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WHEN NONLINEAR DIFFERENTIAL EQUATIONS ARE
EQUIVALENT TO LINEAR DIFFERENTIAL EQUATIONS*

SUKEYUKI KUMEIt AND GEORGE W. BLUMANt

Abstract. A necessary and sufficient condition is established for the existence of a 1-1 transformation
of a system of nonlinear differential equations to a system of linear equations. The obtained theorems
enable one to construct such transformations from the invariance groups of differential equations. The
hodograph transformation, the Legendre transformation and Lie’s transformation of the Monge-AmpSre
equation are shown to be special cases. Noninvertible transformations are also considered. Examples
include Burgers’ equation, a nonlinear diffusion equation and the Liouville equation.

Introduction. In this work, we study transformations mapping nonlinear differen-
tial equations to linear differential equations in a 1-1 manner. Based upon the group
analysis of differential equations, we obtain necessary and sufficient conditions for the
existence of such transformations. The established theorems not only allow us to
determine the existence of the transformations but also enable us to actually construct
these transformations from invariance groups of the nonlinear equations.

In the following analysis, two types of transformations are considered" (1) the
invariance groups of differential equations; and (2) the mappings which transform
nonlinear differential equations to linear differential equations. Theorems will be
proved based upon the following observations. Clearly if there exists a 1-1 mapping
between any two differential equations it must inject properties of one equation into
the other, including their invariance properties. For this reason the often ignored fact
that any linear differential equation admits an invariance group related to the superpo-
sition principle becomes very significant. The generator of this particular group depends
upon an arbitrary solution of the linear equation. It follows then that any nonlinear
equation transformable to a linear equation by a 1-1 mapping must admit an invariance
group whose generator depends upon an arbitrary solution of some linear differential
equation.

The idea of comparing invariance groups of differential equations in the search
of mappings connecting the equations was first used by Bluman in his study of Burgers’
equation [1] and it was applied to the study of the mappings of one-dimensional linear
parabolic equations to the heat equation [2].

In the first section of this paper some basic properties of various transformations
are summarized. The theorems are presented in the second section. The examples in
the third section include the hodograph transformation, the Legendre transformation,
Lie’s transformation of the Monge-Ampre equation and the equation (Ux)Uxx uyy
0. In the last section we examine properties of noninvertible mappings of Burgers’
equation, the diffusion equation (u-2ux),- uy 0 and the Liouville equation u,y e u,
respectively, into linear equations.

1. Transformations of invariance groups. We consider a 1-1 mapping T of a
vector space w to a vector space W. In this section we are interested in how a generator
of a Lie group defined in one space is mapped into the other space by T.

Throughout the paper we adopt the customary summation rule for repeated
indices. Italic indices are summed from 1 to M, and Greek indices from 1 to N.
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1158 SUKEYUMI KUMEI AND GEORGE W. BLUMAN

1.1. Invariance groups [3]-[6]. We consider an infinite dimensional vector space
w with coordinates

"),

where x (xl, x2, ,XM), Z (Z 2 N).,z ,...,z The coordinates of z consist of

zi2...i, with /x 1, 2, , N and ik 1, 2, , M. For instance,
2
z

(Zll, N (n)
’’, ZMM," ", Z11,’’’, ZtM). We adopt a notation w for the vector space

with coordinates

,z, z).(X, Z,

In the later analysis of differential equations, we associate with z" a function u" (x)
and with z ..., a derivative u ... (x) O.u" (x).

Let T be the space of functions w(k)R, k finite, analytic in a given domain
D(w) in w. We consider an operator of the form

where

(2) + Z iik O +

is a linear operator y-> y. The linear space of operators is denoted by A. An
equivalence relation in A is defined by

o_(3) ll 12 if {(/1 /2)g}lg=o=0 for any g3/.

The symbol [g--0 indicates the evaluation of a quantity under the condition g 0,
Dx,g O, Dx,Dxjg 0,. .. It is not difficult to show"

PROPOSITION 1. The operator (1) is equivalent to

(4)
gix IX Z ilx,i "’]k^ Dxki...].^lx

DEFINITION 1. The operator (1) is called a generator of an invariance group of
an equation f(to (n)) (1, rE,.. ", [:) 0, f: w (")--> R :, fi % when it satisfies the
equality flr=o- 0. In this case we say f 0 admits the generator l.

Any operator equivalent to a generator is also a generator for the same equation.
Since an operator of the form (4) is generally easier to work with than one of

the form (1), we only consider operators of the form

(5) l=O"Oz +OeOz,+OOz+
Oix % O...jk DxO...j. We write this operator simply as 0ix 0z,. An element of the
quotient space A/ is represented by 0ix0z-.

If one associates functions uix(x), u?(x),.., with zix, z,..., the equation
f(to "))= 0 becomes a system of K nth order differential equations. Here it should be
noted that Lie [4]-[6] established a systematic algorithm to find generators admitted
by differential equations.

When the equation ]’(to("))- 0 is linear in z, z, 2z, the equation is known to

admit a generator associated with the superposition principle. To be consistent with
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the later discussion, we use capital letters X, Z in the following lemma and
proposition.

