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A REDUCTION ALGORITHM FOR AN ORDINARY DIFFERENTIAL
EQUATION ADMITTING A SOLVABLE LIE GROUP*

GEORGE BLUMANT

Abstract. An iterative algorithm is presented for reducing an nth-order ordinary differential equation
to an (n — r)th-order ordinary differential equation (ODE) plus r quadratures when it admits an r-parameter
solvable Lie group of transformations. The procedure is automatic. The reduced (n —r)th-order ODE is
obtained without determining intermediate ODEs of orders n—r+1, - - - n—1. This reduced ODE and the
r quadratures are deduced directly after iteratively computing 2r invariant coordinates {x;), )} and 3(r—1)
coefficients {a;, B;, v;} of infinitesimal generators associated with an admitted r-parameter solvable Lie group.

The reduction algorithm is illustrated by several examples including the third-order Blasius equation
which admits a two-parameter group and a fourth-order ODE admitting a three-parameter solvable group
which arises in studying the group properties of the wave equation in an inhomogeneous medium.

Key words. reduction algorithm, Lie group, Lie algebra, solvable group, Blasius equation, wave equation,
differential invariant, canonical coordinates, quadrature
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1. Introduction. In this paper we construct an iterative algorithm for reducing an
nth-order ordinary differential equation which admits an r-parameter Lie group of
transformations, 2= r = n. If the Lie group is solvable then we will show that the given
nth-order ODE can be reduced iteratively to an (n — r)th-order ODE plus r quadratures.
The reduced (n — r)th-order ODE will arise directly from the given nth-order ODE
without the need to determine any intermediate ODEs of orders n —r+1to n—1. The
results presented in this paper appear in a slightly less general form in Bluman and
Kumei (1989, § 3.4).

Bianchi (1918, § 167) (cf. Eisenhart (1933, § 36)) used solvable Lie groups (called
integrable groups in earlier literature!) to reduce the order of a system of first-order
ODEs. Olver (1986, pp. 154-157) gives an existence theorem which shows that if an
nth-order ODE admits an r-parameter solvable Lie group of transformations, then its
general solution can be found by quadratures from the general solution of an (n—
r)th-order ODE. However Olver’s proof of his existence theorem does not yield an
iterative reduction algorithm. In particular his proof, as illustrated by an example,
requires us to determine all intermediate ODEs.

We briefly summarize some important results concerning symmetries and differen-
tial equations necessary for the construction of the reduction algorithm. For details
see Olver (1986) or Bluman and Kumei (1989).

Consider an nth-order ODE

(11) F(X,)’,)’u“',)’n):()a

where

dk
yk=gx_{s k=1’2,""n,
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and a one-parameter Lie group of transformations
x*=X(x,y; €)= x+eé(x, )+ 0(e?),
y*=Y(xy; e)=y+en(xy)+O0(e?),

with infinitesimal generator given by

(1.2)

(1.3) X=e(x,y)aix+ n(x,y)%-

The kth extended infinitesimal generator of (1.3) is given by

a d d
XP = ¢(x, 9) —+n(x, y) —+nP(x, y, y;) —
&( y)ax n( y)ay 7 ( yy])ay1
) 9
R M © 5 5 PP RS 7 h
Yk
where, in terms of the total derivative operator
D s, 8. 4
Dx ox ylay 72 y"“a,,’
Dp*7V D¢
7%y, 31, ) = v, k=12,

Dx Dx’
with

7@ =n(x,y).

Then the group (1.2) is admitted by the ODE (1.1) (ODE (1.1) is invariant under the

group (1.2)) if and only if
XWF=0
when F=0.

If (1.1) admits (1.2) then ODE (1.1) can be reduced constructively to an (n—
1)th-order ODE plus a quadrature. This reduction can be accomplished in terms of

either differential invariants or canonical coordinates as follows.

