(O/Ov). Canonical coordinates (R(x, v), S(x, v)) satisfy

W OR W OSX(I>R -0, X(21)S -I,
O) 1 01)

and hence

R x, S-
W

Consequently, by a simple calculation,

dS

dx
g(x)l(X)
W(x)

so that

y’dpl yqb f gdpl
dx % Cl(2.8) s: w -if-

where C is an arbitrary constant.
By construction the first-order ODE (2.8) admits X1 1(x)O/Oy. In terms of

canonical coordinates r= x, s y 1(x), (2.8) reduces to

ds

But W(,)2 (2/1)t" Hence

(1)2 W
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Thus

s C ---Z + dP- f gdP dx I gdP2
ff)l )1 W dxJl- C2’

which leads to the familiar general solution

W ---dx
of (2.7).

3. Invariance of an nth-order ODE under a two-parameter Lie group. Now consider
the nth-order ODE

(3.1) F(x,y, yl,’’", yn) =0,

n => 3, assumed to be invariant under a two-parameter Lie group of transformations.
Without loss of generality there exist infinitesimal generators X1, X2 such that [X1 ,X2]
AX for some constant

As in 2 let u(x, y), v(x, y, Yl) be invariants ofX2). Then X2)t 0 where t)= dv/du,
and (3.1) reduces to

( dv dn-lv)(3.2) G u, v, d--"’"5 =0

for some function G(u, v, dv/du, dn-lv/dun-1).
Since [Xk, Xk] --,X k 1, 2,. ., it follows that

for some functions a (u),/3 (u, v), 3’(u, v, t). Then

0 0
--+fl(u,v)--X(21) O(U)

with first extension given by

0__+ t(u, v) 0__+ y(u, v,X(22) O (U)
0U 0) --’

is admitted by (3.2). (Note that 0y/0t # 0.) Let U(u, v), V(u, v, ) be such that

X(21) U 0, X(22) V 0,

Then

dV o.

Consequently, (3.2) and hence (3.1) reduces to

( dV dn-2V(3.3) H U, V, dU" " d-U----2] 0

for some function H( U, V, dV/ dU, , d"-2Vdun-a). If

( V; CI, G,""", G-a)= 0

is the general solution of (3.3), then the first-order ODE

(3.4) q U(b/, v), V hi, V, C1, C2,’" Cn_2 --0
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admits X(21)-- a(u) 0/0u -[--/(u, v) 0/0t). Thus (3.4) reduces to quadrature

t(Ig, V; C1, C2,’.. Cn_2, Cn_l)=0

for some function q(u, v; C1, C2," , C,-2, C,-1). But the first-order ODE

(3.5) @(U(X, y), V(X, y, Yl); C1, C2,""", Cn-2, Cn-1) 0

admits X1. Thus (3.5) reduces to quadrature which leads to a general solution of (3.1).
Hence we have shown that if an nth-order ODE (n _-> 3) admits a two-parameter

Lie group of transformations, then it can be reduced constructively to an (n- 2)th-order
ODE plus two quadratures. Note that the order of using the operators X1 and X2 is
crucial if h 0.

As an example consider the Blasius equation

(3.6) Ya+1/2yy=O,
which admits the two-parameter (el, e) Lie group of transformations

x* e2(x + el), y* e-2y,

with infinitesimal generators given by

0 0 0
X X2-- xm-ym.Ox’ Ox Oy

Then

Invariants of X]2) are

[Xl, X2] Xl"

It follows that

dv Y2u=y, v=yl, tS-
du Yl

0 0 0 0X22 x y 2yl 3y2,
OX Yl Oy2

Xzu -y -u, Xz1V -2yl -2v,

Xt. _Y2= -t.
Yl

Without loss of generality we set

O a oX(22) u---k- 2vm+ tm.
ou ov 05

Then

X(21)U(u,v)=0 leads toU-
v
2,

U

and

X(22V(u, v, t)=0 leadsto V=-.

Then the third-order Blasius equation (3.6) reduces to the first-order ODE

(3.7) dU- u L --- l"
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If in solved form V 4(U; C1) is a general solution of (3.7), then the first-order
ODE

(3.8) t =--- U( C

admits X(21=u(O/Ou)+2v(O/Ov). In terms of corresponding canonical coordinates
s=log v, r= v/u2, (3.8) becomes

ds (r;
dr r[(r; C1)-2r]

This leads to the quadrature

(3.9) v C exp
(p; C)

where v y, r= y/y. In principle (3.9) can be expressed in a solved form

y (; c, c,
which admits X 0/0x, and hence reduces to quadrature

(.0
(; c,, c x + c.