PROPOSITION 2. A system of linear equations,Z -v(X) O, t, 1, 2, , K,
K <- N, (X)" R1 R, with linear operator, defined by

(6) ,Z" A,,(X)Z" +Ai, (X)Z +.. +A ix (X)zi2...in,
Ai’i2"’i(X)" Rt--> R, admits a generator L U"(X)Oz depending upon an arbitrary
solution {U’(X); tt 1,2,... ,N} o[ the system o[ linear differential equations
Ut" (X) O, i.e.,

(7) At,(X)Ut" +a U +... +a (X) t,i(x t’ili2""in Uili2. in 0

,= 1,2,. .,K.
Here and in the folio_wing, U...k Ox, Oxj "’’OxkU"(X). It is easy to see that if

’,Z (X) 0, then Z -(1 / cL)Z, c constant, corresponding to a superposition
of cU with Z, satisfies the equation Z"-(X)- 0.

DEFINITION 2. An operator L U" (X)0z- is said to be a superposition operator
of the equation ",Z (X) 0, u 1, 2,. K, if ,U" 0.

It may happen that nonlinear equations can be resolved algebraically into linear
equations. For example, the equation (Za)2-(Z)2= 0 is solvable as Z1 +Z 0. We
now define precisely the meaning of linear systems.

DEFINITION 3. K Ca functions W<n) R

F (II(")) F (X, Z, , , Z), u=1,2,...,K

are functionally independent in the domain D(W) if and only if there exist K com-
ponents of (, 2Z, Z), denoted by ya, y2,..., y/, for which the Jacobian of

(Fa, F2, , Fr) is nonzero"

D(Fa, F2, F)
0 in D(W).D(ya, y2,.., y:)

We denote by D(W; F =0) the set of points IqD(W) satisfying the equations
F(f")) 0, u 1, 2,..., K. The implicit function theorem ensures that if {F
is a set of functionally independent functions and D(W;F 0) is nonempty, then in
every neighborhood of D(W; F 0) there exists a unique set of K C functions

(fl")), u 1, 2, ., K, independent of y1, y2,..., yr, with the property that the
functions F (lq")) all vanish with the substitutions Y q(lq")), , 1, 2, .., K. We
call Y (I)")) an e.xplicit form of the equations F (lq")) 0.

DEFINITION 4. K equations

F(O,n)) 0, t,= 1,2,... ,K, K<-N,

are said to be independent if and only if {F} are functionally independent in a given
domain D(W) and D(W; F 0) is nonempty. A system of K independent equations
is called a linear system if and only if its explicit form is linear in Z, Z,..., Z, namely,

with

Y=sggZ +(X),

txZ I A p.(X)ZI /A ,i p.. (X)Zi /" /A vii i2 p.
la, n(X)Zili2...in,

.’RI-R, iiik’Rl. -R, ’RR.



1160 SUKEYUMI KUMEI AND GEORGE W. BLUMAN

The following is obvious"
LEMMA 1. A linear system F (f()= 0, v 1, 2, K, admits a superposition

operator L U (X)Oz, associated with its explicit form
Y =dz"+ (x).

1.2. Contact transformations. We now consider a 1-1 transformation T of the
space w to a space W with coordinates f=(X, Z, Z,..., Z,..n ")" We let 12(n)=,.. (x), and with(X, Z, Z) As we associate with z v, z i, functions u (x), u

Z, Z[, functions U(X), U[ (X),. ., it is necessary to impose a condition that
the transformation T preserve the contact conditions"

dz z dxi 0,

dz il...it Z i’"itcit+l dxi+ 0,

(8) $

dZ Z dXi 0,

dXik+ 0dZil...ik --Zil""ikik+l
u 1, 2,...,N, ij 1, 2,...,M, k 1, 2,.... We call a transformation T satisfying
these conditions a contact transformation.

Bicklund [7] proved that for a scalar z the most general 1-1 transformation
w - 11 with this property is the extended contact transformation of Lie. On the other
hand, for a vector z, the most general 1-1 transformation satisfying (8) is the extended-
point transformation [8]. We summarize the basic properties of a Lie contact transfor-
mation.

Contact transformation of Lie. The following definition [9] of the Lie contact
transformation is most suitable for our purposes"

A transformation T" w (1) W(1

(9) X=X(x,z,z), Z=Z(x,z,f), Z=(x,z,f), z,ZR,

2" W(1)
"- RM, ." W (1)

-’ R, : W
(1) - RM, is a Lie contact transformation, i.e.,

(10) dZ Zi dXi p(oo (1))(dz zi dxi)

if and only if
1) X,X2,’" ,XM and Z are independent functions of x,z,z and satisfy

ff2i, ff2i] O, E2, 2i] O, i, j l, 2, M.
2) Z, Z2, ’,Z are determined from

(11)

or from

OxiZ nt- ZiOzz Zj(OxX + ZiOzXl")

(12) G,Z ZiG,X.
and p(w() from

(13) o oz -zga=x, Ix,,, z,,], k=l,2,...,M.