For the first extension of (1.2) there exist invariants u(x, y), v(x, y, y;) which satisfy

X“(x,}’)=0, X(l)v(x’yayl)=0
with dv/3y; # 0. Then

d* v

Uk(x,y,yly' : '7yk)zm

is an invariant (differential invariant) of the kth extension of (1.2) which satisfies

X(k)vk(x’ VsV, 9yk)=0

with dv /8y, #0, k=2, -+, n. In terms of these differential invariants the ODE (1.1)
reduces to an (n—1)th-order ODE plus a quadrature: In particular, (1.1) reduces to

dv d"—lv) 3

4 —_— et ——— | =
(1 ) G(“, A du’ ,dun—l
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for some function G(u, v, dv/du, - --,d" 'v/du""). If ¢(u,v,C,, Cs,+*+,Cn_y)=0
is a general solution of (1.4), then a general solution of (1.1) is found by solving the
first-order ODE

(1'5) ¢(“(X,J’), U(X,y,yl); CI’C29. * .9Cn—1)=0'

The ODE (1.5) reduces to quadrature since it admits (1.2).
Alternatively, let r(x, y), s(x, y) be canonical coordinates of (1.2) which satisfy
Xr=0, Xs=1. Let

ds

=E'
Then (1.1) reduces to an (n —1)th-order ODE
dz d" 'z
1.6 Hlrz=, - ,=—)=0
( ) (I‘, Z’ dr’ s drn—l)
for some function H(r, z,dz/dr,- -+ ,d" 'z/dr"™"). If
ll’(r’ z, Cly C2a Y Cn—1)=0

is a general solution of (1.6), then a general solution of ODE (1.1) is found by solving
the first-order ODE

S, T 8,91

(p(r(X,)’),m; C19C2,' Y Cn—l) =0,

y)1

which reduces to quadrature since it admits (1.2),
An r-parameter Lie group of transformations is generated by r infinitesimal
generators

ad 3
XCt = a x’ _+ o x’ —’ = 1’ 2’ te b r’
Loy tm (), @

of an r-dimensional Lie algebra L". The commutator of X, and X, given by the operator
[Xas XB] = Xaxﬁ _XBXas

satisfies a commutation relation
(1.7) [X., Xg]= Zl CleX,,
ye

where the coefficients C)z, o, B, y=1,2, -+ -, r, are real constants called the structure
constants of L". The kth extended infinitesimal generators satisfy

(1.8) [X{,XE1= T CLXY
v=1
with the same structure constants as in (1.7) for k=1,2, - -.

A subalgebra J < L’ is called an ideal (normal subalgebra) of L" if for any X e J,
YeL’, [X,Y]eJ L™ is an r-dimensional solvable Lie algebra (the corresponding
r-parameter Lie group is an r-parameter solvable Lie group) if there exists a chain of
subalgebras

L(l)C L(Z)C e e L(r—l)c L(r)=Lr
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such that L™ is a k-dimensional Lie algebra and L*™" is an ideal of L®, k=
1,2,---,, r. Most importantly we can show that if L" is solvable then it has a basis
set {X;, X5, - * -, X,} satisfying commutation relations of the form

B—1
(1'9) [Xa9XB]= Z Cgﬁxj, léa <B’ B =29 T, T
y=1

for some real structure constants Cg.

It is easy to show that any two-dimensional Lie algebra is solvable (cf. Bluman
and Kumei (1989, p. 85)). Moreover, every even-dimensional (r =2m for some integer
m) Lie algebra contains a two-dimensional subalgebra (cf. Cohen (1911, p. 150),
Dickson (1924)). It turns out that there is precisely one Lie algebra acting on R* which
does not contain a two-dimensional subalgebra (Olver (1989)).

2. Invariance of a second-order ODE under a two-parameter Lie group. We show
that if a second-order ODE

(2.1) F(X,y,J’u)"z):O

admits a two-parameter Lie group of transformations, then we can construct the general
solution of (2.1) through a reduction to two quadratures.

Let X;, X, be basis generators of the Lie algebra of the given two-parameter Lie
group of transformations and let X{*’ denote the kth extended infinitesimal generator
of X;, i =1, 2. Without loss of generality we can assume that

(2-2) [Xl s X,]=2X,

for some constant A.
Let u(x, y), v(x, y, y,) be invariants of X{* such that

(2.3) Xu=0, X"v=0.
Then the differential invariant dv/du satisfies the equation
dv
XP—=0
1 du )
and hence (2.1) reduces to
d
(2.4) G (u, v, —”) =0
du

for some function G(u, v, dv/du). (Note that dv/9y, #0.) From the commutation
relation (2.2) it follows that

X1X2u = szlu + AXlu = 0.
Hence
(2.5a) X,u = a(u)

for some function a(u).
Then from (2.3), (2.2), and (1.8) it follows that
dv

X{"x"v=0, XPXY T

0.