Equation (3.10) represents a general solution of the Blasius equation.

4. ldee f -rer ODE er r-reter Lie
Le lger. If an r-parameter Lie group (r3) is admitted by an nth-order ODE
(n r) it does not always follow that we can have a reduction to an (n- r)th-order
ODE plus r quadratures. We show that such a reduction is always possible if the Lie
algebra Lr, formed by the infinitesimal generators of the group, is a solvable Lie algebra.

Consider an nth-order ODE

(4. (x, , y,... ,n =0.

Assume that (4.1) admits an r-parameter Lie group of transformations (3NrNn)
whose infinitesimal generators form a solvable Lie algebra. Without loss of generality
we can assume that the infinitesimal generators {X}, 1, 2, , r, satisfy commutation
relations of the form (1.9).

Let x((x, y), y((x, y, Yl) be such that

Then

Let

X1X(1 O, xl)y(1 O.

X+,dY
dx =0’ k= 1, 2,..., n-1.

dky(1)
k-- 1, 2,""", n + 1.Y(1)k- dx)

In terms of the invariants x(1), y(), and the differential invariants {Y()k}, k=
1, 2," , n 1 of X]n), ODE (4.1) reduces to an (n 1)th-order ODE

(4.2) Fn-I(X(1), Y(1), Y(1)I, ", Y(1)n-1) --0

for some function F._I of the indicated invariants of X".
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From (1.7), (1.8) it follows that

Xzx(1) al(X(1))
xy (xy),

X(22)Y(1)1 ’)/I(X(I>, Y(1), Y(1)),
for some functions a,/31, y of the indicated arguments. Hence

O--I- fll(X(1), Y(1))
0X(21> OI(X(I>) X(1

with first extension given by

X(22)= X(2I)== ’)/l(X(l>, Y(I>, Y(I>I) 0y(1)1’

Let

(4.3)

Then

dx2) O, k 1, 2, , n 2.

(4.5a)

(4.5b)

Then (4.5a) leads to

d ky(2)
k= 1, 2,’’’, n-2.Y(2)k dx2)’

In terms of the invariants x(2), y(2), {Y(2)k}, k 1, 2,..., n- 2 of X2") (which are also
invariants ofX")), ODE (4.2), and hence ODE (4.1), reduces to the (n 2)th-order ODE

(4.4) Fn-z(X(2), Y(2), Y(2)1, ", Y(Z)n-2)--" 0

for some function F,_2 of invariants of X2"), X]").
from (1.7), (1.8) it follows that

xl)xl>x(2
X(21)X(31 =0.)x(2)

X(31>X(2>-- A(x(1), Y(I>),
for some function A(x(1), Y(1)). From (4.5b) we have

(4.6) X(21)A(x(1), Y(1)) 0.

Then (4.3) leads to

X(31>X(2>-- A(x(1), Y(I>)= e2(x(2>),
for some function a2(x(2)). Similarly,

X2)y(2) =/3(x(2), Y(2)),

X(33)y(2)l y2(X(2), Y(2), Y(2)l),

is admitted by (4.2).
Let x(2)(x(1), Y(1)), y(2)(X(1), Y(1), Y(1)I) be such that

X(21>x(2) 0, X(22)y(2) 0.



REDUCTION OF ODE ADMITTING SOLVABLE LIE GROUP 1699

for some functions/32, 72 of the indicated arguments. Hence

f12(x(2), Y(2)) o._f,
Oy(2)

with first extension given by

X(33)-- X2)-- /2(X(2), Y(2), Y(2)l)
Oy(2)l

Let

Consequently,

dx3) =0, k= 1,2,..., n-3.

are such that

d ky(3)
k 1, 2,..., n- 3.Y(3)k- dx3

In terms of the invariants x(3), Y(3), {Y(3)k}, k 1, 2, n 3, of Xn) (which are also
invariants ofX(n), Xn)), ODE (4.4), and hence ODE (4.1), reduces to the n 3)th-order
ODE

Fn-3(X(3), Y(3), Y(3)1, ", Y(3)n-3)--0
for some function F,_3 of the indicated invariants.