(14)

The Lagrange bracket [.,. of two functions &(w 1)) and 0((.0 (1)) is defined by

[, !] (Ozi )(0xi + ZiOzO) (OziJ)(Oxi -Jr- ZiOz ).
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Extensions of (9) to higher coordinates Z, n > 1, are found from the contact

condition (8). We write the extension of (9) to f") and its inverse as-(15) " fi"(o("), o

and the infinite extensions as

(16) fl (w), w w().

It is convenient to write the right-hand sides of (15) as

(17) ((() Tw(, (((m) T-(

and those of (16)

(18) fi() T, () T-I.

1.3. Transformations of f and l by 1-1 contact transformations. The cases of a
scalar z and a vector z are discussed separately since they admit different types of
1-1 contact transformations.

a) Scalar z. We assume that the transformation (16) is analytic in D(w). We let
D(W) be the image of D(w) by (16). F denotes the space of functions W)- R, k
finite, analytic in D(W) and A is the space of operations L (R)Oz, 19 F.

The transformation of a scalar function f(w (")) y y the Lie contact transformation
T is written as Tf(w) and defined by

(19) Tf(w (n))=__ f(T-Xf(,) F.

The inverse transformation of F(f()) into 3’ is defined by

(19’) T-F(f) F(Tw) "y.

Under the change of variables o - f defined by (9) and its extension, the operator
(5), i.e., OOz + OiO, +" is transformed to

(20) L (lXi)Oxi 3_ (lZ)Oz + (lZi)Ozi .3t_

We write L TIT-I A. The equivalence relation in A is defined as in . It is clear
that if ll o___ 12, then L o__ L2. Using Proposition 1 and the equalities (12) and (13), we
find that

(21) TO(w(")OzT-1 o__ [p(T-l.(1))O(T-m))]Oz

(22) T-IO(EIr)OzT o= [{p(w)}-O(Tw"))]0z.
If f 0 admits a generator l, then any operator equivalent to T1T- is a generator of
an invariance group of Tf 0. Conversely, if L is a generator of F 0, an operator
o_ T-1LT is a generator of T-IF 0. Thus, in view of (22), we have:

LEMMA 2. An operator L O(’](m))oZ is an invariance group generator of the
equation F(Iq")) 0 if and only if the generator [{p(w x))}-a(R)(Tw m))]OZ is admitted
by the equation T-aF =-f(w ")) O.

b) Vector z. In this case the most general 1-1 contact transformation w- W is
the extended point transformation of

(23) X=X(x,z), Z=Z(x,z),

In the present context the canonical transformations of classical mechanics T t, P=/5(p, q, t),
O 0(p, q, t) correspond to point transformations where x t, (z 1, z 2, z ") p, (z n+l, z n+2, z 2")
q.
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." Rt/N-R 2"R4/N R. Transformations of Z are determined from (23) by

(8). As in Lie contact transformations, we write the extension of (23) as
-(m)(.O(m)) Tw(m) and the inverse as w(m)= 5(m)((m)) T-l[.(m). A transformation
of a vector function f(w (")) is defined by (19) and that of F(ff")) by (19’). Transforma-
tions of operators are defined in the same way as above. In particular,

(24) T-10, ((m))Oz,T o_. log (Tto (m))o. (o)(1))]0z
with

(25) tO
(1)

O’tx OZU Z OzuXi,

where x =2(X,Z), z 5(X,Z) define the inverse of (23), and corresponding to
Lemma 2, we have

LZMMA 3. An operator L (9" (fl(m))OZ. is an invariance group generator of the
equation F(II(n)) 0 if and only if T-1F =-f(oo )) 0 admits (24).

2. 1-1 mappings between nonlinear and linear equations. We now show that the
group analysis of a given nonlinear differential equation enables us to determine
whether the equation is transformable to a linear equation by a 1-1 mapping. First,
for a scalar equation we have"

THEOREM 1. A scalar nth order nonlinear equation

(26) f(w (")) f(x, z, z, z2, z) O, x RM, z R,

is transformable by a 1-1 contact transformation to a linear equation if and only if the
equation [ 0 admits a generator of the form
(27) [r(w

where
1) U(X)’RlVtR is an arbitrary solution of some nth order linear differential

equation

(28) seU A(X)U +A (X)Ui + + Aili2""in(x) Uili2...in O,

2) (to (1)). R2t+ Rt is a component of a Lie contact transformation

(29) X J(w(a)), Z 2(w(a)), Z= (w(1))
and

(30) r(w ()) [p (o) (1))]-1 (Oz2 __Oz2i)--l,

The transformation (29) maps equation (26) to a linear equation sfZ-(X)=0, s4
defined by (28).

Proof. Suppose that equation (26) is transformable to a linear equation by an
extended Lie contact transformation of (9). By Lemma 1, this linear equation admits
the superposition generator L U(X)Oz of the equation s4Z-(X)=0. Hence,
according to Lemma 2, equation (26) must admit (27).

Conversely, suppose that (26) admits a generator of the form (27) with properties
1) and 2). The transformed equation of (26) by (29) is written as
Tf=-F(X, Z, 1Z, Z)= 0. In view of Lemma 2, F 0 admits the generator L

U(X)Oz. Thus,

(31) LF FzU +Fz.Ui +" + Fz. Uili2...in 0
li2"’in
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for any 12(n) satisfying F((n)) 0 and for any U(X) satisfying the differential equation
(28). It is easy to show that (28) and (31) involve the same set of U, Ug,.... We
assume without a loss of generality that both contain U. Eliminating U between the
two equations, we get

(32) 0 (AFz,-AgFz)Ui + (AFz,,-AiiFz)Uii -b"’.