Hence
(2.5b) Xv = B(u, v)
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for some function B(u, v). Since (2.1) admits X, it follows that

d
X(zz)G<u, v,-£>=0 when G(u, v,@>=0.
du du

From (2.5a), (2.5b) it follows that in terms of (u, v) coordinates X5 becomes

0 d
X = —+ —
5’ =a(u) P B(u, v) 30’

and that this infinitesimal generator is admitted by (2.4). Let canonical coordinates
(R(u, v), S(u, v)) be such that
X"R=0, X{S=1.

Then (R(u, v), S(u, v)) satisfy

dR dR
a(u) —+B(u, v) —-=0,
u v

S
a(u) §§+,B(u, v) a—= 1.
u v

Thus the one-parameter Lie group of transformations
R*=R, S*=S+e¢,
is admitted by (2.4). Hence (2.4) reduces to

ds
. H{R —)=0
6) (%)
for some function H(R, dS/dR). In terms of a solved form
ds
—_— I
iR (R),

the first-order ODE (2.6) integrates out to
R(u,v)
S(u,v)=J’ I(R) dR+C,,
where C, is an arbitrary constant. The first-order ODE

I(R) dR+C,

R(u(x,y),v(x,y,y,))
S(u(x’ )’), U(x, y: yl)) = J

admits X, and hence reduces to quadrature by the method of canonical coordinates
after we determine (r(x, y), s(x, y)) such that

X1r=0, X1S=1.

Consequently, any second-order ODE which admits a two-parameter Lie group of
transformations reduces completely to quadratures.
As an example consider the second-order linear nonhomogeneous ODE

(2.7) 2+ p(x)y +q(x)y =g(x).
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Let z=¢,(x), z=¢,(x) be linearly independent solutions of the corresponding
homogeneous equation

z"+p(x)z'+q(x)z=0.
Then (2.7) admits the two-parameter (&,, £,) Lie group of transformations
X, y¥=y+e,.0,(x)+ £205(x).

The corresponding infinitesimal generators are

x*=

0 <]

X, =¢(x)—, X, = ¢o(x) —

ay ay

with [X,, X,]=0. Then
0 [¢]
X{V=i(x) —toix)—,  i=1,2,
9y A2
N1 Yy

T )

=Xox = w, _03(x) éa(x) _ W(x)
Xou=X,x=0, X3'v 610 b))’

where W(x) is the Wronskian W(x) = ¢,¢5— ¢.¢;. Now in terms of x and v, X5 =
(W(x)/pi(x)p1(x))(8/0v). Canonical coordinates (R(x, v), S(x, v)) satisfy

W oR W 38

u=x,

XVR = —=0, XV§=—-——"=1,
P ¢udiov b1 av
and hence
v, P}
R = S =
X, W

Consequently, by a simple calculation,

dS_g(x)$,(x)

dx w(x) °
so that
(2.8) S= y ¢1WJ’¢1 I gb: dx+C,,

where C, is an arbitrary constant.
By construction the first-order ODE (2.8) admits X, = ¢,(x) 3/dy. In terms of
canonical coordinates r=x, s =y/¢,(x), (2.8) reduces to

ﬁ_ w 8h
dx‘<¢>1)2H d+c‘]

But W/(¢1)*=(¢,/¢1)". Hence

WJ'g;%dx— |:¢2J’g¢1d]_g;¢2
(¢1)2 w dx b, W'
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Thus

s_clz1 zjj%dx Jg¢2d +C,,

which leads to the familiar general solution

y=Ci+ Cop + ¢ I £ dx — ¢, J g¢2

of (2.7).

3. Invariance of an nth-order ODE under a two-parameter Lie group. Now consider
the nth-order ODE

(3'1) F(X,y,J’h"',J’n):O,

n=3, assumed to be invariant under a two-parameter Lie group of transformations.
Without loss of generality there exist infinitesimal generators X, , X, such that [X; ,X,] =
AX; for some constant A.