Continue inductively and suppose that for q 3,..., m, m < r,

X(q)(X(q--1), Y(q--1)), Y(q)(X(q-1), Y(q-1), Y(q-1)l)

X(pq-1)X(q) O, x(pq)y(q) O, p 1, 2,. ., q,

X(pq+k) dky(q)dxq) O, k l, 2, n q forl_-<p-<_q,

with y(q)k=dky(q)/dXq), k 1,2,’’’, n--q, so that the nth-order ODE (4.1) reduces
to the (n m)th-order ODE

(4.7) F_,,(x(,), Y(m), Y(m)l, ", Y(m)n-m) 0

for some function F_m of invariants of X), X)_I, X(n), X]").
To go from step m to step m + 1 we proceed as follows.
From (1.7), (1.8) it follows that

(m- 1)
ZXm+l (,,)= 0, j 1, 2,’’’, m.

The equation xm-)X(mm+-l)x(,,)=0 leads to

X(mm+l)X(m)-- AI(X(1), Y(1), Y(1)I, ", Y(1)m-2)
(m-for some function A of the invariants of X1 1); X(.-l)x(.+ql)x(m)=0 leads to

A1 A2(x(2), Y(2), Y(2)1, ",

for some function A2 of the invariants of X(m-l), X"-); XI"-I)X(m’+-i)X(.)= 0 leads to

A1 Al(X(t),Y(t), Y(t), ",

is admitted by (4.4).
Then let X(3)(X(2), Y(2)), Y(3)(X(2), Y(2), Y(_)I) be such that

X2) --0, X3)y(3) 0.x(3)
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for some function AI of the invariants of Xm-l) xl_ml--1)
Then the equation X(ff_-I)xm+-)X(,)=0 leads to

A1-- Am-(X(m-1), Y(m-1))

for some function Am_(X(m-), Ym-l) of the invariants of X(m-]1, X(m,
finally, X(mm-1)X(mm+--ll)X(m .-.-0 leads to

X(mm+-l)x(m)-- A1-- om(X(m))
for some function am(x(,,)).

Similarly, we can show that

X(mm)+lY(m)- m(X(m), Y(m)),

m+l .Y(m)l ym(X(m), Y(m), Y(,,,)),

for some functions fl,,, y,, of the indicated arguments. Hence

..,Xm-l) l</<m--1

o o
+m(X(m),Y(m)),X(mm+)l Ol’m(X(m))

OX(m) Oy(,)

with first extension given by

X(mm+-1)-" X(mm+)l 3t- m(X(m), Y(m), Y(m)l)
Oy(m)l

is admitted by (4.7) since ODE (4.1) admits Xm+ Now let X(m+l)(X(m),Y(m))
Y(,,+l)(X(m), Y(m), Y(m)l) be such that

x(mm+)lX(m+l) 0, X(mm+-l)y(m+l) O.

Then

X(m%-l+k) dky(re+l)
dxm+ --0, k=l,2,...,n-m-1.

Let

dy(m+l)
k 1, 2, , n m 1.Y(m+l)k--" dxm+l

In terms of the invariants "’m+l

(which are also invariants of Xn), X(n), Xn)), ODE (4.7) and hence ODE (4.1)
reduces to an (n m 1)th-order ODE

Fn-m-l(X(m+l), Y(m+l), Y(m+l)l, ", Y(m+l)n-m-1) O,

for some function Fn-m- of invariants of "’m+l

Finally, two cases are distinguished.
Case I (3 =< r < n). Here ODE (4.1) reduces to an (n r)th-order ODE

(4.8) Fn-r(X(r), Y(r), Y(r)I, ", Y(r)n--r)--0

for some function F,-r of invariants of X") plus r quadratures. The quadratures arise
as follows.

Suppose

Cr(X(r), Y(r); C1, C2,""", Cn-r)=0
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is a general solution of ODE (4.8). Then the first-order ODE

admits

r(X(r)(X(r--1), Y(r--1)), Y(r)(X(r-1), Y(r-1), Y(r-1)l); C1, C2, ", Cn-r) --0

which leads to a quadrature

l)r--l(X(r--1), Y(r--1) C1, C2, Cn-r+l) 0

for some function br-1 of the indicated arguments. Continuing inductively, assume
that we have obtained

bk(x(k, y(k; C1, C2,""", Cn-k)=0.