Since U represents an arbitrary solution of (28), at any point X an arbitrary set of
values may be assigned to Ug, Ugj, , and thus all the coefficients in (32) must vanish.
This is possible only if F has the form G(Z, X), G arbitrary. Therefore, (29) maps
(26) to an equation G(Z, X) 0, which is solvable in the explicit formZ-(X)
0. [3

In this theorem, z, zg,..., Z, Zi,’" are considered to be coordinates of the
spaces w, W. Because of the contact condition (8) imposed upon T this theorem
implies:

THEOREM 2. A scalar nonlinear differential equation

(33) f(x, u, u, u, u)=O,n x e RM, u’RMR

is transformable to a linear differential equation by a 1-1 mapping if and only if the
equation f(x, z, z, z2,. ., z) 0 admits a generator of the form (27). The mapping is

given by (29) and it transforms equation (33) to a differential equation which is solvable
in an explicit form
(34) U-(X) 0.

We now turn to a vector equation.
THEOREM 3. A system ofK independent nth order nonlinear equations

(35) f"(a("))=f(x,z, zl, z,...,z,)=O, u=l,2,...,K, K<-N,

x R, z R, is transformable by a 1-1 contact transformation to a linear system if
and only if the system {f 0} admits a generator of the form

(36) [U" (X(x, z))r, (x, z, z)]Ozv,
where

1) U"(X), lz 1, 2,..., N, is an arbitrary solution of some system of nth order
linear differential equations
(37) . U ui.(X)U + A uii:z’’"U A,(X) +A .Jr_

i in(X) Uili2" "’in 0,

u 1, 2,. ,K, and
2) (x, z) RM+N --) RM is a component of a point transformation

(38) x=x(x,z), z=z(x,z)

with inverse transformation x 2 (X, Z), z 5(X, Z) and

(39) o. [OZU-5 Z Ozu.Xi]x=g.
Z=Z

The extended point transformation of (38) maps (35) to a linear system with explicitforms
(40) "4,Z -(I)"(X)=0, u=l,2,...,K.



1164 SUKEYUMI KUMEI AND GEORGE W. BLUMAN

Proof. Recalling that the most general 1-1 contact transformation in the case of
a vector z is the extended point transformation, we suppose that there exists an
extended point transformation

(41) X=X(x, z), Z =Z(x, z), Z=Z(x, z, f), "",

mapping (35) to a linear system (40). By Lemma 1, this linear system admits the
superposition generator L U"(X)Oz,. In view of Lemma 3, the system (35) must
admit the generator (36) with properties 1) and 2).

Conversely, suppose (35) admits the generator (36). Under transformation (38),
the generator (36) is transformed into

(42) L U" (X)Oz,

and (35) into, say, F (X, Z, ,. , Z) 0, u 1, 2,.. , K. The system {F 0} is
solvable in explicit forms for K of the Z, 2Z, Z. Without loss of generality, for

these K components we choose Z, u 1, 2,..., K and write the explicit forms as

(43) Z +qb(X,Z,Z, Z) 0, u= 1, 2,... ,K,

where b are independent of Z,/x 1, 2, ., K. According to Lemma 3, the system
{F 0} admits the generator (42), and hence so does the system (43). Thus

(44) U + bz-U +b,,U.", +.. + 4z,...,.z Ui i.=0, u=l,2,"" K,

where b, Oz,b , etc. This holds for any U(X) satisfying the differential equation

(45) A(X)U +Ai
tx X U 3r- t_ ,z ui irt

tz (X)Uli2...in O, u 1, 2," ", K.

It is easy to see that (44) can involve only those U", U,... appearing in (45).
Equation (45) is solvable for U, tz 1, 2,..., K. This is seen as follows. Suppose
this is not the case, i.e., rank IA,11 < K, tz, u _-<K. We fix a point X X0 and assign
to U(Xo), U (Xo) [either 1,/z > K or > 1], U.(Xo)," aset of values consistent
with (45). For this set of values, there exist nonunique values of U (Xo), u _<-K,
satisfying (45) because of the above rank condition. On the other hand, the introduction
of the same set of values into (44) uniquely determines the values of U’ (Xo). This
contradicts the condition that (44) holds for any solution of (45). Thus, (45) is solvable
as

ui i2"’"(46) U1 +AU +iu + + Uili2..in 0 1 1 2, K.