Asin § 2let u(x, y), v(x, y, y,) be invariants of X{*. Then X{* ¢ = 0 where ¢ = dv/ du,
and (3.1) reduces to

dv d" v
(3.2) G(u, D’:i;’ e, du"“) =0

for some function G(u, v, dv/du,---,d" 'v/du"").
Since [X{, X{1=AX{", k=1,2,-- -, it follows that

X2u = a(u)’ X(Zl)v = B(ua v)a X(ZZ)lj = ')’(“, v, U),

for some functions a(u), B(u, v), y(u, v, v). Then
J d
XV = a(u) —+B(u,0) —,
u av
with first extension given by
d J J
X5 = a(u) —+B(u, v) —+y(u, 0,9,
ou ov v

is admitted by (3.2). (Note that 9y/dv#0.) Let U(u, v), V(u, v, ¥) be such that
XxPu=0, XPv=o.

Then
dv
@ 4y _
X§ -5 =0.
Consequently, (3.2) and hence (3.1) reduces to
av d"?
(3.3) (U Voo --,dU,,,‘:>—o

for some function H(U, V,dV/dU,---,d">V/dU" ). If
¢(U, V; Cla CZ: tt T, Cn—2)=0
is the general solution of (3.3), then the first-order ODE

(3.4) (U(u v), V(u v, dv ) C,,C,, - ,C,,_2>=O
*du
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admits X5V = a(u) 8/du+ B(u, v) 3/dv. Thus (3.4) reduces to quadrature
Yy(u,v;C,,Cp-+,C,o5,C_1)=0

for some function y(u, v; C,, C,,+, Cu_, C,_,). But the first-order ODE

(3.5) P(u(x, ), v(x, 3, 1); Ci, Coy o+, oy, ) =0

admits X, . Thus (3.5) reduces to quadrature which leads to a general solution of (3.1).
Hence we have shown that if an nth-order ODE (n =3) admits a two-parameter
Lie group of transformations, then it can be reduced constructively to an (n—2)th-order
ODE plus two quadratures. Note that the order of using the operators X, and X, is
crucial if A #0.
As an example consider the Blasius equation

(3.6) J’3+%yy2= 0,
which admits the two-parameter (e,, &,) Lie group of transformations
x*=e(x+e), y*=e 2y,

with infinitesimal generators given by

[e] J [e)
Xl=_a 2=EXTT Y .
ox ax ay
Then
[Xi, X,]=X,
Invariants of X{? are
dv
u= ya v yl 1) V="7"= y2
du y,
It follows that
e] 0 0 0
X = x>y 2y, =3y,
ox " dy N 5%

Xou=—-y=—u, X"v=-2y,=-20,
XPs=-22= 4
30!

Without loss of generality we set

4 9 4
X =u—+20—+0—.
ou av av

Then

XPU(u,v)=0 leadsto U =%,
and

XPV(u,v,5)=0 leadsto V= s

Then the third-order Blasius equation (3.6) reduces to the first-order ODE
v _ XF* V+ U]

G.7) dUu Ul 2U0-V
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If in solved form V= ¢(U; C,) is a general solution of (3.7), then the first-order
ODE

c_dv_ (v
(3.8) v= du = ud)(uza Cl)

admits X =u(3/9du)+20v(3/dv). In terms of corresponding canonical coordinates
s=log v, r=v/u’ (3.8) becomes

315 _ ¢(r; Cy)
dr r[¢(r; C))—2r]
This leads to the quadrature
' ¢ (p; C1)
(39) v=G epr plo(p; C1)—2p] dp]’
where v = y,, r=y,/y> In principle (3.9) can be expressed in a solved form
n=vy; C, ),
which admits X, =9/9x, and hence reduces to quadrature
&y
(y; Cy, Cy)
Equation (3.10) represents a general solution of the Blasius equation.

(3.10) J =x+C;.

4. Invariance of an nth-order ODE under an r-parameter Lie group with a solvable
Lie algebra. If an r-parameter Lie group (r=3) is admitted by an nth-order ODE
(n=z=r) it does not always follow that we can have a reduction to an (n—r)th-order
ODE plus r quadratures. We show that such a reduction is always possible if the Lie
algebra L', formed by the infinitesimal generators of the group, is a solvable Lie algebra.
Consider an nth-order ODE

(4'1) Fn(x,y,)’h"',J’n):O-

Assume that (4.1) admits an r-parameter Lie group of transformations (3=r=n)
whose infinitesimal generators form a solvable Lie algebra. Without loss of generality
we can assume that the infinitesimal generators {X;},i=1, 2, - - -, r, satisfy commutation
relations of the form (1.9).