Then the first-order ODE

admits

x(?_, 0 0__LOlk-l(X(k-1)) Al-OX(k_l k-l(X(k-1), Y(g-I))

which leads to quadrature

d_l(x(_l, Y(-I; C1, C2,"’, Cn-k+l)

for some function bg-1 of the indicated arguments, k- r,r- 1," "-, 1 (y(o- y).
Case II (3_-<r n). Here ODE (4.1) reduces to a first-order ODE

(4.9) Fl(x(,-1), Y(,-1), Y(,-1)1)= 0

for some function F1 of the invariants x(n_l), Y(,-1) of ,c("),_1 plus n-1 quadratures
which are obtained as demonstrated for Case I. The first-order ODE (4.9) reduces to
quadrature since (4.9) admits

X(nn_l) Oln_l(X(n_l)
0 0

+/3._,(x(._,), y(._,)).
Ox(_) Oy(_)

Thus the solution of ODE (4.1) is reduced to n quadratures.
Consequently, we have proved that if an nth-order ODE is invariant under an

r-parameter solvable Lie group of transformations, then it can be reduced algorithmi-
tally to an (n r)th-order ODE plus r quadratures. Note that in applying this reduction
algorithm we do not need to determine the intermediate ODEs of orders n-1, n-
2,..., n- r+ 2; in Case I we do not need to determine the intermediate ODE of order
n-r+l.

As an example consider the fouh-order ODE

which arises in studying the group propeies of the linear wave equation in an
inhomogeneous medium (Bluman and Kumei (1987)). The ODE (4.10) obviously
admits the three-parameter (e, e, e3) Lie group of transformations

x* e(x + el), y* ee3y.

4)(x(k(x(g-l, Y(g-l), y(g(x(g-l, Y(g-l, Y(k-ll); C1, C2," ", Cn-k)--0

0 0
-lt- r--l(X(r--1), Y(r--1))xr--1) Olr--l(X(r--1))
OX(r-1) Oy(r-1)
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Corresponding infinitesimal generators Xl=O/Ox, X2=x(O/Ox), and X3=y(O/Oy)
satisfy the commutation relations [Xl,X2] Xl, IX2, X3] =0, [Xl,X3] =0, and thus
commutation relations of the form (1.9). To carry out the reduction algorithm, we first
need the following extended infinitesimal generators:

a a a a axl) =O__ X1)= x---y1 X2)= x---y1 2y2,
Ox Ox -’Yl Ox Oy2

0

Oy2

o o o oX1)--
Yy -’1- Yl Yl’ X(32) YY+ Yl yl -[" Y2-

O O O O
X3 Y --y + Y -y + Y2 -Y + Y3

y3

From XlX(1) 0, xl)y(1) 0, Y(a)l dy(1)/dx(a), we get

Y2
X(1) Y, 2(1) Yl, Y(1)I

Then

l(X(1)) X2x(1) 0, fll(X(a), Y(1)) X(a)Y(1)= --Y(1),

Y2yl(X(1), Y(a), Y(1)I) X(22)y(1)l Y(a)a

Thus in terms of x(1), y(), Y(1), we have

O O OX(2a)= --Y(1), X(22)= --Y(1)--Y(1)1
Oy(1) Oy(1) Oy(1)l

Now from x(l)x() O, X()y() O, Y()a dy(2)/dx(), we find

Y(1)a Y2 YlY3 2(Y)
X(2) X(1)-- Y, Y(2)-

Y(1) (Yl)2’ Y()I (ya)4
Then

a2 X(31)x(2) y x(2),
Y2/32 X)y(2)= (ya) -Y(2),

/2 X3)y(2)l
4(y2)2 2ylY3

(yl)4 -2y(2)a

Thus in terms of x(), y(), Y(2)a, we have

X(32 O O
X()_) Y(2),

0X(2) Oy(2)

o o oX3)
X(2) Y(2) 2y(2)a.

OX(2 Oy() 0Y(2)l

Now from X(32)x(3) 0, X(33)y(3) 0, we get

YY2 Y[YlY3- 2(Y)
x(3) x(2)Y(2)- (yl), Y(3) (x(2))eY()l (yl)4

It now must follow that ODE (4.10) reduces to a solved form

dy(3)
(4.11)

dx(3)
J(x(3)’ y(3))
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for some function J(x(3), Y(3)) since (4.10) can be written in solved form in terms of
y4. It turns out that for ODE (4.10)

J(x(3), Y(3))-- -(1 + 2x(3))
and hence (4.11) fortunately reduces to quadrature. Then

(4.12) (X(2))2y(2)l --X(2)Y(2)- [X(2)Y(2)]2 1

admits X32)= X(z)(O/OX(z))--y(z)(O/Oy(2)) with corresponding canonical variables

R x(2)Y(2

In terms of these variables (4.12) becomes

dS 1 1
-R-o(4.13)

dR R -el

Consider the case el > 0, and let el (C)2. Then

S log R + log + C

S log y2).