Eliminating U7 from (44) and (46), we have

0 ((Z t I,) U" -- (( Ul ui 3uili2""in) t-A,)U -1t-" "- (Zeli2...in .l, Uili2...in.
This is possible only if

ui ui i2... inZc =A.Z" +..Z +...+ iz’"in ql-+u(X)
with, 0,/x < K, and consequently the explicit form (43) of the transformed system
{F 0} is linear. It is also clear that (43) is equivalent to (40). 71

Recalling again that the most general 1-1 contact transformation in this case is
the extended point transformation, we can deduce from this theorem that:

THEOREM 4. A system ofK independent nonlinear differential equations

(47) f(x,u, au,...,u)=0, u=l,2,...,K, K_<-N,
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xRM, u’RM->R, is transformable by a 1-1 mapping to a system of linear
differential equations if and only if the system fv (x, z, z,. ., z)= 0 admits a generator

of the form (36). The mapping is given by (38) and it transforms (47) to a system
solvable in explicit form as

(48) ."U"-"(X)=0, u 1, 2,’" K.

These theorems ensure that if a given nonlinear system is transformable to a
linear system by a 1-1 mapping, one can always find the mapping by examining the
nature of the invariance group of the nonlinear system. The type of group to be
considered depends on the number of dependent variables.

For a scalar equation we need only consider generators of the form

(49) l= O(x, z, z)Oz
since any scalar nonlinear differential equation transformable to a linear equation
admits an of the form (27). It should be emphasized that the function (wl), the
factor o,(o 1) and the linear differential equation (28) can all be found by examining
the generators of the invariance group of (26). Once X is obtained, the function
2(60 (1)) is determined from the condition [,i]=0 which represents a system of
first order partial differential equations for Z. At this point, Z still admits functional
arbitrariness. From X and Z we determine Z using conditions (11) or (12). Next

we use (13) for the known p r to limit the arbitrariness in Z. The resulting
transformation X X, Z Z, Z= Z maps the nonlinear equation to an equation

reducible to a linear equation U-(X)= 0. The form of P(X) depends upon the
remaining arbitrariness in Z.

For a system of equations, because of the forms of (36) and (39), the generators
to be considered are linear in {z ’}:

(49’) ((x, z) zi (X, Z ))Oz ’.

In view of Proposition 1, we see that these are equivalent to generators of a point group

l= i (X, Z )Oxi "Jr" u (X, Z )Oz ’.

If there exists a mapping to a linear system, we can find the functions X(x,z),
o-(x, z, z) by comparing the resulting generators (49’) with (36). The functions

Z"(x, z) are to be determined from these functions using equations (39). Equation
(37) is found on determining the invariance group.

Remark 1. It is possible for differential equations to admit generators whose
forms are more general than those of (27) or (36) with the forms (27) or (36) as special
cases. The Monge-Ampre equations considered in the next section are such examples.
A system of ordinary differential equations also admits such generators.

3. Examples. To illustrate the use of our theorems, we consider some well-known
equations transformable to linear equations. Since the linearization of differential
equationsf (x, u, u, ., u) 0 is equivalent to that of the equationsf (x, z, z,.. , z,)
0 by a contact transformation, we only deal with the latter. In the following examples,
where convenient, we let x x, x2 =y and adopt the customary notations zx =p,
Zy q Zxx r Zxy s, Zyy t,
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3.1. The equation z +(z -z = 0. We consider the equation

(50) f Zx + 1/2(Zx)- z o.
Assuming the form O(x, y, z, z, z)Oz for a generator and applying Lie’s algorithm,
we find that (50) admits

ll (y2zy + yxz + 1/2x 2 + y)Oz, 12 (yz, + -XZx)Oz,

(51) 13 ZyOz, 14 ZxOz, 15 Oz,

16 (yZx + X)Oz, 17 U(x, y) e-Z/2Oz,
where, in the generator 17, U(x, y) is an arbitrary solution of the heat equation
4U Uxx Ur 0. This indicates that equation (50) is equivalent to a linear equation.
To find the mapping, we compare 17 with (27) to get . x, I7" =y and cr e -z/.
From the conditions IX, Z] [Y, Z] 0, we obtain Z Z(x, y, z). Thus, the map-
ping is a point transformation. From (13) and p (tr)-a e z/ we find that Oz2 e z/2

The mapping is then

(52) X=x, Y=y, Z=2ez/2+h(x,y)

where h (x, y) is an arbitrary function of x and y. It is easy to check that the extended
point transformation of (52) maps equation (50) to the linear equation

(53) Z-d(X, Y)=-Zxx-Zy-(hxx-hy)=O.

Setting h 0, from Theorem 2 we see that the transformation
u/2(54) X=x, Y=y, U-2e

maps the differential equation u** + (u,) uy 0 to the equationU Uxx Uy O,
and moreover the inverse of (54),

(55) x=X, y=V, u=21n(U)
defines an implicit solution u(x, y) of this nonlinear differential equation for any
solution U(X, Y) of Uxx- Uv 0. In this case the explicit form is

(56) u 2 In (1/2U(x, y)).