Let xy(x, ), ya)(x, y, 1) be such that

XIX(1)=0, Xgl)y(1)=0.

Then
Xﬁk“)i’@=0, k=1,2,---,n—1.
dx
Let
d*ya)

=0, k=1,2,---,n+1.
Yk dxé‘l)

In terms of the invariants x;y, yq), and the differential invariants {y,)}, k=
1,2,--+,n—1 of X{", ODE (4.1) reduces to an (n —1)th-order ODE

(4.2) Fo_1(xy, Yay, Yay, " Yayn-1)=0

for some function F,_, of the indicated invariants of X{".
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From (1.7), (1.8) it follows that
Xoxy = a(xy),
Xy = Bi(xaywm),
XYy =YXy, Yays Yan)s
for some functions «,, B;, y; of the indicated arguments. Hence

0 I
X§Y = a,(xq)) —+ B1(xay, Yay)) =
1\A(1) 8x(1) 1\A(1) s Y (1) 3)’(1)

with first extension given by

d
ng) = X§1)+ ’Yl(x(l), Yay, y(l)l) .

0¥
is admitted by (4.2).
Let x)(xa), Y1) Yo (X1y» Yy Yayi) be such that

(4.3) X% =0, XPye=0.
Then

dky

XgHo—=8=0,  k=1,2,---,n-2.

dX(z)

Let
d“ya

= k=1,2,--,n—2.
y(2)k dxécz)’ > 4 >

In terms of the invariants X, Y2y, Vo, k=1,2,- -+, n—2 of X5 (which are also
invariants of X{™), ODE (4.2), and hence ODE (4.1), reduces to the (n — 2)th-order ODE

(4.4) Fn—Z(x(Z) y Y@ Y, 't y(2)n—-2) =0

for some function F,_, of invariants of X", X{™.
from (1.7), (1.8) it follows that

(4.5a) X{"X{"x) =0,
(4.5b) XXV x ) =0.
Then (4.5a) leads to

XVx0) = Alxay, yo),
for some function A(x;), ¥)). From (4.5b) we have
(4.6) XV A(xay, yay) =0
Then (4.3) leads to

X§"x) = A(x(1), Y1) = aa(X2),

for some function a,(x(,)). Similarly,

Xy = Bax2)5 Y)s

3
X v01 = Y2(X2)5 Y2)» Y1)
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for some functions B,, v, of the indicated arguments. Hence
d

X az(x(z)) o + B2(x(2), J’(z)) '

2

with first extension given by

l¢]
X$ =X+ ¥2(x2)» Y2)» Y1) -,
9Yn

is admitted by (4.4).
Then let X(3)(X(2), y(z)), y(3)(X(2), Y y(2)1) be such that

(2) — 3 —
X37x3 =0, X§ )J’(3) =0.

Consequently,
x“*"’dy(” 0 k=1,2,--+,n-3
dx(3) b 2 b
Let
dk)’(3)
== k=1,2,---,n-3.
Y3k dxé) n

In terms of the invariants X, ¥, (Yo, K=1,2, -+, n—3, of X" (which are also
invariants of X", X{"), ODE (4.4), and hence ODE (4.1), reduces to the (n — 3)th-order
ODE
Fo_3(x3), Y3y, Yaris * * * 5 Yayn—3) =0
for some function F,_; of the indicated invariants.
Continue inductively and suppose that for g=3, -+, m, m<r,
Xy (Xg-1)5 Y(a-1)> Y (Xg-135 Yg-1)> Yig-11)

are such that

Xﬁ)q_l)x(q) = 09 X;q)y(q) = Oa pP= 19 23 L, q,

k
X(MMw:O k=1.2.+--
T TR

with yg)=d*yy/dx{y, k=1,2,+ -+, n—gq, so that the nth-order ODE (4.1) reduces
to the (n — m)th-order ODE

,h—q forl=p=q,

(47) Fn—m(x(m)a Yim)s Yim)1>* * * s Yim)n— m) =0

for some function F,_,, of invariants of X{", X ... X X{".
To go from step m to step m+1 we proceed as follows.
From (1.7), (1.8) it follows that

X(m I)X(m l)x(m)_o j=1’2,. <., m.