and consequently

(4.14)

y (x C, C)

C(I+B(x2,))x 1 B(x)
where B(x(2))--(C2/x(2))2C1, with arbitrary constants C1, C2o Then the first-order ODE
resulting from (4.14), i.e.,

(4.15) Y) (x); C, C2),
YI)

admits X2)= -yl)(O/Oyl)). Hence (4.15) reduces to

which integrates out to

dy(1)
Y(1)

(I)(x(1) Cl, C2) dx(1)

YI) (Y; C1, C2, C3)

II y

Ca exp q(x(); C, C) dx(

Finally the first-order ODE

Yl =XX (Y; C, C2, C3)

admits X --O/OX and reduces to quadrature

fy dy
(y; C, C2, C3)

x + C4,

yielding a general solution of (4.10). The case c -(C) substituted into (4.13) would
yield another general solution of (4.10).
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An alternative way of using the group properties of the fourth-order ODE (4.10)
to obtain general solutions was considered in Bluman and Kumei (1987).

5. Summary. In using the reduction algorithm developed in 4, from the
infinitesimal generators of the admitted solvable Lie group we determine iteratively
coordinates {x(i), Y(i), Yil} and coefficients

{ai(x(i)), fli(x(i), Y(/>), y/(x(,>, Y(i>, Y(i>I)}:

(X(1), Y(1), Y(1)1) (c1, 1, ’Yl)"-’)(X(2), Y(2>, Y(2)1)
-* (a2,/32, y2)--’’’--(X(r--l,Y(r--l,y(r--ll)

(Cer-1, fir-l, Tr-1) (X(r), Y(r))-
The nth-order ODE reduces directly to an (n-r)th-order ODE in coordinates
(x(r), Y(r). The quadratures follow from reversing the arrows of the iterative procedure.

In the case of an nth-order ODE (4.1) admitting a three-parameter Lie group with
infinitesimal generators X1, X2, X3 satisfying commutation relations of the form (1.9),
the procedure simplifies to:

(1) Determine coordinates X(1)(X y), y(1)(X, y, Yl) and hence Y(1)1, invariants of
X2"

(2) Apply X22 to x(1), Y(1), Y(1)I, respectively, and find al(X(1)) /l(X(1), Y(1)),
yl(X(1), Y(I, Y(11). Then

a a a
X(22) t -.I- jl -- T1

0X(1) 0y(1) 0y(1)1

(3) Determine the invariants x(2)(x(1), Y(1)), y(:)(x(l), Y(I>, Y(1>1) of X(2) and hence
the differential invariant Y(21 of X(23).

(4) Apply X3) to x(2, Y(2, Y()I, respectively, and find a2(x()), /32(x(2), Y(2),
y2(x(), Y(2), Y(21). Then

o o oX3) O2--"[" j2 -[- /2
Ox(2) 0y(2) 0Y(2)l

(5) Determine the invariants X(3)(X(2), Y(2)), Y(3)(X(2), Y(2), Y(2)1) ofX3) and hence
the corresponding differential invariants

Y(3)1, Y(3)2, Y(3)n-3 ofX").

(6) Find the reduced ODE

Fn-3(X(3), Y(3), Y(3)l, Y(3)n-3) --0

of order n- 3 with independent variable x(3 and dependent variable Y(3).
(7) Let (b3(x(3), Y(3); C1, C2,’’’, Cn-3)=0 be the general solution of Fn-3 0.

Then in terms of coordinates (x(:), y()) the first-order ODE

)3(X(3)(X(2), Y(2)), Y(3)(X(2), Y(2), Y(2)l); C1, C2, Cn-3)--0

admits X(32)= az(O/Ox(z)) + fl(O/Oy(2)).
(8) The invariance of b3 =0 under X leads to quadrature

(b2(x(2)(x(1), Y(1)), Y(2)(X(1), Y(1), Y(1)1); (1, C2 ,’’’, Cn-2)--O.

In terms of coordinates (x(1), Y(1)) the first-order ODE (b2 =0 admits

0 0X(21) 1-1
OX(1) Oy(1)
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(9) Reduce )2 0 to quadrature

l(x(1)(x, y), y(l)(x, y, Yl); C1, C2. , C,-1)= 0.

In terms of coordinates (x, y) the first-order ODE 1 0 admits

X1 (l(x,y)
0

(x,y)
0

-+- T] .
Ox Oy

(10) Reduce bl 0 to quadrature

,o(X, y; Cl, c,. ., c,) 0,

a general solution of (4.1).
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