3.2. Hodograph transformations. In this example we let Z W, Z 2’" /) and con-
sider a system of quasilinear equations

(57) fi=ai(w,V)Wx+ai(w,v)w+bi(w,v)v+bir(w,v)vr=O, i= 1,2,

where a a r b and b y are functions of w, v. For the invariance group of this
equation we have"

PROPOSiTiON 4. Provided J wvr -VxWy O, the system (57) admits a generator
of the form

(58) l=-{U(w, V)Wx + U(w, v)w}Ow-{U(w, V)Vx + U2(w, v)v}o,

where {Ul(w, v), U2(w, v)} is an arbitrary solution of the system of linear differential
equations

(59) tx iy ix 2 ix 2,U =br(w,v)Uw-a (w,v)U,-b (w,v)Uw+a (w,v)Uo=O, i=1,2,

with Uiw twUi, Uiv Ov Ui.
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Proof. Since Dxfi= Dyfi= O, we find that

-1" fi WxUlw (aiXwx + a iywy) 21- VyU2 (b ixt) + b iyvy)
+ wyU2w (a iXw -- aiywy) + lxUlv (b ixl.) -- b+ vxU (b iXw + b iy 2 ixwy) + wyU, (a Vx + a’Yvy)-- l.)yU2w (b iXw -Jl-. b iYWy) + wxUlv (aiXvx + a iYvy).

Using equation (57) in the first two rows of this expression, we find that

filh=o J (biyU iy ixl.].2 ixl.].2w-a Uv-b ,..w+a ,..v)
f2=0

which vanishes from (59).
To construct the mapping to a linear equation, we compare (58) with (36) which

in the present case has the form

u (g, u (g,

Clearly X w, Y v, tr =-Wx, tr =-wr, tr =-Vx, 0"2 =-vy. The definition of
leads to Ow =1, Ova=O, Ow=O, Ov; 1. Thus we have a solution = W,
)7- V. Combining these, we find the hodograph transformation

(60) x=W, y=V, w=X, v=Y,

which is well known [10] to map the equation (57) to a linear system

(61) MZ b iy (X, Y) Wx a iy (X, Y) Wy b ix (X, Y) Vx + a ix (X, Y) Vy 0

with Z (W, V).

3.3. The Legendre transformation. We consider a second order quasilinear
equation

(62) f= a(p, q)r + 2b(p, q)s / c(p, q)t O,

where a, b and c are functions of p and q. We have:
PROPOSITION 5. Equation (62) admits a generator U(p, q)O with an arbitrary

solution U(p, q) of the linear differential equation

(63) U a(p, q)U 2b(p, q)Upq + C(p, q)U O,

where Uqq (0q)2 U, Upq OpOqU, Upp (0p)2 U.
Proof. On introducing w p, v q, Wx r, v t, wy v, s, (62) is equivalent to

the system

(64) a(w, V)Wx + b(w, v)(wy +Vx)+C(W, v)vy =0,

(65) w,-Vx =0.

By Proposition 4, this system admits the generator given by (58) with arbitrary solution
{U, U} of the linear differential equations

(66) c(w, v)U -b(w, v)(U, + UZw)+a(w, v)U =0,

(67) ulo -U2w =0.

Equation (67) allows us to introduce a function U(w, v) for which

(68) UI=OwU=-Uw, U2-OvU-Uv,
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and then (66) takes the form

(69) aUvv-2bUw+cUww=O.
Introducing (68) into (58) and using (65), we find that

o_9_ (DU)Ow + (DyU)Ov.

Recalling that w =p z and u =q zy, we see that this is the first extended part of
the operator U(p, q)O, and hence follows the assertion. [3

To construct a mapping of (62) to a linear equation we compare =-U(p, q)O
with (27). Clearly, X p, Y q and o- 1. To find Z, we use [Z, X] [Z, Y] 0,
i.e.,

Zx + pZz O, Zy + qZz O.

The solution is Z =Z(p, q, a), a =-z +px +qy. From (12), we get

Zp +xZ P, Zq + yZ O
with P Zx and O Zy. Now from (30) with r 1, we get 1, and consequently
Z -z +px + qy + h (p, q) for arbitrary h. Setting h 0, we get the Legendre transfor-
mation 10]"

(70) X p, Y q, Z -z +px + qy, P x, O y.

This transformation maps (62) to

(71) [Z a (X, Y)T 2b (X, Y)S + c (X, Y)R O,

with T Zry, S Zxg and R Zxx.
3.4. Lie’s theorem on the Monge-Amp/re equation. We consider the Monge-

Ampere equation

(72) f A (rt s 2) + Br + Cs + Dt +E O,

where A, B, C, D and E are functions of to. In the study of this equation, the
concept of intermediate integrals plays an important role [11]. An equation

(73) I(a(o), fl(o)) 0

a" w-R, fl" wx) R, I(a, fl) an arbitrary function RZ R, is said to be a general
intermediate integral of (72) if a and fl satisfy the equality

(74) f =- (D,a (Dyfl (Da (D,fl ).