The equation X{" "X{"Vx(,,, =0 leads to

-1 _

Xs::n+1 )x(m) =A(X), Yy, Y1, * > Yym—2)
for some function A, of the invariants of X{" ™ V; X{" VX" Vx,,., =0 leads to
(m)

A= Az(x(z), Yy, Yo, s J’(z)m—3)

for some function A, of the invariants of X5 ", X{"™"; X{" VX" Vx(,,, =0 leads to

A= Al(x(z),J’(l), Y y(l)m—l—l)
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for some function A, of the invariants of X{" ", X{™ 0 ... X"V 1=l=m-1.
Then the equation X" VX7V x(,,, =0 leads to

A, =Am—1(x(m—1), y(m—l))

for some function A,, _;(X(m_1), Ym_1)) of the invariants of X", Xm0 - - - x{™™;
finally, X" VX"V x(,) = 0 leads to

XSnm+11 x(m) - Al m(x(m))

for some function a,, (X))
Similarly, we can show that

X1 my = B (X(my s Yimy)s
+1
X Y im1 = Yo (Xemys Yomys Yomr1)s

for some functions B,,, v,, of the indicated arguments. Hence

[¢]
X, = m(x(m)) +Bm(x(m),y(m))

X(m) (M)
with first extension given by
(m+1) _ y(m) d
Xm+1 Xm+1+ym(x(m)’ y(m)a y(m)l)
ay(rH)I

is admitted by (4.7) since ODE (4.1) admits X,,.;. Now let Xgnur1)(X(m)> Vim))s
Yim+1)(X(m)s Y(m)» Yimy1) be such that

Xs::n-zlx(m+1)=0, X m+1 )’(m+1)—0

Then
(m+1+k) d* Y(m+1)
), S ———=0, k=1,2,---,n—m—1.
dx(m+1)
Let
dky(m+1)
Vimtk= % > k=1,2,---,n—-m—1.
"

In terms of the invariants X(m+1), Yim+1)> 1Ym+k) K=1,2,+++, n—m—1, of X,

(which are also invariants of X{”, X{", - --,X{"), ODE (4.7) and hence ODE (4.1)
reduces to an (n —m —1)th-order ODE

Fn—m—l(x(m-l—l), y(m+1)a J’<m+1)1, T, y(m+1)n—m—1) :0,

for some function F,_,_, of invariants of X{",.

Finally, two cases are distinguished.
Case 1 (3=r<n). Here ODE (4.1) reduces to an (n — r)th-order ODE

(4'8) Fn—r(x(r)a y(r)’ y(r)l, et sy(r)n—r)=0
for some function F,_, of invariants of X{" plus r quadratures. The quadratures arise
as follows.

Suppose

d)r(x(r)’ y(r); Cl: C25 Y Cn—r) =0
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is a general solution of ODE (4.8). Then the first-order ODE
¢r(x(r)(x(r—l)a y(r—l))’ y(r)(x(r——l)a Yir-1y» J’(r—m); C,C,Co)=0

admits

]

+Br 1(x(r 1) y(r l)) 3

-1
X(rr )=ar—1(x(r—l))
0X(r—1) 0Y(r-1)

which leads to a quadrature

¢r—1(x(r—1), Yor-15 C1, Cyy v v, C,y1)=0

for some function ¢,_; of the indicated arguments. Continuing inductively, assume
that we have obtained

d’k(x(k), Yy Cr, Cy, o, Cug)=0.
Then the first-order ODE
¢k(x(k)(x(k—1), )’(k—l)), y(k)(x(k—l)s Yk—-1)» )’(k—l)l); C,Cp 0, Casl)=0

admits

d d
X(k R = Qg 1(x(k 1)) + B l(x(k 1) Yk— 1))
OX(k—1) Yik-1)

which leads to quadrature

¢k—1(x<k—1), Yi-15 Ci, Coy v v Ch_k+1)

for some function ¢,_, of the indicated arguments, k=7, r—1, , 1 (yoy=»).
Case 11 (3=r=n). Here ODE (4.1) reduces to a ﬁrst-order ODE

(4.9) Fl(x(n—l)ay(n—l)’y(n—l)l)=O

for some function F, of the invariants Xy, ¥x—1) of X", plus n—1 quadratures
which are obtained as demonstrated for Case I. The first-order ODE (4.9) reduces to
quadrature since (4.9) admits

(n—1) _ d 0
Xy =an 1 (Xn-1) %o 1)+Bn 1(Xn—1)> Yin-1)) T—— P
Thus the solution of ODE (4.1) is reduced to n quadratures.

Consequently, we have proved that if an nth-order ODE is invariant under an
r-parameter solvable Lie group of transformations, then it can be reduced algorithmi-
cally to an (n — r)th-order ODE plus r quadratures. Note that in applying this reduction
algorithm we do not need to determine the intermediate ODEs of orders n—1, n—
2, -+, n—r+2; in Case I we do not need to determine the intermediate ODE of order
n—r+1.

As an example consider the fourth-order ODE

()]

which arises in studying the group properties of the linear wave equation in an
inhomogeneous medium (Bluman and Kumei (1987)). The ODE (4.10) obviously
admits the three-parameter (&,, €,, £;) Lie group of transformations

x*=e(x+eg,), y*=e%y.
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Corresponding infinitesimal generators X;=49/dx, X,=x(d/dx), and X;=y(8/dy)
satisfy the commutation relations [X,, X;]1=X,, [X;, X;5]=0, [X;, X;5]=0, and thus
commutation relations of the form (1.9). To carry out the reduction algorithm, we first
need the following extended infinitesimal generators:

0 [¢] [S] S] e] 0
XP=— XP=x—- XP=x——y,—=2y,—,
! ox z 9x = v’ 2 0x ‘% oy 2 ay2
d [¢] J 0
X =yt XP=y—+y,—+y,—,
y dy )’1 1 3 yay N1 3, Y2 7

d d d
X(3)—y +y,—ty,—ty,—.
3y Tloyr aya oy
From X1X(1) = O, Xgl)y(l) = 0, Yan= dy(l)/dx“), we get

_ _ Y2
Xn=Y, Y=V, Yan=_
hg

Then
a (X)) = Xox1y=0, Bi(xq), )’(1)) = X(zl))’u) ==Yy,

V2
’Yl(xu), Yay, )’(1)1) = X§2))’(1>1 = —y_ =—JYan-
1

Thus in terms of x.), ¥y, Yay, we have

d 0 9
X$=—y, . X =—yy—-»
2 (1) Vay 2 (1) v (¢9) 3)’(1)1
Now from X(ZI)X(Q) = 0, Xéz)y(z) = 0, Yon= dy(z)/ dX(z), we find
Y _ V2 _J’1)’3_2()’2)2

X2)=X1) =), - H -
(2) o=V Y= Yo (y1)2 Yon (y1)4

Then
_yx oy, — Y2
a,=X3"X) =y =Xy, Bz—x3 Y(z)—_(y )2=_J’(2)’
1

4(y,)* =20y _

Y2= X3 Yon= (y )4 —2ya)-
1
Thus in terms of Xy, ¥2), Y@2y1, We have
d
X = X =y =
3 (2) %) (2 e
J d d
X()=x ——y — =2V .
@ 0 @ Y2 @1 Y
Now from X(32)x(3) =0, X§¥ Yie) =0, we get
s Yy —2(32)°]
X3 =XV =73 Yo =) Yen="""—3 "
3) )Y (2) ()’1)2 3) = X©2)) Yoen = (y1)4

It now must follow that ODE (4.10) reduces to a solved form

d)’(s)

(4.11) dx oy

= J(x(3), )’(3))
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for some function J(x), ¥3)) since (4.10) can be written in solved form in terms of
¥4. It turns out that for ODE (4.10)

J(x3), ya3)) = —(1+2x3),
and hence (4.11) fortunately reduces to quadrature. Then
(4.12) (X2)Yan = —Xoye ~[*@yal—a
admits X = X(8/3%2y) = ¥(2y(8/3¥(2)), With corresponding canonical variables
R=x0y0), S=10g ye).
In terms of these variables (4.12) becomes

ds 1, 1

4.1 =—t—.
(4.13) dR R R’-—¢

Consider the case ¢, >0, and let ¢, =(C,)> Then

R-C 1/2C,
S=logR+log<R+C1) +c,,
1

and consequently
Yo =®(xe); G, Cy)

(4.14) e (1+B(x(2))>

X(2) 1- B(X(z)) ?
where B(x(5)) = (C,/ x3))*", with arbitrary constants C,, C,. Then the first-order ODE
resulting from (4.14), i.e.,

(4.15) m=‘1)(3C(1); C,, C),
Yay

admits X" = -ymy(8/3y1y). Hence (4.15) reduces to

dyqy

= ‘I’(x(l); Ci, G) dxu)
Yay

which integrates out to

Y =¥(y; C,, C,, C3)

y
= C3 €Xp [J (D(X(l); Cl, Cz) dX(l)] .