Lie [12] proved a theorem which in our notation reads as"
THEOREM (LIE). A Monge-AmpOre equation admitting two general intermediate

integrals Ia(c , fla)= 0 and I2(c2, fiE)=0 is transformable to the equation Zxy 0 by
a Lie contact transformation 1=(w). Four of the components of are given
by

2 2(75) X=a, Y=a, P=fl, 0=/3.
We now show that these intermediate integrals are related to an invariance group:
PROPOSITION 6. A Monge-AmpOre equation possessing two general intermediate

integrals I1(al,/31) 0 and I2(a2,/32) 0 admits generators

(76) li 0"(o9 (1))ii Ogi, [i)Oz, 1, 2,
-1 2 2].o" =p=Eo ,/ ]=[c ,/
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Proof. It is easy to check that the equation ZXY "--0 admits generators L1--
II(X, P)Oz and L2 I2(Y, Q)Oz with arbitrary functions 11 and 12. On the other hand,
according to Lie’s theorem, there exists a Lie contact transformation f(x)= (1)(to(1)
mapping the Monge-Amp6re equation in question to Zxy 0. In view of (75) and
Lemma 2, the inverse of this transformation maps L1 and L2 to (76). ]

Now we are able to relate Theorem 1 and Lie’s theorem. According to Theorem
1, any linearizable Monge-Amp6re equation admits a generator of the form (27). To
see this we choose special forms for I i, namely 11 II(a ) and 12 I2(ce 2), let ll + 12,
and then obtain a generator of the form

(77) l=cr (I1(a1)+IE(a2))O =-or. U(a 1, a2)O.
Observing that U(X, Y)=II(X)/I(Y) is the general solution of the differential
equation Uxg 0, we see that indeed these Monge-Amp6re equations admit a gen-
erator of the form (27) with X a (to(l)) and I7 o2(o)(1)).

These observations show that we can always find Lie’s linearization of a Monge-
Ampere equation to Zxy 0, when it exists, by examining the invariance group of
the equation and applying Theorem 1.

3.5. The equation (Zx)’Zxx- zrr = 0. A special Monge-Ampre equation of the
form

(78) C(Zx)Z,x-Zy, =0

arises in a variety of physical problems such as nonlinear vibrations [13] (C(Zx)>0),
and irrotational transonic flows [14] (c(z,)= 1 + az,). In the following, we consider a
class of equations of the form

(79) f (Zx)’Zxx zyy 0, a real,

and apply the foregoing analysis to examine a possible mapping to a linear equation.
The invariance group of (79) depends upon the value of a. Assuming a generator

to be of the form O(w(1))Oz, we find the following cases"

1) a 0, -2, -4"

lx {-(a +4)xpq +azq-2(a + l)yq2-4y l p+l dp}Oz,
(80) 12 {(a + 4)xp + (3a + 4)yq az}Oz,

13 (z + ayq)3z, 14 yOz, ls U(p, q)3.

2) a =-2"

(81) 11, 12, 13, 14, 15 as above, 16 ZpOz.

(82)

(83)

3) a=-4"

4) a=0"

ll (xp yq)O, 12 U(p, q)Oz,

13 {pll(p-l-q, (p-l_ q)y + z)}Oz,

14 {pIZ(p -1 + q, (p-1 + q)y z)}Oz.

11 Z Oz,

13 II(x + y, p + q)O,

12 h (x, y )Oz,

14 I2(x y, p q)Oz.
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In these expressions U(p,q) represents an arbitrary solution of the differential
equation

(84) Ut,, pO, Uqq 0

and I and 12 are arbitrary functions of their arguments. In the last case h (x, y) is an
arbitrary solution of the differential equation h-hy 0.

In all these cases, except for a 0, the equation admits U(p, q)z which is
related to the above Legendre transformation.

The case a --4 is somewhat special. It is easy to verify that I= 0, 1, 2, are
the general intermediate integrals of the equation. As was previously discussed, this
Monge-Ampre equation admits the generator (77), i.e.,

(8) {tu(t-- q, p- + q)}0

for any U(X, Y) satisfying the differential equation UxY 0. We now apply Theorem
1. Comparing (85) with (27), we have , p-1 q, . p-i + q, r p. Using [2, 2]
[Y, Z]=0, (12), and (30), we find the complete Lie contact transformation to be

X p-l q, Y p- + q, Z -2p-(z px qy ),
(86)

-1 -1e=-(p -q)y-z, O=(p +q)y-z.

The inverse transformation is

x Z -1/4(X + Y)(P + O), y -(X + Y)-I(P- O),
(87)

z=-(X+ Y)-X(YP+XQ), p=2(X+ y)-l, q=1/2(-X+ Y).

The transformation (86) maps the equation (z,,)-az,,,,-zyy=O to the equation
Zxv 0. If we introduce the general solution of Uxv 0, i.e.,

U(X, Y) F(X) + G(Y), F and G arbitrary functions,

into (87) by Z U(X, Y), then we obtain a parametric representation of the general
solution of the differential equation

(u)-4u u 0.(88)

Explicitly this is

(89)

x 1/2(F(X) + G(Y))-1/4(X + Y)(F’(X)+ G’(Y)),

y -(X + Y)-’(F’(X)- G’(Y)),

u -(X + Y)-I(YF’(X)+XG’(Y)),
where F’ and G’ denote derivatives.

We also see the following: for a # 0, a differential equation of the form (84) can
be mapped 1-1 into the equation Uxy 0 if and only if a =-4. The mapping is a
composition of the Legendre transformation (70) relating Zxx-x-azYY 0 to (79)
and the transformation (86) relating (79) to Zxy 0. Explicitly, the transformation

x=2(X+Y)-’, y=(-X+Y), z=(X+Y)-’Z

maps the equation Zx, x -4zyy 0 to the equation Zxy O.

4. Remarks on noninvertible mappings. In the preceding discussion we con-
sidered mappings transforming a nonlinear equation to a linear equation in a 1-1
manner. If we require only that a mapping transform a solution of some linear equation
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tO a solution of a given nonlinear equation, the class of mappings widens and includes
noninvertible (non-l-i) mappings. In the following we examine examples of such
mappings and show that such mappings are often related to invariance under Lie
groups.

4.1. Burgers’ equation. We consider Burgers’ equation

(90) = xx + O.

This equation admits a five-parameter point Lie group [15]. None of the generators
is of the form (27), and hence by Theorem 1 there exists no 1-1 mapping to a linear
equation. However it is known that a non-l-1 mapping, namely the Hopf-Cole
transformation 16], [21]

2Zx(91) x=X, y=Y, z=
Z

relates (90) to the heat equation.
Introducing the transformation (91) into (90), we find that

(92) [= 2Z-2(ZZxxx ZxZxx ZZxv +ZxZv) 0

which factorizes as

(93) 1= 2Z-2(ZDx Zx)(Zxx Zv) O.

It follows from (93) that the transformation (91) maps a solution of the heat equation
Zxx Zv 0 to a solution of Burgers’ equation. It is incorrect to say that the Hopf-Cole
transformation maps Burgers’ equation to a linear equation. Although this type of
mapping is out of the scope of the preceding discussion, this particular transformation
is found to be related to a Lie group.

One standard argument [17] to rationalize the Hopf-Cole transformation is to
introduce z through z7 Zx and, after integrating once, one considers

(94) zx + 1/2(zx)Z- z 0.

One then says, "by inspection", that the transformation

(95) x=X, y=Y, z=21ncZ, c constant

maps (94) to the heat equation Zxx -Zv 0 and from this follows the transformation
(91). Equation (94) corresponds to the first example studied in the previous section
where we found the transformation (95) with c 1/2 by applying Theorem 1.

4.2. The diffusion equation Dx(-2x) = 0. We consider a nonlinear diffusion
equation

(96) [=D(--2) y 0.

This equation admits a four-parameter point Lie group [4] with no generator of the
form (27). As in the previous example we let z7 Zx and instead of equation (96) we
consider an integrated form

(97) f (Zx)-2Zxx zy O.

This equation admits [6] seven generators of point transformations including the
generator

(98) l= U(z, y)ZxO
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involving an arbitrary solution of Uzz-Uy 0. Comparing this with (27), we find a

point transformation

(99) X=z, Y=y, Z=x

which maps (97) to the heat equation MZ Zxx-Zy 0. From (99) it follows that. z, (Zx)-1 and one can verify that the transformation

(100) x Z, y Y, -- (Zx)-1

transforms (96) to

(101) f=Z3 (ZxDx-Zxx)(Zxx -Zv) O.

Hence the transformation (100) maps a solution of the heat equation to a solution of
(96).

The transformation (100) was previously found by separate analyses [18], [19].
The mapping in the following example cannot be related to Theorem 1.

4.3. The Liouville equation zxy- e = 0. We consider the Liouville equation

(102) Zx,-e =0.

This equation admits a generator

(103) [f(x)z, + g(y)zy +fx(X)+

with two arbitrary functions {f(x), g(y)} and their derivatives. It does not admit a
generator of the form (27). The invariant solution z u(x, y) associated with the
above generator (103) is defined as a solution of the system

(104) f(x)ux + g(y)u +f(x) + g(y) O,

(105) Ux,-e" =0.

The solution is found to be

(106) u In (b +2,
where 4(x) =If-1 dx and O(y)= g- dy. This is the general solution of the Liouville
equation [11]. Introducing U b + 4’, we write this as

(107) u ln l2U-2UUyI.

Recognizing U as the general solution of the equation Uxy 0, we conclude that the
transformation

(108) z In 12Z-2Z,,Zy[
maps a solution of Zy 0 to a solution of z- e 0. One can also see this from the
equality

(109) zxgy-e =(z-lDx +Zy1Dy-Z72Zxx-a72zyy-2Z-)Zxy,
hence Zr 0 - zy e 0.. Concluding remarks. In this work we have shown that by examining the
invariance group of a system of nonlinear differential equations we can determine
definitively whether the equation is transformable to a linear system by a 1-1 mapping.
Moreover the mapping can be constructed from a generator of the group. In all cases,
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we need only consider group generators of the form (49) or (49’) depending on no
derivative higher than those of first order.

The question of the existence of noninvertible mappings relating linear and
nonlinear equations is more complex. The problem of finding such a mapping is
equivalent to finding a condition under which a given nonlinear equation admits a
transformation leading to a factorization such as (93), (101) and (109). It was pointed
out previously [19] that the existence of an infinite sequence of Lie-Biicklund invari-
ance groups for a given equation indicates the possibility of such a transformation,
and this was used to construct the transformation (100). Such a sequence also exists
for Burgers’ equation [20].

Finally, with our approach it should be emphasized that even if one is unable to
linearize given nonlinear differential equations, one is always left with their invariance
groups. In turn these can be used for the construction of invariant solutions, conserva-
tion laws and other invariance properties of the equations.
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