Finally the first-order ODE

d
$= =V G 6, C)
X

admits X, =49/dx and reduces to quadrature
y dy
=x+C,,
J ¥(y; Gy, G5, C3) *

yielding a general solution of (4.10). The case ¢; = —(C,)? substituted into (4.13) would
yield another general solution of (4.10).
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An alternative way of using the group properties of the fourth-order ODE (4.10)
to obtain general solutions was considered in Bluman and Kumei (1987).

5. Summary. In using the reduction algorithm developed in §4, from the
infinitesimal generators of the admitted solvable Lie group we determine iteratively
coordinates {x(;), ¥y, iyt and coefficients

{ai(xiy), Bi(xiiys Yi))s Yi(Xaiys Yiiys Y1)}
(X1y» Yy Yy = (@, By, ¥1) > (X2), Y25 Y1)
-> (a2’ B23 YZ) e d (x(r—l)a y(r—l)’ y(r—l)l)
-> (ar—l > Br—l > ’Yr—l) > (x(r)9 y(r))'
The nth-order ODE reduces directly to an (n—r)th-order ODE in coordinates
(%(r)» ¥n)- The quadratures follow from reversing the arrows of the iterative procedure.
In the case of an nth-order ODE (4.1) admitting a three-parameter Lie group with
infinitesimal generators X, X,, X; satisfying commutation relations of the form (1.9),
the procedure simplifies to:
(1) Determine coordinates x(;,(x, ¥), ¥uy(x, y, ¥1) and hence y;, invariants of
X2,
(2) Apply x(zz) to Xy, Y1), Y, respectively, and find a;(xq)), Bi(x1), Y,
Y1(Xa), Yay» Yan)- Then

0 0 0
X(22)=a1 +B + v .
Y

axay | aya
(3) Determine the invariants x)(X(1), ¥(1))» Y@ (X1y» Y1y» Yan) of X5 and hence
the differential invariant ), of X5
(4) Apply X5 to x@), ¥y, Yo, respectively, and find ax(x0)), Ba(*2)» ¥2)s
¥2(X(2)> ¥(2)» Yi2y1)- Then

0 a4 n a4
2 Y2 .
9X(2) E37¢)) Y

(5) Determine the invariants x)(X(), ¥2))s Y3)(X2)5 Y2)» Y2)1) Of X{ and hence
the corresponding differential invariants

Y31, Yi3y2s 75 Y3n—3 OfXgn)-
(6) Find the reduced ODE
Fn—3(x(3)9 }’(3), y(3)1 PR y(3)n—-3) = 0
of order n—3 with independent variable x;, and dependent variable y .
(7) Let ¢3(x3y, ¥3)y; Ci, Cay v -+, Co—3) =0 be the general solution of F,_;=0.
Then in terms of coordinates (X3, ¥(2)) the first-order ODE
D3(x5y (X2, Y2))> Y3 (%25 Y2y Y31)5 C1, Cay v+, Ca3) =0
admits ng) = az(a/aXQ)) + ﬁz(a/ay(z)).
(8) The invariance of ¢;=0 under X$* leads to quadrature
d2(x)(X1y» Yy)s Yoy (X(1y» Yay» Yan)s Ci, G2 -+, Cu2) =0.
In terms of coordinates (x(;y, y)) the first-order ODE ¢, =0 admits
[S] d
1 1 .
0X(1) 9y

XV =q
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(9) Reduce ¢, =0 to quadrature
¢1(x(1)(X,.}’), J’(l)(X, »11); Ci, Cypovv v, Cuy) =0,
In terms of coordinates (x, y) the first-order ODE ¢, =0 admits

d ]
Xl = gl(xa )’) —+ 771(X, J’) .
ox ay

(10) Reduce ¢, =0 to quadrature
¢0(x,)’§ Cla CZ’ T, Cn)=09

a general solution of (4.1).
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